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Abstract 
 

This paper extends Diewert’s (2002) study of similarity indexes to deal with the 

practical problem of the values of his preferred indexes of absolute dissimilarity going to 

infinity as any of their (per-capita) quantity arguments goes to zero; i.e., the inability of 

these indexes to distinguish between two quantity vectors that, between them, contain 

two or more zero components. Appropriately modified versions of these indexes are then 

used to generate alternative sets of weights for the purpose of implementing Hill’s (1999) 

minimum spanning tree approach to multilateral international comparisons on the basis of 

each of two cross-sectional data sets produced by the United Nations International 

Comparison Project. 

 

 

JEL Classification Numbers: C1, C43, C81. 

 

Key Words: international comparisons; index numbers; similarity measures; axiomatic 

approach. 
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1. Introduction 

Robert Hill (1999a,b) introduced a new method for making multilateral 

international comparisons of relative purchasing power that “provides a path by which to 

chain over space that involves the minimum number of binary comparisons to link all 

countries in a comparison” (Heston et al., 2001, p. 9). The idea behind this approach is 

that n ≥ 2 countries can be compared in the same way as n time periods—viz. by chaining 

with respect to a superlative bilateral index such as the Fisher ideal—if an appropriate 

path can be found among the former that is analogous to the natural (linear) ordering of 

the latter. The notion that two non-adjacent time periods are best compared by chaining 

appropriate binary comparisons along the (sub-)path that connects them derives from the 

fact that adjacent time periods tend to be more similar in terms of the structure of their 

associated commodity baskets. Thus chaining provides a way to smooth the transition 

between two relatively dissimilar commodity baskets thereby improving the soundness of 

the corresponding comparison. The justification for this claim stems from the fact that the 

Paasche and Laspeyres indexes, which provide lower and upper bounds on the associated 

“true” cost-of-living index, will be close to one another if the underlying commodity 

baskets are similar. Consequently, such similarity “will lead to a very close 

approximation to the cost-of-living index” (Diewert, 1983, pp. 186–87). 

 Hill’s (1999a,b) method constructs the minimum-spanning tree (MST) of a 

weighted connected graph with vertices corresponding to a bloc of countries and weights 

given by the Paasche-Laspeyres spreads among these countries. This choice of weights is 

supposed to reflect the pairwise degrees of similarity among the associated commodity 

baskets; i.e., the bigger is the difference between the Paasche and Laspeyres (price or 

quantity) indexes for a pair of countries, the more dissimilar are the associated 

commodity baskets. According to Diewert (2002, p. 2), 

[t]he problem with this measure of dissimilarity in the price [or quantity] 
structures of the two countries is that we could have [equality between the 
Paasche and Laspeyres numbers] (so that the Hill measure would register a 
maximal degree of similarity) but [the price or quantity vector of one 
country] could be very different [from that of the other]. Thus there is a 
need for a more systematic study of similarity (or dissimilarity) measures 
in order to pick the “best” one that could be used as an input into 
Hill’s (1999a,b) spanning tree algorithm for linking countries. 
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Diewert (2002) then proceeds to provide just such a study by taking an axiomatic 

approach to both absolute indexes of quantity dissimilarity and relative indexes of price 

dissimilarity. The former regards the per-capita quantity vectors of two countries as 

being dissimilar if they are unequal, whereas the latter regards the price vectors of two 

countries as being dissimilar if one is not a positive scalar multiple of the other; i.e., if 

relative prices are not the same in both countries. The bottom line with respect to the 

analysis of absolute indexes of quantity dissimilarity is that two specific functional forms, 

the asymptotically linear and the asymptotically quadratic (defined below), give rise to 

the “preferred measures of absolute quantity dissimilarity [because] [t]hese indexes 

satisfy all of the important axioms” (Diewert, 2002, p. 22). 

From a practical perspective, the weak point of this analysis is that the values of 

the preferred indexes of absolute dissimilarity go to infinity as any of their (per-capita) 

quantity arguments goes to zero. Consequently, neither of these indexes can distinguish 

between two quantity vectors that, between them, contain two or more zero components. 

