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Abstract

Habitat isolation can affect the distribution and abundance of wildlife, but it is an ambiguous attribute to mea-
sure. Presumably, isolation is a characteristic of a habitat patch that reflects how spatially inaccessible it is to
dispersing organisms. We identified four isolation metrics (nearest-neighbor distance, Voronoi polygons, prox-
imity index, and habitat buffers) that were representative of the different families of metrics that are commonly
used in the literature to measure patch isolation. Using simulated data, we evaluated the ability of each isolation
metric to predict animal dispersal. We examined the simulated movement of organisms in two types of land-
scapes: an artificially-generated point-pattern landscapes where patch size and shape were consistent and only
the arrangement of patches varied, and realistic landscapes derived from a geographic information system (GIS)
of forest-vegetation maps where patch size, shape, and isolation were variable. We tested the performance of the
four isolation metrics by examining the strength of the correlation between observed immigration rate in the
simulations and each patch isolation metric. We also evaluated whether each isolation metric would perform
consistently under varying conditions of patch size/shape, total amount of habitat in the landscape, and proximity
of the patch to the landscape edge. The results indicate that a commonly-used distance-based metric, nearest-
neighbor distance, did not adequately predict immigration rate when patch size and shape were variable. Area-
informed isolation metrics, such as the amount of available habitat within a given radius of a patch, were most
successful at predicting immigration. Overall, the use of area-informed metrics is advocated despite the limita-
tion that these metrics require parameterization to reflect the movement capacity of the organism studied.

Introduction

Patch isolation is a key component of patch-based
approaches that seek to predict the distribution of or-
ganisms in spatially-subdivided populations. Prime
examples of the patch-based approach include the
theory of island biogeography (MacArthur and Wil-
son 1967) and metapopulation theory (Levins 1970;
Hanski and Gilpin 1991). These two theories have
profoundly influenced the way we think about spatial-
ly-subdivided populations or communities, and axi-
oms like “patch size” and “patch isolation” have be-
come embedded within the vernacular of landscape

ecology. For example, it has become almost dogma
that the smallest and most isolated patches in a land-
scape are expected to have relatively low species rich-
ness, low abundance, and increased risk of population
extinction (e.g., Diamond (1975), [p.143] figure of
reserve design that appears in most college textbooks
of conservation biology). This supposition is based,
at least in part, on the assumption that spatially iso-
lated patches receive few or no immigrants to colo-
nize that patch or to offset potential population de-
clines (MacArthur and Wilson 1967; Hanski 1998;
Hanski and Ovaskainen 2000).
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Patch isolation has also been a key consideration
in numerous empirical studies that have examined the
influence of habitat fragmentation and/or patch isola-
tion on wildlife populations (Appendix 1), perhaps
because of the influence of the theories like island
biogeography and metapopulation theory. However,
patch isolation is a difficult attribute to quantify in
practice. Patch isolation, from a landscape ecology
perspective, refers to the inaccessibility of a habitat
patch for migrants moving from other patches. If one
assumes that the land between patches (matrix) is
homogeneous, then inaccessibility should be some
function of the spatial relationships of patches (i.e.,
the configuration of habitat). Patch characteristics
such as patch shape and size may also be a factor be-
cause larger, non-compactly shaped patches may “in-
tercept” more immigrants than small, compact
patches, particularly if there is some random compo-
nent to an organism’s movement behavior.

Many metrics have been used in the literature to
describe patch isolation (Appendix 1), but we are not
aware of any studies that have attempted to evaluate
the efficacy and reliability of different isolation met-
rics. Thus, the goal of this study was to determine
which isolation metric provides the most reliable
measure of patch isolation as it relates to dispersing
organisms. We also evaluated how useful isolation is
for predicting animal movement under different types
of landscape scenarios, and we made the distinction
between isolation (spatial configuration) effects and
patch character (size and shape) effects on patch
(in)accessibility.

Types of landscapes

Landscapes can be modeled (i.e., mapped) in at least
four ways, and the different approaches affect how
one employs and interprets patch isolation metrics.
Figure 1 illustrates four approaches to modeling land-
scapes, which can be viewed as a progression of in-
creasing complexity and realism.

The first landscape type is the point-pattern map
(Figure 1a). In this approach, patches of habitat are
discrete and exist in a homogeneous matrix. The sizes
and shapes of the patches are either consistent or
deemed to be unimportant. The configuration of
patches (i.e., spatial pattern) is of central interest. The
second type of landscape is the binary landscape (Fig-
ure 1b). It is an extension of the point-pattern, except
that patches have realistic, possibly irregular shapes
of varying sizes. Note, however, that there are still

