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Abstract

Research was conducted in a forest adjacent to an abandoned acid mine tailings site to assess forest structural health using high spatial and

spectral resolution digital camera imagery. Conventional approaches to this problem involve the use image spectral information, basic

spectral transformations, or occasionally spatial transformations of image brightness. This research introduces fractional textures and

semivariance analysis of image fractions. They were integrated with conventional image measures in stepwise multiple regression modelling

of forest structure (canopy and crown closure, stem density, tree height, crown size) and health (a visual stress index). The goal was to

conduct a relative comparison of the potential of the various image variable types in modelling of forest structure and health. Analysis was

conducted for both canopy (crowns and shadows) and individual tree crown sample data sets extracted from 10 nm bandwidth spectral bands

at three resolutions (0.25, 0.5, 1.0 m). Spatial transformations (texture, semivariogram range) of image brightness (DN) and image fractions

(IF) were consistently the most significant and first entered variables in the best models of the forest parameters. At the canopy-scale, despite

a limited number of available plots (6), stable models were produced that demonstrated the potential for spatially transformed variables.

Semivariogram range explained 88% of the total variation of 9 of the 18 models and represented 56% of the variables used in all models

while texture variables explained 51% of model variance in 8 of the 18 models and represented 40% of the variables used. At the tree crown

scale (n = 31), 88% of the total variation of six of eight models was explained by texture variables and 6% by semivariogram variables. DN

and IF variables that were not spatially transformed contributed little to the models at both scales. They represented 4% and 6%, respectively,

of the variables used in all models. Spatial information in image fractions and image brightness has proven to be more significant than

spectral information in these analyses. Of the spatial resolutions evaluated, 0.5 m consistently produced similar or better models than those

using the 0.25 or 1.0 m resolutions. These results demonstrate the potential for integration of spatial transforms of image fractions and raw

brightness in high-resolution modelling of forest structure and health.

D 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Stress in forests displays a variety of symptoms, some of

which may be detected by remote sensing. Conventionally,

change in leaf spectral reflectance has been the symptom

studied. Increases in red reflectance due to reduced chlor-

ophyll absorption, decreases in near infrared (NIR) reflec-

tance from reduced cell vigor and shifts in the red edge

between these two spectral regions have been commonly

used as indicators of leaf stress (Carter, 1994; Curtiss &

Ustin, 1989; Luther & Carroll, 1999; Merzlyak, Gitelson, &

Zur, 1999; Salisbury & Ross, 1985). However, forest

structural changes may be incurred due to disturbance over

short periods (e.g., partial cutting, storm damage), or longer

periods (e.g., contamination/pollution, climate change).

Structural change may also be manifested at an individual

crown scale or at the forest canopy scale. Image-based

vegetation indices are commonly used as indicators of

canopy chlorophyll content and vertical structure (e.g., leaf

area index—LAI) to estimate forest canopy condition

(Carlson & Ripley, 1997; McDonald, Gemmel, & Lewis,

1998; Pinty & Verstraete, 1992; Yoder & Waring, 1994).
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However, vegetation indices do not behave linearly and

saturate at low or high vegetation covers depending on the

index used (Gamon et al., 1995; Turner, Cohen, Kennedy,

Fassnacht, & Briggs, 1999). This limitation can be over-

come using fraction images of cover types derived from

spectral mixture analysis if enough bands are used to resolve

the number of cover types present.

An image pixel spectrum can be modeled as a linear

combination of pure reflectance components or endmember

spectra. A fraction image or abundance image can be gen-

erated for each endmember (Boardman, 1995) in a process

termed ‘spectral mixture analysis’ or ‘spectral unmixing’. It is

beyond the scope of this paper to describe all the methods of

spectral mixture analysis that have been proposed, but the

method applied in this study is given later in this paper.

Example applications include determination of sub-pixel

fractions of sunlit canopy, sunlit background and shadow to

predict forest productivity parameters such as biomass, net

primary productivity (NPP) and LAI (Peddle, Hall, &

LeDrew, 1999), temporal analysis using endmember spectra

representing forest change types derived from a multi-year

sequence of NDVI values (Piwowar & Peddle, 1999), and

integration of fractions with raw image data and image

texture to predict forest structure (Peddle, Davidson, John-

son, & Hall, 1999). In these and other studies, spectral

mixture analysis often provides better forest models than

those obtained using only raw spectral data or vegetation

indices.

Spatial image analysis of forest imagery has most com-

monly been conducted using texture and semivariance meas-

ures. Unlike pixel-by-pixel analysis, these techniques

consider the spatial relationships between pixels (Atkinson

& Lewis, 2000). Image texture information has often

improved forest structure models (e.g., Wulder, Franklin,

& Lavigne, 1996) and land cover classifications (e.g.,

Berberoglu, Lloyd, Atkinson, & Curran, 2000), and has

been linked to site characteristics such as nutrient availability

and microclimatic conditions (Coops & Culvenor, 2000). In

semivariance analysis, the semivariogram parameters (range,

sill, nugget) have been used to model Balsam fir damage

(Bowers, Franklin, Hudak, & McDermid, 1994), map veg-

etation communities (Wallace, Watts, & Yool, 2000), and

determine appropriate image resolution and sample plot size

(Butson & King, 1999). Treitz and Howarth (2000) found

that different scales of variability are present in a single

spatial resolution that relate to ground (forest ecosystem

class, contribution of understory) and sensor (wavelength)

characteristics. Lévesque and King (1999), in a paper pre-

ceding this one, found strong relations with many of the

forest structure and health parameters described here.

