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Maps based on classified Earth observation (EO) imagery have been used to model biodiversity, but errors asso-
ciatedwith the classification process itself and the resulting discretization of land covermay ultimately limit such
efforts. Among other issues, discrete land cover maps can often be costly to produce and validate. Alternatively,
the original continuous spectral information in EO imagery can be used. The primary objective of this study was
to compare predictors based on continuous and discrete information derived from Landsat TM imagery for
modeling biodiversity in agricultural landscapes. In 46 landscapes throughout Eastern Ontario, Canada, landscape
metrics (mean field size, the percentage of landscape in agriculture, and crop diversity) derived from a discrete
image classification, along with several measures of crop productivity based on the continuous Normalized Dif-
ference Vegetation Index (NDVI), were used as predictors of field-based measures of species diversity for birds,
butterflies, and plants. Using an Information-Theoretic approach for model-averaging and inference, we com-
pared and interpreted the magnitude and direction of model-averaged coefficients, model evidence ratios, and
overall fit of model-averaged predictions. Our findings indicate that when using Landsat TM imagery in agricul-
tural environments, models using predictors derived from continuous information consistently outranked
models based on discrete information derived from classified imagery.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Over the last 40 years, the state of global biodiversity has declined,
while pressures on biodiversity due to development activities have in-
creased (Butchart et al., 2010). A major driver of biodiversity decline is
habitat loss driven by human activities (Hoekstra, Boucher, Ricketts, &
Roberts, 2005; Purvis & Hector, 2000; Vitousek, Mooney, Lubchenco, &
Melillo, 1997), the bulk of which are related to agricultural land use
and land conversion (Foley et al., 2005, 2011). Mounting evidence sug-
gests that the loss of species diversity affects primary production and
decomposition, two major biological processes underpinning essential
ecosystem services (Hooper et al., 2012), which are adversely affected
in agricultural areas undergoing increased land use intensification
(Matson, Parton, Power, & Swift, 1997).

In Canada, agricultural landscapes cover approximately 7%
(~167 × 106 acres) of the country's area (Statistics Canada, 2007) and
represent habitat for over 550 species of terrestrial vertebrates, includ-
ing about half of species classified as “at risk” (Federal, Provincial and
Territorial Governments of Canada, 2010). Recent national reporting
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on the status and trends in biodiversity found that the capacity for agri-
cultural landscapes to support wildlife has declined over the past
20 years (Javorek & Grant, 2011), although such reporting is hampered
by the lack of standardized, long-term, and spatially complete informa-
tion on a range of biodiversity indicators (Federal, Provincial and
Territorial Governments of Canada, 2010). Fortunately, information ob-
tained from earth observation (EO) platforms can help inform policies
that conserve and/or enhance biodiversity assessment and conservation
planning over large regional and continental scales (Duro, Coops,
Wulder, & Han, 2007; Powers et al., 2012). In agricultural landscapes,
areas often characterized by intensive human development at fine spa-
tial scales, the use of EO imagery for biodiversity assessment and conser-
vation planning has remained relatively undeveloped. Nonetheless,
mapping and modeling biodiversity using information derived from
EO imagery has two decades of advocacy and subsequent growth in re-
lated research and applications (see overviews by Duro, Coops, Wulder
and Han, 2007; Franklin, 2009; Gillespie, Foody, Rocchini, Giorgi, &
Saatchi, 2008; Nagendra, 2001; Stoms & Estes, 1993; Turner et al., 2003).

Most commonly, efforts to map and model biodiversity involve first
classifying continuous radiometric information obtained remotely into
thematic maps, which often take the form of discrete land cover classes
depicting broad vegetation types (e.g., forest, wetland, crops, etc.).
While such approaches have yielded encouraging results, classified
maps are generally time-consuming to produce, are subject to a variety
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of factors that affect their overall accuracy (Foody, 2009; Wagner &
Fortin, 2005), and fail to completely utilize the underlying continuous
nature of remotely sensed information (Foody & Cutler, 2003; Gould,
2000; Palmer, Earls, Hoagland,White, &Wohlgemuth, 2002). Three rea-
sons have been suggested as to why discrete classifications may hinder
the modeling of field-based biodiversity measures: 1) internal variabil-
ity within land cover classes is ignored; 2) smooth transitions between
land cover classes are replaced by crisp boundaries, potentially omitting
important areas of species–habitat interactions, and; 3) the thematic
resolution may not be suitable for describing the habitat of the species
under investigation (Bailey, Billeter, Aviron, Schweiger, & Herzog,
2007; Bailey, Herzog, et al., 2007; St-Louis et al., 2009).

Alternatively, the use of continuous information derived from EO
imagery has been suggested as a means of overcoming the limitations
of traditional classifiedmaps (Nagendra, 2001). Specifically, continuous
measures of spectral heterogeneity have gained appeal as viable predic-
tors of species diversity (Rocchini et al., 2010). Many of these measures
are based, either implicitly or explicitly, on the spectral variability
hypothesis (SVH), which initially proposed that plant species diversity
is positively correlated to spectral variation derived from airborne pan-
chromatic imagery (Palmer, Wohlgemuth, Earls, Arévalo, & Thompson,
2000; Palmer et al., 2002). The SVH has since expanded to include var-
iousmeasures of spectral heterogeneity and their possible relationships
with a multitude of taxa and biodiversity responses (Rocchini et al.,
2010).

Measures of spectral heterogeneity used to validate the SVH range
from relatively simple to sophisticated, and include: measures of statis-
tical dispersion (Gould, 2000; Lauver, 1997; Palmer et al., 2000);
measuring the mean Euclidean distances between spectral clusters
derived from a principal components analysis (Oldeland, Wesuls,
Rocchini, Schmidt, & Jürgens, 2010; Rocchini, 2007); and the use of
first- and second-order image texture analysis (Bellis et al., 2008;
Culbert et al., 2012; Kuemmerle, Hostert, St-Louis, & Radeloff, 2009;
St-Louis, Pidgeon, Radeloff, Hawbaker, & Clayton, 2006; Viedma, Torres,
Pérez, &Moreno, 2012;Wood, Pidgeon, Radeloff, & Keuler, 2013). Mea-
sures of the SVH that explicitly incorporate the spatial dependence of
spectral values, such as those derived from spatial regression and
geostatistical models have also been proposed (e.g., Bacaro et al.,
2011; Foody, 2004; Hernández-Stefanoni, Gallardo-Cruz, Meave, &
Dupuy, 2011; Hernández-Stefanoni et al., 2012; Lin, Yeh, Deng, &
Wang, 2008), and may be more amenable to describing the underlying
ecological processes or environmental conditions driving species diver-
sity. Other measures that explicitly account for the spatial dependence
of spectral values include the spatially localized versions of Moran's I
and Geary's C, so-called Local Indicators of Spatial Association (LISA),
which can detect “hot spots” or centers of spatial clustering (Anselin,
1995). Such spatially explicit measures could be used to identify
patches of high (or low) vegetation productivity within a landscape,
which are potential proxies for species diversity. To our knowledge,
the use of LISA for assessing the variability of crop productivity is rela-
tively underutilized in the context of exploring the SVH specifically,
and in modeling species diversity using EO imagery in general.