only two states of landscape composition, habitat and
non-habitat, which identifies it as a “binary” land-
scape. The third type of landscape that can be consid-
ered is the mosaic landscape (Figure 1c). Unlike bi-
nary landscapes, mosaic landscapes have more than
one category of land type. There is a discrete number
of landscape element types expressed (e.g., different
levels of habitat suitability or matrix hostility). These
types of landscape models are viewed as more “real-
istic” because they reflect a greater degree of land-
scape heterogeneity that cannot be expressed in a sim-
ple binary map. The final type is the raster image
approach (Figure 1d) which does not use a categori-
cal scheme to define patches of varying landscape
types. The best examples of this approach are scanned
aerial photographs and unclassified satellite images.
This approach uses individual points or cells in a ras-
ter grid that can be represented by a nearly continu-
ous range of gray levels to compose a complete image
or map of a landscape. Because there is no categori-
zation of landscape type, patches are not represented
as discrete spatial entities, and landscape elements
can show a gradation from one type to the next (e.g.,
forest to shrubs to grassland). This approach is the
most informative representation of the four landscape
types we consider, but it is also most difficult to ap-
ply the concept of patch isolation because patches are
not defined as unambiguously measurable objects.
In this study, we evaluated the performance of four
general types of isolation metrics in the first two types
of landscapes discussed above: point patterns and bi-
nary landscapes. Point patterns serve as a type of
“control” for initial evaluations of isolation metrics
because these types of maps only reflect differences
in the spatial configuration of habitat maps. The bi-
nary landscapes are more realistic, but introduce ad-
ditional factors into the concept of patch inaccessibil-
ity because the size and shape of a patch can influence
how accessible it is to dispersing organisms, indepen-
dent of its isolation. Thus, we compared the ability of
the different isolation metrics to predict patch inac-
cessibility to dispersers in both types of landscapes,
and we assessed their predictive ability as the realism
and complexity of the landscapes increased. In a com-
panion paper (Tischendorf et al., this volume), we
present another study that extends this work and ex-
amines isolation-dispersal relations in mosaic land-
scapes (Figure 1c). We did not consider analyzing
raster landscapes (Figure 1d) because we are unaware
of any patch isolation metrics that can be applied to
non-categorical map classifications of habitat.



a. Point pattern

c. Mosaic

Types of metrics

There are many different metrics that have been used
in the literature to quantify patch isolation (Hargis et
al. (1998); see descriptions in Gustafson (1998)).
There has also been a recent proliferation of statisti-
cal and GIS-based software packages for calculating
all sorts of spatial pattern metrics, such as FRAG-
STATS (McGarigal and Marks 1995), LEAP-II (Per-
era et al. 1997), Patch Analyst (Elkie et al. 1999), and
APACK (Mladenoff and DeZonia 2000). Here we
evaluate the four most common types of isolation
metrics (Table 1) that can be calculated manually or
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d. Raster image

Figure 1. Four general ways that landscapes can be mapped.

by using packages such as the ones listed above.
Rather than examine each metric, we categorized
each metric into one of four families, and then chose
a representative metric for each to evaluate. We also
wish to stress that we have not evaluated indices of
landscape connectivity, which are a conceptually re-
lated set of indices that measure the arrangement of
habitat at the landscape-level, rather than the patch
level. A comprehensive review of landscape connec-
tivity measures can be found in Tischendorf and Fah-
rig (2000) and Tischendorf (2001).

The first type of isolation metric is the simple dis-
tance-based metric, such as the nearest-neighbor dis-
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Table 1. Description of the isolation metrics evaluated.

Name Abbreviation

Description

Type of Metric

Nearest-neighbor distance NDIST

Edge to edge distance to the

Simple distance-based

nearest habitat patch

All area surrounding a given patch

Omni-directional distance-based

that is closer to it than any

other patch

Sum of all habitat cells within a

Area-based

buffer distance

Voronoi polygon area VORONOI
Buffer area BUFFER
Proximity index PROX

Sum of the ratio between area

Distance-weighted, area-based

and inter-patch distance for all

patches within a predefined

buffer distance around a patch

tance. Nearest-neighbor distance is the most straight-
forward (and most commonly used) of all the metrics
we evaluated: it is simply a measure of the distance
between a patch and it’s closest neighbor (Figure 2a).
We used patch edge-to-edge distance, but this metric
could also be calculated by measuring the distance
between the centers of neighboring patches. This met-
ric is simple to use, but in theory, it could be unreli-
able because it does not consider the proximity of
other neighboring patches beyond the closest patch.

Multiple-patch or omni-directional distance met-
rics are available to summarize the individual dis-
tances among a patch and its neighboring patches. We
evaluated an elegant omni-directional metric called
Voronoi polygons. Voronoi polygons are created by
measuring the distance to all neighboring patches, di-
viding each distance in half, and using this informa-
tion to define the “area of influence” surrounding each
patch (Figure 3.2b; see also Diggle (1983)). Unlike
nearest-neighbor distance, Voronoi polygons are cal-
culated by obtaining the distance to all proximate
patches in the landscape, and the proximity of neigh-
boring patches is reflected in the size of a Voronoi
polygon: small polygons indicate many proximate
neighbors whereas large polygons indicate a greater
degree of isolation. This metric was suggested as an
alternative to nearest-neighbor metrics by Krebs
(1989).

A third type of isolation metric is based on the
amount (area) of habitat that is within a specific dis-
tance of a patch. The greater the area proximate to the
patch, the less isolated the patch is said to be. Such
measures are easily obtained using a GIS to “buffer”
a region around the patch and then determine how
much additional habitat falls within that buffer region

(Figure 2c). From a biological perspective, this ap-
proach makes a lot of sense because it provides a di-
rect measure of how much habitat (i.e., the potential
source of dispersers) is within the proximity of a
patch. However, one must parameterize this metric by
selecting a threshold distance that determines how
proximate the buffer region will be. The optimal
buffer distance should reflect the dispersal capacity of
the organism (Brennan et al. 2002 (in press)), but this
capacity is species-specific and often unknown, and
the buffer distance must be set arbitrarily.

