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Abstract 

The need for grade scaling typically emerges in the context of an assessment of 

student work based on relatively objective or fixed subjective criteria that produces a 

distribution of results that the instructor believes to be problematic in some sense; e.g., a 

multiple-choice test in which a large enough proportion of the students did so poorly that, 

left unscaled, it is likely to deter them from putting further effort into the course. Even 

instructors who believe that grade scaling is pedagogically unsound may, from time to 

time, be faced with the practical reality that, all things considered, it is a necessary evil. 

As such, a good understanding of the options that instructors have open to them in this 

matter would seem to be essential. 

In this paper, I discuss issues surrounding the scaling of grades as well as the 

relative merits of different approaches to doing so. The main issue dealt with concerns the 

justification for grade scaling on pedagogical grounds. This takes us some distance in 

establishing a set of axioms that inform the choice of a general approach to grade scaling. 

Next, I show that, among seven different approaches, including five that are fairly well 

known and one that is entirely new, only the latter satisfies all of the axioms. Finally, I 

show that the new approach can be used as a “self-scaling” technique for adjusting course 

grades to reflect class participation in a manner that is non-detrimental to students who 

reach a minimum standard and differentially beneficial to students who are closer to the 

pass-fail boundary (relative to those who are further from it, in either direction) on the 

basis of the other required elements of the course. 

 

 

JEL Classification Numbers: A20, C65. 
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1. Issues 

At the beginning of my academic career, I sought out the advice of a senior 

colleague who had close to thirty years of teaching experience and had been recognized, 

both officially in the form of a teaching achievement award and unofficially in the form 

of general acclaim, for his effectiveness as a first-year undergraduate instructor in my 

discipline. On the matter of how to structure the evaluation of student performance, he 

made what I thought at the time to be a surprising admission: He found it necessary to 

include an explicit “fudge factor,” as he called it, with a weight of ten per cent, that gave 

him some latitude to adjust each student’s final grade as he saw fit. What surprised me 

about this admission was not so much the fact that my colleague scaled his students’ 

grades—this was precisely what I had been directed to do on several occasions in 

graduate school as a teaching assistant following an unexpectedly disastrous class 

performance on a mid-term or final examination—but that he anticipated and explicitly 

took account of the need to do so, even after teaching the same course twenty-odd times 

and being recognized as an outstanding instructor. Up until that point, my impression had 

been that grade scaling was a sort of fail-safe measure, hidden deep within the 

instructor’s bag of tricks, to be invoked, nay spoken of, only with regret. I have since 

come to realize that my colleague’s approach was in fact justifiable on solid pedagogical 

grounds. 

How can this be so? An important reality of today’s classroom (in the Western 

world, at least) is that the students therein have a greater variety of backgrounds and 

learning styles than ever before. Moreover, we can expect the nature of student diversity 

to continue to change in unpredictable ways into the foreseeable future. The students 

themselves are aware of this situation and, more or less as a result, are not as tolerant of 

monolithic teaching styles as they used to be. Consequently, a sound teaching philosophy 

must admit a diversity of approaches that are continually evaluated and modified to better 

cope with the changing diversity of students. An inevitable consequence of such 

experimentation is that, at least occasionally, most of the students in a class will perform 

below the instructor’s expectations in an assessment of learning, regardless of how 

carefully it has been designed. When this happens, “it [must be] recognized that the 
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instructor and students may have had a different understanding regarding the importance 

of specific content or that the assessment tool was in some way inadequate or confusing 

to students. [Scaling] the scores reduces or eliminates the penalty to students when the 

failure to succeed may, in part, have been the fault of the instructor” (Royse, 2001, 

p. 193). 

At the core of the pedagogical justification for grade scaling, then, is fairness. To 

be fair to the diversity of students in a class, the instructor must experiment to some 

extent with different ways of teaching the required material. To be fair to the students 

when subjected to the possibly invalid assessments of learning that may result from such 

an approach, the instructor must scale the scores when they fall substantially short of his 

or her expectations. 

While not the only remedy for this sort of unfairness, scaling is preferable to the 

alternatives of re-grading and re-assessment because it is much less costly to implement. 

Scaling grades can be accomplished in a matter of minutes using a computer with 

spreadsheet software. By contrast, re-grading can take on the order of hours or even days 

to complete and requires that the evaluation criteria be made less stringent—something 

that may be either impossible (e.g., multiple-choice questions) or undesirable (e.g., if 

specific standards must be maintained for pedagogical reasons). Re-assessment (e.g., 

giving a replacement test) takes even more time and has additional costs associated with 

throwing the course off schedule. 