In addition to selecting ameasure of spectral heterogeneity, it is also
important to select appropriate underlying continuous spectral infor-
mation. For example, Culbert et al. (2012) examined several image tex-
ture measures applied to Landsat 7 imagery and found that different
combinations of spectral bands andmovingwindow sizes were capable
of explaining up to 51% of the variability in species richness of perma-
nent resident birds in the Midwestern United States. Laurent et al.
(2005) selected the Normalized Difference Vegetation Index (NDVI)
and short-wave infrared band from Landsat 7 based on their biophysical
interpretability and were able to predict the regional occurrence of
three species of warblers in Michigan. Similarly, St-Louis et al. (2010)
also selected Landsat NDVI for its biophysical interpretability, which
they foundwasmost strongly associatedwith Loggerhead Shrike occur-
rences at intermediate scales of 10.89 ha.
NDVI has become commonplace in biodiversity research in part due
to its relationship to several environmental and biophysical processes
such as potential evapotranspiration, photosynthetically active radia-
tion, leaf area index, and net primary production (see Field, Randerson,
& Malmström, 1995; Gutman, 1991; Myneni & Williams, 1994;
Running, Loveland, Pierce, Nemani, & Hunt, 1995; Sellers, 1987; Tucker
& Sellers, 1986; see also: Asner, Braswell, Schimel, & Wessman, 1998;
Cihlar, St.-Laurent, & Dyer, 1991; Pettorelli et al., 2005). As a tractable
proxy for a variety of biophysical and environmental processes, NDVI
has also been used to examine the species-energy theory (e.g., Evans,
Warren, & Gaston, 2005; Hawkins, Porter, & Diniz-Filho, 2003; Hurlbert
& Haskell, 2003; Pau, Gillespie, & Wolkovich, 2012), which postulates
that the amount of available energy within an area is indicative of the
total amount and variety of resource types, which are in turn considered
proximate factors driving species diversity (Wright, 1983). As a result of
its utility, NDVI has seen widespread and successful use in a variety of
studies attempting to understand patterns in species diversity of plants
(Gillespie et al., 2009; Gould, 2000; Hernández-Stefanoni et al., 2012;
Lauver, 1997; Parviainen, Luoto, & Heikkinen, 2009; Viedma et al.,
2012), butterflies (Bailey et al., 2004; Debinski, VanNimwegen, &
Jakubauskas, 2006; Kumar, Simonson, & Stohlgren, 2009; Seto,
Fleishman, Fay, & Betrus, 2004), and birds (Bailey et al., 2004; Bellis
et al., 2008; Bino et al., 2008; Foody, 2004; Hepinstall & Sader, 1997;
Jørgensen & Nøhr, 1996; Mcfarland, Van Riper, & Johnson, 2012; Nøhr
& Jørgensen, 1997; Seto et al., 2004; St-Louis et al., 2009), among other
taxa.

In this study, we compare various measures of spectral heterogene-
ity based on continuous spectral information indicative of crop produc-
tivity (i.e., NDVI), and several landscape composition and configuration
metrics derived from a discrete land cover classification, as predictors of
field-based measures of species diversity. The main objective of this
study was to determine which of these predictors, based on continuous
or discrete information, had a greater relative importance for explaining
the observed variability in the species diversity of birds, butterflies, and
non-crop plants found in agricultural environments. Our secondary ob-
jective was to assess the capability of local indicators of spatial associa-
tion (LISA), based on NDVI, as potentially relevant predictors of species
diversity in agricultural environments. Finally, we interpret the results
of our models and compare our findings with previous studies that
have used measures of spectral heterogeneity to model species
diversity.

2. Material and methods

2.1. Study area

The study area is situatedwithin Eastern Ontario, south of the City of
Ottawa, and covers approximately 5000 km2 (see Fig. 1). Locatedwithin
theMixedwood Plains ecozone, the climate in the region consists of rel-
atively warm summers (mean daily temperatures: 18° to 22 °C) and
cool winters (mean daily January temperatures: −3 °C to −12 °C)
(Environment Canada, 1999). Conventional farming is the most com-
mon land use activity within the study area. In 2011, the total area in
crops covered almost 79,000 ha, and was dominated by corn (~31%),
soybean (~29%), and hay (~29%), followed by cereals (winter wheat,
oats, barley, and mixed grains; ~4%) (Ontario Ministry of Agriculture
and Food, 2011).

2.2. Biodiversity sampling

Siteswithin the study areawere selected based on a conceptual sam-
pling design intended to explore the relative effects of land cover com-
position and the spatial configuration of cropped fields on biodiversity
(Fahrig et al., 2011). The goal of this conceptual sample design was to
improve inferences made at the landscape scale byminimizing or elim-
inating several common statistical pitfalls, such as overlapping sample



Fig. 1.Overviewof study area and locations of the 46 3 km× 3 km sites. Landsat ThematicMapper image (RGB; bands 3,2,1) on June 19th (WRS-2 scene: path 15, row 29). See Pasher et al.
(2013) for a detailed description of the site selection criteria. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sites and failing to account for correlations among landscape-based pre-
dictor variables (Eigenbrod, Hecnar, & Fahrig, 2011). With these issues
in mind, Pasher et al. (2013) used a multi-stage spatial analyses over
the study area to determine: i) the appropriate extent that was best
for maximizing the variability between mean field size and diversity
of crop types (3 km × 3 km); and, ii) the appropriate distance between
sites for avoiding spatial autocorrelation among variables of interest
(3.5 km); and, iii) the selection of sites that minimized correlations
between mean field size and diversity of crop types (r = 0.08 for sites
with 3 km × 3 km extents). Of the 120 potential sites identified by
Pasher et al. (2013), logistical and budgetary restrictions limited our
biodiversity sampling and subsequent analysis to 46 randomly selected
Fig. 2. Schematic of field-based biodiversity sample design used at each of the 46 sites outlined
averaged. Gamma diversity (γ) represents the total number of species within the 1 × 1 km ext
averaged alpha diversity within the 1 × 1 km extent.
3 km × 3 km sites in 2011. For further details and step-by-step proce-
dures concerning the sample design, we direct readers to Pasher et al.
(2013).