2. Research objectives

In this research, the benefits of both spectral unmixing

and spatial image analysis described above are combined.

Spatial analysis of spectrally unmixed image fractions is

introduced and integrated with spectral and spatial image

brightness characteristics. It was hypothesized that the

spatial pattern and dependence of vegetation and shadow

image fractions would significantly contribute to models

of forest structure variation that are manifested in both

individual crowns and over the forest canopy. Further-

more, since image fractions are essentially areal propor-

tions of endmember types within a pixel, it was expected

that they would provide complementary information to

that derived from pixel brightness. The objectives were to

investigate:

1. the relative potential of raw image brightness, spatial

transformations of image brightness, image fractions

derived from spectral mixture analysis, and spatial

transformations of image fractions in modelling of forest

structure and health parameters;

2. the influence of image spatial resolution and image

sampling scale (i.e., image samples extracted over the

forest canopy versus individual tree crown samples) on

these models.

3. Study site

The study site (Fig. 1) was located in a forested area

adjacent to, and downstream from, the abandoned Kam-

Kotia copper–zinc mine about 40 km northwest of

Timmins, Ontario. Important aspects of the site are

summarized here; more detail is given in previous pub-

lications (Lévesque & King, 1999; Olthof & King, 2000;

Walsworth & King, 1999). The forest is composed of

mature trembling aspen (Populus tremuloides), a few

small pockets of co-dominant balsam poplar (Populus

balsamifera), and an understory of young black spruce

(Picea mariana), white spruce (Picea glauca) and balsam

fir (Abies balsamea). One of three large sulphide tailings

areas of about 180 ha at the mine site was not impounded

or controlled in any way during the 25 years preceding

this study (Fig. 1). Surface drainage of low pH (1.4–2.0)

and groundwater flow around and through the study area,

resulting in elevated concentrations of some metals in

surface soils and a decreasing gradient of these metals

with increasing distance from the tailings (Lévesque &

King, 1999). High winds that develop over the open

tailings transport sulphide dust into the forest depositing

it on leaves, branches and trunks. They also cause

significant tree blow down and, in summer, increased

evapotranspiration due to elevated tailings surface temper-

atures. All of these stress factors result in very dynamic

forest conditions, particularly close to the tailings edge.

Visible signs of forest damage include: (1) aspen leaf

discolouration, lack of development to normal size, and

curling; (2) thin and open aspen crowns with dead

branches and clustered leaf distributions; (3) poor regen-
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eration on the forest floor; (4) standing dead trees; and

(5) a large number of blown down trees. Walsworth and

King (1999) evaluated the forest dynamics at the site

using temporal aerial photography spanning the period

from 1961, just after extensive tailings deposition began,

to 1991. Using automated tree crown delineation techni-

ques, and spatio-temporal transition modelling, they found

a significant trend towards opening of the forest canopy

and perpetuation of pioneer species over that time in an

area within 200 m of the tailings edge. Further away, the

trend was towards influx of later successional conifers.

Thus, the area close to the tailings edge is in a constant

state of disturbance from the factors described above.

This spatial trend was confirmed using field measures

of canopy closure, LAI, standing mortality and blowdown

by Olthof and King (2000). Cosmopoulos and King (in

press) found statistically significant changes in these

forest structure parameters in the period of 1997–1999.

Six plots were established in 1993 along a transect

traversing the forest at 40, 140, 240, 440, 640, and 840 m

from the mine tailings and following the drainage direction

(Fig. 2). The transect location was selected arbitrarily before

field visits (using an air photo) to be in the central portion of

a stand dominated by aspen. Similarly, the plot distances

along the transect were selected arbitrarily without reference

to the air photo and without field knowledge of the site. The

furthest plot, plot 6, was located on slightly higher ground

across the west/north creek and was expected not to be

affected by the tailings. The initial goal was to sample and

analyse individual trees in each plot based on research by

King, Yuan, and Sankey (1992) on sugar maple decline. The

plots were 50� 50 to 60� 60 m to obtain at least 30

dominant trees in each.