 
2. Axioms 

How scaling should be carried out is clearly an important issue in the light of the 

fairness justification. To start, let’s treat an approach to scaling grades as a mathematical 

formula that converts any number x between zero and one to a possibly different number 

y between zero and one—zero and one corresponding to the lowest and highest possible 

scores (zero and one hundred per cent) that a student can receive on an assessment of his 

or her learning. Assuming that every student has been assessed under equivalent 

conditions and in accordance with objective or consistent subjective standards, there 

should be no question about grades reflecting relative learning attainments in the context 
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of a particular class. Furthermore, there should be little doubt that similar grades reflect 

similar degrees of learning. These two conclusions correspond to asserting that a grade-

scaling formula should be rank-order preserving and continuous. 

A1. Rank-Order Preservation: For any two students, if the raw score of one exceeds that 

of the other (x′ > x) then the scaled scores should be ranked the same way (y′ > y). 

A2. Continuity: For any two students, if x and x′ are close in value then so should be y 

and y′. 

Since the fairness justification interprets scaling as compensation for possibly 

invalid assessments of learning, a grade-scaling formula should be non-detrimental in the 

sense of not reducing any student’s score. 

A3. Non-Detrimentality: For any student, y ≥ x. 

Assuming that the assessment tool is relatively broad in scope and that the 

associated standards of evaluation do not demand perfection, any student who receives a 

raw score of zero can easily be seen to have earned it. Consequently, a grade-scaling 

formula should be non-beneficial to zero scores or “zero stationary.” 

A4. Zero Stationarity: For any student, if x = 0 then y = 0. 

Many critiques of scaling are actually critiques of a particular approach to scaling 

known as curving or grading on a curve. In a nutshell, curving means that the raw scores 

are adjusted so that they fit a pre-determined distribution pattern. For this approach to be 

valid, it must be assumed that the students in a given class constitute a random sample 

drawn from a population with a distribution of aptitudes for learning that is consistent 

with the aforementioned pattern. Except, perhaps, for very large classes, this assumption 

is unlikely to be realistic. And even if it were realistic, I suspect that most educators 

would chaff at “[t]he notion that grades, and the learning they supposedly represent, are a 

limited commodity dispensed by the teacher according to a statistical formula” 

(Walvoord and Johnson Anderson, 1998, p. 100). Accordingly, a grade-scaling formula 

should be flexible in the sense of being able to reflect adequately different instructors’ 

judgements about what a specific distribution of grades should look like. 
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A5. Flexibility: The grade-scaling formula admits the possibility of effecting 

independent changes to two or more characteristics of the distribution of scores. 

 
3. Approaches 

There are five approaches to scaling that are fairly well known. The simplest of 

these, the common increment method, increases each raw score by the same amount; i.e., 
,axy +=  

where a is a positive number that is no larger than the difference between one and the 

highest raw score. This formula satisfies every axiom except A4 (since y = a > 0 when 

x = 0) and A5 (since it increases the mean score by a but has no effect on the dispersion 

of the scores), and is usable only if there are no perfect scores. 

The linear or base reduction method multiplies each raw score by a common 

factor; i.e., 

,Pxy =  

where P is a number between one and one divided by the highest raw score. This formula 

satisfies every axiom except A5 (since it increases the dispersion along with the mean), 

and is usable only if there are no perfect scores. 

The affine method, also known as Welch’s (1992) method, multiplies each raw 

score by a common factor and then adds one minus that factor to each result; i.e., 

( ) ,1 PxPy +−=  

where P is a number between zero and one. This method satisfies every axiom except A4 

(since y = 1 – P > 0 when x = 0) and A5 (since it decreases the dispersion while 

increasing the mean). 

The standard- or z-score method divides the difference between each raw score 

and the mean raw score by the standard deviation of the raw scores1 (yielding the 

associated “z-scores”), and then adds the desired mean to each result multiplied by the 

desired standard deviation; i.e., 

,** xzsy +=  
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where z = (x – x ) / s is the z-score, x is the mean raw score, s is the standard deviation 

of the raw scores, and *x  and s* are the desired mean and standard deviation, 

respectively, chosen by the instructor. This formula satisfies every axiom except A3 

(unless either x / *x ≤ s / s* ≤ 1 or (1 – x ) / (1 – *x ) ≥ s / s* > 1) and A4 (unless 

x / *x = s / s*), and is usable only if all the raw scores lie between x – s *x / s*  and 

x + s (1 – *x ) / s*. 