This problem can be attributed to the fact that both indexes compute component-level 

degrees of dissimilarity between two quantity vectors in ratio terms. A possible 

alternative measure in absolute difference terms can only be invariant to changes in the 

units of measurement of the quantities at the cost of not being an increasing function of 

any given quantity when its counterpart is zero; i.e., given country i’s per-capita quantity 

vector xi := (xi1, …, xim)T m
+ℜ∈  and country j’s per-capita quantity vector 

xj := (xj1, …, xjm)T m
+ℜ∈ , the ℓth component measure 
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d defined by (1) would be ruled out by Diewert (2002, p. 7). Besides, since this d goes to 

infinity as (xiℓ, xjℓ) goes to (0, 0), the associated D is unable to distinguish between 

quantity vectors that have two or more corresponding zero components. 

The present paper solves the zero-component problem by first defining a 

hyperextended-real range for d and D in terms of transfinite ordinal numbers. The 

mathematical foundations of this definition are developed in Section 2. Section 3 re-casts 

Diewert’s (2002) study of absolute dissimilarity measures in terms of hyperextended-real 

analysis and shows that his (suitably re-defined) preferred indexes continue “to satisfy all 

of the important axioms.” Empirical illustrations of the MST method with weights given 

by these preferred indexes are the focus of Section 4. The sensitivity of the method with 

respect to the degree to which zero-components are allowed to influence the results is 

also shown. Section 5 offers some concluding remarks. 

 
2. To Infinity and Beyond 1 

The starting point for the solution to the zero-component problem is the definition 

of the hyperextended real number system. A brief review of the fundamentals of 

transfinite set theory is provided in advance of this definition. 

A set X is an ordered set with respect to an ordering relation �  if (i) for every 

pair of distinct elements x and x′ in X, either xx ′�  or xx �′ , and (ii) for every trio of 

distinct elements x, x′ and x″ in X, if xx ′�  and xx ′′′ � , then xx ′′� ; i.e., �  is transitive 

(Kamke, 1950, pp. 52–3). An ordered set X with an ordering relation X�  is said to be 

similar to an ordered set Y with an ordering relation Y�  if X can be mapped on Y so that 

if x ∈ X corresponds to y ∈ Y and x′ ∈ X corresponds to y′ ∈ Y, then xx X ′�  implies 

yy Y ′�  (p. 55). An order type µ refers to an arbitrary representative X of a class of 

mutually similar ordered sets. The order type of the set of natural numbers, ordered 

according to increasing magnitude, is denoted by ω (p. 57). An ordered set X is well-

ordered if it and all of its nonempty subsets have a first element with respect to the 

associated ordering relation �  (p. 79). An ordinal number is an order type that is 

represented by well-ordered sets (p. 80). 

                                                 
1 Quote from Lasseter (1995) suggested by an anonymous seminar participant. 
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The first transfinite ordinal number is the order type of the set of all (finite) 

ordinal numbers preceding it; i.e., the order type of the set of all natural numbers 

ℑ := {0, 1, 2, …}, which is ω. This ordinal number is essentially different from those 

preceding it because, being a limit number, it has no immediate predecessor. However, as 

with every ordinal number, ω has an immediate successor: ω + 1. Then comes ω + 2, etc., 

leading to the sequence of ordinal numbers 

0, 1, 2, …, ω, ω + 1, ω + 2, … . 

Since this sequence has order type ω + ω =: ω · 2, the ordinal number following it is 

ω · 2. The successor to this number is ω · 2 + 1, which is followed by ω · 2 + 2, …, ω · 3; 

etc. Thus the beginning of the sequence of ordinal numbers is 

0, 1, 2, …, ω, ω + 1, ω + 2, …, ω · 2, ω · 2 + 1, …, ω · z, ω · z + 1, … (z ∈ ℑ). 

Since this sequence has order type ω · ω =: ω2, the ordinal number following it is ω2. 

This number is followed by ω2 + 1, ω2 + 2, …, ω2 + ω, …—in general, all ordinal 

numbers of the form ω2 + ω · z1 + z0, where z0 and z1 are in ℑ. Since the sequence of these 

ordinal numbers has order type ω2 · 2, this is the ordinal number that follows it. 

Continuing in this manner yields all ordinal numbers that can be written in “polynomial” 

form: 

ωk · zk + ωk – 1 · zk – 1 + … + ω · z1 + z0 , 

where k and zk, zk – 1, …, z1, z0 are in ℑ, and ωt · 1 ≡ ωt and ωt · 0 ≡ 0 for any t ∈ ℑ 

(Kamke, 1950, pp. 98–9). 

Define the term hyperextended (non-negative) real number to mean a number that 

can be expressed as the sum of a (finite or transfinite) ordinal number and a real number 

that is greater than or equal to zero and strictly less than one. Define the set of all such 

numbers, the hyperextended real number system,2 denoted by ℜ∗, as the sum of the set of 

all ordinal numbers, denoted by ℑ∗, and the half-open unit interval [0, 1) ⊂ ℜ; i.e., 

ℜ∗ := {µ + λ : µ ∈ ℑ∗, λ ∈ [0, 1)} . 