The fourth type of isolation metric is the distance-
weighted area-based metric, which has been proposed
in many different forms (see Appendix 1, especially
metrics used by Hokit et al. (1999) and Hanski
(1998), Hansson (1998)). Another example is the so-
called proximity index (Gustafson and Parker 1994;
McGarigal and Marks 1995). There are different
forms of this index, but all use a distance-weighting
scheme to calculate the amount of area within a
threshold distance from a patch that contains habitat
(Figure 2d). The proximity index sums the ratios of
patch area to distance for all habitat patches that fall
at least partially within some specified distance of the
focal patch. This metric is also biologically realistic
because it reflects the number of sources of dispers-
ers that are proximate to a patch, as a function of their
sizes and distances. However, like buffer metrics, the
proximity index must be parameterized by specifying
a threshold distance.

Charecteristics of a useful metric

To be a useful metric of isolation, a measure must ac-
curately and reliably reflect how spatially inaccessible
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Figure 2. lllustrations of the four metrics tested in this study: a) nearest-neighbor distance (D); b) a spatial tessellation which produces
many Voronoi polygons around each; c¢) buffer area, which is the amount of habitat that occurs within a fixed distance of the perimeter of a
patch (gray polygons); and d) the proximity index which sums the ratios of patch area/distance (A/D) for all patches of habitat located within

a fixed distance of a central patch of interest.

a patch of habitat will be to dispersers. We suggest
that to satisfy this definition, a useful metric must
satisfy the following conditions. First, the isolation
metric should be highly correlated with immigration
rates, i.e., it must be a good predictor of immigration.
Second, if isolation is to be used to predict immigra-
tion, then the relationship between these two factors
should be proportional (i.e., linear). If the relationship
between an isolation metric and immigration is non-
linear, this is less useful because one may have to pa-
rameterize and back-transform the isolation metric to
obtain predicted immigration. Without movement
data, however, it could be quite difficult to perform
the transformation. Finally, the metric should be ro-
bust enough that it performs consistently across dif-
ferent landscape patterns and is not influenced by fac-

tors such as the complexity of patch shape or the total
amount of habitat in a landscape.

Methods
General approach

It is actually quite difficult to evaluate patch isolation
metrics empirically because there is an incredible
paucity of movement data available in the literature
(Kareiva 1990; Doak and Mills 1994), and for good
reason: landscape-level animal movement, particu-
larly lifetime dispersal events, can be difficult to ob-
tain for many organisms (Harrison 1992; Szacki et al.
1993; Doak and Mills 1994; Sutherland et al. 2000).
For landscape ecological studies, it is most often the
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Figure 3. Sample landscapes illustrating the artificial point-pattern landscapes (a & b) and realistic binary landscapes (¢ & d), and spatially

aggregated patches (b & d) and dispersed patches (a & c).

case that movement is inferred from landscape pat-
tern, not measured directly, which usually leads us
back to some immigration-isolation relation that may
not have been empirically established. Given that we
have a small body of empirical movement data with
sufficiently large sample size of individuals in a large
number of landscapes with varying patch attributes
(e.g., size, shape, isolation), we pursued a simulation
approach where a large sample size and replication
are easily obtainable and do not constrain analysis
and interpretation. The other advantage of a simula-
tion approach is that we were able to experimentally
control for possibly confounding factors that influ-
ence immigration rate. Often, such confounding fac-
tors are uncontrollable and immeasurable in empirical
studies. A good example of a confounding factor that
influences immigration rate but does not contribute to

landscape pattern (i.e., is not a component of spatial
isolation) is dispersal-related mortality. Note that
many such factors could be a consequence of land-
scape pattern, and therefore, may be related to patch
isolation. However, our goal was not to evaluate how
all the factors related to patch isolation can affect
successful dispersal; we were interested in determin-
ing only how spatial isolation alone affects movement
and how this relation can be appropriately measured.
This is a very important distinction. It is of particular
importance to patch-based models in ecology, like is-
land biogeography or metapopulation theory, because
movement is the key element of the model that links
community/population dynamics to the spatial pattern
of the landscape.

Another reason for using simulated data from a
computer model of animal movement is that it al-



lowed us to incorporate two very important aspects
of dispersal: (1) we used a rule-based movement al-
gorithm that ensured simulated animals were “aware”
of the structure of the landscape (see below), so they
did not just move in a purely random pattern, and (2)
we used actual GIS landscapes in the simulation
model so that realistic patch structures could be in-
corporated, including variation in patch number,
shape, and size. Although it is possible to use closed-
form analytical models to investigate some aspects of
the relationship between spatial structure and dis-
persal (e.g., models of random movement using dif-
fusion equations; see Okubo (1980) and Turchin
(1998)), rule-based movement and realistic patch
structures would have been difficult or impossible to
incorporate in an analytical model. The limits of us-
ing closed-form analytical models with complex, re-
alistic spatial patterns has already been explored and
discussed by With and King (1999).