The curving method discussed above (in the paragraph between the formal 

statements of A4 and A5) orders the raw scores from highest to lowest and then partitions 

them into grade categories based on a pre-determined distribution pattern; “for example, 

10 percent As, 10 percent Fs, 20 percent Bs, 20 percent Ds, and 40 percent Cs” (Walhout, 

1997, p. 84). Assuming that such grade categories have associated numerical values, 

curving fails to satisfy every axiom—unless the lowest category has a value of zero, in 

which case it satisfies A4; or unless the grade categories are numerous enough to form a 

quasi-continuum, in which case it satisfies A1 and A2. 

A sixth approach to scaling, the power method, is much less well known than the 

preceding five. It involves raising each raw score to a common power; i.e., 

,bxy =  

where b is a number between zero and one. This formula satisfies every axiom except A5. 

The power method’s lack of flexibility derives from the fact that, depending on the value 

chosen for b, it gives a particular raw score the largest increment by a particular amount.2 

As b rises from zero towards one, the raw score receiving the largest increase rises and 

the amount of that increase declines. The graphs of these relationships are shown in 

Figure 1. 

The seventh and final approach to scaling that I consider is entirely new: The 

generalized power method is a flexible variant of the power method defined by 

( )[ ] ,2 xxxPxy b −−+=  

where P is a number between zero and 1 / (2 – b), and b is a number between zero and 

two. This formula gives the instructor the options of choosing which raw score gets the 

largest adjustment (via the b parameter) and by how much (via the P parameter). The 
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relationship between the b parameter and the target raw score x* receiving the largest 

adjustment is described by a non-linear function that I will refer to as b = φ(x*).3 It turns 

out that a good approximation to b = φ(x*) in the range of target scores between 26 and 

62 per cent is given by the straight-line formula4 

.25.*5.2 −= xb  
Figure 2 illustrates this approximation. 

Once x* has been chosen and the b parameter has been determined, the instructor 

needs to decide how much he or she wishes to increase the target raw score (y* – x*). The 

appropriate value of the P parameter can then be found using the formula 

( ) ( )
,

**2*
**

xxx
xyP b −−

−
=  

which comes from solving the generalized power formula for P with x and y set equal to 

x* and y*, respectively. As indicated above, the nature of this formula requires that y* –

x* be such that 

.
2

10
b

P
−

≤≤  

Substituting for P in this expression and rearranging terms yields 

( ) ( ) .
2

**2***0
b

xxxxy
b

−
−−

≤−≤  

Since b = φ(x*), the upper bound on y* – x* (given by the right-hand side of the 

preceding expression) can be treated as a function of x* alone. This function, which is 

shown in Figure 3 to be closely approximated by 

( ) ( ) ,** *1
1

*1
*

xx
x

xx −− −  

decreases at a decreasing rate from a value slightly less than one at x* slightly greater 

than zero to a value slightly greater than zero at x* slightly less than one. Consequently, 

the greater the chosen target raw score, the smaller the maximal amount by which it can 

be raised. 
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4. Examples 

Example 1: Suppose the instructor wishes to target a raw score of 50 per cent and 

raise it to 59 per cent; i.e., x* = .50 and y* = .59. Since 50 is between 26 and 62, the 

requisite value of b is given by the straight-line approximation formula as 

( ) .125.50.5.2 =−  

The requisite value of P is given as 

( ) ( ) ( )[ ] .36.25./09.50.50.250.50.59. 1 ==−−−  

Note that this value does not exceed the upper bound of 1 / (2 – 1) = 1. Plugging the 

parameter values b = 1 and P = .36 into the generalized power formula yields 

( )[ ] .36.36.1236. 21 xxxxxxy −=−−+=  

As shown by the upper curve in Figure 4, application of this formula to a collection of 

raw scores does nothing to any score of zero or 100 per cent, raises any score of 50 per 

cent by 9 percentage points, and raises scores that are closer to 50 per cent by more than 

those that are further away. 

Provided that 0 < x* ≤ .50 (which implies that 0 < b ≤ 1), the generalized power 

method scales raw scores in a manner analogous to that of the preceding example. 

