Maximizing the use of solar energy to radically reduce the energy needs of housing

Ian Beausoleil-Morrison

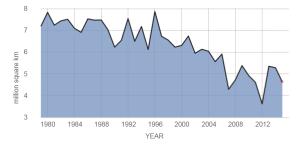
Faculty of Engineering and Design Carleton University Ottawa, Canada

Stewart Center, Purdue University | July 11-14, 2016

Passive+active solar 000000000000000 Seasonal storage of solar thermal ener

Concluding remarks

Climate change

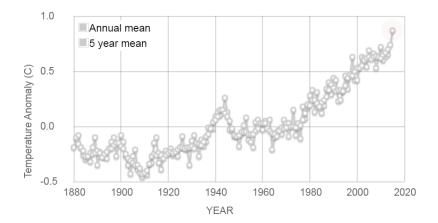

AVERAGE SEPTEMBER EXTENT

Data source: Satellite observations. Credit: NSIDC

RATE OF CHANGE

↓ 13.4 percent per decade

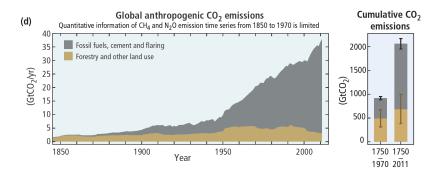
Source : NASA


Passive+active solar

Seasonal storage of solar thermal ene

Concluding remarks

Climate change


Data source: NASA's Goddard Institute for Space Studies (GISS). Credit: NASA/GISS

Seasonal storage of solar thermal energy

Concluding remarks

Energy consumption is driving climate change

Source: Climate Change 2014: Synthesis Report, AR5, Intergovernmental Panel on Climate Change, 2015.

Seasonal storage of solar thermal ener

Concluding remarks

COP21 : The "Paris Agreement"

Goal

- Limit global warming to less than 2°C above pre-industrial levels.
- Pursue efforts to limit warming to 1.5°C.

Seasonal storage of solar thermal ener

Concluding remarks

COP21 : The "Paris Agreement"

Goal

- Limit global warming to less than 2°C above pre-industrial levels.
- Pursue efforts to limit warming to 1.5°C.

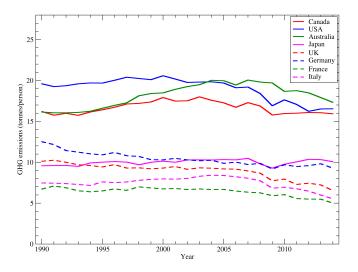
Approach

- Each country commits to emissions reductions.
- Reach peak global GHG emissions as soon as possible.
- Balance sources by sinks by 2nd half of 21st century.

Intended Nationally Determined Contributions

- Each country makes its own commitment and plan.
- Plans to be updated every 5 years.
- Ambitions to be "enhanced" with each successive plan.

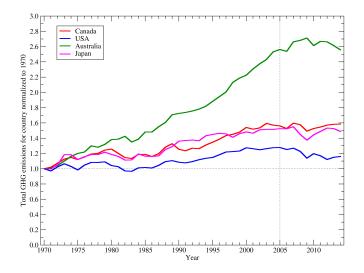
Some current INDCs:


- Canada : 30% reduction from 2005-2030.
- USA : 26-28% reduction from 2005-2025.
- EU : 40% reduction from 1990-2030.
- Japan : 26% reduction from 2013-2030.
- Australia : 26-28% reduction from 2005-2030.
- India : 33-35% reduction in emissions/GDP from 2005-2030.
- China : Peak emissions by 2030.