Model implementation

To determine how the various patch isolation metrics
reflect immigration rate, the movement of “generic”
animals was modeled in 100 artificially-generated
point-pattern landscapes and 95 realistic binary land-
scapes (details below). The model was constructed to
simulate the movement of organisms across different
landscapes and recorded the number of successful im-
migrations for each patch in the landscapes. Because
we were only concerned with inter-patch dispersal
events, straightforward demographic parameters were
used so that births equaled deaths, and the number of
emigrants out of the landscape equaled new immi-
grants into the landscape, which greatly simplified the
modeling and interpretation of results. Although this
approach may seem over-simplistic, it was desirable
to use consistent demographics because it functions
as a strict experimental control allowing only move-
ment-related processes to be measured. We relax this
assumption in Tischendorf et. al (this issue) and ex-
plore the influence matrix mortality as a factor affect-
ing dispersal success, but the general outcome and
conclusions regarding the relative performance of
spatial isolation metrics is not greatly affected.

For each run of the model, the population size be-
gan with 250 animals placed randomly within habitat
patches and the population size remained constant.
Any animal that moved beyond the boundaries of the
landscape was replaced by a new animal that ap-
peared at a randomly selected location along the land-
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scape boundary. Sex of the organism was not consid-
ered and every animal was potentially reproductive.
Each run of the model simulated stochastic, rule-
based movement of animals across the landscape (see
details below). The goal was to track the movement
of each individual and record all new immigration
events occurring at each habitat patch. A patch immi-
gration event occurred when an animal moved out of
its patch of origin and encountered unoccupied habi-
tat in another patch. Following immigration, each an-
imal reproduced exactly one new individual and then
died. New individuals were then free to move within
or outside of this patch, and matrix mortality was not
included. Each simulation run was performed for
1000 time steps, and 500 replications of each simu-
lation were performed on every landscape. The total
number of immigrants to move into each habitat patch
was recorded for every landscape, and the mean
(across replicate runs) total number for each patch
within each landscape was used as the dependent var-
iable to describe patch accessibility in subsequent sta-
tistical analyses.

At each time step, an animal could move up to 5
cells (pixels) in distance in any (360°) randomly cho-
sen direction. The animal would move that full 5 cells
distance if the landscape composition along the route
was homogeneous. However, if a boundary was en-
countered, then the animal would stop at that bound-
ary and have to make a “decision” about whether to
continue on its current path. The remainder of its
maximum per-step movement distance could be used
to continue moving in its current direction or in a new
direction, depending on the outcome of the “deci-
sion”. This basic algorithm was implemented recur-
sively until the animal moved the full five pixels (path
length, not displacement) in each time step, or until it
found unoccupied habitat. The maximum “lifetime”
distance an animal dispersed was not limited in the
model, but operationally, it was determined by how
quickly it found habitat, which is a function of how
aggregated patches are and how much habitat is in the
landscape.

A semi-permeable patch boundary was incorpo-
rated to simulate the preference that animals may
have for remaining within habitat rather than entering
matrix. In this model, a semi-permeable patch bound-
ary was defined as a boundary that could only be
crossed by animals (arbitrarily) 50% of the time when
leaving a patch. There was no restriction enforced
when an animal entered a patch, however. A graphic
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Figure 4. An example of the movement paths (light and dark lines) simulated by the model in the GIS landscapes. Note that the simple
movement rules ensure that the animals spend more time searching for available habitat within patches (gray polygons) than in the non-
habitat matrix (white area), which is observable from the shorter movement steps and frequent changes in direction within habitat patches. To
maintain a simple graphic that is easily visualized, a run of only 500 time steps is shown, and the distinction between the route of a parent
and its progeny that replaces it is not depicted. Thus, each path represents one lineage of an organism (in this case, from about 25 to 150
generations per line), not the lifetime movement of a single organism (see text for details).

depicting the movement of five animals during one
simulation run is shown in Figure 4.

The discovery of unoccupied habitat within a
patch was modeled as a probabilistic encounter rate.
Once an animal reached a patch, it “searched” for
habitat within the patch once per time-step. A
“search” was successful if a randomly-drawn number
between zero and one was greater than the proportion

of unoccupied territories in the patch. The number of
unoccupied territories in each landscape was fixed so
that the maximum number of territories in each point-
pattern landscape was equal to the average number of
maximum territories in the realistic binary land-
scapes, which was approximately 500 territories per
landscape. This maximum was set arbitrarily so that
immigration would only be partially limited by habi-
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Table 2. Patch characteristics in point-pattern landscapes (simulated) vs. realistic binary landscapes (real forest patterns). The unit of mea-
sure for patch area and nearest neighbor distance is number of raster cells.

Patch Characteristic

Point-pattern Landscapes

Realistic binary Landscapes

Mean number of patches per landscape 90
Minimum patch area 45
Maximum patch area 45
Mean patch area (+ SD) 45 (0)

Mean nearest neighbor distance (+ SD)

3.4 (10.6)

89.5
1
6878
47.1 (208)
7.3(9.5)

tat availability (i.e., there would usually be empty
habitat in a patch, all else being equal, if an animal
were to search for it).

Two types of landscapes were used in the simula-
tions (see examples in Figure 3). The first type were
simple, artificially generated maps, each containing
90 equal-sized circular patches. These landscapes are
essentially point-pattern maps. Hereafter, we refer to
these as the point-pattern landscapes. A clumping al-
gorithm was used to vary the arrangement of patches
in each point-pattern landscape. The clumping algo-
rithm had two parameters: first, a random number (3—
12) of clusters of patches was selected, and a “seed”
location was picked for each cluster using randomly
selected coordinates. Second, the degree of clumping
was set by choosing a random number to be the max-
imum distance a patch could occur from its associ-
ated seed location. Each landscape was generated by
distributing the 90 habitat patches among the seed lo-
cations, and the locations of the patches were deter-
mined by choosing random coordinates about each
“seed” location that satisfied the maximum distance
criterion. This method ensured that the only differ-
ence among the 100 simple landscapes was the con-
figuration of patches, which served as a control to
isolate the effect of patch accessibility from the effect
other patch characteristics (patch size and shape) that
could affect immigration rates.