In previous remote sensing research at the study site,

Olthof and King (1997), in a mixed wood area just west of

this study area, found that combining co-occurrence texture

(Haralick, Shanmugan, & Dinstein, 1973) and texture var-

iation with spectral image brightness or vegetation indices

significantly improved LAI models over those produced

using spectral measures alone. Seed and King (2002), using

the same field and image data, found that shadow brightness

extracted from 0.25 m pixel digital camera imagery was a

more robust predictor of mixed forest LAI over varying

view angles than shadow fraction. Lévesque and King

Fig. 1. Map of the KamKotia Mine showing the three tailings deposits and the study area (modified from Cosmopoulos, 2000).
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(1999), using forest and image data from the study pre-

sented here, found that semivariance range measures in high

resolution near infrared imagery were highly correlated with

individual crown closure, crown size, and forest canopy

closure. From the experiences in the above studies of

modelling individual forest variables, Olthof and King

(2000) defined a multivariate forest structure condition

index that can be measured and monitored using remote

sensing spectral and spatial variables. They used canonical

analysis to relate standing live, standing dead, and fallen

(mostly blown down) forest structural measures to a set of

spectral measures, textural measures and whole pixel radio-

metric fractions derived from image cluster analysis. This

methodology was refined in Cosmopoulos and King (in

press) and applied in temporal analysis of forest change for

the 1997–1999 period.

4. Methods

4.1. Forest measurements

A total of 180 trees (30 in each plot) were sampled for

six forest canopy and individual tree variables, which

describe the structure and health characteristics of each of

the plots. The six variables were: (1) forest canopy

closure in percent, (2) forest stem density as number of

trees per 100 m2, (3) tree crown diameter in metres, (4)

tree height in metres, (5) individual tree crown closure in

percent, and (6) a tree stress index ranging from 1 to 5,

where 1, 2, 3, and 4 represent no, slight, moderate, and

severe damage, and 5 represents a dead tree. More detail

on the measurement methods and analysis of these forest

variables is given in Lévesque and King (1999). Table 1

Fig. 2. Near-infrared digital camera image of the study site showing the study plot layout. Image from September 7, 1995. Pixel spacing is 1.0 m.
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shows the average (avg) and standard deviation (std) of

the ground forest measurements.

4.2. Imagery acquisition

A multispectral sensor incorporating a Kodak Megaplus

1.4 black and white, 1320� 1035 pixel format digital

camera was used. The camera is entirely computer con-

trolled, with a rotating filter wheel providing 8-bit data in

up to eight spectral bands of >10 nm bandwidth between

430 and 1000 nm (King, 1995). The view angle of the

camera was F 9.1� 7.2j using a 28-mm focal length lens.

Imagery was acquired on September 7, 1995 (just before

autumn leaf colour change) with 0.25, 0.5, and 1.0 m

ground pixel spacings, 60% forward overlap, and a shutter

speed of 1/300 s. The spectral bands used in this study

were green (545–555 nm), red (665–675 nm), and near

infrared (795–805 nm) corresponding to the major vege-

tation spectral absorption and reflectance regions in the

visible and near-IR. Image motion due to aircraft trans-

lation during exposure was less than 1/2 pixel at all

resolutions. The three spectral bands were aligned with a

root mean squared error (RMS) of less than 0.22 pixel at

each spatial resolution.

4.3. Extraction of image samples at the canopy and tree

scales

Two scales of sampling were conducted to evaluate

relations between image and forest variables.

(1) At the canopy-scale, an image sample was extracted

over each plot’s total area, including tree crowns and

shadows to determine relations of average plot spectral

and spatial variables with average plot canopy and individ-

ual tree measurements. The six plots were 200� 200,

125� 125, and 75� 75 pixels for the 0.25, 0.5, and 1.0 m

image resolutions, respectively. To minimize view angle

effects on image brightness (e.g., bi-directional reflectance

(BRDF) and optical effects), plots were extracted from

images where they were located near the image centre. Each

plot appeared near the centre of at least one image, as there

was a significant amount of forward overlap. As additional

verification, DN values for a plot extracted from two

different images with view angles representing the maxi-

mum range for this imagery were found to not be signifi-

cantly different (Student’s t-test) in any of the spectral

bands. Consequently, correction for spatial non-uniformity

in image brightness was not applied. Atmospheric correc-

tion was not performed since the data were all acquired on

the same clear day.

(2) At the tree-scale, image samples of between 25 and

324 pixels were extracted from each of four to six tree

crowns per plot (total number of trees = 31) to analyze

relationships between image measures and tree crown

closure, stress index, and height. The other forest measures

were not appropriate for this scale of study since they

integrate information beyond the tree crown. The trees used

in these analyses represented the typical ranges of these

measures in the study area and all were positively identified

in the field. Only the 0.25 and 0.5 m spatial resolutions were

used, since it was not possible to visually delineate most of

the tree crowns in the 1.0 m pixel image. Both the directly

and diffusely illuminated portions were included in each

delineated crown. Tests of precision were carried out by

independently repeating the delineations three times to

ensure that the mean and standard deviation of image

brightness in each crown did not vary significantly due to

delineation variations.

4.4. Spectral mixture analysis

Constrained linear spectral unmixing was performed on

plot images from each of the three resolutions using an

algorithm (Boardman, 1989) implemented in ISDAS

(Imaging Spectrometer Data Analysis System; Staenz,

Szeredi, & Schwarz, 1998). It decomposes the image

spectra into a sub-pixel linear combination of endmember

spectra. N� 1 bands are required to spectrally unmix a

scene with N endmembers. Therefore, a maximum of four

endmembers could be extracted for these image data.

