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Abstract. A large abandoned tailings deposit at a mine site near Timmins,
Ontario, Canada has produced significant damage in an adjacent forest due to
contamination and wind stress. Significant forest structure changes were
measured between 1997 and 1999. A multivariate image-based forest structure
index (FSI) was developed using canonical correlation analysis of 1997 field and
airborne digital camera data. FSI included decreasing canopy closure and leaf
area index, and increasing blown down and standing dead structure measures
associated with image spectral, textural and radiometric fraction variables. An
image model predicting FSI achieved an R2~0.66. The model equation was then
applied to 1999 airborne imagery to predict FSI for each plot. Comparing the
1999 image predicted FSI to that calculated from field data showed that the
model was strong in predicting positive or no forest structure changes, but
not increased structure degradation. The latter was due to the presence of
herbaceous and shrub vegetation that had developed during the two-year period
in open plots near the tailings where blow down was significant. The next
research phase will derive means to separate these two signals in forests of open
overstory.

1. Introduction
Much effort has been made to develop methods for measurement of individual

forest structure parameters using remote sensing. In forest management, tree size

(height and diameter) and stem density are of primary importance for growth and

wood volume information needs. In ecology and climate modelling, leaf area index

(LAI), per cent cover and other measures of biomass quantity are used. Each of

these individual variables is often fed into a production model to determine some

output variable such as the potential wood product value or carbon budget status.

However, forest structure is an integrated composite of individual tree structure,
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quantity, and arrangement in the landscape in both horizontal and vertical

dimensions. This research attempts to develop an integrated measure of forest

structure as an index comprising several variables that can be measured and

monitored using remote sensing.
While many forest management information needs for inventory are met using

aerial photography (Gillis and Leckie 1993, King 2000), modelling of individual

forest structure variables such as LAI, canopy closure, crown diameter, basal area,

and stem density has been conducted using both airborne and satellite imagery. The

most common approach has been to use spectral information such as vegetation

indices (Gong et al. 1995, Lawrence and Ripple 1998, Haddow et al. 2000, Chen

et al. 2002). Addition of image spatial information, particularly using airborne data,

has generally improved these models significantly. Image texture (Yuan et al. 1991,
Wulder et al. 1997, Olthof and King 1997), spatial dependence (e.g. semivariance

range) (Cohen and Spies 1990, St. Onge and Cavayas 1995, 1997, Wulder et al.

1998, Lévesque and King 1999) and radiometric fractions derived at the pixel level

using clustering (Pellikka et al. 2000, Seed and King 2003) or at the subpixel level

using spectral unmixing (Hall et al. 1996, Peddle et al. 1999, Lévesque and King

2003) are the most commonly studied image spatial information types for this

purpose.

Representation of forest structure as a multivariate composite of various
parameters has been presented by Everham (1996) and Ferretti (1997). Both of

these studies assessed forest structure in the context of structural health, the former

in relation to wind damage, and the latter as an indicator of forest vigour. Franklin

(2000) summarizes other studies that have taken this approach. Extending this

concept of a composite structure index to measurement using remote sensing has

been attempted, but generally with spectral information only. For example,

Franklin (2000) summarizes studies relating vegetation indices and the TM wetness

index to a few structural indices. Jakubauskas (1996) found that more than half the

variance of a coniferous forest canonical variate representing LAI, basal area and
stem density could be explained by Landsat Thematic Mapper (TM) spectral

information. Integration of image spatial information into such modelling has been

less frequent. An example is Yuan et al. (1991) who defined a tree decline index

based on visual photographic interpretation of spectral damage symptoms (e.g.

chlorosis, visible dead branches) and crown texture (rougher textures representing

more open crowns) and then modelled this index using airborne video spectral and

textural information. Another was presented by Cohen and Spies (1992) to

represent a structural complexity index using semivariance analysis. In this paper,
aspects of these approaches are combined in multivariate modelling to develop a

forest structural condition index using high-resolution airborne imagery. Canonical

correlation analysis is used to relate forest structure variations caused by blow

down and contamination at an abandoned mine to image spectral, textural, and

radiometric fraction information. The image model is applied to data acquired in

1997 and 1999 and its effectiveness in prediction of temporal change in forest

structure is evaluated.