The second type of landscape that we used was the
realistic binary landscapes in which the sizes and
shapes of patches were not consistent. These 95 land-
scapes were obtained from a GIS database of 10 km
x 10 km forest vegetation maps from agricultural re-
gions in southern Ontario, Canada (described in
Trzcinski et al. (1999)). Hereafter, we refer to these
maps as the realistic landscapes.

All point-pattern and realistic binary landscapes
were 512 x 512 cells in size, providing considerable
resolution for small and complex patch features (Fig-
ure 3). The properties of the point-pattern landscapes

were also intended to be reasonably similar to the
mean properties of the realistic landscapes. Details
comparing the number of patches and variation in
patch area for point-pattern vs. realistic landscapes
appear in Table 2.

Analysis of model output

A list of the patch isolation metrics that were evalu-
ated is in Table 1. To determine which metrics were
the best descriptors of isolation, squared Pearson
product-moment correlations (r?), were calculated be-
tween each metric in Table 1 and immigration rates
obtained from the simulations. Each patch was de-
scribed by the mean number of total immigrants to
colonize it across the 500 simulation runs. To mini-
mize the lack of statistical independence among
patches within a single landscape, a nested design
was used to calculate r* for patch indices by nesting
mean patch immigration rates within each unique
landscape. This method does not completely correct
for lack of independence, but it does make it fair to
compare individual patch-level responses in a relative
fashion, which was our sole purpose here. Although
it is standard practice to linearize data (e.g., log-trans-
form) prior to correlation and regression analysis, this
was not done in our analysis because one of our eval-
uation criteria (above) was to find a linear predictor
of immigration rate. Note that for the purposes of re-
porting, we rely solely on the r? values and we do
not present their associated significance probabilities.
Given our very large sample size, all relations are
statistically significant from a random (null) relation,
so we focus the reader’s attention on the effect sizes
themselves, which are given directly by the r? values.

There were some factors that could have con-
founded our results when analyzing the realistic land-
scapes. Immigration success may be related to char-
acteristics of a patch that are independent of patch
isolation (e.g., patch area, shape, length of perimeter),
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and it also may be influenced by the total amount of
habitat in each landscape. We investigated how large
an effect patch characteristics should have on immi-
gration by performing stepwise linear regressions on
the following patch characteristics: patch area, perim-
eter length, perimeter/area ratio, patch shape index
(Patton (1975), as implemented by McGarigal and
Marks (1995)), and the double-log fractal dimension
of the patch. The former two indices reflect the size
of the patch, and the latter three indices are different
metrics that measure the complexity of the shape of a
patch. If it appeared that any of these patch charac-
teristics influenced immigration rate, these confound-
ing effects were eliminated with residual analysis to
statistically correct for their effects prior to subse-
quent analyses of the isolation metrics. To be com-
prehensive, we report the strength of the relations be-
tween immigration rate and each isolation metric
using both raw immigration rates and immigration
rates statistically corrected to remove the confound-
ing influence of patch size and shape.

The total amount of habitat in a landscape might
also influence our results because, all else being
equal, it is to be expected that there will be higher
immigration rates in landscapes that have more habi-
tat (but only given our limited range of habitat
amounts). This effect can occur simply because or-
ganisms spend less time searching in non-habitat ar-
eas. If immigration rates are much higher in some
landscapes than others, there will be more extremely
high immigration rate values in some patches, and
therefore, there will be a greater possible range of
observed values. Because it is easier to detect statis-
tical relationships when there is a greater range of
values to regress, the statistical relationship between
isolation and immigration will be more apparent (see
Opdam (1991) and Hill et al. (1996)). This situation
is not an issue if all isolation metrics perform consis-
tently, but is a concern if a particular metric is sensi-
tive to a bias introduced by variability in habitat
amount. To investigate this effect, the unexplained
(residual) error was examined to see if it was related
to the amount of habitat in a landscape.

One other factor that could have a confounding
effect in both the point-pattern and realistic land-
scapes was the proximity of a habitat patch to the
edge of the landscape. In our simulations, new indi-
viduals were allowed to enter the landscape at the
boundary to exactly replace the animals that left the
landscape. This introduces a potential discrepancy be-
tween immigration and patch accessibility/isolation

because the isolation metrics do not consider a patch’s
proximity to the landscape boundary, which is an ar-
tificial source of potential immigrants. This issue is
also relevant to field studies that do not consider
patches which fall outside the arbitrary landscape
boundary when one measures isolation. This bound-
ary proximity effect was assessed by examining the
statistical relationships between a patch’s distance to
the boundary and the predictive ability of each isola-
tion metric.

Results

Figure 5 summarizes the correlations obtained from
the independent relationships between mean immi-
gration rate and each patch isolation metric for the
point-pattern landscapes. Immigration rate was best
predicted by the two area-informed metrics, buffer
area and proximity index, as indicated by their high
mean 12 values. Contrary to prediction, the omni-di-
rectional distance metric, Voronoi polygon area, had
the lowest mean r? value. Note that the direction of
these relationships cannot be obtained from squared
correlation coefficients. However, in all of our analy-
ses in both types of landscapes, the relationship be-
tween each isolation metric and immigration rate was
in the predicted direction: immigration rate increased
as nearest-neighbor distance and Voronoi polygon
area decreased, and immigration rate increased as
buffer area and proximity scores increased.