Furthermore, unlike any of the other considered methods, it satisfies all five axioms 

discussed above. As x* is increased beyond .50 and towards 1, however, the method 

becomes unusable over an growing range of low-end raw scores and violates axiom A3 

over a wider range of low-end raw scores. If, for instance, x* = .62569, the upper bound 

on the domain over which the straight-line approximation formula for b is applicable, 

then the generalized power method is unusable whenever there are raw scores below 1.21 

per cent and reduces any scores that lie between 1.21 and 11 per cent (by tiny amounts 

not in excess of 1.3 percentage points). Similarly, if x* = .7, the method is unusable 

whenever there are raw scores below 3.23 per cent and reduces any scores that lie 

between 3.23 and 29.7 per cent (by at most 5.5 percentage points). 

Example 2: Suppose the instructor wishes to target a raw score of 74 per cent and 

raise it by as much as possible. Reading off the b = φ(x*) curve in Figure 2, b ≈ 1.5 at 

x* = .74. Setting P = 1 / (2 – 1.5) = 2 will result in the target score being raised by the 
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maximum possible amount. Plugging the parameter values b = 1.5 and P = 2 into the 

generalized power formula yields 

( )[ ] .22 5.1 xxxxy −−+=  

Application of this formula is limited to collections of raw scores with every element in 

excess of 6.69 per cent. As shown in Figure 5, it does nothing to any score of 38.2 or 100 

per cent, raises any score of 74 per cent by 12.4 percentage points, raises any scores 

between 38.2 and 100 per cent that are closer to 74 per cent by more than those that are 

further away, lowers any score of 14.3 per cent by 8.52 percentage points, and lowers any 

scores between 6.69 and 38.2 per cent that are closer to 14.3 per cent by more than those 

that are further away. 

Implementation of the generalized power method is obviously best accomplished 

using a computer. For concreteness, let us assume that we have recorded twenty-five raw 

scores in rows 1 through 25 of column A of a spreadsheet program (e.g., Excel or 

Quattro). Assuming further that these scores are numbers to be taken out of 20, we need 

to convert them to percentages before doing anything else. To do this, we enter 20 in 

cell A26 and +A25/A$26 in cell B25, copy the latter cell, and then paste it to cells B1 

through B24.5 Rows 1 through 25 of column B now contain the raw scores expressed as 

percentages (the xs). 

Suppose we decide to target a raw score of 30 per cent and raise it to 45 per cent. 

To reflect these choices in our spreadsheet, we enter .30 in cell B26 and .45 in cell B27. 

Since 30 is between 26 and 62, the requisite value of b is given by the straight-line 

approximation formula. Accordingly, we enter +2.5*B26-.25 in cell C26 and see that 

( ) .5.25.30.5.2 =−=b  

We then find the requisite value of P to be 

( ) ( ) ( )[ ] 23767.30.30.230.30.45. 5. =−−−  

by entering +(B27-B26)/(B26^C26*(2-B26)-B26) in cell C27. In order to verify that this 

value is not too large, we compare it with the upper bound 1 / (2 – .5) = .66667 found by 

entering +1/(2-C26) in cell C28. Finally, we apply the generalized power formula by 

entering +B25+C$27*(B25^C$26*(2-B25)-B25) in cell C25, and then copying and 
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pasting it to cells C1 through C24. Rows 1 through 25 of column C now contain the 

scaled scores (the ys) that result from x* = .30 with y* = .45. The impact of this exercise 

is shown in Figure 6. 

The advantage of having b, P, and the upper bound on P entered as formulas in 

our spreadsheet is that we can easily re-scale the raw scores until we are satisfied with the 

results. All we have to do is enter new values for one or both of x* and y* in cells B26 

and B27, respectively, and the computer will automatically re-calculate the parameter 

values and the scaled scores. 

 
5. Self-Scaling 

The final aspect of grade scaling that I would like to discuss is the use of the 

generalized power method as the basis for a “self-scaling” mechanism that reflects a 

student’s participation in class. The principal objectives of this approach are to reward 

such participation in a purely non-detrimental manner on the one hand, and to penalize 

habitual absence from class on the other. In my experience, the “carrot and stick” that 

these objectives represent cannot be implemented to satisfactory effect under the usual 

approach of dedicating some fraction of the final course grade to in-class participation. 

The problem I have encountered with this approach is that, for those students who are 

relatively shy or sufficiently disengaged, the expected costs of showing up and trying to 

avoid attention outweigh the expected benefits of the mediocre marks they are likely to 

receive in exchange. Furthermore, many such students appear to believe that they can 

offset a low participation mark through effort expended on other aspects of the course. 