 

                                                 
2 The extended real number system normally refers to the set  ℜ ∪ {ω, –ω}. See, for example, 
Rudin (1976, pp. 11–12) 
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3. Hyperextended Real Analysis of Absolute Dissimilarity Indexes 

The focus of this section is the translation of Diewert’s (2002) axiomatic 

framework for absolute dissimilarity indexes into one in which the domain of these 

indexes is m2
+ℜ  instead of m2

++ℜ  and the range is ℜ∗ instead of ℜ+. To this end, let xi and 

xj be non-negative per-capita quantity vectors, and let D(xi, xj) be the image of an absolute 

dissimilarity index *
2: ℜ→ℜ+

mD . Analogous to Diewert’s (2002, §5) axioms B1–B8, 

desirable properties for D include 

(i) non-negativity: D(xi, xj) ≥ 0; 

(ii) identity: D(xi, xj) = 0 if and only if xi = xj ; 

(iii) symmetry: D(xi, xj) = D(xj, xi); 

(iv) commensurability: D(xi, xj) = D(âxi, âxj) for all a := (a1, …, am)T m
++ℜ∈ , where â is 

the m × m diagonal matrix with âℓℓ  = aℓ ; 

(v) monotonicity: D(xi, xj) is increasing in xjℓ  for each ℓ ∈ {1, …, m} =: M if 

xj ≥ xi >> 0; 

(vi) continuity: D is a continuous function on 
m2
++ℜ ; 

(vii) ordering invariance: D(xi, xj) = D(Ĩm xi, Ĩm xj) for any permutation of the columns of 

the m × m identity matrix Ĩm ; and 

(viii) additive separability: D(xi, xj) = �� ��
),( ji xxd  for some function *

2: ℜ→ℜ+d . 

An additional desirable property for D is 

(ix) triangle inequality: D(xi, xj) ≤ D(xi, xk) + D(xk, xj), where xk 
m
+ℜ∈ . 

Any D that satisfies (ix) in addition to (i), (ii) and (iii) is a metric on m
+ℜ . As such, it 

possesses the most important properties of ordinary distance and is therefore a relatively 

intuitive measure of absolute dissimilarity. 

Let M k := {ℓ : xkℓ  > 0} be the set of commodities for which the associated 

country-k quantities are positive, and let kM  := {ℓ : xkℓ  = 0} be the set of commodities 

for which the associated country-k quantities are zero.3 The difference between the 

cardinality of the union and the cardinality of the intersection of the latter set for k = i and 

                                                 
3 Clearly, .MMM kk ≡∪  
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k =  j is the number of commodities with associated zero-positive (or positive-zero) 

quantity pairs with respect to countries i and j. Each of these pairs is assigned the 

(transfinite ordinal) value ω, which corresponds to the ratio of the positive quantity to the 

zero quantity. Accordingly, the asymptotically linear and asymptotically quadratic 

indexes of absolute dissimilarity are defined, respectively, for t = 1 and t = 2, as 
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Note that the upper bound on Dt(xi, xj) of ω · m is achieved whenever the two per-capita 

baskets have no commodities in common but together cover all m of them, and the lower 

bound of 0 is achieved whenever the two baskets are identical. 

THEOREM. Dt(xi, xj) satisfies properties (i)–(viii) but not (ix). Hence Dt(xi, xj) is not a 

metric on m
+ℜ . 

The proof of this theorem can be found in the appendix. 

 Because the domain of D is 
m2

+ℜ , property (vi) is clearly a weak continuity 

requirement. Since 
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+++++ ℜ⊃ℜ×ℜ  as well. Dt is not a 

continuous function on 
mmm

+++++++ ℜ×ℜ⊃ℜ //
2 , however, due to the existence of a 

discontinuity at each pair of baskets with one or more corresponding zero components; 

e.g., (0, 0). To see that this is so, let xj := âxi ∈ m
++ℜ  for some a := (a1, …, am)T ≠ 

(1, …, 1)T and take the limit of Dt(xi, xj) as xi approaches zero: 
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That a discontinuity exists with respect to two baskets with corresponding zero quantities 

is not too surprising given that such pairs represent, in effect, comparisons at a lower 
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dimensionality than those involving two baskets with fewer or no corresponding zero 

quantities. 