2. Objectives

The study is part of a long-term research project initiated in 1992 (King 2002) to

develop remote sensing methods for assessment and monitoring of forest damage at

an abandoned mine site near Timmins, Ontario. The goal of this study was to

examine the feasibility of employing a multivariate image-based forest structural
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condition index for monitoring the effects of a large sulphide tailings deposit on

forest health. The objectives of the research are as follows.

1. Assess whether significant forest structural change had taken place at the

study site between 1997 and 1999. Previous observations at the site had

shown it to be very dynamic so significant changes in forest structure and

tree mortality were expected during this two-year period.
2. Given forest change is significant, develop a multivariate model relating

various forest parameters indicative of the structural health at the site and

airborne digital camera spectral and spatial information.

3. Apply the model to 1997 and 1999 imagery to predict forest structure

changes throughout the study site and evaluate the prediction accuracy.

3. Study area

The study area is located near the abandoned copper-zinc deposit of the Kam-

Kotia Mine north-west of Timmins, in northern Ontario (figure 1). Surrounding the

mine are three tailings areas covering about 350 ha. The study area is a forest

approximately 1.4 km (east–west) by 800 m (north–south) adjacent to the north

unimpounded tailings as shown in figure 1. It is bounded by the Northwest creek,

East creek, and tailings edge, each being visible in figures 1, 2 and 4.

Topographically, most of the area surrounding the mine is relatively flat and is

characterized by poor drainage, forming swamps and meandering streams.

Drainage follows a slight elevation gradient from the north impounded tailings

through the north unimpounded tailings and towards the study area in the north-

east. Outflow drainage from the tailings is collected in the Northwest and East

creeks, which join to flow into the Kamiskotia River.

The study area is a typical mixed boreal forest. An overstory canopy of mature

Figure 1. Study area.
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trembling aspen (Populus tremuloides) dominates most of the drier areas, while

white birch (Betula papyrifera) and black spruce (Picea mariana) cover the wetter

areas. An understory of balsam fir (Abies balsamifera) is also present in some of the

more mature areas. Figure 2 shows two aerial photographs of the study area, the

first in 1961 prior to the tailings deposition, and the second in 1991.

Visible signs of forest damage are mostly structural and include: (1) uprooted

and snapped trees, resulting from strong winds that develop over the open tailings,

(2) dead branches and standing dead trees, (3) undersized crowns, and (4) high

crown and canopy openness. Thin, open crowns are particularly obvious near the

tailings, possibly due to contaminants deposited by wind and/or drainage. Figure 3

illustrates forest contamination by drainage and wind, as well as mechanical wind

stress effects. Lévesque and King (1999) found decreasing gradients of several soil

metals with distance from the tailings.

In previous studies at the site relevant to this paper, Walsworth and King (1999)

analysed aerial photography from 1961 to 1991 using a spatially explicit individual

Figure 2. Study area before tailings deposition (1961) and 17 years after mine abandonment
(1991) (Ontario Ministry of Natural Resources air photographs).

Figure 3. Forest stress types at the study site. (a) Acid mine drainage into the adjacent
forest in runoff and groundwater, (b) tailings dust and deposition on bark and leaves
in the forest, (c) blown down trees in the study area about 50 m from the tailings’
edge.
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tree based transition model. They found that the area within about 200 m of the

tailings edge exhibited a trend towards continued growth of pioneer, light intolerant

species such as aspen, while further from the tailings, succession was towards a

more closed canopy which conifers were beginning to infill. Seed and King (1997)

found strong relations between 25 cm pixel digital camera radiometric fractions

(deep shadow, transitional shadow on crown edges and within crown shadow) and

effective LAI (LAI assuming a random leaf orientation and referred to herein

simply as LAI). Subsequently, they found that shadow brightness was more related

to LAI than the commonly used shadow fraction because it is more robust over

varying view angles and is sensitive to varying amounts of understory (Seed and

King 2003). Olthof and King (1997), using the same data, found complementarity

between texture and texture spatial variation in modelling of LAI. Olthof and King

(2000) then incorporated the findings from these studies in the development of a

forest health index (herein called a forest structure index, FSI) using multivariate

analysis of groups of these image variables against groups of forest variables

representing the structural damage evident at the site. This study extends the

research of Olthof and King by refining the FSI formulation and applying it in a

temporal analysis of forest change at the site.