Motivation

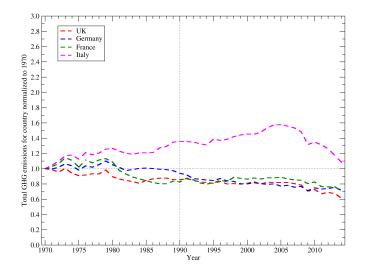
Seasonal storage of solar thermal ene

Concluding remarks


Progress on a per capita basis

Data source : Trends in Global CO_2 Emissions, PBL Netherlands Environmental Assessment Agency, 2015

Concluding remarks

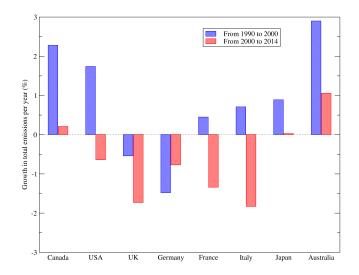

Progress on total emissions by country

Data source : Trends in Global CO2 Emissions, PBL Netherlands Environmental Assessment Agency, 2015

Concluding remarks

Progress on total emissions by country

Data source : Trends in Global CO2 Emissions, PBL Netherlands Environmental Assessment Agency, 2015


Motivation

assive+active solar

Seasonal storage of solar thermal ener

Concluding remarks

Who's on target to meet their INDCs ?

Data source : Trends in Global CO2 Emissions, PBL Netherlands Environmental Assessment Agency, 2015

On path to achieve Paris goal to limit warming to 2°C ?

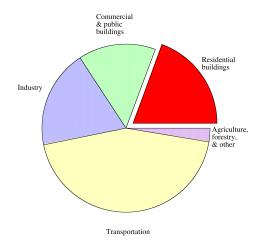
- Many (most) countries not on trajectory to achieve targets.
- Targets set in current INDCs not sufficient¹.
- Realistic to count on balancing sources with sinks by 2nd half of 21st century ?

 $^{^1}$ Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions, UN FCCC/CP/2015/7

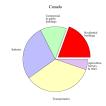
On path to achieve Paris goal to limit warming to 2°C ?

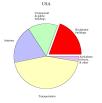
- Many (most) countries not on trajectory to achieve targets.
- Targets set in current INDCs not sufficient¹.
- Realistic to count on balancing sources with sinks by 2nd half of 21st century ?
- More ambitious approaches required to achieve declared targets.
- <u>And</u>, targets must be enhanced.
- How are we going to achieve this ?

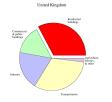
 $^{^1}$ Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions, UN FCCC/CP/2015/7

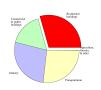

Motivation

Seasonal storage of solar thermal ener

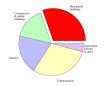

Concluding remarks

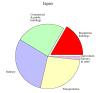

Total final consumption of energy



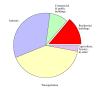


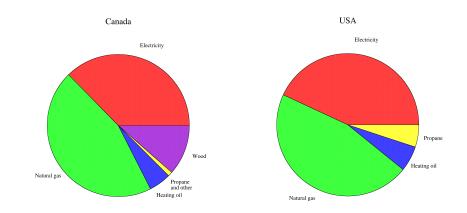
Data source : Energy Balances of OECD Countries, International Energy Agency, 2015.



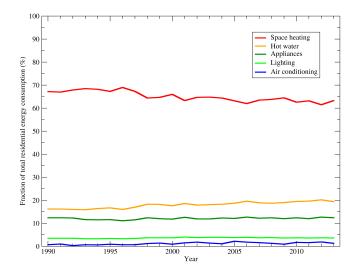

Germany

France




Italy

Houses predominantly use electricity and natural gas

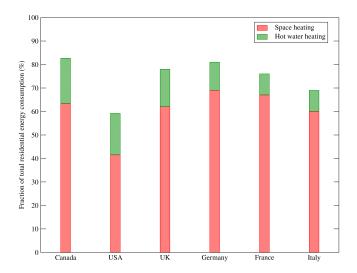


Data source : National Energy Use Database, Natural Resources Canada.

Data source : Residential Energy Consumption Survey, US Energy Information Administration.

- \sim 1/3 of all electricity consumed in houses.
- $\sim 1/3$ of all natural gas consumed in houses.