Endmember spectra were selected using an automatic

endmember extraction algorithm based on an iterative error

analysis implemented in ISDAS by Neville, Staenz, Szer-

edi, Lefebvre, and Zur (1999). This method performs a

series of linear constrained unmixing procedures with, as

endmembers, the pixel spectra that minimize the unmixing

error. The iterative process starts unmixing using the

average spectrum of the image. The unmixing error,

calculated for each pixel, is then used to determine the

first endmember. The pixel spectrum with the largest error

constitutes the first endmember since it is located at an

extremity of the scatterplot. To select the pixels corre-

sponding to this endmember, an angular tolerance of a few

degrees (default = 2.5j) starting from the origin is used,

Table 1

Average (avg) and standard deviation (std) of forest canopy and tree

variables for each plot

Plot

1 2 3 4 5 6

Forest canopy avg 40.83 40.00 56.67 50.00 66.67 55.00

closure (%) std 25.23 16.90 11.06 17.89 9.43 18.71

Forest stem density avg 7.33 5.50 5.60 9.20 18.25 16.43

(per 100 m2) std 1.89 2.14 2.80 1.83 3.90 6.84

Tree crown size (m) avg 6.42 7.79 8.14 5.54 5.43 6.38

std 1.37 1.86 1.93 1.49 1.24 2.25

Tree height (m) avg 26.88 26.60 30.32 24.58 24.93 25.67

std 1.90 2.68 3.37 3.04 3.27 6.12

Tree crown closure avg 62.30 67.00 62.40 72.30 63.70 59.00

(%) std 10.90 10.70 11.80 9.37 16.70 13.40

Tree stress index avg 2.77 2.66 2.58 2.53 2.37 2.53

(1 = healthy to

5 = dead)

std 0.62 0.75 0.70 0.59 0.82 0.67
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and the spectra of all pixels in this range are averaged. The

user can define a maximum number of pixels to be

averaged. The average spectrum of the image is then

discarded and the process is repeated until the termination

condition is reached, which is the number of endmembers

requested by the user.

4.5. Extraction of image fractions

The iterative error analysis produced four endmembers in

the following order: wood, shadow, tailings, and vegetation.

Identification of the end members was achieved using the

endmember fraction maps to locate their associated pixels in

the field. The extraction of a wood end member was of

particular interest. A single dead tree in Plot 2 provided

many of the pixels of this end member. As large standing

dead aspen trees did not occur elsewhere in the imagery and

were relatively rare at the site, to test the relevance of

including a wood end member in the analysis, the dead tree

was masked from the imagery and automatic endmember

selection was repeated. A wood endmember was still pro-

duced with a similar spectrum (as shown in a plot of

principal components 1 and 2) but it consisted of pixels

that were less pure (probably exposed branches on other

trees) than when the dead tree was included in the imagery.

The dead tree therefore provided more pure wood pixels and

aided in identification of this endmember as wood. Con-

sequently, it was retained for subsequent modelling. Fig. 3

shows three of the four-endmember fraction images at 0.5 m

resolution. Their corresponding spectra are shown in Fig. 4.

The tailings endmember was not included in forest model-

ling since it generally yielded a fraction of zero except at the

tailings boundary.

In the forest canopy-scale analysis, image fractions for

each endmember in each pixel were averaged over the given

plots. This was repeated for the three image resolutions (0.25,

0.5, and 1.0 m). At the individual tree-scale, an average

fraction for each endmember was calculated for each of the

31 tree crowns at the 0.25 and 0.5 m spatial resolutions.

4.6. Spatial analysis of image brightness and image

fractions

Based on promising initial results of semivariance anal-

ysis using the NIR spectral band (Lévesque & King, 1999),

and on the results of Treitz and Howarth (2000) showing

semivariance to be spectrally dependent, semivariogram

ranges and sills were calculated from the three raw spectral

bands and from the three fraction images for both the forest

canopy and individual tree crown sample data.

Twenty-four co-occurrence and grey-level difference

vector texture measures (Haralick et al., 1973; PCI, 1994)

were extracted from the three original bands and from the

three fraction images at the three resolutions. A subset of

four of these measures (mean, entropy, angular second

moment, and contrast) were selected that were least corre-

lated (r < 0.79) with each other and well correlated with the

forest measures. The mean (MEA) measure is the average

probability of grey level pair occurrence, entropy (ENT)

measures the degree of organized patterns, angular second

moment (ASM) indicates the degree of homogeneity of the

values, and contrast (CON) measures the amount of local

variation within the sample window. Because of the nature

of their information, it is expected that when texture

increases, MEA, ENT and CON will increase, and ASM

will decrease. To determine the most suitable window size

for canopy-scale texture analysis, windows were varied

from 3� 3 to 25� 25 pixels with one extra window of

large size also selected for each spatial resolution (total of

13 window sizes tested). This large window covered one

quarter of the whole plot (99� 99, 61� 61, and 37� 37

pixels for the 0.25, 0.5, and 1.0 m resolutions, respec-

tively). The sampling direction was spatially invariant, that

is the co-occurrence matrix was calculated from sample

pairs in all directions, and the lag spacing was 1 pixel.