In the realistic landscapes, patch size and shape
characteristics accounted for approximately one half
of the variability in patch immigration rate (Table 3),
and as expected, there was considerable correlation
among characteristics (Table 4) indicating that the in-
clusion of some variables may have been redundant.
Figure 6 summarizes the correlation scores between
immigration rate and patch isolation for each metric
using both the raw and statistically corrected immi-
gration rates. Generally, squared correlation coeffi-
cients were much lower in the GIS landscapes in
comparison to the point-pattern landscapes, presum-
ably because things other than patch configuration
also influenced immigration rates (e.g., patch size and
shape). Patch characteristics and patch isolation can
also be entered into a multiple regression/correlation
model as simultaneous predictors to determine, over-
all, how predictable immigration rates are in realistic
landscapes (Figure 7). Taken together, patch size,
shape and isolation do explain a large proportion of
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Figure 5. Summary of correlations between each isolation metric and observed mean immigration rate for the point-pattern landscapes. The
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rimeter. These distances were set in terms of the maximum distance an organism could move during each time step of the simulation. Thus,
a 5-step buffer area defines all the available habitat within a distance from the focal patch that is equal to the maximum distance an organism

could move in five time steps.

the variability in immigration rate (up to ca. 85%),
and the R? values from these multivariate analyses are
actually quite comparable in magnitude to the 2 val-
ues obtained for the point-pattern landscapes where
patch characteristics are consistent (Figure 5). (Note
that hereafter, we use the notation R? to indicate the
squared multiple correlation coefficient, and 2 to in-
dicate a squared Pearson product-moment correlation
coefficient or squared partial correlation coefficient,
following the notation of Steel and Torrie (1980).)

The amount of habitat in a landscape had a very
small or negligible association with the predictive
ability of the isolation metrics evaluated (Table 5).
However, we only evaluated a fairly narrow range of
habitat amount (approximately 5 to 35% habitat cov-
er), so it is difficult to extrapolate to landscapes that
contain more habitat. Yet, it may be that measuring
isolation is not an issue above this amount because at
higher levels of habitat amount, it is improbable that
a highly isolated patch will occur (e.g., Gustafson and
Parker (1992) and Andrén (1994)).

There did appear to be small effects associated
with measuring isolation for patches located near the
edges of the landscapes. Figure 8 shows plots of the
residual errors from the isolation-immigration rate re-
gressions in the point-pattern landscapes. If a metric
is unaffected by how far a patch lies from the land-
scape boundary, then one would expect to see an even
distribution of residuals across a gradient of distance.
However, Figure 8 shows that for each metric, there
is a preponderance of negative residuals for patches
that are close (ca. < 30 cells) to the edge of the land-
scape. This result indicates that immigration rates
tend to be overestimated by patch isolation for
patches very close to the landscape boundary. Voronoi
polygons appear to be affected the most because the
delineation of a polygon is dependent on the position
of the landscape boundary for peripheral patches. Be-
yond the 30 cell threshold, all metrics seemed to per-
form fairly consistently. Figure 9 shows similar plots
for the realistic landscapes. It appears that boundary
effects have little influence in the realistic landscapes;
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Figure 6. Summary of correlations between each isolation metric and observed mean immigration rate for the realistic (GIS) landscapes.
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Table 3).

the spread of residuals seems fairly consistent along
the gradient of distance from edge.

Discussion

The area-informed metrics, buffer area and proximity
index, clearly out-performed the distance-based iso-
lation metrics, nearest-neighbor and Voronoi polygon
area, in both types of landscapes (Figure 4 and Fig-
ure 5). This result is not particularly surprising be-
cause nearest-neighbor distance and Voronoi poly-
gons are calculated using only the distance to
neighboring patches, and they do not account for the
amount of habitat that occurs within the neighbor-
hood. In our simulations, the presence of suitable hab-
itat represents a potential source of migrants, so there
should be a link between the amount of nearby habi-
tat and the amount of immigration. The problem with
distance-based metrics is that they cannot account for
the amount of proximate habitat, which must influ-
ence the number of migrants in the neighborhood, so

they are poor predictors of immigration. For the
point-pattern landscapes, the amount of proximate
habitat is only a function of the number of patches
within the neighborhood, because all patches were of
equal size. Distance metrics might fail to predict im-
migration rate if they cannot reflect this function. The
nearest-neighbor metric is an extreme example of this
because it does not look beyond one neighboring
patch. For the realistic landscapes, patch shape and
size are irregular so the amount of proximate habitat
is not necessarily reflected by number of patches or
the distance to them, which explains why the area-in-
formed metrics perform so much better in these land-
scapes. Because the area-informed metrics performed
very well in both types of landscapes, we conclude
that these metrics are the most robust and reliable
metrics across various landscape spatial patterns.

A surprising result was seen in the point-pattern
landscapes, where the simple nearest-neighbor dis-
tance was a better predictor of immigration than the
Voronoi polygons. Nearest-neighbor distance should
characterize patch isolation well if patches are fairly
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Table 3. Statistical summary of stepwise multiple regression illus-
trating the relative influence of the different patch characteristics
on immigration rate (R? = 0.5251, n = 6761, p < 0.001).