In 2011, birds, butterflies, and plants were inventoried within a
1 km × 1 km extent centered in each 3 km × 3 km site. Within each
site, sampling was conducted at four points, with each point centered
on the border between two fields. Sample points were randomly select-
ed and set at least 200 m apart, at least 50 m from non-crop land cover
types (e.g. forests, wetlands, hedgerows, etc.), and at least 50 m from
the edge of the 1 km× 1 km extent (Fig. 2). Alpha, beta, and gamma di-
versity were calculated for each of the 46 1 km × 1 km extents. Alpha
diversity was calculated as the mean number of species recorded at
in Fig. 1. Within each of these 46 sites, alpha diversity (α) was recorded at four points and
ent. Beta diversity (β) was calculated as the difference between gamma diversity and the
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each of the four sample points per 1 km×1kmextent. The total number
of species identified over all sample points represented gamma diversi-
ty per 1 km× 1 km extent (Whittaker,Willis, & Field, 2001). Beta diver-
sity was calculated as the difference between gamma diversity and
mean alpha diversity (Crist, Veech, Gering, & Summerville, 2003;
Lande, 1996; Wagner, Wildi, & Ewald, 2000). Beta diversity, a measure
of biotic change or species replacement, can be measured using a varie-
ty of indices, but Lande's (1996) beta diversity measure is particularly
useful as it can be applied across different scales (Magurran, 2004).

For plants, at each sample point within the 1 km × 1 km extent, one
of the two adjacent fields was randomly selected for sampling. Within
the selected field, a transect 50m long and 2mwidewas set up parallel
to the field edge and 25 m into the field. All non-crop plants along the
transect were identified to the lowest taxonomic level possible. Plant
surveys were carried out twice at each transect, between May 24th–
July 9th and July 17th–August 30th. Butterflies were surveyed by walk-
ing the 50 m transects at a rate of 5 m per min (i.e., 10 minute walk per
transect). All butterflies seen within an imaginary 5 m3 box in front of
the observerwere recorded. Butterfly surveyswere conducted twice be-
tween June 27th–August 2nd and August 3rd–29th. Due to time con-
straints, only three of the four sample points could be surveyed per
1 km × 1 km extent. These sample points were randomly selected to
avoid selection bias. For birds, 10 minute long point counts were con-
ducted at each of the four sample points within each 1 × 1 km extent
from May 24–July 9, between sunrise and four hours after sunrise.
Farmland birds heard or seen within 100 m were recorded. A single
functional group based on farmland bird specialists was included in
this study (Kreuzberg, 2011). Farmland birds are of interest because of
their noted declines in Europe and North America (Donald, Green, &
Heath, 2001; Fuller et al., 1995; Kirk, Lindsay, & Brook, 2011).

2.3. Image acquisition and processing

Landsat-5 images were obtained from the US Geological Survey
(USGS) Land Processes Distributed Active Archive Center (LP DAAC;
http://lpdaac.usgs.gov). All available cloud free images over the study
area (WRS-2 scene: path 15, row29) that coincidedwith the biodiversity
sample sites during the summer of 2011 were examined, but only three
images from June 3rd, June 19th, and July 5th were of acceptable quality.
Other dates had either partial or total cloud cover, obscuring a majority
of the 46 sites. Landsat-5 imagery was selected because of its ubiquity,
long-period of record, fine spatial resolution (30 m pixel) relative to
the size of crop fields within the study area (median ~ 28,000 m2), and
its previous usage in modeling both bird and butterfly species diversity
(e.g., Seto et al., 2004). In addition, a single Landsat scene covers the en-
tire study area, eliminating the need for radiometric and geometric cali-
bration across multiple images. While relatively coarser spatial
resolution imagery (e.g., Terra/Aqua's MODIS; 250 m-1 km pixel) pro-
vides increased temporal resolution (1 to 2 revisits per day), it may
miss important development activities occurring at finer spatial scales
where human-induced land use changes are most tangible, and where
policy decisions are ultimately implemented and verified. While the im-
agery obtained from the USGS LP DAAC has been subjected to consider-
able quality control, additional image processing was required and is
outlined in the following sections.

2.3.1. Radiometric corrections
Comparisons of imagery obtained from multiple acquisition dates

and/or sensor types require radiometric calibration (Price, 1987;
Teillet, 1986), as spectral information and vegetation indices such as
the NDVI (see Section 2.5) are explained by, among several other
factors, differences in sensor calibration settings (Guyot & Gu, 1994).
Consequently, all images were placed into a common radiometric
scale by converting calibrated digital numbers into at-sensor radiance
values (Chander, Markham, & Helder, 2009). Radiance values were con-
verted to at-sensor reflectance in order to account for differences in
exoatmospheric irradiance and solar zenith angles, which reduces spec-
tral variability between images acquired at different dates andwith dif-
ferent sensors (Chander et al., 2009).

2.3.2. Atmospheric corrections
While radiometric and geometric corrections allow for amore direct

comparison of spectral information obtained frommultiple sources and
dates of remotely sensed imagery, spatial differences in atmospheric
conditions between images acquired on different dates can influence
spectral reflectance values and vegetation indices such as NDVI (Song,
Lu, & Wesely, 2003; Song, Woodcock, Seto, Pax Lenney, & Macomber,
2001). Such differences may pose a significant source of error that
must be accounted for when comparing spectral information across
large distances and/or time (Myneni & Asrar, 1994).

The Landsat images were processed using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Masek et al.,
2006), which utilizes the Simulation of the Satellite Signal in the Solar
Spectrum (6S) radiative transfermodel (Vermote et al., 1997) for atmo-
spheric corrections. The lack of contemporaneous field-based spectral
information prevented testing the effectiveness of the LEDAPS-based at-
mospheric correction. However, a qualitative inspection of the post-
processed imagery and histograms revealed typical spectral signatures
for vegetated and non-vegetated targets, a noticeable visual decrease
in the amount of blue haze present in the corrected image (i.e., correc-
tion of first-order scattering effects), and the absence of negative reflec-
tance values characteristic of poor parameterization of physically based
atmospheric correction algorithms. Images processed by LEDAPS were
considered to be atmospherically corrected and suitable for this study.