4. Methods

4.1. Field data and analysis of forest change

In the summers of 1997 and 1999, field measurements were taken in 44 plots of

10 m radius (314 m2) each, located along six parallel transects labelled A to F from

east to west (figure 4). The beginning of each transect is located at the edge of the

tailings and the transect lengths range from 350 m to 850 m. The plots were located

at 10 m, 60 m, 110 m, 210 m, 310 m, 410 m, 510 m and 710 m from the tailings’ edge.

The sampling scheme was spatially biased, including more plots in the area near the

tailings’ edge, because previous research in the study area (Lévesque and King 1999,

Walsworth and King 1999, Olthof and King 2000) had found greater forest damage

closer to the tailings’ edge.

In each plot, all trees taller than 2 m were counted, species were identified, and

diameter at breast height (DBH) was measured. The status of the standing trees was

Figure 4. Mosaic of 1999 NIR band images of the study area with study plots delineated.
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assessed visually to distinguish between live (presence of foliage) and dead trees.

After all standing trees in a plot were assessed, the same data were acquired for all

fallen trees. The stem density and basal area of standing live, standing dead and

fallen trees were calculated for each plot.

A Li-Cor LAI-2000 Plant Canopy Analyser was used to measure forest canopy

closure and (effective) LAI. A sensor was placed in the open as a reference of open

sky and another was used in the forest. Measurements were taken at dusk and

dawn under diffuse sky conditions. The LAI-2000 estimates the total gap fraction at

different angles (Li-Cor, Inc. 1991) using hemispherical optics and a ringed detector

that simultaneously measures diffuse radiation in five distinct angular bands,

centred at 7‡, 22‡, 38‡, 52‡, and 68‡ about the zenith. The narrowest view angle

0‡–15‡ represents a number of sample points penetrating the canopy directly above

and therefore is used to estimate canopy closure. The first three rings give the best

estimate for LAI (Li-Cor, Inc. 1991) but the first four rings may also be useful. The

measurements were taken in mid to late August 1997 and 1999 to coincide with

the time of image acquisition. The 1997 field data had been previously acquired for

the study by Olthof and King (2000). The study plots represented diverse forest

conditions of varied composition. For example, in 1997, canopy closure ranged

from 12% to 90%, and LAI from 0.41 to 5.03. The ranges of numbers of blown

down, standing dead and standing live stems per plot were 0–36, 0–39, and 5–118,

respectively. The complete set of forest structure variables used in the study is listed

in table 1.
An analysis of the field data was conducted to determine if real forest structural

changes had occurred in the 1997–1999 period. This would justify the image-based

temporal analysis for such a short time period. Each forest variable was assessed

using Student t-tests to determine if the differences between the means of 1997 and

1999 were significant. Processing for outliers and to transform variables to

Gaussian distributions was conducted. A comparison of these data for the area

within 210 m of the tailings and the area beyond 210 m was also conducted.

Walsworth and King (1999) had found this to be the approximate distance in which

impacts of the tailings were severe.

Table 1. Forest structure and image variables for 36 field plots and image subscenes.

Image variables Forest structure variables

Spectral Stem density (stems/plot)
BNIR Average NIR brightness Lstem Live stem density
BR Average red brightness Dstem Dead stem density
BG Average green brightness Bdstem Blow down stem density
BB Average blue brightness
NDVI (BNIR2BR)/(BNIRzBR)
Radiometric fractions Basal area (m2/plot)
S1 Deep shadow Lbasal Live basal area
S2 Transitional shadow Dbasal Dead basal area
S3 Sunlit crown Bdbasal Blow down basal area
Contrast texture Li-Cor measurements
TexR Average red band texture LAI3 LAI (rings 1–3)
TexG Average green band texture LAI4 LAI (rings1–4)
TexsR Red band texture standard deviation Closure Canopy closure (ring 1)
TexsG Green band texture standard deviation
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4.2. Image acquisition and data processing

A multispectral digital sensor (AMDFCS, figure 5) incorporating a Kodak

Megaplus 1.4 black-and-white, 130061000 pixel format camera was used for image

acquisition (King 1995). A rotating filter wheel in front of a 28 mm focal length lens

provided a total view angle of 18.2‡614.3‡ and 8-bit data in up to eight spectral

bands of o10 nm bandwidth within the range of 450 nm to 900 nm. Imagery of the

study area was acquired with 25 cm, 50 cm and 80 cm pixel sizes on 18 August 1997

(Olthof and King 2000) and 19 August 1999.
The pixel size of the imagery in this study was 50 cm. Four spectral bands were

used as follows: blue (B: 430–470 nm), green (G: 545–555 nm), red (R: 665–675 nm),

and near-infrared (NIR: 895–905 nm). Images were acquired on four flight lines

covering the area with adequate forward and side overlap. Band offsets due to filter

wheel rotation were corrected by aligning three of the bands in each multispectral

set to the fourth (reference band) using a minimum of four ground control points

(GCPs) and a first-order transformation.

