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Introduction

Forests are vital and important global resources that need
to be monitored for sustainable management and
conservation.  In India, there are large and diverse forest
resources (Figure 1), which are the result of highly varied
climate, topography, and soils.  The forest types include
tropical rainforest in north-eastern India, desert and thorn
forests in the west (for example in Gujarat and Rajasthan
states), mangrove forests in West Bengal, Orissa and other
coastal areas, and the alpine pastures of Ladakh (Jammu and
Kashmir area) in the north.  Forests are generally used as
sources of timber for defence, communications, and industries
such as plywood, as well as for fuel and timber by local
populations (Negi 1998).

Despite amendments made in forest policies to conserve
and manage these resources, Indian forests are still undergoing
significant change.  The main causes of forest depletion are
overgrazing, conversion to non-forestry uses such as
infrastructural development (energy, roadways, etc.) (Reddy
1988), shifting cultivation (practised mainly in north-eastern
India) (Unni 1975; Kushwaha et al. 1993), unsustainable
extraction of fuel and fodder from forests, forest fires, over-
cutting beyond permitted limits and illegal encroachment

into forestland due to land shortages or insecure land tenure
(Rangan 1996; Gadgil 1989; Sekhsaria 1999; Kant 2001;
MOEF 1999).  For example, approximately 1.5 x 106 ha of
forestland was estimated to be illegally occupied in the
1990s for agriculture and other uses (Ministry of Environment
and Forests (MOEF) 1999).  Reforestation has also resulted
in significant changes to the extent and types of forests.  It
consists mostly of industrial monoculture plantations and
social forestry projects carried out under the supervision of
the Joint Forest Management (JFM) programme.

As a consequence of the high regional diversity of forest
types and causes of forest change, it is not possible to map
and do evaluation of forest resources for the whole of India
using conventional field survey methods.  The Forest Survey
of India (FSI), as an associated institution of the Ministry of
Environment and Forests, is responsible for preparing the
state of the forest reports and the national vegetation map of
India every two years.  Since 1987, remote sensing has been
the primary data source used to produce these maps.  The
FSI also prepares forest inventories and carries out growing
stock and volume assessments.  Hence, it is a key organization
in India for the generation of primary forest cover and
resources data.  The first FSI assessment on the forest cover
of the country, published in 1987 (FSI 1999) used Landsat
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Multi-Spectral Scanner (MSS) data and visual interpretation
at 1:1,000,000 scale.  From the second assessment, the
resolution of the sensor improved to 30 m x 30 m and scale
of interpretation to 1:250,000 (FSI 1999).  Transparent false
colour composite images were manually overlaid on
topographic base maps and forest classes were directly
delineated.  Comparison of two maps was conducted to
assess change in these classes.  Following this initial period
of visually based forest mapping, digital analysis has been
conducted to map forests and detect changes.  The non-
forested areas are first masked out using forests defined on
the Survey of India (SOI) topographic maps.  Then, forest
cover is classified using supervised maximum likelihood
(Lillesand and Kiefer 2000) techniques with NDVI
(Normalized Difference Vegetation Index = {(NIR-R) / (NIR
+R)}, where NIR is the near infrared spectral band, and R is
the red spectral band) as the input data (FSI 1999).

Since 1995, Indian Remote Sensing (IRS) data have been
used. For the 1999 report, FSI classified 13 states digitally,
while the rest of the country’s forest cover was mapped
visually.  Data for most of the digitally classified states were
acquired from October to December 1998, and for rest of the
states, from October to December 1996 (FSI 1999).  The
lack of a consistent sensor, spectral bands, spatial resolution,
and data processing methods hinders accurate analysis of
vegetation change over time periods longer than a few years
using the FSI maps.  From previous studies in other locations,
it was found that Landsat TM is very well suited to temporal
analysis of forest change over medium to long time periods
(Klankamsoran 1987; May et al. 1997; Oliver 2000; Wang
et al. 2004; Asner et al. 2002; Alves 2002).  It provides
broad spatial coverage, moderate resolution (pixel size of
approximately 30m), seven high quality spectral bands
ranging from the blue to the thermal IR, and frequent
acquisition throughout the year (every 16 days) (Tole 2000).
These characteristics make it well suited for mapping
temporal changes in various compositional and structural
forest groups at landscape and regional scales.