2.4. Image classification

The pixel-based classification used to derive our selected landscape
metrics utilized all three dates of Landsat-5 imagery as multiple dates
are often necessary to differentiate between the various crop types
found within the study area (Champagne, Shang, McNairn, & Fisette,
2005; Fisette et al., 2006). Approximately 18,000 training and validation
pixels were randomly selected throughout the 3 km × 3 km sites. The
land cover of each point was then extracted from an independently de-
rived, manually digitized, land covermap based on visual interpretation
of color aerial photography (~50 cm× 50 cmpixels). This digitizedmap
was validated by field crewswithin the 1 km×1 kmextent used for bio-
diversity sampling in each of the 46 sites, and through drive-by vehicle
inspections and airphoto interpretation for the remaining area of the
3 km × 3 km extents.

Thematic resolution is known to influence relationships between
discrete landscapemetrics and field-based biodiversity measures in ag-
ricultural environments (Bailey, Billeter, et al., 2007). Given the spatial
and spectral resolution of the Landsat TM-5 imagery, only four broad
land cover types, representing an intermediate thematic resolution
(c.f. Bailey, Herzog, et al., 2007), were used to depict the dominant
cropped vegetation types in the study area: corn, soy, hay/pasture,
and cereal. All other land cover types within each landscape were con-
sidered as “other”. The image classification was carried out using the
Support Vector Machine (SVM) algorithm (ITTVIS, 2008), which has
been shown to perform at least as well or better than similar non-
parametric classifiers when using medium spatial resolution imagery
in agricultural environments (Duro, Franklin, & Dubé, 2012). Overall ac-
curacy for this pixel-based classification was approximately 79%
(Table 1).

Post-processing of the initial pixel-based classification included fil-
tering using field boundaries that had been manually digitized from
the aerial photos. All classified pixels within each field were extracted
and a mode filter was applied to classify the whole field as the most
frequently occurring class within its boundaries. This procedure
eliminated the typical “salt-and-pepper” appearance of pixel-based

http://lpdaac.usgs.gov)


Table 1
Overall accuracy of pixel-based classification used as the source for discrete landscape metrics.

Reference

Cereal Corn Hay/pasture Soybean Total

Predicted Cereal 326 41 79 19 465
Corn 81 5651 232 1376 7340
Hay/pasture 92 217 4008 326 4643
Soybean 38 1069 217 4569 5893
Total 537 6978 4536 6290 18,431

Overall accuracy: 79.4%
Kappa coefficient: 0.70
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classifications, and imposed a more visually realistic depiction of field
conditions on the classification (i.e., a single crop type per field).

2.5. Measures of cropped productivity and landscape metrics

The spectral variability hypothesis (SVH) states that there is a rela-
tionship between species diversity and spectral heterogeneity informa-
tion derived from EO imagery (Rocchini et al., 2010). Based on these
findings, five measures derived from NDVI were selected as potential
ecologically relevant predictors of biodiversity: i) the mean NDVI on
June 19th; ii) the mean range in NDVI between June 3rd, June 19th,
and July 5th; iii) the Coefficient of variation (CV) of NDVI on June
19th; iv) the CV of local Moran's I for NDVI on June 19th; and, v) the
CV of local Geary's C for NDVI on June 19th.

In the context of this study, NDVI was considered a proxy for crop
productivity. While not a strict measure of variability, the mean NDVI
(M_NDVI) represented average crop productivity, whereas the mean
range in NDVI over three summer dates (M_RNG_NDVI) was consid-
ered an indicator of crop productivity variability over time. The CV of
NDVI (CV_NDVI), a simple measure of image-texture found useful else-
where (St-Louis et al., 2006), indicated the variability of crop productiv-
ity across an entire site for June 19th. Similarly, both local spatial
autocorrelation measures based on Moran's I (CV_MI_NDVI) and
Geary's C (CV_GC_NDVI) summarized the variability in crop productiv-
ity across each site, but did so incorporating the effect of local spatial
clustering of crop productivity.

For our interpretations in this study, we considered a high CV of
Moran's I for NDVI (CV_MI_NDVI) to be indicative of a landscape with
areas of both low and high positive spatial autocorrelation (i.e., a more
heterogeneous landscape composed of local areas of varying crop pro-
ductivity). Conversely, a low CV_MI_NDVI represented amore homoge-
nous landscape with local areas where crop productivity was relatively
consistent. Geary's C for NDVI (CV_GC_NDVI) can be interpreted in the
same manner as with Moran's I; however, Geary's C is more sensitive
to the underlying distribution of the data and to the absolute differences
between pairs of neighboring values (Cliff & Ord, 1973, 1981; Upton &
Fingleton, 1985). Consequently, Geary's C is well suited for delineating
large contrasts between adjacent NDVI values, such as differences in
crop productivity along adjoiningfields of different crop types, or differ-
ences of within-field crop productivity.

In most cases, the CV was selected as an applicable measure of
spectral variability, which been shown to relate to biological diversity
(i.e., the SVH; Rocchini et al., 2010). In addition, as a summary statistic,
the CV allows the variability of NDVI to be standardized and compared
among several of our sites, which showed varying degrees of agricultur-
al cover (60–90%) and crop types, resulting in unequal variance in NDVI
values between sites (Levene's test: df = 45, F = 738.83, p b 0.001).
Furthermore, the unit-less nature of the CV allows for comparison of
predictors based on different measurement scales.

For both local measures of spatial autocorrelation (CV_MI_NDVI and
CV_GC_NDVI), a movingwindow of 3 × 3 pixels (90m× 90m)was se-
lected, as this was small enough to measure within-field variability of
crop productivity for more than 98% of the fields within our study
area. Furthermore, this moving window size has shown favorable
results in previous studies linking spectral information to bird species
diversity (St-Louis et al., 2009; Wood et al., 2013) and linking texture
measures to farmland field sizes (Kuemmerle et al., 2009). Non-
cropped areas (e.g., roads, urban structures, etc.) within each of the
3 × 3 km sample sites were masked so that only NDVI values from
agricultural lands were considered in our analysis.