Brightness variations due to sun angle and optical effects were corrected in each

image using an algorithm that determined the mean of each image column, fitted a

polynomial (second order was selected) to the set of means crossing the image and

inverted the polynomial to normalize the brightness values across the image (PCI

Inc. 1994). This correction was applied in both image directions. Figure 6 shows an

example of a 1999 image before and after correction.

Mosaics were then assembled from the 1997 and 1999 data. Ten scenes were

sequentially combined in each mosaic using a minimum of four ground control

points (GCPs) for each pair of images and a first order transformation. Average

RMS error in mosaic processing was approximately one-half the pixel dimension

(25 cm). Histograms of each image pair were also matched in the overlap area to

remove brightness differences at seams. Figure 4 shows the NIR band of the 1999

mosaic with plots delineated.

The 1999 mosaic was georeferenced to a UTM projection using eight GCPs that

Figure 5. Multispectral digital camera sensor (King 1995).
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consisted of 2 m white square targets placed in the field before the flight and

surveyed using real-time differential GPS (x, y accuracy y0.5 m). A second-order

transformation was required in this process, producing an RMS error of 0.10 m.

Next, the 1997 mosaic was aligned to the georeferenced 1999 mosaic in an image-

to-image registration using 16 control points and a second-order transformation,

resulting in an RMS error of 0.15 m. Visual inspection of band histograms revealed

that the exposure (overall brightness) of the 1997 imagery was lower than the 1999

imagery, and its brightness range was smaller. The histograms of the two mosaics

were therefore matched to provide equivalent mean brightness and standard

deviation. This process assumes that there were no gross changes in cover type in

the two-year period.

Image subscenes corresponding to the surveyed locations of the field plots were

extracted from the georeferenced mosaics. As the pixel size was 50 cm, the subscenes

were 40 by 40 pixels. Thirty-six of the forty-four plots were extracted from the

imagery where data were available for both 1997 (some plots were missed in 1997

due to aircraft navigation error) and 1999. Once all image subscenes for both dates

were radiometrically corrected, image parameters that had previously demonstrated

good relationships with forest structure measures at this site (Seed and King 1997,

Olthof and King 1997, Olthof and King 2000) were extracted. They included:

1. mean plot brightness in each band (BNIR, BR, BG, BB );

2. three radiometric fractions extracted using an unsupervised classification

(ISODATA): deep shadow (S1) between crowns, transitional shadow (S2) on

crown edges and within crowns, and sunlit crown (S3);

3. the Normalized Difference Vegetation Index (NDVI);

4. mean and standard deviation of the co-occurrence texture measure ‘Contrast’

(Haralick 1979) extracted from the red (TexR, TexsR) and green (TexG,

TexsG) bands. This texture measure and texture in these bands provided

higher correlations with individual forest structure measures than other

measures and bands. A sampling distance of 1 was applied in all directions

around the centre pixel (omni-directional) and a 363 window was used to

maximize information on local texture.

Figure 6. Example of radiometric corrections on a 1999 image frame: (a) uncorrected image
and (b) corrected image.
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An example of the radiometric fractions extracted for one of the plots is given in

figure 7. The 12 image variables are listed with the nine field variables in table 1.

4.3. Multivariate analysis of forest and image variables

Canonical correlation analysis (CCA) was used to investigate multivariate linear

relationships between forest structure parameters and image parameters in the 1997

data and to form a basis for the development of a forest structure condition index.