Trends in residential energy consumption (Canada)

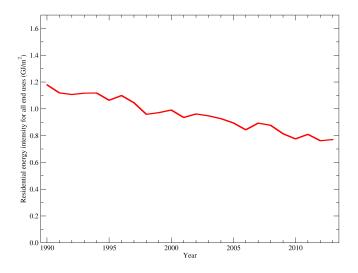


Data source : National Energy Use Database, Natural Resources Canada.

Seasonal storage of solar thermal ener

Concluding remarks

Heat demands dominant in housing

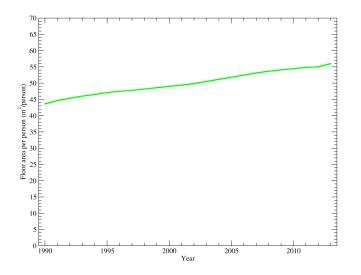

Data source : National Energy Use Database, Natural Resources Canada; Residential Energy Consumption Survey, US Energy Information Administration; Enerdata, ENTRANZE.

Motivation

Passive+active solar

Seasonal storage of solar thermal ener 000000000000000000 Concluding remarks

Canadian houses are becoming more energy efficient

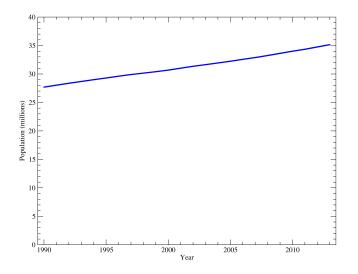

Data source : National Energy Use Database, Natural Resources Canada.

Motivation

Seasonal storage of solar thermal ener

Concluding remarks

...but we are living in bigger houses

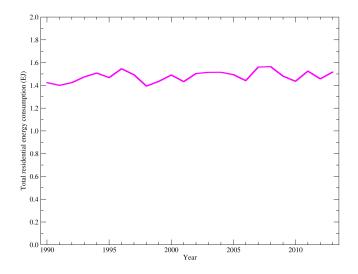


Data source : National Energy Use Database, Natural Resources Canada.

Seasonal storage of solar thermal ener

Concluding remarks

...and the population is growing



Data source : National Energy Use Database, Natural Resources Canada.

Seasonal storage of solar thermal energy

Concluding remarks

... Housing energy consumption still increasing

Data source : National Energy Use Database, Natural Resources Canada.

Summing up the current situation

- Energy consumption of housing sector significant.
- Important efficiency improvements have been made:
 - More stringent building codes.
 - Increased levels of insulation, more airtight envelopes, better windows.
 - More efficient electrical appliances and combustion devices.
- Efficiency gains offset by population growth and increased house size.
- Space and water heating needs still dominate.
- Electricity and natural gas principle energy sources.

Radical reduction in housing energy consumption needed—Possibilities

- Lifestyle changes :
 - Highler density living.
 - Fewer appliances.
 - Moderate thermal comfort expectations.
 - More efficient occupant behaviour.
- Enhanced efficiency :
 - More insulation, better windows, greater airtighness.
 - Improved combustion efficiencies.
 - Heat pumps to replace resistance heaters.
- Fuel switching :
 - Replace natural gas with electricity.
 - Only helpful if emissions-free generation added to grid.
- Maximize capture and use of solar energy to displace grid electricity and natural gas.

Passive+active solar

Seasonal storage of solar thermal ener

Concluding remarks

Solar options

1 Solar photovoltaics.

NIST Net Zero Energy Residential Test Facility

Seasonal storage of solar thermal energy

Concluding remarks

Solar options

1 Solar photovoltaics.

NIST Net Zero Energy Residential Test Facility

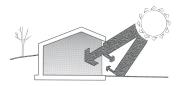
Seasonal storage of solar thermal energy

Concluding remarks

Solar options

1 Solar photovoltaics.

NIST Net Zero Energy Residential Test Facility


Passive solar.