I have come to assess the participation of the students in my first-year seminar 

course on a week-by-week basis with up to one point being awarded for simple 

attendance and an additional point for making a “basic contribution”—either individually 

or as part of a team, depending on the requirements of the associated seminar 

assignments. If earned, the latter point is subject to a “contribution quality adjustment” of 

–½, –¼, 0, +¼, +½, +¾ or +1 points awarded at my discretion. At any time during the 

course, a student’s “personalized adjustment factor” can be calculated by adding up his or 

her seminar participation marks, after subtracting one point from each, and then 
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multiplying the result by .0075, and his or her raw score can be calculated as a weighted 

average of marks awarded for other required elements. A student’s course-grade-in-

progress and, ultimately, his or her final grade in the course, is generated by applying the 

generalized power method to his or her raw score with b set equal to one and P set equal 

to his or her personalized adjustment factor. 

I explicitly warn the class at the outset of the course that, because each of a 

student’s participation marks is reduced by one point in the calculation of his or her 

personalized adjustment factor, habitual absence from the seminars will render this factor 

negative thereby making his or her final grade less than his or her raw score. More 

encouragingly, I also point out that consistently active seminar participation will result in 

a positive personalized adjustment factor thereby making the associated final grade 

greater than the corresponding raw score. 

For a given personalized adjustment factor, the mark-up (or mark-down) of the 

final grade over the raw score under my self-scaling mechanism is larger the closer the 

raw score is to 50 per cent (since b = 1 as in Example 1 above) and zero for raw scores of 

either zero or 100 per cent. Consequently, the largest impacts of seminar participation on 

final grades accrue to those students whose raw scores wind up close to the pass-fail 

boundary. In a 24-week course such as mine, the upper and lower bounds on these 

impacts are as shown in Figure 4.6 

The differential impacts of a given personalized adjustment factor over the range 

of possible raw scores can be seen to be fair because they give the biggest boost when a 

student needs and, in a sense, deserves it most, while at the same time offering a measure 

of insurance against a falling grade when his or her needs are less (since the impact rises 

as the raw score falls towards 50 per cent). And since the size of the impact on a given 

raw score depends on the frequency and quality of seminar participation, every student 

has a self-interested motivation to try and make worthwhile contributions and thereby 

enhance the learning experience of the entire class. Without such an incentive, there is a 

tendency for many students to free ride on the contributions of others or, worse still, to 

opt out of the seminars altogether. 
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Figure 1. The raw score receiving the largest increase ( bb −1
1

) and the amount of that 
increase ( bb

b

bb −− − 1
1

1 ) under the power method. 
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Figure 2. The actual (b = φ(x*)) and approximated (b = 2.5x* – .25) relationships 

between the b parameter and the target raw score x* under the generalized power method. 
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Figure 3. The actual and approximated relationships between the upper bound on y* – x* 

and the target raw score x* under the generalized power method. 
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Figure 4. The impact of the generalized power method when b = 1 and P = .36 

(y = 1.36x – .36x2), and when b = 1 and P =  –.18 (y = .82x – .18x2). 
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Figure 5. The impact of the generalized power method when b = 1.5 and P = 2. 
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Figure 6. The impact of the generalized power method when b = .5 and P = .23767. 
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1 Standard deviation is the most commonly used measure of dispersion. 
2 To see this, take the derivative of y with respect to x, set it equal to one, and solve for x. 
3 Taking the derivative of y with respect to x in relation to the generalized power formula, setting it equal to 
one, and simplifying the result yields 

( ) .0112 1 =−+−− bb xbxb
 

Given b, one of the solutions to this equation is the raw score that gets the largest adjustment under the 
generalized power method. Taking x = x* as given instead, the equation yields the value of b that results in 
the target raw score x* receiving the largest adjustment; i.e., b = φ(x*). 
4 More rigorously, the absolute log-difference between the value of this formula and φ(x*) at any x* such 
that .26099 ≤ x* ≤ .62569 is less than two per cent; i.e., |ln (2.5x* – .25) – ln φ(x*)| < .02 for all 
x*∈  [.26099, .62569]. 
5 Note that the $ sign fixes the reference to row 26 in each pasted formula while the reference to row 25 
becomes a reference to the row number of the target cell. 
6 Respectively, the bases for these bounds were calculated as P = 24(3 – 1)(.0075) = .36 and P = 24(0 –
 1)(.0075) =  –.18. 