Change detection is the process in which temporal
differences in the state of an object or phenomenon are
identified (Singh 1989).  It is important in monitoring natural
resources as it can quantify the spatial distribution of land
cover change in the area of interest.  During the past 20
years, it has become a major application in remote sensing
because of increasingly consistent image quality and
repetitive coverage at short intervals (Mas 1999).  Singh
(1984; 1986) used image differencing to monitor change due
to shifting cultivation in a tropical forest environment.
Prakash and Gupta (1998) used spectral band differences,
ratios, and NDVI to detect change in land use in the Jharia
coalfield of India, and found that all the methods were
equally good in detecting the changes in the study area.
Young and Wang (2001) analyzed differences in NDVI in
China from 1982-1992 and found them to indicate declines
in productivity in forest regions and increases in agricultural
regions.

In this research, Landsat TM data were used to compare

temporal change methods for detection of deforestation and
reforestation over 17 years in the southwest region of India.

Objective

The primary objective of this research was to evaluate the
potential for monitoring forest change in India at regional to
state scales using Landsat TM data by comparing two
temporal analysis methods: image differencing and post-
classification comparison.  The maximum time period during
which Landsat TM data were available for the study area
(see description below) was selected to be able to assess
subtle to severe deforestation as well as reforestation.

The research was conducted in two phases.  The first
compared image differencing of NDVI, principal components
and Kauth-Thomas transformations for detection of overall
vegetation change (i.e., of all vegetation types).  Then,
results from the best of these methods were classified as
forest gain or loss and evaluated against the post classification
comparison method.

Methodology

Study Area Selection
After reviewing forest characteristics and Landsat data

for several regions of India, a study area was selected in the
state of Karnataka (Figure 1).  Karnataka is approximately
760 km N-S and 420 km E-W, covering an area of 191,791
km2.  The Western Ghats mountains run through the state
roughly parallel to the west coast.  Land cover and land use
include forest, urban and built-up land, rivers and reservoirs,
agricultural and barren land.  Karnataka was selected as the
study area because of its abundance of natural and plantation
forest cover, high rates of forest change (deforestation and
reforestation) (Menon and Bawa 1997), and its status as a
bio-diversity hot-spot region (Menon and Bawa 1997; Shi
2003).  In addition, Landsat data were available for the state
for 1986 and 2003.  Other areas experiencing rapid forest
change in NE India were also considered, but data were not
available or were not accessible due to the area’s sensitive
political nature.

Satellite Data
Landsat 5 (TM) data from April 1, 1986 and Landsat 7

Enhanced Thematic Mapper (ETM+) data from February
19, 2003 were acquired for an area covering much of the
Western Ghats in several districts within the state of
Karnataka.

A subscene (Figure 1b, red rectangular area) covering
approximately 102 km x 157 km was clipped out to reduce
data size for the many tests of image processing and analysis
methods that were implemented.

Image pre-processing
The 1986 scene was aligned to the 2003 scene, which had

been acquired in UTM projection.  A second-order
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polynomial transformation was derived from eleven high
contrast control points that had not changed between the two
dates.  Nearest neighbour re-sampling was applied when
assigning pixel values to the aligned raster for the 1986
scene.  The root mean square (RMS) error of the
transformation was 0.23 and 0.32 pixels for the ‘x’ and ‘y’
directions, respectively.

For temporal analysis, image calibration was necessary
to reduce or eliminate differences due to atmospheric or
sensor variations between the two dates.  Two types of
calibration may be conducted: ‘absolute’, using atmospheric
corrections and sensor drift calibration, or ‘relative’, where
one scene’s image brightness distribution is matched to the
other.  The latter was applied to each band pair using
regression of a given 1986 band (x) against the corresponding
2003 band (y, selected as the reference because of its
superior image quality).  Strong regression functions were
obtained because most pixels had not changed between the
two dates.  In contrast, it was felt that a coarse scale
atmospheric model (such as available in common
atmospheric correction procedures) would not provide as
reliable a correction for such a hilly region next to a large
ocean.  Table 1 shows the 1986 original and relatively
calibrated spectral band mean and standard deviations beside
the 2003 values.  The thermal band was excluded from
further use because of its lower resolution and because
principal component analysis (PCA) showed that it did not
contribute significantly to the data variance in any of the
components.