The method was adapted from Olthof and King (2000) who applied it to the same

1997 data in an initial analysis without the radiometric corrections, differential GPS

survey of plot locations and image georeferencing as described above. In this study,

these data improvements were expected to strengthen the relations between forest

and image variables. Statistical aspects of CCA and principal components analysis

(below) are summarized here; additional details are given in Olthof and King

(2000). Canonical correlation coefficients that were statistically significant (af0.05)

were retained for analysis. The canonical correlation between the significant variate

pairs is indicative of the strength of the relationship between the variable sets and

the squared canonical correlation is the shared variance between a pair of variates.

According to Tabachnick and Fidell (1996), canonical correlations lower than 0.30

are generally considered unacceptable as they represent less than 10% shared

variance between the variate pairs.

To reduce the ratio of the number of variables to number of plots (samples) and

to provide orthogonal variables for CCA, principal component analyses (PCA) of

the forest and image data were first conducted. Only the components with

eigenvalues greater than 1.0 were retained as suggested for sample sizes less than 50

by Kaiser (1960) and Stevens (1996). These PCs represent variance that is greater

than the variance of a single variable (i.e. the PC is useful in representing combined

variance of more than one variable). Interpretation of the components was based

on the correlations between the variables and the PCs (factor loadings) that were

statistically significant. Variables with loadings greater than 0.75 were interpreted,

as this threshold is generally equivalent to strong significance (a~0.01) with small

Figure 7. Colour infrared composite (a) and radiometric fractions (b) extracted from plot
A10, 1997 data. S1~deep shadow; S2~transitional shadow; S3~sunlit crown.
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samples (v50) (Stevens 1996). Varimax rotation (Kaiser 1960), a technique designed

to stretch loadings in each PC, was used to improve the interpretability of the PCs.

4.4. Formulation of an image-based forest structure condition index (FSI)

In CCA, the canonical variates (CVs) consist of multiple forest variables that

are linearly related to multiple image variables. The set of forest structure principal

components that formed the most significant canonical variate was selected as an

integrated forest structure condition index (FSI) that could be modelled by airborne

imagery. Although the relation of FSI to the image canonical variate could be used

for predictive purposes, it was desired to develop a predictive model of FSI using an

optimal subset of the original image variables (table 1). This was because image

principal components are more difficult to interpret, they require extraction of all

image parameters, and they do not represent all the variance found in the field data.

Consequently, forward stepwise regression was used with the image data (table 1) as

independent variables and FSI as the dependent. The goal was to identify a subset

of image variables that could best predict the integrated forest structure index. To

avoid multicollinearity in the regression process, a variance inflation factor (VIF) of

5.3 was used as a cut-off threshold, which corresponds to correlations (r) exceeding

0.90 between the independent variables (Tabachnick and Fidell 1996, Hair et al.

1998).
Normal probability plots of the residuals were also examined for any departures

from normality. As a final evaluation, a graph of the standardized residuals versus

the predicted values was generated in order to determine the validity of the selected

best-fit model, and to check for any departures from linearity or any trends in the

residuals.

4.5. Temporal analysis of 1997–1999 forest change using the field data and the

FSI image model

Once the best-fit regression model was determined for the 1997 plot data, it was

applied to both the 1997 and 1999 image data in order to predict FSI for each plot.

The difference between the two FSI values for each plot (1999–1997) was used as a

measure of image-predicted forest structure change. In the same way, the FSI

formulation was applied to both sets of field data. The difference between these two

scores (1999–1997) was used as a measure of actual forest change.

Image predicted FSI change was compared to actual FSI change to determine

its accuracy and identify issues to be addressed in further refinement of the image-

based FSI methodology. For practical purposes (e.g. the Ontario Ministry of

Northern Development and Mines wishes to simply know where in the forest

degradation is occurring), the comparison was done on a class basis by applying a

statistical cluster analysis to both the image predicted and actual forest change

datasets. Ward’s cluster methodology was used as it most closely mimics biological

systems; samples placed into a cluster often represent a common environment

(Fishbein and Patterson 1992). It identified distinct forest change clusters and

assigned each of the 36 plots to one of the clusters. Clusters were grouped into

positive change (improved structure condition), negative change (increased

openness and damage) and stable classes. The image-predicted FSI change class

for each plot was compared to the actual change class and the frequency of correct

and incorrect class assignments was calculated.
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5. Results and discussion