From these tests the following pattern emerged: local

texture derived from the smallest window sizes related best

to forest variables such as individual tree crown closure

and forest canopy closure, while regional texture derived

from the largest window size related better to the visual

forest stress index. Therefore, the smallest (3� 3 pixels)

and largest window sizes were retained at each resolution

for regression analysis. For the individual tree crown

samples, a window size of 3� 3 was used, to minimize

boundary effects, since a larger window size would calcu-

late texture measures using too many pixels outside the

sampled tree crown area.

4.7. Summary of image variables used in modelling

Table 2 summarises the image variables used in regres-

sion modelling of each forest variable at both canopy-scale

and tree-scale. The image digital number (DN) and image

fraction (IF) variables (VEG= vegetation, SHA= shadow,

WOD=wood) are grouped into spectral, textural, and semi-

variogram variables. All are used in the canopy-scale

analysis with the exception of the semivariogram variables

at 0.25 m resolution (variables noted by: **). This spatial

resolution was not found to be appropriate for semivariance

analysis at the canopy-scale because image data become

independent over short distances so that the ranges were

reached within scene objects (tree crowns, gaps). At the

individual tree crown-scale, the larger texture window and

the 1.0-m resolution data were not used (variables noted

by: *) because tree crowns were difficult to delineate and

there were not enough pixels within many of the crowns to

provide an adequate sample size.

4.8. Regression modelling of forest structure and health

Forward stepwise multiple regression was used to deter-

mine the combination of image variables that best models

J. Lévesque, D.J. King / Remote Sensing of Environment 84 (2003) 589–602594



each forest measure. The forward method first selects the

independent (image) variable that has the highest significant

correlation with the dependent (forest) variable. The partial

correlation coefficients of the remaining independent vari-

ables are then calculated and the variable with the highest

significant coefficient is introduced next in the regression.

Fig. 3. Colour composites of the study plots and fraction images of the wood, shadow, and vegetation endmembers at 0.5 m resolution.
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This process is repeated until none of the partial correlation

coefficients of the remaining independent variables is sig-

nificant. The F-to-enter, the minimum significance level for

a variable to be added to the model, was set at 0.05. The F-

to-exit was set at 0.10. Prior to the multiple regression

analysis, it was verified that all relationships were linear and

all image variables were found to be normally distributed.

To avoid multicollinearity amongst the dependent variables,

a tolerance limit of the variance inflation factor [VIF = 1/

(1�R2)] of 10 (Birkes & Dodge, 1993) was used, where R2

is the multiple correlation of the variable with all other

independent variables in the regression equation. Following

regression, it was verified that all model residuals were

distributed normally and presented no trend with the

dependent variable.

In the canopy-scale regression analysis, the minimum

number of plots should be about 15 (Draper & Smith, 1981).

In this research, only six plots were used. When the research

was designed, the methodology was adapted from King et

al. (1992) and Yuan, King, and Vlcek (1991) where large

plots were used for analysis of individual tree health with

high-resolution imagery (similar to the tree-scale analysis of

this study). It was not deemed possible to acquire field data

for a greater number of plots of such large size near the time

of the airborne data acquisition. However, since the six plots

capture a wide range of forest conditions, particularly of

canopy closure, the canopy-scale analysis was conducted. It

was assured that the significant models did not include more

than five independent variables, which is the number of

degrees of freedom for six observations. In fact, all models

included three or less variables. Final models were verified

by a biostatistician (Pitt, 2001) and found to be stable and

valid. Also, recognizing that the research was exploratory

and empirical for a single local study site, the models were

analyzed not in an absolute sense, but as relative compar-

isons amongst image variable type contributions. In this

way, an assessment of the relative potential of each of the

variable types could be made.

In canopy-scale sampling, a model was produced for

each of the six forest measures at each of the three image

resolutions. In crown-scale sampling each of the three

forest measures (tree height, crown closure, stress index)

was modelled at two resolutions (0.25 and 0.5 m). A total

of 24 models were therefore evaluated from these combi-

nations of forest variables, image resolutions, and image

sampling scales. Five parameters are reported for each

Fig. 4. Spectra of the wood, shadow, and vegetation endmembers at 0.5 m

resolution.