The band means were matched very well after calibration,
while the standard deviations of the 1986 calibrated data
were slightly lower than those for the 2003 data.  The Blue
band in 1986 and 2003 had a noticeably higher mean
brightness of 74 DN than the other bands, which may be due
to the proximity of the study area to the Arabian Sea, the
presence of other water bodies, such as rivers, reservoirs
etc., and atmospheric haze.

Change detection analysis
Two commonly applied methods of temporal analysis,

image differencing and post-classification comparison, were
selected to provide capability for comparison with results
presented in other studies.

Image Differencing
Image differencing was applied to vegetation enhanced

images that were derived using three transforms: NDVI (Mas
1999), Principal component analysis (PCA), and the Kauth-
Thomas Tasselled Cap transformation (KT) (Roy et al. 1991).
In all cases, the (calibrated) 1986 transformed data were
subtracted from 2003 transformed data.  Standardized PCA
was conducted (as opposed to unstandardized) as it generally
produces more useful components for analysis of land cover
change using multi-temporal datasets (Young and Wang
2001).  The first principal component (PC1) accounted for
76% and 68% of the data variance of the 1986 and 2003
scenes, respectively.  The factor loadings were almost equal
for each band indicating that PC1 represented overall scene
brightness.  The second component (PC2) accounted for 18%
and 28% of the 1986 and 2003 scene variances, respectively.
It exhibited the strongest vegetation gradient, having high
positive factor loadings for the NIR band for both dates (0.74
and 0.78, respectively) and negative factor loadings for the
visible bands (ranging from -0.92 for the 2003 blue band to -
0.12 for the 1986 red band).  PC3 accounted for less than 4%
of the data variance in both scenes.  Based on these results,
PC2 was selected for use in image difference analysis of
vegetation change.  The KT transformation (Roy et al. 1991;
Guild et al. 2004) was applied to both scenes to produce
brightness, greenness and moistness indices.  The greenness
index (KT-G, Equations 1 and 2 (Mather 1989; Huang et al.
2002, as cited in IDRISI Kilimanjaro 2004 help guide) was
used in image differencing analysis.  B1-B7 are the band
numbers of the TM and ETM+ sensors.

KT-G (TM) = -0.2848B1 - 0.2435B2 - 0.5436B3
+ 0.7243B4 + 0.0840B5 - 0.1800B7  (1)

KT-G (ETM+) = -0.3344B1 - 0.3544B2 - 0.4556B3
+ 0.6966B4 - 0.0242B5 - 0.2630B7 (2)

Hereafter the difference images for these data types are
referred to as NDVId, PC2d, and KT-Gd, respectively.  From
the distribution of values in the NDVId, PC2d and KT-Gd

images, z-scores were calculated and classified into six
categories of standard deviation (s) from the mean difference:
< -2s; -2 to -1s; -1s to mean; mean to +1s; +1 to +2s; and >
+2s.  Here, the classes < -2s and > +2s were the pixels in the

Band Mean (DN) Std. dev. (DN)

1986 1986 2003 1986 1986(calibrated) 2003
 (original) (calibrated) (original)

Blue 83.69 74.25 74.26 8.63 4.56 6.72

Green 37.69 54.44 54.44 8.00 7.24 8.63

Red 41.56 48.72 48.77 17.22 15.04 17.20

NIR 59.01 47.40 47.36 29.74 22.08 23.34

Mid-infrared 1 80.09 64.20 64.23 54.32 39.14 42.64

Mid-infrared 2 37.54 39.48 39.51 29.66 26.41 29.40

Table 1 Means and standard deviations of the Landsat spectral bands for the 1986 original and calibrated data, and
the 2003 reference data.
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change data distribution that fell within the distribution tails.
For a normal change distribution, they comprise 5% of the
total scene pixels and represent significant vegetation loss
and gain, respectively.  Between the two thresholds, pixels
were assumed to have not changed significantly.  Use of two
standard deviations as a threshold indicating significant
change in a difference image was selected because: a. visual
analysis of difference images created from tests of several
thresholds showed that it represented the best compromise
between errors of commission (forest change detected where
there obviously was not change) and errors of omission
(forest change that was not detected); b. it represents a
commonly applied statistical significance threshold, and c. it
was in the middle of the range of values used in other studies
(e.g. from 1.5 (Rogan et al. 2002) for moderate change to 3
(Young and Wang 2001) for extreme change).  Here, the
resulting six classes were colour coded to visually compare
with raw image colour composites for identification of the
types of vegetation change detected as well as possible
errors.  Further, to show the significantly changed areas
only, binary images were created displaying only those
pixels representing change of < -2s and > +2s.

