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Lacunarity analysis was evaluated as a means to determine multiple pattern

scales that are inherent in high-resolution imagery of forests and to specify an

optimal spatial extent for spatial image information extraction. A series of 0.5 m

pixel images of temperate hardwood and mixed boreal forests were analysed

using lacunarity distributions calculated for spatial extents ranging from 7 m to

40 m. The optimal extent was taken as that which displayed the greatest number

of distinct pattern scales. For the temperate hardwood forest dataset, 12–14 m

extents were found to be optimal, detecting three pattern scales. For the boreal

forest dataset, optimal extents were 14–18 m for five of six plots, detecting two or

three pattern scales in each plot. The detected pattern scales ranged from 8 m to

14 m and showed some correspondence to tree crown size, but also responded to

clusters of understorey and overstorey trees or to partially exposed tree crowns.

The method can aid in determination of the sample extent that best captures the

pattern scales present in the imagery. More generally, it can be useful in

exploratory analysis of any spatial data for which the fundamental patterns are

not known.

1. Introduction

Measurement of the patterns of objects within geo-spatial data and the scales at

which they occur can aid in development of an understanding of the spatial

variation and of object relations within the data. Spatial patterns dominant in

forests can be characterized (ideally) as dispersed, random or clustered (Upton and

Fingleton 1985) with these characteristics being scale dependent (Dale 2000). Trees

in a plantation may exhibit a regular pattern with a uniform spatial distribution.

They mature at the same time and their even spacing ensures consistent structural

characteristics over the occupied space. In more natural forests, there is typically

no dominant trend or spatial pattern. The arrangement of trees often follows a

Poisson distribution (Nigh 1997), where the probability of tree occurrence in

space can be modelled as a random discrete event, given knowledge of the aver-

age rate of occurrence (McGrew and Monroe 1993, Taylor 1997). A clustered

forest exists when there is autocorrelation present in the spatial location of trees

(Stiteler and Patil 1971). At the landscape scale, spatially fragmented forests are

clumped patches of vegetation within an agriculture or developed environment. At
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the patch level, clumping can occur in tree locations due to environmental-site

characteristics, stress or damage, and forest management activities (Zoladeski and

Maycock 1990).

Quantifying the spatial characteristics of the forest canopy using remote sensing

data can facilitate data exploration and understanding of spatial processes. Such

spatial data measured at multiple scales could extend analysis from relatively

localized study areas to more broad-scale landscapes. Since much of remote sensing

research is related to the scale of interest (Woodcock and Strahler 1987, Marceau

et al. 1994, Hay et al. 2003), measuring data characteristics at a variety of scales can

allow relations between variables at one scale to be linked to similar variables at

other scales. By modelling forest spatial pattern over several scales it is possible to

identify dominant scaling regions or natural scales (Hay et al. 2003) in the data.

These regions often reflect the size of inherent objects in ground units. Since it is

widely recognized that natural systems operate over many scales (Mandelbrot 1983),

fractal and other multi-scale spatial analysis methods are currently being applied in

forestry (De Cola 1989), geology (Sim et al. 1999) and landscape ecology (With and

King 1999) to characterize surface patterns at a wide range of spatial resolutions and

to describe how the identified patterns change with observed scale. In this research,

lacunarity, as a multi-scale measure of spatial pattern (Plotnick et al. 1996, Dale

2000, McIntyre and Wiens 2000) was analysed in high-resolution forest image data

to determine pattern scales, their relations to forest characteristics, and the optimal

spatial extent required to capture the most distinct of these patterns. A detailed

definition and description of lacunarity analysis is given in the Background section

below.

Previous research has found lacunarity measurements to be useful for quantifying

the scale of spatial pattern in real and simulated imagery. For example, in landscape

ecology, Dale (2000) compared the properties of lacunarity analysis of one-

dimensional data to local variance techniques in the context of two themes: (i)

pattern as points in space, and (ii) pattern as the arrangement of patches and gaps.