Patch Characteristic ~ Standardized Re- Student’s T
gression Coefficient

Area 0.312 7.223

Perimeter -0.169 -2.573

P/A Ratio -0.185 -21.133

Shape Index 0.763 13.349

Fractal Dimension -0.237 —-6.684

consistently spaced apart (Diggle 1983). However, if
a clumpy distribution of patches occurs then the dis-
tribution of clumps themselves (particularly clumps
composed of few patches) may determine the degree
of isolation. Simple nearest-neighbor distance does
not reflect the distribution of clumps of patches. It
only reflects the distance from one patch to its closest
neighbor, perhaps limiting its usefulness. Voronoi
polygon area should be a better measure for assess-
ing isolation because this metric is calculated by mea-
suring the distance to all proximate neighboring
patches, and therefore, should better reflect how
“clumpy” a distribution of patches is in a landscape.

Yet, this was not supported in our results. Voronoi
polygons were the worst predictor of immigration in
point-pattern landscapes, with only about one-half the
predictive power of the nearest-neighbor metric. In
the realistic landscapes, they were about tied with the
nearest-neighbor metric as the worst predictor of im-
migration. One problem is that Voronoi polygons are
“unclosed” at the edge of the landscape for patches
that lie adjacent to the boundary (see Figure 2b). Our
residual analysis that examined the influence of this
boundary effect demonstrates that Voronoi polygons
near the landscape edge tended to underestimate poly-
gon area, and therefore, overestimate immigration
rate in the point-pattern landscapes (Figure 8). A sim-
ilar effect was not observed for the realistic forest
landscapes (Figure 9) but may have been masked by
confounding patch characteristics that increase the
variability of immigration rate and reduce the ability
to detect a boundary effect.

An interesting result of the simulations on realistic
landscapes was that patch isolation alone did not ex-
plain most of the variation in immigration rate.
Rather, patch size and shape, which are unrelated to
patch location, explained approximately one-half of
the variation in immigration rate (Table 3). Thus, the
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Table 4. Intercorrelations among patch characteristics and correlations between patch characteristics and isolation metrics. Values are Pear-
son product-moment correlation coefficients. Abbreviations are from Table 1.

Area Perimeter P/A Ratio Shape Index Fractal Dimension
Perimeter 0.9548
P/A Ratio -0.2082 —0.2547
Shape Index 0.6579 0.8020 -0.2695
Fractal Dimension 0.4071 0.5363 -0.2180 0.9042
NDIST —-0.0831 —-0.0983 -0.0511 —-0.1449 —-0.1490
VORONOI 0.7025 0.7250 —-0.2867 0.6048 0.4277
BUFFERO5 1.0000 0.9552 -0.2086 0.6593 0.4085
BUFFER15 0.9969 0.9568 -0.2144 0.6711 0.4216
BUFFER25 0.9847 0.9513 —-0.2236 0.6805 0.4347
BUFFERS50 0.8953 0.8797 -0.2402 0.6656 0.4451
BUFFR100 0.6120 0.6205 -0.2225 0.5162 0.3701
PROXIMO5 0.1179 0.1314 —-0.0093 0.1316 0.0938
PROXIM15 0.1189 0.1326 -0.0097 0.1328 0.0948
PROXIM25 0.1190 0.1327 —-0.0098 0.1330 0.0949
PROXIMS50 0.1190 0.1327 —-0.0099 0.1331 0.0950
PROXM100 0.1190 0.1327 —-0.0099 0.1331 0.0950

Table 5. Summary of relationships between amount of habitat area
in a landscape and the residual error associated with each patch for
each isolation metric. A weak relationship indicates that an isola-
tion metric is not sensitive to changes in habitat amount if used as
a predictor or immigration rate. Most P-values are statistically sig-
nificant, but it is more important to note that the absolute magni-
tudes of the effect (illustrated by Pearson product-moment coeffi-
cients and standardized regression coefficients) are practically
negligible in all cases.

Isolation Metric r? Standardized Re-

gression Coefficient

NDIST 0.0013 —-0.0359
VORONOI 0.0028 —-0.0528
PROXIMO5 0.0072 -0.2279
PROXIMIS5 0.0068 —-0.0823
PROXIM25 0.0067 -0.0817
PROXIMS0 0.0066 —0.0811
PROXIM100 0.0065 —-0.0807
BUFFERO05 0.0019 —0.0433
BUFFERI15 0.0001 —-0.0097
BUFFER25 0.0003 0.0168
BUFFERS50 0.0010 0.0311
BUFFER100 0.0003 0.0163

accessibility of a patch can be strongly influenced by
factors other than a patch’s position in the landscape.
It should be stressed that there are two components
of accessibility that need to be considered: patch lo-
cation (isolation) and patch size/shape. Obviously, the

relative importance of these two components will de-
pend on the context of the landscape, and for highly
isolated patches, the influence of patch size/shape
may be slight. However, we demonstrate that immi-
gration into the “average” patch was significantly de-
termined by patch size and shape, and for very prox-
imate patches, this component largely determines
immigration success. It may not be necessary to con-
sider all of the five patch shape/size characteristics
that we used to characterize the patch shape/size com-
ponent, especially since many of them are highly cor-
related (see Table 4). Our results suggest that a rea-
sonable surrogate would be to use either perimeter or
the patch shape index because it was found that by
themselves, each of these metrics explained most of
the variation attributable to the overall patch size/
shape component (R? = 0.43 and 0.44, respectively).
If two metrics are used, the patch shape index and
patch area combined explain nearly the same amount
of variation in immigration rate (R* = 0.49 for shape
index and patch area vs. R® = 0.52 for all five patch
characteristics combined).