Post classification comparison (PCC)
PCC consisted of cross tabulation of forest / non-forest

maps to determine the pixels that had changed from one
class to the other.  Supervised maximum likelihood
classification of the 1986 and 2003 Landsat scenes was
conducted to create the maps.  Training data were selected in
easily identifiable areas of the following three classes: water;
natural and plantation forest; and non-forest including bare
soil, urban and agriculture.  A 1:1,000,000 map from the
Water Resource Development Atlas (Water Resources
Development Atlas of India 1996) also aided in this process.
A standard deviation threshold value of 2.0 for the training
data distributions was selected following tests of thresholds
ranging from 1.0 to 3.0 because it produced the maximum
Transformed Divergence (Jensen 2003) between the classes.
These separability tests, as well as visual analysis, were
performed on several data sets including: all spectral bands,
a dataset consisting of NDVI, PC2 and KT-G, as well as
other arbitrary combinations of bands and transformed data.
The best data set consisted of NDVI, PC2, KT-G and the
blue, green and red spectral bands.  Hence, it was used for
both the dates to perform the supervised classification.
Following classification, the water and non-forest classes
were merged to one class and assigned a grey level of zero.

Conversion of image difference ‘vegetation’ change to
‘forest’ change for evaluation against PCC

From the above analysis of image differencing to produce
vegetation change maps, the best result was further evaluated
against the PCC method.  As the vegetation loss and gain
maps derived from image differencing included all types of
vegetation (e.g. agricultural, shrubland, forest), they had to
be converted to maps showing only forest change.  Using the
maximum likelihood classification of forest (DN = 1) and

non-forest (DN = 0) for each date as described above, an
overlay procedure was implemented as follows.  For
deforestation, areas that were classified as forest in the 1986
imagery AND which exhibited vegetation loss were taken to
be ‘deforested’ during the 1986-2003 period.  For
reforestation, areas that were classified as forest in the 2003
imagery AND which exhibited vegetation gain over the 17-
year period were taken to be ‘reforested’.

Analysis of errors in image differencing and PCC
At the outset of this project, it was known that accurate

field or remote sensing based validation data for 1986 would
be unavailable.  As an alternative, validation was conducted
by visually identifying areas of change or no-change in
magnified displays of the CIR composites.  This analysis
was conducted for the vegetation difference images to
determine the best data transform and for the forest change
maps to evaluate image differencing against PCC.  To
accomplish this, the change images were searched extensively
for evidence of errors of omission (no-change detected when
change had occurred) and errors of commission (detection
of change when no change had occurred).  In addition, for
visually interpreted areas of change, each method was
assessed for its completeness in spatially detecting that
change.  It was quite evident when a given method detected
only the most severe change, as the area of visible change
was mapped as a mix of change and no-change pixels.

Results and Discussion

Following the methodology described above, first image
differencing to determine overall vegetation change was
assessed using three different data transforms.  The best
results from this were then evaluated against PCC in an
analysis of forest change.

Comparison of NDVI, PC2 and KT-G image difference
images for vegetation change detection

Figure 2 is an example image difference binary change
detection map showing significant vegetation gain (> +2s)
and loss (< -2s) for the study area.  All the transform
differences detected the presence of change in a given local
area equally well, but NDVId and KT-Gd had fewer errors of
omission in detecting vegetation loss than PC2d.  They
therefore mapped vegetation loss in a more spatially complete
and accurate manner than PC2d.

An example is shown in Figure 3 where significant
vegetation loss has occurred due to flooding by a hydroelectric
reservoir.  The PC2d change map does not show change in
the upper extent of the valley (at the white arrow) as well
NDVId and KT-Gd.  At this location, the type of change is not
from vegetation to water, but vegetation to bare ground.
Both NDVId and KT-Gd correctly show the change as one of
significant vegetation loss.  Note that all subsequent figures
showing gradations in change use the same legend as Figure
3, while all figures of binary change / no-change use the
legend of Figure 2.
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In terms of errors of commission, Figure 4 shows an
example where KT-Gd falsely detected change in the coastline
(i.e., change from water to bare ground or sand at the black
arrow in Figure 4b) as a change in greenness while NDVId

and PC2d were correct in not identifying this area as vegetation
change.  The other vegetation loss areas such as those near
the coast towards the lower right of the image were well
detected by all three methods.