The results showed that lacunarity analysis identified multiple pattern scales in the

data and that lacunarity differed for complementary patterns (ones (1s) and zeros

(0s) reversed in binary data), a characteristic seen as potentially advantageous for

landscape structure analysis. McIntyre and Wiens (2000) found lacunarity analysis

to be useful in detecting non-randomness and scale dependence of animal

movements in relation to landscape patterns while With and King (1999), in

simulation modelling, linked dispersal success to lacunarity thresholds of landscape

gap structure. In remote sensing, Sun and Ranson (1998) studied the effects of

natural disturbance and forest management practices on the lacunarity of forest

patterns in binarized radar imagery. Henebry and Kux (1995) evaluated seasonal

differences in surface land cover dynamics in the Brazilian Pantanal using lacunarity

analysis of European Remote Sensing Satellite (ERS)-1 Synthetic Aperture

Radar (SAR) data. Weishampel et al. (1998), using lacunarity analysis of Landsat

Multi-spectral Scanner (MSS) imagery, found differences in clumping (non-

randomness) of Peruvian rainforest patches between the 1970s and 1980s, and

linked them to changes in the nature of forest harvesting activities. More generally,

Plotnick et al. (1996) demonstrated the flexibility of lacunarity analysis for use

with many spatial pattern datasets. For example, analysis of c-ray peaks from well

logs showed them to be far more clustered at all scales than predicted from a

random distribution.
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1.1 Objectives

The goal of this research was to determine optimal spatial extents for sample-based

analysis of forest structure using high-resolution remotely sensed imagery. The

optimal extent is assumed to be the smallest area that captures the maximum

amount of information content in the remotely sensed image patterns. Lacunarity

analysis was implemented using imagery from two sites: one in the boreal forest, the

other in a temperate hardwood forest. Specific objectives were:

(1) develop an algorithm to generate lacunarity curves and curves of its first

derivative (spatial change in lacunarity) from a series of sample moving

windows of varying sizes (extents), i.e. the gliding box method of Allain and

Cloitre (1991) as recommended by Plotnick et al. (1996);

(2) interpret the resulting first derivative curves to determine spatial extents that

capture the greatest number of pattern scales; and

(3) compare the measured pattern scales with tree crown dimensions measured in

the field.

2. Background

The following provides a brief overview of the aspects of lacunarity relevant to this

study. Lacunarity was originally introduced to measure the deviation of a fractal

from translational invariance (Gefen et al. 1983) since some fractals were found to

have the same dimension for visually different textures (Mandelbrot 1983). It

represents the pre-factor in the general fractal power-law equation, where the

exponent is the fractal dimension (D) (Henebry and Kux 1995). This is expressed in

equation (1),

F xð Þ~l xð Þ D{Eð Þ ð1Þ

where F(x) is the function, l(x) represents the lacunarity, D is the fractal dimension,

and E is the Euclidean dimension. The lacunarity parameter (l) describes the degree

of heterogeneity of the fractal set. In a true fractal set, when lR1, the variation in

gap size is minimal and the pattern is self-similar. Self-similarity in a pattern refers to

a fractal dataset that looks the same (homogeneous) across all observable scales. As

lR‘, a wide range of gap sizes is evident in the structure of the fractal producing a

visually different texture. Thus, the concept and formulation of lacunarity arose

from the problem of differentiating two objects defined by the same fractal

dimension but presenting visually different textural patterns.

For binary images, lacunarity describes the distribution of 1s and 0s in the pattern

and thus can be considered as a type of texture measure (Sun and Ranson 1998).

Since lacunarity is a measure of gap pattern and size, the objects of interest are the

gaps or holes in the pattern. For example, a map containing all 1s would be

homogeneously occupied no matter what box size was used. If the same analysis

were done on a map containing all 0s, the resultant lacunarity would approach

infinity, as there are an infinite number of gap sizes inherent in the scene. Hence, in

lacunarity analysis of a binary spatial pattern, the objects of interest should have a

value of 0 and the background pattern a value of 1 (digital number, DN).

There are several proposed methods to measure lacunarity from a spatial dataset.

The most common uses equation (2) to describe lacunarity (l) as a function of the
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box (window) size (r) from which the data are extracted (Allain and Cloitre 1991,

Henebry and Kux 1995).

l rð Þ~1zvariance
.

meanð Þ2 ð2Þ

This equation is derived from the first and second moments of the mean

probability distribution function calculated at the specified box size. The mean value

is a weighted average mass for the given box size used in the calculation. The

variance is weighted based on the mass values measured for each box size. The basic

assumptions of this technique are discussed thoroughly in Plotnick et al. (1993).