Landscape metrics for assessing cropped areas were selected based
on recommendations for distinguishing between the effects of land
cover composition and configuration on agricultural biodiversity over
landscape scales (Fahrig et al., 2011; Pasher et al., 2013). Based on this
previous work, three landscape metrics were calculated for each of the
46 3 km × 3 km sites: i) mean field size (MFS); ii) the percentage of
total cropped area, including pasture and fallow (PCT_AG), and; iii)
the diversity of crop types calculated using the Shannon Diversity
Index (SHDI). Landscape metrics were calculated using FRAGSTATS
software (McGarigal, Cushman, Neel, & Ene, 2012) and were derived
from the discrete land cover classification described in the previous sec-
tion. These metrics were used as predictors, based on information from
the discrete classification, that capture the composition and configura-
tion of land cover at each of the 46 sites.

2.6. Statistical analyses

Model averaging and multi-model inference were conducted using
an Information-Theoretic (I-T) approach (Burnham & Anderson,
2002). A set of eleven candidate hypotheses and associated models
were proposed and tested (Table 2). Models within the candidate set
contain continuous or discrete predictors, allowing each to compete
equitably, alone and in combination, with each biodiversity response
variable for each taxon. In addition, a global model containing both con-
tinuous and discrete predictors was also considered as a benchmark for
assessing other models within the candidate set (Burnham& Anderson,
2002). While several other model forms are possible, considering all
potential model subsets in the analysis would exceed the sample size
(n = 46), increasing the risk of finding spurious effects and selecting
an over-fitted model (Anderson, 2007; Flack & Chang, 1987). As such,
we limited our candidate set of models to address our specific goal of
comparing predictors derived from continuous versus discrete informa-
tion as a means of explaining field-based biodiversity measures.

Each model within the candidate set was used to explain the field-
based measures of biodiversity. Species diversity (alpha, beta, and
gamma diversity) was used as a response variable in models for birds,
butterflies, and plants. Our models were limited to simple linear regres-
sions due to low sample size and the absence of curvilinearity between
response and predictor variables.Meanfield sizewas log transformed to
correct for excessive positive skew. All predictor variables were stan-
dardized (mean of 0 and a standard deviation of 1) to assess the relative
impact of each predictor on field-based measures of biodiversity.
Models were ranked using a second-order correction of the Akaike In-
formation Criterion (AICc) that corrects for the bias of small sample
sizes (Burnham & Anderson, 2004; Hurvich & Tsai, 1989).

We usedmodel averagingwithin an I-T approach to alleviatemodel-
selection bias that stems from the uncertainty of selecting a single,
“best” model from our a priori set of competing models (Table 2), and



Table 2
The proposed candidatemodel set used for model-averaging and inference. Eachmodel represents a predictor based on continuous or discrete information, used alone or in combination,
for predicting species diversity (alpha, beta, gamma) of birds, butterflies, and non-crop plants.

Predictor Description Model Model form

Productivity of cropped vegetation
M_NDVI Mean productivity of cropped vegetation (June 19th) c1 E(y) = β0 + β1

M_RNG_NDVI Mean range in summer productivity of cropped vegetation (June 5th–July 19th) c2 E(y) = β0 + β2

Variability in the local spatial clustering of productivity
CV_MI_NDVI CV of local Geary's C of cropped vegetation (June 19th) c3 E(y) = β0 + β3

CV_GC_NDVI CV of local Moran's I of cropped vegetation (June 19th) c4 E(y) = β0 + β4

Variability in productivity
CV_NDVI CV of mean productivity of cropped vegetation (June 19th) c5 E(y) = β0 + β5

All continuous predictors all_c E(y) = β0 + β1 + β2 + β3 + β4 + β5

Composition and configuration of land cover
MFS Mean field of cropped vegetation d7 E(y) = β0 + β6

PCT_AG Percentage of cropped area per landscape d8 E(y) = β0 + β7

SHDI Diversity (SHDI) of cropped vegetation d9 E(y) = β0 + β8

All discrete predictors all_d E(y) = β0 + β6 + β7 + β8

Global model
All continuous and discrete predictors all E(y) = β0 + β1 + β2 + β3 + β4 + β5 + β6 + β7 + β8
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from estimating model parameters based on the same dataset
(Anderson, 2007; Johnson & Omland, 2004; Lukacs, Burnham, &
Anderson, 2010). In the context of the I-T approach, model averaging
is useful when two or more of the top ranked models have similar
model probabilities (i.e., each of the models considered are relatively
likely given the dataset) (Anderson, 2007; Burnham & Anderson,
2002). In such cases, model-averaging can provide more robust model
parameter estimates and predictions, and has the added benefit of min-
imizing the effect of uninformative predictors (Arnold, 2010). Model-
averaging was conducted using all models in the proposed candidate
set (Table 2) so that predictors based on both continuous and discrete in-
formation could be assessed. Using the I-T approach,model-averaged co-
efficients were weighted according to their model probabilities so that
models with relatively low probabilities received lower weight than
those with higher probabilities (Anderson, 2007; Burnham & Anderson,
2002; Lukacs et al., 2010).

We assessed the relative importance of continuous and discrete pre-
dictors by comparing model-averaged coefficients derived from stan-
dardized variables and associated 95% confidence intervals (CIs),
model evidence ratios, and overall model fits. The CIs were based on
the “unconditional” standard error, which attempts to alleviate model
selection uncertainty due to estimating coefficient values from the
same data used in the model selection process (Burnham & Anderson,
2002). As such, CIs based on the unconditional standard error are not
conditioned on a single “best” model, but are instead conditional on
all models examined (Anderson, 2007). The overall fit of the model-
averaged predictions for each taxon and associated biodiversity
measure was reported using the adjusted coefficient of determination
(i.e., adjusted R2) and the Root-Mean-Squared error (RMSE). In
addition, model probabilities and evidence ratios generated through
the I-T approach were used to evaluate the degree of support for a
Table 3
Pearson's correlation between image-based predictor variables. See Table 2 for detailed descrip

M_NDVI CV_NDVI M_RNG_NDVI CV_

M_NDVI 1.00
CV_NDVI −0.53 1.00
M_RNG_NDVI −0.41 −0.23 1.00
CV_GC_NDVI −0.32 0.34 0.15 1
CV_MI_NDVI 0.35 −0.77 0.56 −0
MFS −0.40 0.06 0.10 0
SHDI 0.17 0.12 −0.11 −0
PCT_AG −0.25 −0.20 0.48 0
particular model given the candidate model set and sample size
(Burnham&Anderson, 2002). Evidence ratios were calculated by divid-
ing themodel probabilities (i.e., “Akaikeweights”) of competingmodels
(Anderson, 2007) and were interpreted as per Evett and Weir (1998):
1–10 (“limited support”), 10–100 (“moderate support”), 100–1000
(“strong support”), N1000 (“very strong support”) (sensu Lukacs et al.,
2007). Model residuals were assessed for spatial autocorrelation using
theMoran's I test. No statistically significant (p N 0.05) spatial autocorre-
lation was found in the residuals for all models examined (p-values of
the Moran's I test ranged from 0.968 to 0.072). All data manipulation
and statistical computation were performed within R (R Development
Core Team, 2012). Model-averaging was conducted using the “MuMIn”
package in R (Bartoń, 2013).