Errors in vegetation gain were more difficult to visually
identify, because spectrally, vegetation gain varied from
subtle to moderate, but was never as significant as vegetation
loss by activities such as clear cutting or reservoir flooding.
However, it was evident in several locations that the three
methods did not spatially map vegetation gain equally well.
For example, Figure 5 shows a valley with a river cutting
across the image from top to bottom that has become enlarged
due to reservoir flooding.  To the left of the river, forest gain
is mapped as positive change from the mean to > +2s.
NDVId and KT-Gd more completely mapped the significant
forest gain (> +2s) from pink (low density vegetation) to red
(high density vegetation) in the CIR image than did PC2d.
To the right of the river, vegetation gain appears to be almost
as strong as on the left side of the river, but all the methods
detected it as slight (mean to +1s) to moderate (1-2s).  This
could be due to shaded slopes reducing the dynamic range of
image brightness and thus the range of image differences or
to vegetation gain that was not actually as strong as on the
left side of the river.

From the above examples, and from many other local
areas evaluated in a similar manner, differences between the
data types were more evident for vegetation loss because
examples of severe loss could be easily found whereas very
few existed for vegetation gain.  Over the 17-year period,
vegetation gain was generally slight to moderate.  It was
therefore concluded that image differencing of all the data
types identified the occurrence of change quite well but that
there were differences in the spatial completeness with which
the changes were mapped and in the susceptibility to errors
of omission and commission for the significant classes.  In
this context, NDVId was slightly better than KT-Gd, and both
were much better than PC2d at detecting significant vegetation
change.  The NDVId maps were therefore used in subsequent
analysis against the PCC method.  Although the context and
location of this study is different from others, these results
agree with those of Tole (2002) and Guild et al. (2004) but
they contrast with Rogan and Yool (2001) who found KT
components to be best for mapping fire-induced vegetation
depletion.

Ev0aluation of NDVI difference against PCC
The NDVId vegetation change map (Figure 2) was

reclassified to two binary maps showing deforestation and
reforestation, respectively, using the overlay method
described above.  These maps were then compared to their
PCC counterparts that were produced directly from cross
tabulation of classified forest / non-forest maps for each
date. Table 2 shows the areas detected as deforested,
reforested and unchanged for each method.

The areas detected as deforested differ for the two methods
by a factor of greater than two while the other estimates are
all within 4% of each other.  To investigate further, cross
tabulation of the two deforestation maps and of the two
reforestation maps was conducted.  For deforestation,
12,100 ha (134,769 pixels) that had been identified as
deforested by NDVId were identified as unchanged by PCC,
while no pixels identified as deforestation by PCC were
identified as unchanged by NDVId.  The additional pixels
identified as deforested by NDVId were found to include
significant errors of commission related to reduced agriculture
and aquaculture in areas where water levels were higher in
2003.  Figure 6 shows an example of such errors.

Similarly, in the reforestation cross tabulation, NDVId

found an additional 2,122 ha (23,575 pixels) that had been
identified as unchanged by PCC while there were no pixels
identified as reforested by PCC and unchanged by NDVId.

Figure 7 shows example errors of commission in the
NDVId reforestation map.  Lower water levels have resulted
in added exposed land surface along the shoreline and where
a river has replaced a bay.  The light pink tones indicate that
the added area is not forest cover but has had some vegetation
re-growth probably consisting of shrubs and other ground
vegetation.  The NDVId reforestation map is therefore
confusing regrowth in ground vegetation with significant
forest growth.  This sensitivity to subtler vegetation change
may be useful for some applications but here only forest
growth and deforestation were desired.

For both cases above, the NDVId errors of commission
may be reduced by using a higher standard deviation threshold
of change in the NDVId analysis (e.g. s > 2.0) and/or by re-
training the forest change classification of the NDVId

vegetation change image.  However, associated errors of
omission may result if these restrictions are applied.

From the above analysis, it was concluded that for
these data, PCC provides more accurate representation of
significant forest change, whether deforestation or
reforestation.  These results agree with Mas (1999) who
found PCC to be more accurate than raw image and

Table 2 Total area detected as deforested, reforested, and unchanged by NDVI difference analysis and post classification comparison.