Table 2

Summary of the image variables used at the canopy and tree crown-scales in the regression analysis

0.25 m 0.50 m 1.0 m

DN IF DN IF DN IF

Spectral variables GREEN VEG GREEN VEG GREEN* VEG*

RED SHA RED SHA RED* SHA*

NIR WOD NIR WOD NIR* WOD*

Texture variables MEA-GREEN MEA-VEG MEA-GREEN MEA-VEG MEA-GREEN* MEA-VEG*

MEA-RED MEA-SHA MEA-RED MEA-SHA MEA-RED* MEA-SHA*

MEA-NIR MEA-WOD MEA-NIR MEA-WOD MEA-NIR* MEA-WOD*

ENT-GREEN ENT-VEG ENT-GREEN ENT-VEG ENT-GREEN* ENT-VEG*

ENT-RED ENT-SHA ENT-RED ENT-SHA ENT-RED* ENT-SHA*

ENT-NIR ENT-WOD ENT-NIR ENT-WOD ENT-NIR* ENT-WOD*

ASM-GREEN ASM-VEG ASM-GREEN ASM-VEG ASM-GREEN* ASM-VEG*

ASM-RED ASM-SHA ASM-RED ASM-SHA ASM-RED* ASM-SHA*

ASM-NIR ASM-WOD ASM-NIR ASM-WOD ASM-NIR* ASM-WOD*

CON-GREEN CON-VEG CON-GREEN CON-VEG CON-GREEN* CON-VEG*

CON-RED CON-SHA CON-RED CON-SHA CON-RED* CON-SHA*

CON-NIR CON-WOD CON-NIR CON-WOD CON-NIR* CON-WOD*

Semivariogram variables SILL-GREEN** SILL-VEG** SILL-GREEN SILL-VEG SILL-GREEN* SILL-VEG*

SILL-RED** SILL-SHA** SILL-RED SILL-SHA SILL-RED* SILL-SHA*

SILL-NIR** SILL-WOD** SILL-NIR SILL-WOD SILL-NIR* SILL-WOD*

RANGE-GREEN** RANGE-VEG** RANGE-GREEN RANGE-VEG RANGE-GREEN* RANGE-VEG*

RANGE-RED** RANGE-SHA** RANGE-RED RANGE-SHA RANGE-RED* RANGE-SHA*

RANGE-NIR** RANGE-WOD** RANGE-NIR RANGE-WOD RANGE-NIR* RANGE-WOD*

* Variables used at canopy-scale only. **Variables used at individual tree-scale only. VEG= vegetation, SHA= shadow, WOD=wood, MEA=mean,

ENT= entropy, ASM= angular second moment, CON= contrast.
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model: (1) R2, the proportion of total variance about the

mean that is explained by the image variables in the

regression, (2) adjusted R2, which adjusts R2 for the

number of degrees of freedom of the model and is a

better measure for comparing models of different numbers

of x variables, (3) the change in R2 contributed by each

image variable in the model, (4) the significance of each

predictor variable, and (5) the overall significance of the

model. The results are then aggregated to evaluate the

relative contributions of each variable type (raw DN, IF,

DN-TEX, IF-TEX, DN-SEMI, IF-SEMI) to the significant

models based on: (1) the average contribution (R2 change)

of each variable type to the best models, determined by

dividing the sum of its R2 values in the models by the

number of best models in which it was present, (2) the

frequency of occurrence of each variable type as the

primary (first entered) variable in the models.

5. Results and discussion

In the following sections, for brevity, only the regres-

sion models with the highest adjusted R2 are discussed. In

addition, tables of model results are presented only for

the 0.5 m pixel spacing as this resolution produced

equally or more significant models for each forest vari-

able than the other two resolutions. As common image

variables and trends were found between models of each

forest variable, each of the ‘best’ models is not discussed

individually.

5.1. Models developed using image samples extracted from

the whole plot (canopy-scale)

Table 3 shows the best modelling results for each forest

variable at the canopy scale in 0.5 m pixel imagery. The sign

of each independent variable is given along with the

statistical parameters discussed above.

5.1.1. Model interpretation

In the more damaged plots, canopy closure, stem density,

and individual tree crown closure tended to be lower than in

healthier plots, while tree crown size and the stress index

were higher. All of these, except crown closure, were well

modelled using canopy scale samples. In the significant

models at all resolutions, the image variables followed very

consistent trends. They were almost all spatial transforma-

tions of either image brightness or image fractions. Of the

most significant variable types, semivariance range of the

green and NIR bands and the wood fraction consistently

increased with damage/openness. The range of the vegetation

fraction was a minor variable in models of crown size (1% of

model variance) and tree height (17% of model variance).

The range measures the distance of major object brightness,

in this case corresponding to larger and fewer trees and gaps,

as well as more exposed wood in damaged conditions.

Texture measures were second most significant in these

models and the primary variables at 0.25 m resolution

(semivariance variables had not been extracted from the

0.25 m imagery). The most important of these were: (1)

decreased canopy closure associated with increased texture

(semivariogram sill) in the red band due to increased bright-

ness variability from mixing of understory and overstory

contributions, and (2) increased stress index associated with

decreased shadow fraction co-occurrence texture because

shadows become less well defined as discrete brightness

entities with increasing openness. Texture of the wood

fraction and NIR band were minor variables in models of

stem density and tree height, respectively.