To measure lacunarity in a two-dimensional binary raster image, a gliding box

(moving window) with size (r6r) is translated through the data. At each cell

location, the box mass (M) at a given position is determined as the total number of

active sites (sites with a value of 1). Once the box has passed through the whole

image, the frequency distribution [n(M,r)] is calculated from all box masses (M), and

the corresponding probability distribution function [Q(M,r)] is derived by dividing

n(M,r) by the number of cells processed (the number of box positions). The sum of

each M*Q(M,r) derives the mean probability distribution function and the sum of

M2*Q(M,r) derives the variance probability distribution function. Substituting these

into (2) gives equation (3).

l rð Þ~1zM2Q M, rð Þ
.

MQ M, rð Þ½ �2 ð3Þ

The mean and variance represent the mass statistics measured for each box size. A

double-log curve of lacunarity versus box size is plotted to show the spatial response

function identifying (i) the change in spatial pattern across scales, and (ii) scales of

pattern depicted in the image (Elkie and Rempel 2001). The shape of the response

function depends only on the aggregation of objects within a given spatial pattern

(Plotnick et al. 1993).

For the objectives of this research, only the relative shape of the lacunarity curve

was of concern as it reflects the inherent spatial pattern and pattern fluctuations

with reference to the box size range. Changes in absolute lacunarity values with

respect to variable-sized spatial extents were not analysed. As shown in figure 1, the

lacunarity curve is a graphical representation of the scale-dependent spatial non-

stationarity in a dataset (Henebry and Kux 1995). A lacunarity function derived for

a random pattern (figure 1(a)) shows a rapid decay with increasing box size

(figure 1(c)), whereas a clumped pattern, such as the one in figure 1(b), produces a

lacunarity function that declines more gradually to an inflection point, which

approximates the average pattern or object scale in the data. In high-resolution

forest imagery, this inflection point may be indicative of the average tree crown size.

After the inflection point, the function shows a swift decay characterized by a more

homogeneous pattern at larger box sizes. Both random and clumped patterns reach

a lacunarity of 1.0 (ln l50.0) at large box sizes as they become homogeneous

(McIntyre and Wiens 2000) with respect to the observation scale. More

representations of simulated forest patterns and associated lacunarity curves, such

as those of figure 1, are given in Sun and Ranson (1998).

To analyse the fluctuation points in the lacunarity function with a greater degree

of certainty, the first derivative of the curve may be plotted against the box size

(Dale 2000). As shown in figure 1(d), the lacunarity slope curve for a random spatial
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Figure 1. Example of (a) random map, (b) clumped map, (c) lacunarity function and
(d ) lacunarity slope function. Black is zero (0) and white is one (1). Original images
were 21621 pixels but have been expanded for presentation.
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pattern begins with negative slopes that increase consistently throughout the curve.

The curve plotted for the clumped pattern starts at a relatively modest negative

slope, decays to the steepest slope at the break point (6 m), which corresponds to the

inflection point in figure 1(c), and then increases towards 0 at larger box sizes. The

trough width exhibited by the lacunarity slope curve indicates the rate of change in

object sizes over the range of measured box sizes. A narrow trough indicates discrete

break points in the pattern, whereas a wider trough reveals a more continuous

change in object sizes. In this case, the object in the clumped pattern is irregular in

shape and the deviation around the break point represents a more gradual change of

object sizes. At such break points in the first derivative lacunarity curve, the spatial

distribution and size of objects (the pattern) in a remote sensing scene are captured.

The smallest extent that captures the greatest number of such pattern scales was

taken as optimal for sample-based spatial image information extraction under the

given image–forest conditions.

3. Materials and methods

3.1 Study sites, field data and airborne imagery

Two distinctly different sites were used to study forest canopy spatial patterns

characterized in different eco-regions. Dataset 1, in the Gatineau Park, Quebec,

about 15 km north-west of the city of Ottawa, was an unmanaged temperate

hardwood forest typical of the Great Lakes–St Lawrence forest region. Dataset 2

was 10 km north-west of Timmins, Ontario, in the boreal forest region. Both study

sites have been described in previous papers as they are part of a larger research

programme in forest structure, health and composition analysis in stressed

environments using remote sensing (e.g. King 2002, Lévesque and King 2003,

Seed and King 2003, Cosmopoulos and King 2004, King et al. 2005).