3 Solar thermal.

Passive+active solar

Seasonal storage of solar thermal energy

Passive solar

Henderson and Roscoe, Solar Home Design Manual for Cool Climates, 2010.

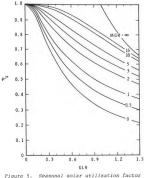
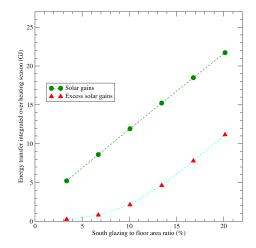


Figure 5. Seasonal solar utilization factor (room temperature swing = 2.75°C)

Sander and Barakat, Method for Estimating the Utilization of Solar Gain Through Windows, ASHRAE Transactions, 1983.

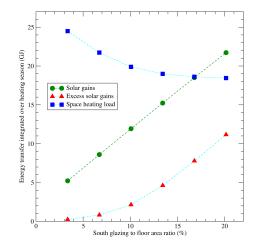
South-facing glazing area limited to protect against overheating : \sim 6% of floor area.


Motivation

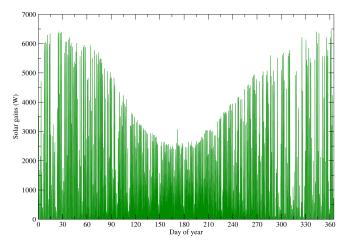
Passive+active solar

Concluding remarks

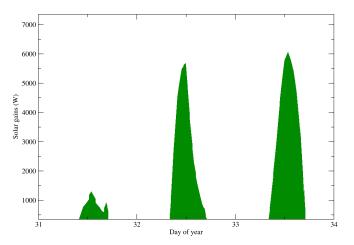
Additional passive solar gains could be beneficial


Passive+active solar

Seasonal storage of solar thermal ener

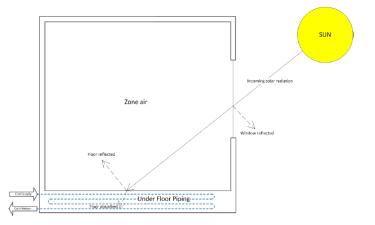

Concluding remarks

Additional passive solar gains could be beneficial


Need to manage excess passive solar gains

20 m² south-facing glazing

Need to manage excess passive solar gains

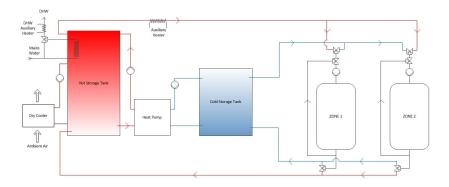


Passive+active solar

Seasonal storage of solar thermal ener

Concluding remarks

Hydronic floor as solar collector

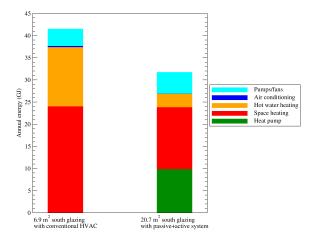


From Brideau (2016), PhD thesis, Carleton University.

Seasonal storage of solar thermal ener

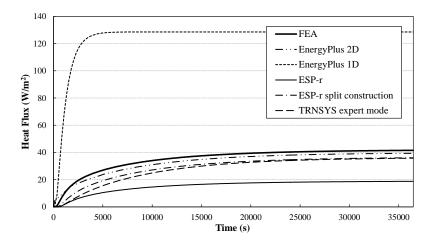
Concluding remarks

Passive+active solar system

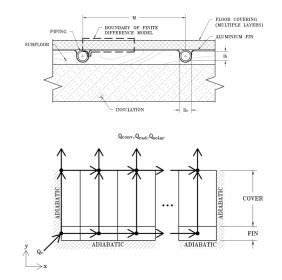

From Brideau, Beausoleil-Morrison, and Kummert (2015), Collection and storage of solar gains incident on the floor in a house during the heating season, IBPC 2015, Torino.