One may also question whether the influence of
patch size/shape on immigration would have been so
great if we had modeled a more sophisticated or sen-
tient form of movement. We believe that the amount
of variation explained by patch size/shape, relative to
the amount of variation explained by patch isolation,
would actually decline as animal movement becomes
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Figure 8. Plots of the residuals from the immigration rate-isolation regressions against distance to edge for the point-pattern landscapes (see

text).

more intelligent or aware of its environment. Our
movement algorithm was based on random chance
and some simple movement rules, such as the random
selection of direction outside of patches. Under such
a scenario, animals tend to randomly encounter new
habitat patches. The frequency of encounters will be
higher for patches with a large and/or convoluted pe-
rimeter than small, compact patches that have much
less exposure to dispersers. If movement direction
was to be more intelligent and directed towards
neighboring patches, the importance of patch size/
shape should become less important, because the
probability of encountering a new patch is dependent
upon the ability of an animal to detect and move to
that patch. This prediction was supported in a differ-
ent application of the movement model where differ-
ent types of movement behavior were simulated
(Bender 2000), and we examine the affect of move-
ment capability more fully in our companion article
to this paper (Tischendorf et al., this issue). We con-
tend that the explanatory power of patch size/shape is
probably at its realistic maximum in this study, mak-
ing it a baseline for relative comparison. If animals
move in a more random fashion (e.g., many insects),
then one can expect that up to two-thirds of the vari-
ation in movement can be predicted by patch size and

shape alone. However, this proportion should decline
as movement becomes more directed (e.g., a sentient
vertebrate), and patch isolation should become a more
important determinant of immigration rate. Finally,
the relative performance of each isolation metric to
predict immigration should not necessarily vary as
movement types change. This prediction is tested and
confirmed in Tischendorf et al. (this issue).

Regardless of the source of explained variation, we
were able to statistically explain up to 85% of the
variation in immigration rate when both patch size/
shape and patch isolation components were taken into
account (Figure 2), and up to 35% by isolation alone
(Figures 6 and 7). This result represents a very high
degree of predictability when one considers that the
organisms simulated in this model were moving be-
tween patches in a fashion that was based on a sub-
stantial amount of random chance. We expected that
for more sentient organisms that move in a less ran-
dom and less unpredictable manner, one should be
able to predict movement and immigration to an even
higher degree from patch isolation.

One other interesting result (shown in Figure 6)
was that by using buffer areas as the metric, one can
still explain most (ca. 75%) of the variation in immi-
gration rate without having to consider patch size/
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Figure 9. Plots of the residuals from the immigration rate-isolation regressions against distance to edge for the realistic binary landscapes

(see text).

shape at all, provided that an optimal buffer distance
is used (in this case, it was equal to the maximum
distance that an organism could travel in five time
steps of the simulation). This result demonstrates that
buffer areas can be a powerful and robust metric if
they can be parameterized correctly. The difficulty, of
course, lies in obtaining appropriate measures of max-
imum dispersal distance because empirical studies of
dispersal capabilities are rare in the literature, al-
though other methods for inferring dispersal capabil-
ity may be possible from allometric relations (Suth-
erland et al. 2000, Bowman et al. in press).

In conclusion, our results demonstrate that area-
informed metrics such as buffer areas, and distance-
weighted area-based metrics such as the habitat prox-
imity index, are superior predictors of immigration
over commonly used distance-based indices such as
the nearest-neighbor distance. The buffer and proxim-
ity metrics were both consistent and adequate predic-
tors of immigration, and appeared to be relatively in-
sensitive to variation in patch size/shape, distance to
the landscape boundary, and the total amount of habi-
tat within a landscape. In our evaluation, buffer area

was the most predictive metric, but only if the buffer
radius was correctly parameterized. Presumably, the
optimal buffer radius is one that reflects the average
dispersal distance of a migrating organism. However,
average dispersal distances are rarely known and this
may limit the actual usefulness of this metric unless
one experiments with a variety of distances as we
have done. Another option is to simply use the prox-
imity metric, which appears to be relatively insensi-
tive to correct parameterization. In this study, we sim-
ply chose a range of reasonable proximity distances
for the metric (based on knowledge of the dispersal
characteristics of our organism) and all the scores ob-
tained were quite similar, suggesting that the proxim-
ity index will perform optimally if the distance pa-
rameter is close to matching the dispersal ability of
an organism. In either case, the area-informed met-
rics are advocated for their predictive ability, reliabil-
ity, and ease of calculation. The buffer-area operation
is a fundamental operation of any geographic infor-
mation system, and can be performed unambiguously.
The proximity metric requires a little more work to
calculate manually, but there is a wealth of readily



available and free software that can be used to auto-
mate the process. These metrics are not as simple as
measuring a nearest-neighbor distance, but we predict
that as the popularity and wide use of GIS and soft-
ware-based map analysis continues, area-informed
isolation metrics could replace the more commonly
used distance-based metrics.
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