3.1.1 Dataset 1. Dataset 1 consisted of two 100 m650 m forest sample plots (plots

701 and 702) that are part of a system of permanent plots throughout Quebec

maintained by the Quebec Ministry of Natural Resources (QMNR). The species

composition of the plots and the surrounding forests in the region is dominated by

overstorey sugar maple (Acer sacc-arum) with some basswood (Tilia americana),

while the forest understorey consists of white ash (Fraxinus americana), ironwood

(Ostrya virginiana), beech (Fagus grandifolia) and white birch (Betula papyrifera).

Both plots were similar in species composition although one was situated in a well-

drained elevated portion of the forest while the other was located in lower land with

poorer drainage. The forest structure at the sites had been impacted by a severe ice

storm in 1998 (Pellikka et al. 2000, King et al. 2005).

The QMNR measured tree and forest structure and health parameters during the

summers of 1997 and 1998. Along with tree x,y position to the nearest centimetre,

forest structural variables such as diameter at breast height (DBH), tree height,

vertical crown height, species and average crown size were measured for all

intermediate and dominant trees. Using the known x,y position of each tree,

Butson and King (1999) conducted a semivariance analysis to determine the

semivariogram range for DBH, height and crown diameter and related them to the

range determined from imagery of different resolutions. For the present study, as

lacunarity responds to pattern scales in the imagery, only the crown size

measurements were used to compare with the lacunarity curve results.
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The remotely sensed data were acquired by the Ontario Ministry of Natural

Resources on 18 August 1998 using a Vinten 70 mm camera with Kodak 2443 CIR

film. The photographs were scanned using the Kodak Photo CD process to a

nominal ground pixel size of approximately 27 cm and then re-sampled using a 262

averaging filter to 54 cm pixels to match the pixel size of Dataset 2 (see below). To

locate the two study plots in the imagery, 2 m2 white targets were placed at open

locations in the forest canopy. After image acquisition, their coordinates and the

plot corner coordinates were measured using real-time differential Global

Positioning System (GPS) to provide positional accuracy of about¡0.5 m. The

images were aligned to a series of ortho-rectified photographs that the National

Capital Commission (NCC) had acquired for this portion of the Gatineau Park in

1994. This image rectification process yielded an RMS error of less than two pixels.

Complete ortho-rectification of the two scanned photos that contained each study

plot was not considered because the study plots were relatively small within each

photo and the area covered by each photo was almost flat. For lacunarity analysis, a

50 m650 m area within each sample plot (figure 2) was extracted from the photos.

As binary images were required for lacunarity derivation, the near-infrared (NIR)

band was used because it had much higher contrast between canopy vegetation and

gaps than did the visible bands and it is generally more sensitive to multiple

scattering from understorey as well as overstorey (Treitz 2001).

3.1.2 Dataset 2. Dataset 2 consisted of six plots (numbered 1–6) of 50 m650 m

each situated on very flat topography in low land adjacent to an abandoned mine.

Trembling aspen (Populus tremuloides) between 70 and 80 years old dominated the

upper canopy with fewer numbers of white birch, black spruce (Picea mariana) and

balsam fir (Abies balsamea) in the understorey. The plots were located at 40 m,

140 m, 240 m, 440 m, 640 m and 840 m from an open tailings deposit and showed

variations in forest structure resulting from wind and biogeochemical stress such as

acid drainage, windblown tailings deposition on trees, and high soil metal content

(Lévesque and King 1999, 2003).

Field measurements included DBH, tree height, crown size, stem density, crown

closure, leaf area index and a health score taken in 1993, 1995, 1997 and 1999 for the

various studies at the site (see previous references). For the present study,

measurements of crown size from 1999, acquired with the same methods as for

Dataset 1, were used.