5.1.2. Comparison of the contribution of each image

variable type to the models

There were 25 image variables used in 13 ‘best’ models at

the forest canopy-scale for all resolutions. Fig. 5a shows that

the contribution (average R2) of raw image brightness (DN)

and image fractions (IF) to the variance of these models was

much less than their associated spatial transformations. Of

Table 3

Results of forward stepwise multiple regression of forest variables (dependent variables) and image variables (independent variables) for forest canopy samples

and 0.5 m pixel imagery

Forest measure Model type Model variables R2 Adjusted R2 R2 change Predictor

significance

Overall

significance

Forest canopy closure DN �RANGE/550 0.98 0.96 0.72 0.00 0.00

� SILL/670 0.26 0.01

Forest stem density DN and IF �RANGE/550 1.00 0.99 0.69 0.01 0.01

�RANGE/800 0.27 0.01

�ENT(3)/WOD 0.04 0.04

Tree crown size DN and IF +RANGE/800 1.00 1.00 0.99 0.00 0.00

+RANGE/VEG 0.01 0.02

Tree height DN and IF +RANGE/800 1.00 0.99 0.80 0.00 0.00

+RANGE/VEG 0.17 0.01

+ASM(5)/800 0.03 0.03

Tree crown closure IF �RANGE/WOD 0.68 0.60 0.68 0.04 0.04

Tree stress index DN and IF �ENT(5)/SHA 0.99 0.98 0.80 0.00 0.00

� 550 0.19 0.01
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the spatial transformations, semivariance variables (most

often the range) of the DN values contributed much more

to model variance than DN texture variables. For the IF

variables, semivariance and texture variables contributed

about equally to the best models. Fig. 5b shows that spatial

transforms of DN and IF variables completely dominated as

the primary variables in all models. Semivariance variables

derived from both IF and DN formed the bulk of these (90%

of models where range was available as an input), but the

number of primary texture variables was not insignificant.

Overall, the best information contained in raw image bright-

ness was in its derived semivariogram variables, these being

mostly range, while information contained in image fractions

was approximately equally divided between their texture and

semivariogram derived variables.

The above interpretations are based on an analysis with a

limited number of plots. Two additional tests were con-

ducted to determine if these interpretations remained con-

sistent with: (1) a more strict significance level ( p < 0.01,

significant R2>0.84), and (2) increased numbers of samples

for the canopy closure variable, whose locations for many of

the within plot measurements (n = 23) could be determined

in the imagery. In the first test, with p < 0.01, half of the

models at the 0.5 and 0.25 m resolutions were significant

while only one model (stress index) was significant at the

1.0 m resolution. All consisted of spatially transformed

variables, and at 0.25 m resolution all significant models

(canopy closure, crown size, stress index) included texture

of the wood fraction as the only predictor. For the second

test, a model of canopy closure produced with 23 samples

(R2 = 0.55, p = 0.001) also consisted of only textures of the

vegetation and wood fractions plus the 550 nm band. These

results reinforce two findings presented earlier in this paper:

(1) the wood fraction, which can only be extracted using

such high-resolution imagery is a critical variable, and (2)

spatially transformed DN and IF variables have strong

potential in such modelling. These points are demonstrated

in Fig. 6. It shows two plots that had a similar and relatively

high average wood fraction. In Plot 3, the wood fraction was

distributed throughout the canopy whereas in Plot 4, the

wood fraction is clustered more on a few dead trees and/or

large dead branches. The differences between these plots are

evident more in the spatial properties of the wood fraction

than in the amount of wood fraction. A second example that

was observed is that higher shadow fraction and lower

vegetation fraction may result from either a few large

openings or from many small gaps spread over the canopy.

While the image fractions for these two conditions may be

similar, their spatial patterns are captured in either the

semivariance or texture measures.

5.2. Models developed using image samples extracted from

individual tree crowns (crown-scale)

Table 4 shows the best models for crown-scale analysis

of tree closure, height, and stress index using the 0.5 m pixel

imagery.

5.2.1. Model interpretation

Following the logic of the canopy-scale analysis, trees

with lower crown closure were associated with a greater

stress index and were often taller (although this association

is weak). All image variables in the best models were

measures of texture; semivariance range and sill did not

contribute significantly. More open, damaged trees

exhibited reduced texture in the green and NIR bands,

reduced texture in the vegetation and shadow fractions,

and increased texture of the wood fraction. As damage in

a crown increases, within crown shadows become more

diffuse and background vegetation contributions increase,

resulting in decreased textures. The wood fraction increases

with damage, probably because exposed dead branches are

clustered in various parts of the crown.

5.2.2. Comparison of the contribution of each image

variable type to the models

For the six best models, texture of image brightness and

texture of image fractions accounted for most of the var-

Fig. 5. (a) Average R2 contribution per model at the canopy scale. Values

correspond to the sum of R2 values divided by the number of models the set

of variables contributes to. (b) Proportion (%) of each variable type first

entered in the most significant models at the canopy scale.
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iance (Fig. 7a), although image fractions contributed sig-

nificantly. Raw image brightness was again negligible in its

contributions to model variance and semivariance variables

played only a minor role. Texture variables were also the

primary variables in five of these models (Fig. 7b). An

image fraction variable (vegetation) was the primary varia-

ble in one model (crown closure—0.25 m).