Analysis Method Deforestation (ha) Reforestation (ha) Unchanged Forest (ha) Unchanged Non-Forest (ha)

NDVI Difference 23,200 53,400 555,470 848,450

Post 11,030 51,296 566,500 851,694
Classification
Comparison
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vegetative index differencing, selective PCA, and direct
multi-date unsupervised classification for monitoring land-
cover changes in a coastal region of Mexico.  Sunar (1998)
also found PCC, along with PCA to be best for detection
of land cover changes in Turkey.  However, Foody (2001)
applied PCC to detect land cover change around the
southern limits of the Sahara desert and found that it
underestimated the areas of land cover change, and where
change was detected; the magnitude of change was
overestimated.

Conclusions

The results of this research show that Landsat data are

very useful in monitoring changes in forest cover over
moderate time intervals (17 years in this study) at a broad
level of classification such as forest / non-forest for a regional
area or state.  For image differencing, the three data transforms
tested all detected areas of visible vegetation change.
However, the NDVI difference produced fewer visually
identifiable errors of omission and commission than the

Figure 1 Location of the study area (Karnataka, Southern India).  Black
rectangle on left encompasses the state of Karnataka.  The red
rectangle on the right shows the subscene area used in this
research. (Forest Survey of India, 1999) Figure 2 Example binary vegetation change maps for the study area

derived from image differencing of NDVI.

Figure 3 Example full resolution CIR composite, graded vegetation
gain (+) and loss (-) maps, and binary vegetation loss maps
produced by image differencing of the three data transforms.
The white arrows point to an example error of omission in
vegetation change of the PC2 difference map.

Figure 4 Example full resolution CIR composite, graded vegetation
gain (+) and loss (-) maps (see legend in Figure 3), and binary
vegetation loss maps produced by image differencing of the
three data transforms.  The black arrow points to an example
error of commission in vegetation change of the KT-G
difference map.
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second principal component and the Kauth-Thomas greenness
index.  It was therefore used in an evaluation against post
classification comparison (PCC) but was found to be more
susceptible to errors of commission.  NDVI differencing
requires little user input other than the threshold at which
‘change’ is considered to be significant.  However, to produce

maps of deforestation and reforestation, classification of the
vegetation change map into forest change is required.  In
post classification comparison, only classification of forest
and non-forest is necessary for each date, but errors can
propagate when the maps are cross-tabulated to determine
forest change.

Extensive visual interpretation of areas of forest change
in association with literature analysis revealed that the
main reasons for deforestation were submergence by
reservoirs for development projects and pressure from
increased human and livestock populations.  As most of
the rural population of India is dependent on forests for
their livelihood, the forests are subject to degradation
from uncontrolled logging, illegal cutting beyond
silviculturally permissible limits, over-grazing, extraction
of fuel wood and unsustainable forest management policies
that exclude local communities.  Therefore, eco-
development planning for sustainable forest use is critical
in these areas.

During the 1986-2003 period, this research has also
shown that reforestation has been significant and greater
in total area than deforestation, resulting in an overall
increase in forest cover.  The primary reforestation types
were monoculture and mixed plantations established under
the JFM programme as well as other social forestry projects
funded by the World Bank and the state government.
These industrial forests do not have high biodiversity as
did the original forests, but they are often planted on
degraded lands and therefore represent an improvement in
vegetation cover over what has existed for the past few
decades.

Although this study provides evidence that favours certain
forest change detection methods over others, further work is

Figure 5 Example full resolution CIR composite, graded vegetation
gain (+) and loss (-) maps (see legend in Figure 3), and binary
vegetation gain maps produced by image differencing of the
three data transforms.  Errors in spatial completeness of
vegetation gain mapping are visible on the left side of the river
valley, particularly in the PC2 difference maps (Figure 5d, g).

Figure 6 Example of errors of commission from the NDVI difference
analyses that were related to changes in water levels and
reduced agricultural / aquacultural activities.

Figure 7 Example reforestation error of commission for the NDVI
difference method.
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needed to: (1) establish long-term validation programs for
such monitoring, (2) compare these methods against more
recent change detection methods such as linear spectral
mixture analysis (Adams et al. 1995; Roberts et al. 1998)
and fuzzy classification (Lee 2002), and (3) spatially extend
the analysis to the full state level using multiple Landsat
scenes.
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