3. Results

Both continuous and discrete predictors displayed low tomoderately-
high correlations among themselves (Table 3). In particular, CV_NDVI and
MFS had the largest correlation (r = −0.77), followed by CV_GC_NDVI
and SHDI (r = 0.65). Between continuous predictors, CV_MI_NDVI and
M_RNG_NDVI were moderately correlated (r = 0.56), as was CV of
NDVI and CV_MI_NDVI (r = −0.53). Among discrete variables SHDI
and MFS were moderately correlated (r = −0.50). All predictors were
retained for model-averaging despite these moderate to moderately-
high pairwise correlations.

Among biodiversity response variables, high positive correlations
were found (r N 0.70), but were generally not high between taxa, with
the exception of a moderate correlation (r = 0.49) between the alpha
diversity of plants and butterflies (Table 4).

Model-averaged coefficients derived from the candidate set of
models in Table 2 show the relative influence of each predictor, based
tion of predictors.

GC_NDVI CV_MI_NDVI MFS SHDI PCT_AG

.00

.30 1.00

.65 −0.20 1.00

.02 −0.02 −0.50 1.00

.10 0.26 0.23 −0.07 1.00



Table 4
Pearson's correlation between field-based biodiversity response variables.

birds.gamma birds.beta birds.alpha btfly.gamma btfly.beta btfly.alpha plants.gamma plants.beta plants.alpha

birds.gamma 1.00
birds.beta 0.88 1.00
birds.alpha 0.77 0.37 1.00
btfly.gamma 0.09 −0.01 0.19 1.00
btfly.beta 0.05 −0.03 0.14 0.96 1.00
btfly.alpha 0.13 0.00 0.24 0.95 0.83 1.00
plants.gamma 0.20 0.20 0.12 0.33 0.28 0.37 1.00
plants.beta 0.17 0.23 0.03 0.23 0.20 0.25 0.97 1.00
plants.alpha 0.21 0.13 0.23 0.44 0.36 0.49 0.94 0.83 1.00
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on continuous or discrete information, on the biodiversity responses for
each taxon (Fig. 3). In many cases, the 95% confidence intervals (CIs) for
predictors used to make model-averaged predictions included zero,
denoting a lack of statistical significance (p N 0.05) and ambiguity
with respect to the direction of the effect (positive or negative).

Alpha, beta, and gamma diversity of farmland birds showed a statis-
tically significant positive relationship with CV_MI_NDVI, whereas
CV_GC_NDVI and CV_NDVI show a negative relationship with only
alpha diversity (Fig. 3). All coefficients for predictors used tomodel but-
terfly species diversity and abundance were not statistically significant
with CIs that included zero. Beta and gamma diversity of plants showed
a statistically significant positive relationship with M_NDVI, whereas
alpha diversity showed a statistically significant negative relationship
with M_RNG_NDVI (Fig. 3).

For farmland birds, 30% of the variability in gammadiversity and 28%
in beta diversity could be explained using model-averaged predictions
(Table 5). In both cases, model probabilities (i.e., “Akaike weights”) re-
veal that a single model based on CV_MI_NDVI (model c3) was heavily
weighted (N0.90) when making model-averaged predictions (Table 5).
In contrast, model-averaged predictions explained approximately 18%
of the variability in the alpha diversity of farmland birds, with about
half of the total weight of model-averaged predictions attributed to
the model based on CV_NDVI (model c5; weight = 0.4901).

Examining evidence ratios between competing models used to make
model-averaged predictions of species diversity and abundance revealed
varying levels of support. When making model-averaged predictions
of farmland bird gamma diversity, the top-ranked model based on
CV_MI_NDVI (model c3; weight = 0.9032) had 18 times the support of
the next best model based on CV_NDVI (model c5; weight = 0.0492).
For model-averaged predictions of farmland bird beta diversity, the
model based on CV_MI_NDVI (model c3; weight = 0.9671) had 75
times the support of the next best model based on CV_NDVI (model c5;
weight = 0.0129). In both cases, the weight of evidence between top-
rankedmodel and the next best model was consideredmoderate. In con-
trast, when making model-averaged predictions of farmland bird alpha
diversity, the model based on CV_NDVI (model c5; weight = 0.4901)
had only 2 times the support of the second best model based on
CV_MI_NDVI (model c3; weight = 0.2423), suggesting that there was
limited support for ranking model c5 higher than model c3 (Evett &
Weir, 1998).

For non-crop plants, between 10 and 22% of the variability in alpha,
beta, and gamma diversity could be explained using model-averaging
(Table 6). For gamma diversity of plants, the top-ranked model based
on M_NDVI (model c1; weight = 0.5710) had 3 times the support of
the next best model based on M_RNG_NDVI (model c2; weight =
0.1892). For beta diversity of plants, the top-ranked model based on
M_NDVI (model c1; weight = 0.4822) had almost 4 times the support
of the next best model based on M_RNG_NDVI (model c2; weight =
0.1287). For alpha diversity of plants, the top-ranked model based on
M_NDVI (model c1; weight = 0.4555) had 1.2 times the support of
the next best model based on M_RNG_NDVI (model c2; weight =
0.3650). These evidence ratios suggest that the weight of evidence in
support of the top-ranked model relative to the second-best model is
limited given the supplied models and sample size.

Whenmakingmodel-averaged predictions of species diversity, indi-
vidualmodels based on predictors derived fromcontinuousmeasures of
crop productivity (NDVI)were always ranked higher thanmodels using
predictors based on information derived from the discrete land cover
classification (Tables 5 and 6). An examination of evidence ratios be-
tween the top-ranked model based on continuous predictors, and the
top-ranked model based on discrete predictors revealed the following
for farmland bird species diversity (Table 5): gamma diversity (model
c3 vs. d8 = 3011:1), beta diversity (model c3 vs. d8 = 1382:1), alpha
diversity (model c5 vs. d9 = 23:1). These evidence ratios indicate
very strong support for preferring continuous predictors over discrete
predictors when modeling gamma and beta diversity of farmland
birds, but onlymoderate support for preferring continuous over discrete
predictors when modeling alpha diversity.