The indexes defined by (3) assume implicitly that the degrees of dissimilarity 

between corresponding positive components of xi and xj are equally important by giving 

them equal weight.4 This sort of assumption is not justifiable in many applications, which 

often call for weights that reflect the economic importance of the relevant commodities. 

In the present context, this can be done most appropriately by using the expenditure 

shares in the two countries. Thus, following Diewert (2002, p. 19), the weighted 

asymptotically linear and weighted asymptotically quadratic indexes of absolute 

dissimilarity are defined, respectively, for t = 1 and t = 2, as 

( ) ,11),( �
∩∈ �

�

�

�

�
�

�

�

�
�
�

	




�

�
−+

�
�

�

	






�

�
−+∩−∪⋅=

ji MM

t

i

j
t

j

iij
jijijit x

x
x
x

sMMMMxxD
� �

�

�

�

�
ω   (4) 

where 

�
�

�

�

�
�

�

�

⋅
+

⋅
=

jj

jj

ii

iiij

xp
xp

xp
xp

s ����

� 2
1:            (5) 

is the mean expenditure share of countries i and j on commodity ℓ. Note that (4) with the 

weights ijs
�

 replaced by 1 / m is the same as (3). 

The indexes defined by (4) can be given a statistical interpretation as follows: 

Define the absolute dissimilarity of the ℓth quantity ratio between countries i and j as 
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Now define Dij to be the discrete random variable that takes on the values { }mijd 1=��
 with 

probabilities { }mijs 1=��
. Note that [ ]1,0∈ijs

�
 and � =

� �
1ijs . Thus the expected value of Dij 

is 

                                                 
4 The weights given to corresponding non-positive components of xi and xj are a non-issue since 
the associated measures of dissimilarity are either zero or infinity. 
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where the last equality follows by (4) since ωω =ijs
�

. Consequently, as pointed out by 

Diewert (2002, p. 20), Dt(xi, xj) can be interpreted as 

the expected value of the absolute dissimilarities of the quantity ratios 
between the two countries, where the m discrete quantity dissimilarities, 
[ ijd

�
defined by (6)], are weighted according to Theil’s (1967, p. 138) 

probability weights, [ ijs
�

defined by (5)] for ℓ = 1, …, m. 

 
4.  Empirical Illustrations and Sensitivity Analysis 

Consider a bloc of n ≥ 2 countries indexed by the set N := {1, …, n} with positive 

country-specific price vectors p1, …, pn and non-negative per-capita quantity vectors 

x1, …, xn, each corresponding to a common set of well-defined types of goods and 

services M. Hill’s (1999a,b) MST method would measure the purchasing power 

parity (PPP) between any pair of countries in such a bloc as the product of the Fisher 

price indexes along a pre-determined path connecting these countries (via zero, one or 

more of the other countries). The pre-determined path within the bloc is supposed to 

correspond to the minimum total dissimilarity among the commodity baskets of the 

constituent countries subject to the constraint that there is a unique connection between 

each pair. More precisely, the MST PPP index for country i ∈ N relative to country j ∈ N 

is defined as the chain of Fisher price indexes across the minimum spanning tree T of the 

weighted connected graph G of order n with vertices N and weights (Dij); i.e., 

,tj
F

hk
F

ih
F

ij
MST ρρρρ �=  

where h, k, …, t ∈ N, ih, hk, …, tj are edges in T, and ( ) 2
1

: ij
P

ij
L

ij
F ρρρ = , ij

Lρ  := pi
Txj / pj

Txj 

and ij
Pρ  := pi

Txi / pj
Txi are, respectively, the Fisher, Laspeyres and Paasche price indexes 

for country i relative to country j. 
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The weights used by Hill (1999a,b) to construct T are the Paasche-Laspeyres 

spreads ( )ij
PLSD , where 

 ( )ij
P

ij
L

ij
PLSD ρρln:=  .5 

An implication of the results of the preceding section is that a better choice would be 

( )ij
tD , where ij

tD  is the weighted asymptotically linear (if t = 1) or weighted 

asymptotically quadratic (if t = 2) index of absolute dissimilarity given by (4). An 

empirical issue that arises from this choice relates to the precise treatment of zero-

positive quantity pairs. In cases where the corresponding positive (mean) expenditure 

share is sufficiently small, it would be undesirable to treat the positive quantity as such 

because doing so would allow a relatively unimportant commodity to have a 

disproportionately large impact (+ω) on the overall dissimilarity measure. A sensitivity 

analysis with respect to the magnitude of such a zero-quantity share cutoff is incorporated 

in the empirical illustrations below. 