5.1. Analysis of change in forest structure, 1997–1999

Of the nine forest variables in table 1, eight had significantly changed ( pf0.05)

between 1997 and 1999. The numbers of blown down stems increased significantly

( p~0.01) as did the basal area of blown down stems ( p~0.03). Coinciding with

this were significant increases in live stem density ( p~0.02), canopy cover ( pv0.01)

and LAI ( p~0.03). However, these stems were mostly small as the live basal area

had decreased significantly ( pv0.01). Standing dead basal area decreased by an

almost significant amount ( p~0.053), while the numbers of standing dead stems

did not change significantly ( p~0.94). This indicates that larger dead trees had

fallen while approximately equal numbers of smaller trees had died in the two-year

period. These data show that the forest is very dynamic, as significant structural

changes have occurred in a short time period. Wind was a primary cause of

structural change, blowing down live and dead stems. Many of these stems were

large and exposed in the upper canopy leaving reduced live and standing dead basal

area. Mortality by contamination or natural causes was not as significant as blow

down but was present as a more subtle cause of structural change.

Forest change was also much greater closer to the tailings. For example, within

210 m of the tailings blow down basal area, canopy closure and live stem density

increased by 33.7%, 20.2% and 21.8%, respectively. In interior plots further from

the tailings’ edge, they increased by only 21.8%, 7.3% and 4.5%, respectively. This

shows, that blow down was a primary mechanism of structural change throughout

the study site and that, near the tailings, significant new growth of small trees had

occurred compared to further from the tailings. Much of this new growth consisted

of alders and white birch trees that had grown above the measurement threshold of

2 m height and above the LAI-2000 sensor height of 1.5 m. There was also an

associated visible increase in ground and shrub vegetation in these open plots that

was not measured. These points on temporal-spatial forest structure change are

critical to interpretation of the results of remote sensing modelling below.

5.2. Principal component analyses of forest and image data

The results of the principal component analyses (PCA) of the 1997 forest

structure and image variables are summarized in table 2. The nine forest structure

variables were reduced to three components with eigenvalues greater than 1.0,

accounting for 81.3% of the total variance. The first component (STR1) represented

41.6% of the variance and was significantly related to LAI and canopy closure.

Table 2. Results of principal component analysis.

Variable set Component Significant variables* Eigenvalue
Cumulative

variance (%)

Forest structure STR1 LAI3, LAI4, Closure, (Lbasal) 3.74 41.55
STR2 Bdstem, Bdbasal, (Lstem_l) 2.10 64.90
STR3 Dstem_l, Dbasal_l 1.48 81.38

Image IM1 2NDVI, BR, (BB) 4.70 39.15
IM2 S2, TexR, 2S1, (TexsR) 2.13 56.91
IM3 TexG, TexsG 1.53 69.67
IM4 BNIR, S3, (BG) 1.31 80.59

*Variables in parenthesis had high loadings but were less significant (loadingv0.75).
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Although the factor loading for live basal area was not significant based on the

criterion used (rw0.75), it also increased with increasing LAI and closure (r~0.65).

The second structure component (STR2) accounted for 23.3% of the total variance

and was related to blow down stem density and blow down basal area. The log of

live stem density was somewhat associated with this PC (r~0.58), as in open areas

with high blow down, the number of small live trees was generally high. The third

component (STR3) explained 16.7% of the data variance and was related to tree

die-back and mortality.

The image PCA reduced the set of variables from 12 to 4 components with

eigenvalues greater than 1.0. Derived image components represented spectral,

textural, and radiometric fraction information, and accounted for 80% of the total

data variance. The first component (IM1) accounted for 39.2% of the variance and

provided red and NIR spectral information that was inversely related to the

amount of vegetation present. Blue band brightness was almost significant and

followed the same trend (r~0.63). The second component explained 17.8% of the

data variance and was related to red band texture, transitional shadow, and

negatively to deep shadow. Red band texture variation was almost significant

(r~0.59). The third component explained 12.7% of the data variance and was

related to green band texture and texture variation. The fourth component

explained 10.9% of the total variance and was related to the sunlit crown fraction,

as well as the mean spectral brightness from the near-infrared band (BNIR). Green

band brightness was almost significant (r~0.65). This component was directly

related to individual tree crown condition.

5.3. Multivariate analysis of forest and image variables

In CCA analysis of the 1997 forest and image data, three canonical variate (CV)

pairs were extracted, of which the first was statistically significant (r~0.73,

p~0.01). This was a significant improvement from the analysis of the raw data in

Olthof and King (2000) (r~0.35), demonstrating the importance of the radiometric

and geometric corrections applied in this study. The first CV described a linear

relation of the three forest structure PCs to the four image PCs as shown in table 3.