Motivation

Seasonal storage of solar thermal energy


Concluding remarks

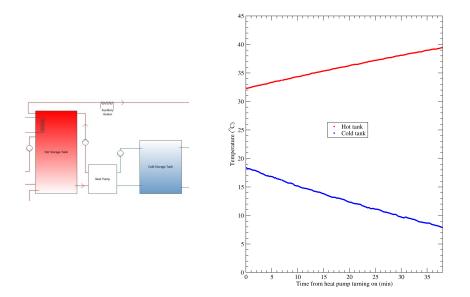
Potential energy savings (preliminary simulation predictions)


Results extracted from Brideau, Beausoleil-Morrison, and Kummert (2015), Collection and storage of solar gains incident on the floor in a house during the heating season, IBPC 2015, Torino.

Issues with existing radiant floor models in BPS tools

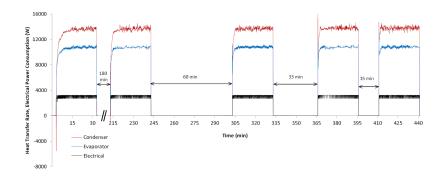
From Brideau, Beausoleil-Morrison, Kummert, Wills (2015), Inter-model comparison of embedded-tube radiant floor models in BPS tools, Journal of Building Performance Simulation.

New model for above-floor tube and plate radiant floors



From Brideau (2016), PhD thesis, Carleton University.

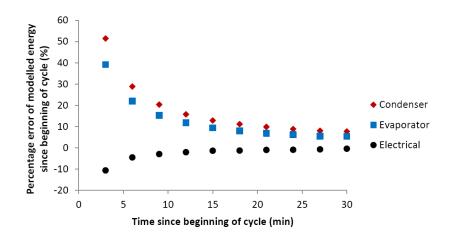
Seasonal storage of solar thermal ener


Concluding remarks

Heat pump cycling times

Concluding remarks

Heat pump transient effects important



From Brideau, Beausoleil-Morrison, Kummert (2016), Empirical model of a 11 kW (nominal cooling) R134a water-water heat pump, eSim 2016.

Seasonal storage of solar thermal ener

Concluding remarks

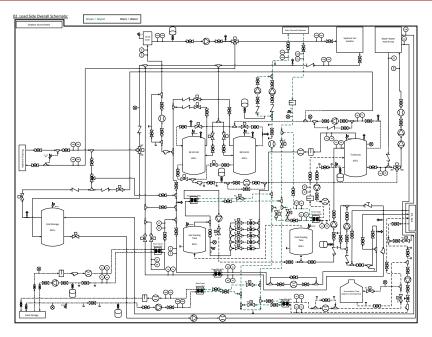
Transient heat pump model required

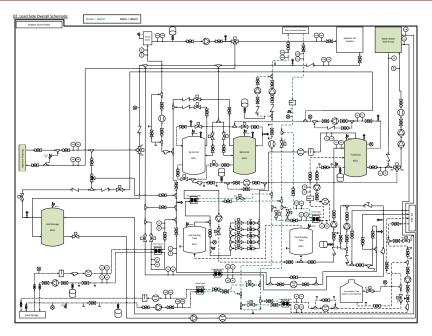
From Brideau, Beausoleil-Morrison, Kummert (2016), Empirical model of a 11 kW (nominal cooling) R134a water-water heat pump, eSim 2016.