The remotely sensed data were collected on 20 August 1999 using a Kodak

Megaplus 1.4 digital camera with 8-band filter wheel (King 1995). Nominal ground

pixel size was 0.5 m. Plot location was determined using the same targets and GPS

Figure 2. Dataset 1 images of plot 701 (a) and 702 (b). Nominal ground pixel size is 54 cm.
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techniques as for Dataset 1. Band-to-band image registration was first performed to

remove the aircraft translations between spectral bands (due to filter wheel rotation

during flight). Image geo-referencing was then conducted with a model RMS error

of less than one half a pixel. (More detail on the complete image acquisition and

processing methodology is given in Cosmopoulos and King 2004). For lacunarity

analysis, the NIR band (900 nm¡5 nm) was used. Figure 3 shows the 50 m650 m

image subset for each of the six plots.

3.2 Lacunarity analysis of image data

The 50 m650 m image subscenes for each plot were converted into binary images

based on the mean DN value. Upper canopy trees were very bright in the images

while shadows and spaces between trees were very dark. Thus, a simple threshold of

the mean brightness was applied to classify tree crowns as a value of zero and

shadows or spaces as a value of one (DN). Figure 4 shows the resulting binary

images for Dataset 1.

An algorithm was developed to calculate lacunarity distributions for user selected

spatial extents, in this case ranging from a maximum size of 40 m640 m (green

square in figure 4) to a minimum of 7 m67 m (red square in figure 4). All extents

were centred about the middle pixel of the image. The 40 m extent was selected as the

upper limit because it was felt that beyond this, spatial variations in site

characteristics would affect forest structure variations and the resulting lacunarity

calculations. The 7 m extent was selected as the lower limit since below this, image

Figure 3. Dataset 2 images for plots 1–6 ((a)–( f ), respectively). Nominal ground pixel size is
50 cm.
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spatial variability would be affected more by within crown structure. The lacunarity

functions were plotted on natural log–log graphs and then converted to first-

derivative slope curves similar to the example in figure 1. The form of each slope

curve was interpreted for the number of troughs representing distinct pattern scales

as well as for their relative width and depth. From this analysis, the optimal spatial

extents were determined for each dataset.

4. Results and discussion

4.1 Dataset 1

The spatial extents and associated lacunarity analyses were separated into four

groups for presentation purposes: Group 1–7, 8, 9 and 10 m; Group 2–12, 14 and

16 m; Group 3–18, 20 and 25 m; Group 4–30, 35 and 40 m.

Figure 5 shows the lacunarity slope curves for plot 701 of Dataset 1. In these

curves, a deep and narrow trough indicates a distinct and discrete pattern scale while

a wide trough characterizes a broader range of object sizes in the given pattern. The
8 m and 9 m extents show two pattern scales, one at 3.0 m and the other (more

subtle) at 6.0 m. For the spatial extent of 7 m, the pattern scale at 3.0 m tends to

dominate, while a spatial extent of 10 m does not detect any distinct patterns. The

12 m extent shows three pattern scales at 3.0 m, 6.6 m and 10.8 m (more subtle). The

14 m extent also shows three pattern scales but they are less distinct than those of

the 12 m extent. Beyond the 14 m extent, the number of distinct pattern scales

decreases until the overall pattern appears essentially homogeneous for extents

greater than 20 m. From the graphs it is clear that the 12 m extent captures the most
distinct and discrete pattern scales.

Figure 6 shows the results for plot 702. Extents of 12 m and smaller revealed one

or two distinct pattern scales. The 14 m extent shows three distinct pattern scales,

which are centred at 4.8 m, 9.0 m and 14.4 m. At spatial extents of 18–30 m, three

scales are evident but only the 18 m extent has pattern scales close to the

distinctiveness of those at 14 m. The others have wider troughs representing a

broader range of object sizes present in a given pattern. For example, the third

pattern scale for the 20 m extent is dominated by a dimension of 13.2 m, but objects
of up to 17.4 m are influencing this pattern. At larger extents, troughs are usually

wider and tend to generalize the size of objects within a pattern. Conversely, small

Figure 4. Binary images of plots 701 (a) and 702 (b) from Dataset 1. Tree crowns are
displayed as black (0) and canopy gaps are displayed as white (1). Total spatial extent is 50 m.
Lacunarity curves were generated for various extents within the range of 7 m (red square) to
40 m (green square).
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Figure 5. Lacunarity slope functions for plot 701.