The image variate (independent) explained 53% (r2~0.53) of the variance present in

the forest structure variate (dependent). Of the forest structure components, the

second (STR2) had the highest loading (0.97), which shows that 94% of its variance

was shared with the image variate. The second and third components (STR2 and

STR3), representing forest change towards decreased blow down and mortality,

respectively, were inversely associated with the first component, which represented

live forest volume. This forest structure canonical variate was therefore used as the

forest structure condition index (FSI) in subsequent analysis. It is multivariate,

measuring several types of forest structure variation, each weighted by the variance

accounted for in the relation with the image variate. For the image variate, the

second and third components (IM2 and IM3) represent mostly image textural and

Table 3. First canonical variate pair of image and forest structure, 1997 data.

Forest structure canonical
variate (FSI)

Image canonical
variate

Canonical
correlation (r)

Significant
( p)

(0.20) STR1, (20.97) STR2,
(20.12) STR3

(0.18) IM1, (20.60) IM2,
(20.75) IM3, (0.23) IM4

0.73 0.01
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shadow fraction information. They have significantly higher loadings and are

inversely related to IM1 and IM4, which represent spectral information and the

sunlit crown fraction.

Interpretation of this canonical relation can be made by combining the sign

(z or 2) of each variable in its associated principal component (table 2) with the

sign of the principal component in the canonical variate (table 3). Using only the

significantly loaded (rw0.75) variables for each PC, the interpretation is as follows.

Increasing LAI and canopy closure, and decreasing blown down and standing dead

stem density and basal area are associated with decreasing image texture, texture

variation, transitional shadow fraction, and NDVI, and increasing deep shadow,

red and NIR spectral brightness, and the sunlit crown fraction. This interpretation

represents decreasing FSI as being associated with increasing openness and damage.

All image variables follow expected trends except for the spectral variables of

decreasing NDVI and increasing red and NIR brightness, which are difficult to

explain. FSI is dominated by blow down as the coefficient of the normalized

principal component STR2 is 0.97 versus 0.20 and 0.12 for the other PCs in this

variate. In addition, it must be noted, that although live stem density was not as

significant as blow down in STR2, it does contribute some variance and increases as

FSI decreases. This shows that a trend towards decreased canopy closure (i.e. more

canopy openness) is also associated with an increase in small live stems. In this

dynamic site, where wind and contaminant stresses are high, observations since

1992 show that these small trees do not generally grow to fill in the upper canopy.

5.4. Image-based modelling of the FSI

The results of the multiple regression of FSI against the original image variables

(table 1) are summarized in table 4.

One image variable was added in each step of the regression. The combination

of the five image variables in the table produced the best-fit model with the highest

adjusted R2 (0.61) and the lowest standard error (0.63). The image variables in the

model were: Red band texture and texture variation (TexR, TexsR), Green band

texture (TexG), sunlit crown fraction (S3), and mean brightness from the blue band

(BB). The variance inflation factor (VIF) ranged from 1.22 to 4.74 at each model

step, always being less than the cut-off threshold of 5.3. The regression equation

was:

FSI~{0:18{1:21TexsRz0:02BBz0:45TexRz0:06S3{0:35TexG ð1Þ
All variables in the equation follow the expected trend with increasing FSI and

Table 4. Stepwise regression results of FSI (forest structure canonical variate) against image
variables, 1997 data.

Step Variable R2 Adjusted R2 Standard error of estimate Significance

1 TexsR 0.40 0.38 0.79 0.000
2 BB 0.48 0.45 0.74 0.028
3 TexR 0.56 0.52 0.69 0.023
4 S3 0.61 0.56 0.67 0.059
5 TexG 0.66 0.61 0.63 0.034
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agree with the canonical analysis except red band texture (TexR), which increases

with increasing FSI. It may be acting as a suppresser variable in the equation,

accounting for noise variance in other variables.