Seasonal storage of solar thermal ener

Concluding remarks

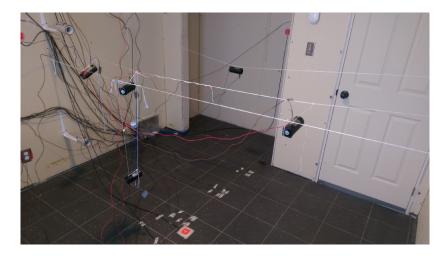
Full-scale experiments

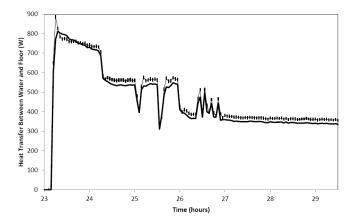



Seasonal storage of solar thermal energy

Concluding remarks

Above-floor tube and plate radiant floors




Concluding remarks

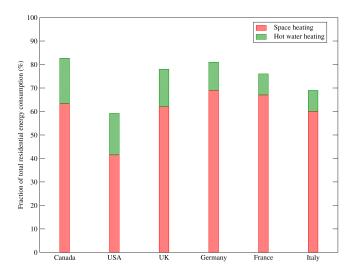
Empirical validation of radiant floor model

From Brideau (2016), PhD thesis, Carleton University.

Empirical validation of radiant floor model

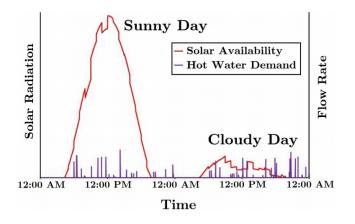
From Brideau (2016), PhD thesis, Carleton University.

Research plan for passive+active system

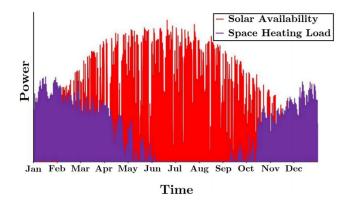

Current work

- Final commissioning tests of passive+active system underway.
- Measure impact of cold tank temperature on room heat extraction rate.
- Assess performance of complete system during summer and swing season.
- Verify component models from in-situ system performance.

Future work


- Examine control options.
- Establish appropriate volumes for hot and cold storage.
- Refine estimates of energy savings using BPS with validated/calibrated models.

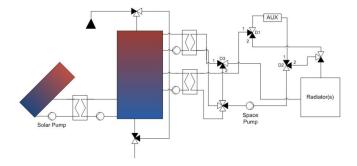
Solar thermal for space and water heating


Data source : National Energy Use Database, Natural Resources Canada; Residential Energy Consumption Survey, US Energy Information Administration; Enerdata, ENTRANZE.

Temporal mismatch between supply and demand

Source : Adam Wills (2013), Design and co-simulation of a seasonal solar thermal system for a Canadian single-family detached house, MASc thesis, Carleton University.

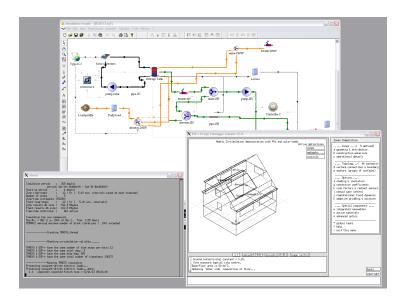
Temporal mismatch between supply and demand


Source : Adam Wills (2013), Design and co-simulation of a seasonal solar thermal system for a Canadian single-family detached house, MASc thesis, Carleton University.