When making model-averaged predictions of non-crop plant diver-
sity, the evidence ratios between top-ranked models based on continu-
ous predictors anddiscrete predictorswere as follows (Table 6): gamma
diversity (model c1 vs. d8 = 17:1), beta diversity (model c1 vs. d8 =
11:1), alpha diversity (model c1 vs. d8 = 13:1). These evidence ratios
suggest that there is moderate support for preferring models based on
continuous predictors relative to models based on discrete predictors
when modeling the species diversity of non-crop plants.

4. Discussion

Our main objective was to compare the relative importance of con-
tinuous spectral information (i.e., NDVI and spatio-temporal properties
of NDVI) versus landscape metrics derived from a discrete land cover
classification as predictors for describing the variability in species rich-
ness of birds, butterflies, and plants within agricultural environments.
Our results show that models based on predictors derived from contin-
uous information consistently outranked models based on predictors
derived from discrete information. This finding is clearly evident when
examining individual model weights (Tables 5 and 6), calculated
model evidence ratios, and when inspecting model-averaged coeffi-
cients and associated 95% CIs (Fig. 3).

Evidence ratios indicated the degree of support for preferring
models utilizing continuous predictors over discrete predictors, which
ranged from moderate to very strong support depending on the taxon
and biodiversity response being modeled. Predictors based on discrete
information obtained consistently lower Akaike weights, indicating
that their suitability is questionable in comparison to that of continuous
predictors when modeling species diversity in agricultural landscapes
using Landsat imagery. Our findings are in contrast to Culbert et al.
(2012), who found that landscape metrics (i.e., predictors based on dis-
crete land cover classifications) consistently performed slightly better
than predictors based on continuous information based on spectral in-
formation when predicting species diversity of birds in the Midwestern
United States, although their study included many potential habitats in
addition to those found in agricultural landscapes.



Fig. 3.Model-averaged coefficients derived from standardized variables and associated 95% CIs used to predict species diversity and abundance of birds, butterflies, and plants. Predictors:
A = M_NDVI; B = M_RNG_NDVI; C = CV_NDVI; D = CV_GC_NDVI; E = CV_MI_NDVI; F = SHDI; G = PCT_AG; H = MFS (see Table 2 for a detailed descriptions of predictors).
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Table 5
Ranking of individual models used in making model-averaged predictions of farmland bird species richness (see Table 2 for model descriptions). Adjusted R2 and RMSE are based on
model-averaged predictions.

Birds (farmland species)

Gamma Beta Alpha

Model df logLik AlCc Delta Weight Model df logLik AlCc Delta Weight Model df logLik AlCc Delta Weight

c3 3 −110.97 228.5 0 0.9032 c3 3 −94.135 194.84 0 0.9671 c5 3 −85.464 177.5 0 0.4901
c5 3 −113.88 234.32 5.82 0.0492 c5 3 −98.452 203.47 8.63 0.0129 c3 3 −86.169 178.91 1.41 0.2423
all_c 7 −108.94 234.82 6.32 0.0383 all_c 7 −93.28 203.51 8.67 0.0127 c4 3 −86.566 179.7 2.2 0.1628
c4 3 −116.04 238.65 10.1 0.0057 c4 3 −100.04 206.66 11.8 0.0026 all_c 7 −83.06 183.07 5.57 0.0303
all 10 −107.47 241.22 12.7 0.0016 c2 3 −100.53 207.64 12.8 0.0016 d9 3 −88.593 183.76 6.26 0.0214
c2 3 −118.43 243.43 14.9 0.0005 c1 3 −101.15 208.88 14 0.0009 c1 3 −88.957 184.49 6.99 0.0149
c1 3 −118.53 243.62 15.1 0.0005 d8 3 −101.4 209.37 14.5 0.0007 d8 3 −89.219 185.01 7.51 0.0115
d8 3 −118.92 244.41 15.9 0.0003 all 10 −91.884 210.05 15.2 0.0005 c2 3 −89.25 185.07 7.57 0.0111
d9 3 −118.97 244.51 16 0.0003 d7 3 −101.85 210.28 15.4 0.0004 d7 3 −89.351 185.27 7.77 0.0100
d7 3 −119.34 245.25 16.8 0.0002 d9 3 −101.89 210.36 15.5 0.0004 all_d 5 −87.602 186.7 9.2 0.0049
all_d 5 −117.07 245.64 17.1 0.0002 all_d 5 −100.3 212.11 17.3 0.0002 all 10 −82.467 191.22 13.7 0.0005
Adjusted R2 0.30 Adjusted R2 0.28 Adjusted R2 0.18
RMSE 2.69 RMSE 1.87 RMSE 1.53
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In addition to ranking the relative importance of models based
on evidence ratios, the use of standardized variables allowed for
interpreting how particular biodiversity responses related to individual
predictors. For instance, sites that contained a more heterogeneous mix
of local crop productivity (asmeasured by the CV_MI_NDVI)were asso-
ciated with higher alpha, beta, and gamma diversity of farmland bird
species (Fig. 3). Such sites contain local areas (90 m × 90 m) with a
large range in positive spatial autocorrelation of NDVI, which suggests
a landscape with a more diverse range of local crop productivity and/
or crop types. Such heterogeneous agricultural landscapes are favorable
to bird species that are capable of using, or require multiple habitats
to complete a lifecycle. For example, shorebirds such as Killdeer
(Charadrius vociferous) nest in cereal fields and then move fledglings
to hayfields to forage (Galbraith, 1988), song sparrows (Melospiza
melodia) use both crop fields and hayfields for foraging (Girard, Baril,
Mineau, & Fahrig, 2012), and some species, such as vesper sparrows
(Pooecetes gramineus), preferentially forage close to weedy patches
within crop fields (Rodenhouse & Best, 1983).

Other studies have found that the heterogeneity of NDVI is an impor-
tant predictor of bird species diversity; however, these studies used
measures of statistical dispersion (e.g., variance, skewness, standard de-
viation; Hepinstall & Sader, 1997; Mcfarland et al., 2012; Seto et al.,
2004), the Simpson's diversity index (Bailey et al., 2004), or image-
based texture (Bellis et al., 2008; Culbert et al., 2012; St-Louis et al.,
2009; Wood et al., 2013) to define spectral heterogeneity. While the
amount of variability in bird species diversity explained by our models
was relatively low (adj. R2 18–30%), it was comparable to similar studies
based on Landsat imagery (e.g., Culbert et al., 2012; Wood et al., 2013),
Table 6
Ranking of individual models used in making model-averaged predictions of plant species ric
model-averaged predictions.