5.5. Temporal analysis of 1997–1999 forest change using the field data and the

FSI image model

FSI calculated from the field data for 1997 and 1999 showed that decreases in

FSI representing increased blow down, increased dead stems, and reduced cover

and LAI were concentrated near the tailings and in the central bog area along

transects B, C and D (figure 4). This area lies at a lower elevation and is

characterized by sparse forest cover consisting of black spruce, balsam poplar, and

balsam fir. Furthermore, forest degradation has expanded from the tailings towards

the north-east, indicating a link with contamination and mechanical stress caused

by the tailings’ drainage and predominant summer winds (from S to SW).

Image-predicted FSI change and actual FSI change calculated from the field

data were subjected to cluster analyses. A dendrogram generated by the cluster

analysis showed that for a Euclidean distance of eight, there were three equally

spaced equivalent clusters. Each plot in the image-predicted and actual FSI change

datasets was assigned to a cluster representing negative change (C1), positive

change (C2), or little or no change in FSI (C3). The image model accuracy was 83%

in prediction of positive or no change in FSI but only 15% accurate in prediction of

negative FSI change. The absolute magnitude of predicted change in FSI was also

different to actual FSI change (predicted FSI change tended to be positively

biased).

The image model predicted increasing FSI (greater closure and less blow down/

mortality) in most plots near the tailings where actual FSI change was negative.

This was because of high rates of blow down opening the canopy and providing

light for growth of ground vegetation and small trees. Canopy closure within 210 m

of the tailings was already quite low in 1997 (41% average compared with 67%

further away) meaning that blow down prior to 1997 had reduced the canopy to a

level where high amounts of light aided growth of smaller vegetation. The average

number of blown down stems per plot measured in 1997 was 11.2 within 210 m of

the tailings compared to 7.4 further away. Blow down continued at high rates

resulting in 1999 average counts of 18.5 stems per plot within 210 m of the tailings

and 10.2 stems per plot further away. With such large openings being constantly

created, canopy closure of the overstory was obviously decreasing and growth of

ground vegetation and small trees was encouraged, resulting in a large increase in

closure to 61% on average within 210 m of the tailings and a smaller increase to

75% further away. This process produced a ‘carpet’ of vegetation that resulted in

image responses of reduced texture and texture variation and increased sunlit

fraction, each contributing to a positive change in predicted FSI.

This new vegetation growth encountered in 1999 consisted of pioneer species

such as alder, birch, raspberry, other shrubs, and grasses that were comprised of up

to hundreds of stems in open plots. Vegetation under 2 m height had not been

measured in the field due to time limitations of counting the live stems and

difficulty in separately measuring closure and LAI for ground vegetation and

overstory measurements using the Li-Cor LAI-2000. In future refinement of the FSI

method, it is evident that vegetation smaller than 2 m in height must be measured

since it is significantly contributing to the image signal in plots of open overstory.
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In addition, at this site, growth of intermediate vegetation into gaps left by fallen

dominant trees had not been observed over 7 years. This will be verified

quantitatively using methods currently under development for vertical profile

structure measurement using hemispheric photographs taken from an extendable

pole. Including separate ground, intermediate and overstory structure information

in the canonical analysis will probably result in a different formulation of the forest

canonical variate (FSI) and relate it to a modified image variate. It will aid in more

holistically representing forest changes at all levels in the canopy through image-

based modelling.

6. Conclusions

A forest structure condition index (FSI) has been developed that is multivariate,

representing leaf area and canopy closure, standing live and dead tree structure, and

fallen tree structure. It was developed in relation to high-resolution spectral and

spatial image characteristics using canonical correlation analysis. The image

parameters were sensitive to 66% of the variance of FSI. This approach to

integrated measurement of forest structure using remote sensing is applicable in

spatial mapping and temporal monitoring. In the case study of this research, a

forest subject to mine contamination and wind stress was analysed over a two-year

period during which significant changes in forest structure had been measured. The

FSI model developed from imagery of the first date was applied to normalized

imagery from the second date to predict FSI change. Successful prediction was

achieved for interior forest areas of greater closure that had not changed or that

had positively changed towards increasing closure and less mortality/blow down. In

open damaged canopies near the tailings, where many overstory trees had fallen or

died, the imagery responded to ground vegetation growth that had not been

measured in the field due to practical constraints. Thus, where overstory

degradation was severe and FSI decreased most, image predicted FSI change

was often positive. Future refinement of this multivariate forest condition

assessment methodology will include separate measurement of vegetation cover

in vertical layers to provide sensitivity to such changes in very open areas.
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