5.2.3. Evaluation of spatial resolutions

In canopy-scale sampling, 0.5 m resolution models of

the six forest variables accounted for an average of 95%

of model variance. This was more than at the 1.0 m

resolution (91%) and less than the 0.25 m resolution

(98%). Semivariogram parameters (mostly range) domi-

nated at 0.5 and 1.0 m resolutions. Texture dominated the

models at 0.25 m resolution (but semivariance variables

were not used in canopy sampling at this resolution). In

crown-scale sampling, 0.5 m resolution models of the

three forest variables evaluated accounted for an average

of 55% while models derived from 0.25 m resolution

images accounted for 53% variance. Thus, overall, if only

one spatial resolution can be used, 0.5 m is the best

choice. It allows extraction of the semivariogram range

related to tree size and configuration (0.25 m imagery

ranges were often within crowns), provides greater

ground coverage, is easier to mosaic and geo-reference,

and provides models of approximately equal quality to

those of 0.25 m imagery.

Fig. 6. Colour composites of Plot 3 and Plot 4, their average wood fraction and their respective wood fraction contrast texture at 0.25 m resolution.

Table 4

Results of forward stepwise multiple regression of forest variables (dependent variables) and image variables (independent variables) for tree crown samples

and 0.5 m pixel imagery

Forest measure Model type Model variables R2 Adjusted R2 R2 change Predictor

significance

Overall

significance

Tree height DN �CON(3)/550 0.14 0.11 0.14 0.04 0.04

Tree crown closure DN and IF �ASM(3)/550 0.79 0.76 0.51 0.00 0.00

+MEA(3)/VEG 0.16 0.00

�CON(3)/WOD 0.06 0.00

+CON(3)/SHA 0.06 0.01

Tree stress index DN and IF �ENT(3)/550 0.72 0.67 0.37 0.00 0.00

�MEA(3)/VEG 0.10 0.00

+CON(3)/WOD 0.08 0.00

�ENT(3)/800 0.11 0.00

+ASM(3)/VEG 0.06 0.03
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The results of these analyses indicate that high spatial

detail is very useful in forest modelling. In comparing

models of the stress index at the three resolutions, as pixel

spacing decreased (from 1.0 to 0.25 m), the stress index

was detected through more subtle image information. It was

best detected at 1.0 m resolution using the distance of

major brightness variation between crowns and shadows

(semivariogram range), at 0.5 m resolution using the

texture of the shadow fraction (a component of the total

image brightness), and at 0.25 m resolution using the

texture of the wood fraction. As stated earlier, the wood

endmember, requires very high-resolution imagery to be

resolved. The linear morphology of branches and stems as

seen from above does not produce pure wood pixels at the

0.5 and 1.0 m resolutions. For such high detail related to

tree stress, the 0.25 m is more suited.

6. Conclusions

The main goal of this research was to develop and

compare image-based models of forest structure and health

from spectral and spatial information. This was accom-

plished at two scales of study (forest canopy and individual

tree) using high spatial resolution multispectral imagery

(0.25, 0.5, 1.0 m) acquired in three 10 nm spectral bands

(green, red, NIR). This paper introduced evaluation of

spatial information (semivariance range and sill, co-occur-

rence texture) in spectrally unmixed image fractions of

vegetation, shadow and wood. This information was found

to be useful in forest structure and health modelling and

complementary to spatial information derived from image

brightness. Overall, spatial information dominated all mod-

els—image brightness and image fractions contributed very

little to model variance. Semivariogram range was the single

most important variable but textures of image brightness

and fractions were also significant, particularly at 0.25 m

resolution. Of the three resolutions evaluated, 0.5 m pixel

spacing provided models that were consistently as good as,

or better than the other two resolutions. Canopy-scale

sampling was shown to be more suitable for all forest

variables except individual tree closure where crown sam-

ples are required.

Models developed here are initial and empirical, hav-

ing been developed on a single small study area. How-

ever, the method can be adapted to different forest

canopy ecosystems for applications such as habitat and

forest structure mapping, and mine site reclamation/recov-

ery monitoring. For example, current research by the first

author to monitor re-vegetation of mine tailings at another

site is incorporating hyperspectral image fraction textures.

Because of high acidity and high variation in tailings

chemical composition, vegetation grows sporadically on

these sites. Fractional texture of dry and green vegetation,

exposed tailings, and lime helps to identify problem

areas.
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J. Lévesque, D.J. King / Remote Sensing of Environment 84 (2003) 589–602602


	Introduction
	Research objectives
	Study site
	Methods
	Forest measurements
	Imagery acquisition
	Extraction of image samples at the canopy and tree scales
	Spectral mixture analysis
	Extraction of image fractions
	Spatial analysis of image brightness and image fractions
	Summary of image variables used in modelling
	Regression modelling of forest structure and health

	Results and discussion
	Models developed using image samples extracted from the whole plot (canopy-scale)
	Model interpretation
	Comparison of the contribution of each image variable type to the models

	Models developed using image samples extracted from individual tree crowns (crown-scale)
	Model interpretation
	Comparison of the contribution of each image variable type to the models
	Evaluation of spatial resolutions


	Conclusions
	Acknowledgements
	References