Plants

Gamma Beta

Model df logLik AlCc Delta Weight Model df logLik

c1 3 −181.46 369.49 0.00 0.5710 c1 3 −159.32
c2 3 −182.57 371.70 2.21 0.1892 c2 3 −160.64
d7 3 −183.92 374.41 4.92 0.0488 d7 3 −160.98
c4 3 −183.94 374.46 4.97 0.0477 c4 3 −161.15
c5 3 −183.98 374.53 5.04 0.0459 c5 3 −161.15
d8 3 −184.32 375.20 5.71 0.0329 c3 3 −161.65
c3 3 −184.75 376.08 6.59 0.0212 d8 3 −161.75
d9 3 −184.90 376.37 6.88 0.0183 d9 3 −161.87
all_c 7 −179.72 376.39 6.89 0.0182 all_d 5 −160.86
all_d 5 −183.47 378.44 8.95 0.0065 all_c 7 −158.42
all 10 −179.02 384.33 14.83 0.0003 all 10 −157.82
Adjusted R2 0.15 Adjusted R2 0.10
RMSE 12.44 RMSE 7.76
suggesting that predictors based on the local spatial autocorrelation of
NDVI are a useful addition to the existing menagerie of spectral hetero-
geneity measures used under the Spectral Variability Hypothesis
(cf. Rocchini et al., 2010).

Model-averaged coefficients from standardized variables (Fig. 3)
and model weights (Table 6) indicate that beta and gamma diversity
of non-crop plants increased in landscapes with higher average
crop productivity (M_NDVI). Furthermore, alpha diversity of non-crop
plants decreased in landscapes with increasing average range in crop
productivity over summer dates (M_RNG_NDVI). In contrast to farm-
land birds, predictors based on the local spatial autocorrelation of
NDVI (e.g., CV_MI_NDVI) or image-based texture (CV_NDVI), were not
statistically significant, but predictors based on overall crop productivity
were (e.g., M_NDVI andM_RNG_NDVI). These findings support the idea
that the amount of energy available within an area and over timemight
be an important factor driving species diversity (Wright, 1983). Overall,
the amount of plant diversity explained by ourmodels was low, ranging
from an adjusted R2 of 10 to 23%, but was similar to a study which also
found a negative relationship between plant species diversity and the
temporal variability of NDVI values (Levin, Shmida, Levanoni, Tamari,
& Kark, 2007).

All modeled biodiversity responses for butterflies were not statisti-
cally significant (p N 0.05) as all coefficients had 95% CIs that included
zero. One potential explanation for this poor performance is that the
second portion of field surveys for butterflies was conducted in a
month (August) where cloud-free imagery could not be obtained,
representing a substantial loss of contemporaneous information. Such
vagaries in image collection are not uncommon when operating within
hness (see Table 2 for model descriptions). Reported adjusted R2 and RMSE are based on

Alpha

AlCc Delta Weight Model df logLik AlCc Delta Weight

325.21 0.00 0.4822 c1 3 −142.86 292.29 0.00 0.4555
327.85 2.64 0.1287 c2 3 −143.08 292.73 0.44 0.3650
328.52 3.31 0.0921 all_c 7 −139.78 296.50 4.21 0.0555
328.87 3.66 0.0775 d8 3 −145.41 297.39 5.10 0.0356
328.87 3.66 0.0773 c4 3 −145.81 298.19 5.90 0.0238
329.87 4.66 0.0469 c5 3 −145.89 298.36 6.07 0.0219
330.08 4.87 0.0423 d7 3 −146.02 298.60 6.32 0.0194
330.32 5.11 0.0375 c3 3 −146.86 300.28 8.00 0.0084
333.21 8.00 0.0088 d9 3 −146.91 300.38 8.10 0.0080
333.79 8.57 0.0066 all_d 5 −144.77 301.05 8.76 0.0057
341.92 16.71 0.0001 all 10 −138.81 303.90 11.61 0.0014

Adjusted R2 0.22
RMSE 5.26



223D.C. Duro et al. / Remote Sensing of Environment 144 (2014) 214–225
the optical portion of the electromagnetic spectrum. A potential remedy
in future studieswould be to include a source of imagery not affected by
cloud cover, such as synthetic aperture radar (SAR), which has shown to
be of considerable valuewhen coupledwith optical imagery for produc-
ing annual crop inventories (McNairn, Champagne, Shang, Holmstrom,
& Reichert, 2009).

Ultimately, logistical and financial constraints will dictate what will
be possible for a particular study, but future research using themethods
described above could benefit from a larger sample size. An increase in
the number of sites analyzed would allow for the assessment of addi-
tional models using an I-T approach, and may potentially improve the
statistical significance of variables exhibiting borderline results (i.e., var-
iable coefficientswhose CIsmarginally exceeded zero).While this study
focused onmodels based on a singlemoving-windowsize (3× 3 pixels)
and extent (3 km × 3 km), an increase in sample size would allow for
testing the impact of different moving-window sizes (i.e., analysis
grain) and spatial extents, potentially revealing additional insights
into how our selected remotely sensed predictors relate to field-based
measures of biodiversity for a variety of taxa at different scales of anal-
ysis. Furthermore, alternative avenues of study may wish to explore
how variousmeasures of beta diversity, such as those attempting to dis-
entangle “nestedness” from spatial turnover (Baselga, 2010), may im-
pact the validity of their modeled responses.

5. Conclusion

Our findings indicate that when modeling species diversity of birds
and plants in agricultural environments, predictors derived from con-
tinuous information of crop productivity (NDVI) were consistently
ranked higher than predictors derived from information based on a dis-
crete classification of Landsat imagery. Furthermore, local measures of
spatial autocorrelation, specifically the localMoran's I, are useful indica-
tors of spectral heterogeneity, at least on par with existing measures
such as simple image-based texture (CV). From a practical standpoint,
the use of continuous information is preferable, as discrete land cover
classifications involve an inherent level of error and generalization,
and can be costly to produce and validate. While the overall amounts
of variability explained by our taxon-specific models were low, they
were generally commensurate with similar studies that relied on
Landsat imagery.
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