The bases for these illustrations are the 1980 and 1985 cross-sectional data sets 

produced by the United Nations International Comparison Project (ICP) and made freely 

available at the Center for International Comparisons Web site (pwt.econ.upenn.edu). 

The category PPPs and per-capita expenditures (in national currency units) of the major 

aggregate called “Private Final Consumption Expenditure”6 for the forty-two countries 

that are common to both data sets were extracted and used to construct suitable price and 

per-capita quantity vectors7 for the two years.8 These price and quantity vectors were then 

used to construct five different sets of dissimilarity measures for each year: three based 

on the weighted asymptotically linear index with imposed zero-quantity share cutoffs of 

0.005, zero and one; one based on the weighted asymptotically quadratic index with an 

imposed zero-quantity share cutoff of 0.005; and one equal to ( )ij
PLSD . Kruskal’s (1956) 

                                                 
5 Note that ij

P
ij
L

ij
P

ij
L φφρρ /= , where ij

Lφ  := pj
Txi / pj

Txj and ij
Pφ  := pi

Txi / pi
Txj are, respectively, the 

Laspeyres and Paasche (per-capita) quantity indexes for country i relative to country j. 
6 Excluding the category “Net Purchases Abroad” to avoid the possibility of negative quantities. 
7 The former by dividing each category PPP by the corresponding U.S. value, and the latter by 
dividing each category per-capita expenditure multiplied by 1,000 by the corresponding element 
of the former. U.S.-dollar exchange rates were used in lieu of prices that could not be constructed 
due to missing category PPPs. 
8 The dimensionality of these vectors (m) is 107 for 1980 and 112 for 1985. 
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algorithm was then applied to G with each set of dissimilarity weights in turn to generate 

ten different MSTs. 

Kruskal’s (1956) algorithm begins by choosing an edge in G of minimum weight; 

i.e., arg min ij{Dij : i < j, i ∈ N \{n}, j ∈ N \{1}} ∈ T. Successive edges with progressively 

higher weights are examined and chosen if and only if doing so induces an acyclic 

subgraph of G. The algorithm stops once n – 1 edges have been selected. 

The five MSTs for 1980 are depicted in Figure 1 and panel (a) of Figure 3, and 

the five MSTs for 1985 are depicted in Figure 2 and panel (b) of Figure 3. The vertices of 

each T therein are labelled with the appropriate ISO 3166(-1) A2 (two-letter Internet) 

country codes.9 Panel (a) of each of Figures 1 and 2 shows the weighted asymptotically 

linear T with a zero-quantity share cutoff of 0.005, which means that any zero-positive 

quantity pairs with corresponding positive expenditure shares of half a percent or less 

were treated as if they were zero-zero quantity pairs. In Figure 1(a), the black lines 

indicate the edges of the relevant T. In Figure 2(a), the black lines indicate the edges that 

are also in Figure 1(a), and the grey lines indicate the edges that are not. The 

preponderance of grey lines therein (28 out of 41) illustrates what “Hill and others have 

noted, [namely that] the spanning tree will not necessarily be stable over time” (Heston et 

al., 2001, p. 10). 

Panel (b) of each of Figures 1 and 2 shows the weighted asymptotically linear T 

with a zero-quantity share cutoff of zero, which means that all zero-positive quantity 

pairs were treated as such. Panel (c) shows the weighted asymptotically linear T with a 

zero-quantity share cutoff of one, which means that all zero-positive quantity pairs were 

treated as if they were zero-zero quantity pairs. Panel (d) shows the weighted 

asymptotically quadratic T with a zero-quantity share cutoff of 0.005. Figure 3 shows the 

MSTs that result from using the Paasche-Laspeyres spreads as weights. 