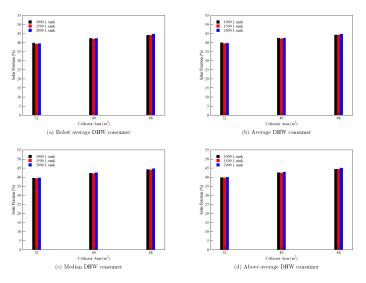
Motivation

Seasonal storage of solar thermal energy

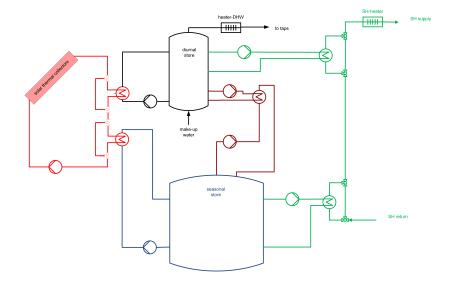
Concluding remarks

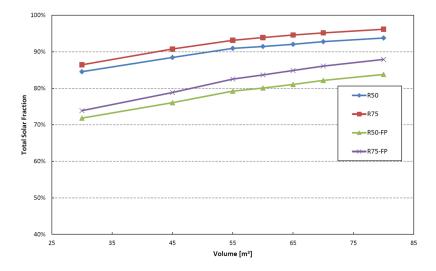

Combined solar heat and hot water heating

Source : Skai Edwards (2014), Sensitivity analysis of two solar combisystems using newly developed hot water draw profiles, MASc thesis, Carleton University.


Concluding remarks

ESP-r / TRNSYS co-simulation



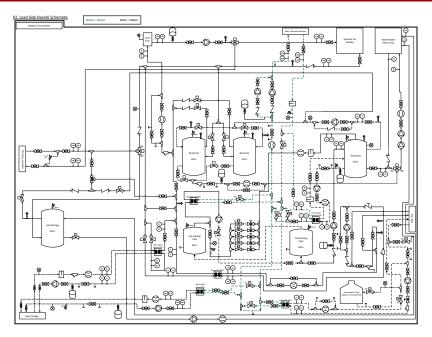

Concluding remarks

Seasonal storage required for high solar fractions

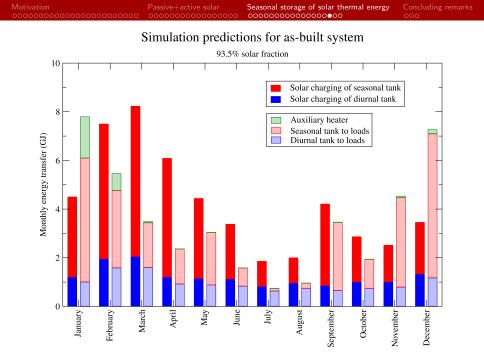
Source : Skai Edwards (2014), Sensitivity analysis of two solar combisystems using newly developed hot water draw profiles, MASc thesis, Carleton University.

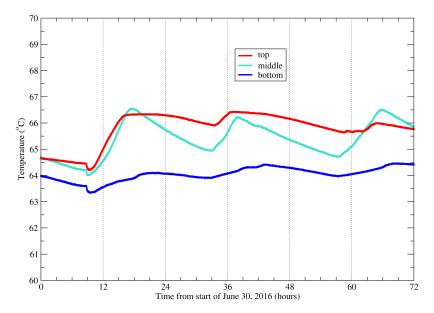
Concluding remarks

35 m³ burried seasonal store



Sand vs water storage





Measurements of seasonal tank charging

Research plan for seasonal storage

Current work

- Final commissioning of data acquisition and control system.
- Seasonal tank cool-down tests underway.
- Heat seasonal water store to 90°C by September.
- September through May heating season test to determine solar fraction and tank stratification.

Future work

- Examine control options.
- Sand store.
- Validate component models.
- Extrapolate performance using BPS.

Concluding remarks

- Radical reductions in housing energy consumption required if we are to meet climate change goals.
- More energy efficiency is necessary, but this alone will <u>not</u> be enough.
- Lifestyle changes necessary. (Bold policies)
- Fuel switching from natural gas to electricity might help, but only if emissions-free generation added to grid.
- Space and water heating dominate energy requirements of housing.

Concluding remarks

- We need more solar :
 - Photovoltaics.
 - Passive solar.
 - Active solar.
- Electrical grid stability will limit PV penetration rates without significant storage.
- Opportunities for increasing contribution of passive solar gains.
- Solar thermal systems can respond to most space and water heating needs, but seasonal storage required.
- Technical solutions to radically increase solar contribution possible, but :
 - Will <u>not</u> be simple.
 - Will <u>not</u> be cheap.

Seasonal storage of solar thermal energy

Concluding remarks

INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION

Abstracts due August 10.