Figure 6. Lacunarity slope functions for plot 702.
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extents tend to focus on specific objects that dominate the spatial pattern and

measure object sizes with more specificity. Beyond the 30 m spatial extent, the

number of pattern scales decreases with increasing extent until the image pattern

becomes essentially homogeneous.

4.2 Dataset 2

Figure 7 shows the lacunarity slope curves for the six plots of Dataset 2. For brevity,

only the curves representing the optimal spatial extent and those close to it are

shown.

Following from the analysis of Dataset 1, results for Dataset 2 are presented in a

more summarized manner. The optimal spatial extent is shown as the bold line in

each of the lacunarity slope curves of figure 7, and the pattern scale values are given

in table 1. In three of the six plots, two pattern scales were detected while in the other

three plots, three were detected. The size of these patterns varied between plots due

to the varied forest structure that is evident in the images of figure 3. The optimal

spatial extent was between 14 m and 18 m for five of the six plots. Similar to the

results for Dataset 1, extents larger than these retained fewer pattern scales or

captured the same number of pattern scales but with wider ranges of object sizes in

each (i.e. the pattern scales were less distinct). Spatial extents smaller than the

optimum values tended to generalize the smaller scaled objects.

4.3 Relation between pattern scales and tree crown size

Table 1 shows the average field measured tree crown sizes for both datasets and the

pattern scales detected by the best spatial extents in the lacunarity analyses.

Intermediate crown sizes had not been measured for Dataset 2. It is evident that the

scales of pattern interpreted through lacunarity analysis are linked to the primary

objects in the imagery, the tree crowns, although there is some mixing between

overstorey and understorey as well as partially hidden crowns. The smallest pattern

scales are in the range of 2.0–4.8 m. They tended to capture the brightest pixels of

the smallest dominant trees or intermediate tree crowns that were visible or partially

visible to the sensor. When three pattern scales were detected, the intermediate

pattern scales were in the range of 6.0–9.0 m. This most closely approximates the

average dominant tree crown sizes. However, clustered and overlapping crowns

result in this pattern scale being greater or less than the field measured dominant

crown size depending on the degree of clustering of crowns in each plot. In addition,

using the mean as a threshold to produce binary images for the lacunarity analysis

may have excluded parts of the shaded sides of crowns. In future work a tree

delineation algorithm that captures more of the whole crown (e.g. Pouliot et al.

2005) should be implemented. The largest pattern scales ranged from 5.0 m to

14.4 m. If plot 6 from Dataset 2, which had only two pattern scales, is excluded, then

the range of the largest pattern scales is 7.5–14.4 m. These larger scales captured

clustered and overlapping dominant crowns as well as the largest single trees in the

plots.

For the six plots of Dataset 2, correlation analysis was conducted where a Pearson

correlation coefficient was significant at p(0.05 if it was greater than or equal to

0.81. None of the pattern scales were significantly correlated with average tree size,

although the second pattern scale for each plot was close (r50.70), and may have

proven to be significant with more samples. These results agree with those of Dale
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(2000) who found for one-dimensional artificial data and measured field data that

break points in the lacunarity slope curves did not correspond directly to object

sizes. However, the curves derived for the image data presented here showed much

more distinct pattern scales than those of Dale (2000).

Based on the above analysis, it was concluded that the pattern scales detected in

the imagery do not correspond directly to individual tree crown sizes, but are a

combination of components of crowns, individual isolated crowns, and clusters of

dominant and sometimes intermediate crowns.

Figure 7. Lacunarity slope curves for Dataset 2, plots 1–6 ((a)–( f ), respectively).
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4.4 Comparing lacunarity analysis to semivariogram analysis

Geostatistical methods have also been applied in pattern analysis (e.g. Lacaze et al.

1994), with semivariance statistics used to specify an optimal sample extent (window

size) for analysis of spatial information such as image texture (e.g. Butson and King

1999, Franklin et al. 2000, Treitz and Howarth 2000). It was of interest to compare

the results obtained from the lacunarity analyses with those of semivariance analysis

for the same data. Semivariance represents half the squared difference of a measured

variable at two locations, x and x + h, where h is the separation (lag) between the

points (Curran 1988). For a regionalized variable with measurements at more than

two locations, a graph of semivariance against lag (the semivariogram) can be

derived. The range of the semivariogram is the lag beyond which data points become

spatially independent of each other. Lags less than the range represent the region of

spatial dependence of the dataset (Curran 1988, Woodcock et al. 1988).