                                                 
9 AT = Austria, BE = Belgium, BW = Botswana, CA = Canada, CI = Côte d’Ivoire, CM = 
Cameroon, DE = West Germany, DK = Denmark, ES = Spain, ET = Ethiopia, FI = Finland, FR = 
France, FY = Former Yugoslavia, GR = Greece, HK = Hong Kong, HU = Hungary, IE = Ireland, 
IN = India, IT = Italy, JP = Japan, KE = Kenya, KR = South Korea, LK = Sri Lanka, LU = 
Luxembourg, MA = Morocco, MG = Madagascar, ML = Mali, MW = Malawi, NG = Nigeria, 
NL = Netherlands, NO = Norway, PH = Philippines, PK = Pakistan, PL = Poland, PT = Portugal, 
SN = Senegal, TN = Tunisia, TZ = Tanzania, UK = United Kingdom, US = United States, ZM = 
Zambia, and ZW = Zimbabwe. 
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The black lines in each of panels (b), (c) and (d) of Figures 1 and 2 indicate the 

edges that are also in panel (a) of the same figure, and the grey lines indicate the edges 

that are not. Similarly, the black lines in Figures 3(a) and 3(b) indicate the edges that are 

also in Figures 1(a) and 2(a), respectively, and the grey lines indicate the edges that are 

not. Thus the proportions of grey relative to black lines in these figures illustrates the 

sensitivity of the MST method to the various choices of dissimilarity weights. With 

respect to the weighted asymptotically linear indexes, iterative application of 

Kruskal’s (1956) algorithm to G with different zero-quantity share cutoffs yielded the 

range of such variation over which the associated T  is affected. These ranges of variation 

are specified by the cutoff values stated in the captions for panels (b) and (c) of Figures 1 

and 2. 

Despite the fact that the details of the structure of T vary considerably with 

respect to the choice of dissimilarity weights, certain general characteristics do not. In 

particular, there is a strong tendency for the countries that have a high data-quality rating 

in Summers and Heston’s (1984, pp. 259–60; 1991, pp. 363–6) estimation to form a sub-

tree within T, and for the countries that have a low data-quality rating to do so as well. 

Figures 1(b), 2(a) and 2(d) are the best examples of this tendency since, in each case, all 

of the “A”- and “B”-rated countries form a sub-tree that is connected to another sub-tree 

comprised of all the “C”- and “D”-rated countries (via the GR-NG edge in the former 

case, and the GR-MA edge in the latter two).10 Thus Heston et al.’s (2001, p. 8) notion 

that the MST “approach may help overcome some of the problems of quality control that 

have been difficult in spatial comparisons” is grounded to some extent in empirical fact. 

 
5. Concluding Remarks 

Heston et al. (2001, p. 9) suggested that “[o]ne could modify [the] EKS [method] 

to recognize the likely systematic differences in data quality or item qualities across 

countries.” Since, as shown above, there is a tendency for countries of similar data quality 

to form clusters under the MST approach based on an appropriate index of absolute 

dissimilarity, it would seem that this method is a good candidate for effecting such a 

                                                 
10 Note that Summers and Heston (1984; 1991) give India, Pakistan, the Philippines and Sri 
Lanka a “B” rating for 1980 and a “C” rating for 1985. 
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modification. For example, the PPPs among the countries in the low-quality cluster(s) 

could be determined by chaining with respect to the Fisher ideal index along the paths 

prescribed by the MST, whereas the PPPs among the countries in the high-quality 

cluster(s) could be determined using the EKS method thereby overruling the binary links 

within the associated sub-tree(s). The MST would also prescribe the binary link(s) 

between the high-quality cluster(s) and the low-quality cluster(s) thereby facilitating the 

calculation of the relevant cross-cluster PPPs. The resulting set of PPPs for the bloc as a 

whole would therefore be typed as an MST-EKS hybrid. 

By providing a solution to the zero-component problem with respect to 

Diewert’s (2002) preferred indexes of absolute dissimilarity, the present paper enables 

the calculation of these indexes on the basis of real-world data sets, within which the 

presence of zero quantities is not uncommon. By extension, the MST method using such 

index numbers as weights is also enabled. There is, however, a proviso to this assertion 

implicit in the empirical illustrations of the preceding section. The basis for these 

illustrations is a sub-aggregate of GDP rather than GDP itself because the latter includes 

possibly negative quantities associated with net foreign expenditures—quantities that do 

not fit within the absolute-dissimilarity-index framework. The problem here is that the 

preferred indexes therein compute component-level degrees of dissimilarity between two 

quantity vectors in ratio terms so that corresponding components with opposite signs 

maintain the same (negative) ratio as their absolute values are increased proportionately. 

Thus larger differences between such components do not register as larger measures of 

dissimilarity. The solution to this problem awaits further research. 
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F igure 1 .— 42- C ountr y M inim u m  Spa nning Tree s for 1980  
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F igure 2 .— 42- C ountr y M inim u m  Spa nning Tree s for 1985  
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F igure 3 .— 42- C ountr y M inim u m  S pa nning Tree s Us ing  P aasc he-
Laspeyres S preads  
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