For Dataset 1, Butson and King (1999) had determined the range of the

semivariogram for the same images re-sampled to 108 cm pixels to be 8.8 m for both

plots 701 and 702. Repeating that analysis for the 54 cm data presented here gave

ranges of 7.2 m and 8.1 m for the two plots, respectively. These values are similar to

the second lacunarity pattern scales of 6.6 m for the 12 m optimal extent and 9.0 m

for the 14 m optimal extent.

For Dataset 2, Lévesque and King (1999) had found the range of the 0.5 m pixel

NIR band acquired in 1995 to be very highly correlated with average plot crown

size, although the range values were much larger than the crown diameters

(range510.5–15.4 m). The 1995 image range was also significantly correlated

(p(0.05) with the average crown diameter measured in 1999 for this study (r50.91)

and with the second pattern scale found in the six plots (r50.81). However, it was

not significantly correlated with the smallest pattern scale detected (r50.54), nor

with the largest (r50.04).

Therefore, for both datasets it is evident that the semivariance range detects the

second pattern scale well, which was generally the most distinct pattern in the

imagery (largest trough exhibited in the lacunarity slope curves of figures 5–7) and

was directly linked to the average tree crown size. However, it did not detect the

more subtle small and large pattern scales revealed in the lacunarity analysis. In

Table 1. Image pattern scales detected by the optimal spatial extent and field measurements
of tree crown diameter.

Site

Image data Field data

Optimal
extent (m)

Pattern scale
(m)

Mean crown diameter/St. Dev. (m)

Dominant Intermediate

Dataset 1
701 12 3.0, 6.6, 10.8 7.8/2.3 5.0/1.3
702 14 4.8, 9.0, 14.4 7.2/2.2 4.9/1.4

Dataset 2
Plot 1 14 4.0, 6.0, 7.5 5.6/1.5 –
Plot 2 18 4.5, 9.0 7.1/1.9 –
Plot 3 18 3.0, 10.0 7.2/2.1 –
Plot 4 18 2.5, 7.0, 12.5 5.8/2.0 –
Plot 5 14 2.0, 6.5, 8.5 5.1/1.5 –
Plot 6 8 2.0, 5.0 6.4/2.3 –
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terms of the primary goal of this research to determine an optimal spatial extent for

sample-based spatial image analysis (e.g. an optimal window size for image texture

analysis), an extent selected as the range of the semivariogram would generally be

too small to capture the larger pattern scales that were detected by lacunarity

analysis. The range would indicate an optimal extent of about 8 m for Dataset 1 and

12–15 m for Dataset 2, while the lacunarity analysis indicated optimal extents of

12–14 m for Dataset 1 and 14–18 m for all but one plot in Dataset 2. Thus, for this

purpose, and for development of understanding of the nature of patterns in remote

sensing imagery, the capability of lacunarity analysis to detect multiple pattern

scales is advantageous. These conclusions regarding the benefits of lacunarity as a

multiple scale analysis method were also reached by Dale (2000) and McIntyre and

Wiens (2000) for different data types.

5. Conclusions

In remote sensing studies, it is essential to know the optimal extent for image

sampling or spatial analysis. Determining such an extent based on the pattern

scales displayed in the imagery can be achieved using lacunarity analysis. Its

capability to detect multiple pattern scales and to determine optimal spatial extents

based on the number and distinctiveness of these patterns was shown to be

advantageous in tests using high-resolution images from a temperate hardwood

and a mixed boreal forest. The optimal spatial extent was found to be between

12 and 14 m for the temperate hardwood dataset and between 14 and 18 m for five

of the six plots in the boreal dataset. For each forest, using 0.5 m pixel imagery,

a sample extent equal to the upper bound of these ranges would be a conservative

approach to ensure that all pattern scales present in the imagery would be

captured. Alternatively, an adaptive approach using lacunarity analysis at each cell
could be implemented to determine the optimal sample extents for all cells

individually.
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