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I. Introduction

S PACECRAFT formation flying is rapidly becoming a key space
technology, which increases the performance, the cost-effective-

ness, and the flexibility of an operational mission. Examples of
spacecraft formation-flying missions include GRACE [1], TanDEM-X
[2], and PRISMA [3]. Despite the success of these missions,
future formation-flying missions will have to satisfy increasingly
challenging functional and performance requirements in their guidance,
navigation, and control (GN&C) tasks. In particular, guidance and
control algorithms and their implementation must comply with limited
on-board processing resources and propellant. The guidance system is
responsible for calculating the desired relative motion trajectory to be
tracked by the control system during reconfiguration maneuvers
between the initial (current) and the desired (future) formation defined
by the user. In this paper, a simple, yet accurate and fuel-efficient,
guidance law for spacecraft formation flying is sought. More
specifically, this paper proposes a guidance law based on nonlinear
analytical equations of motion for J2-perturbed, eccentric orbits.
Furthermore, a guidance law is developed in such a way that it lends
itself easily to a proven impulsive control method—specifically the
impulsive controller from Schaub and Alfriend [4].
Although there are analytical solutions for the exact nonlinear

differential equations of relative motion in the local-vertical-local-
horizontal (LVLH) reference frame, these solutions have their
limitations as a result of imposing certain restrictions in their
derivations. The Hill–Clohessy–Wiltshire (HCW) model [5] is one
such example where the derived time-explicit closed-form analytical
solution is only valid for circular Keplerian orbits.Work by Sabol and
McLaughlin [6] used this model to demonstrate that the in-plane and
out-of-plane nondrifting relative motion about a circular Keplerian
orbit always follows an ellipse centered on the reference orbit.
To overcome the inherent limitations of the HCW model, some
formulations also take into account orbit perturbations, such as the
J2 perturbation. The J2 perturbation is particularly important in
formation flying because its secular effects on an orbit, that is, the
rotation of the line of apsides and precession of the line of nodes,
cause secular drift between two J2-perturbed spacecraft. The
introduction of J2 in a linearized set of equations, similar to the HCW

equations, has been proposed by Schweighart and Sedwick [7].
Specifically, the authors developed a set of linear, constant-coefficient,
second-order differential equations ofmotion by considering the orbit-
averaged impact of J2 on a circular reference orbit. An analytical
solution to these differential equations was also presented.
However, assuming a circular reference orbit yields considerable

errors when the eccentricity of the reference orbit increases. In fact, it
has been shown that the errors introduced in the HCWequations by
considering an elliptical reference orbit dominate the errors due to
ignoring J2 [8]. For this reason, several formulations have been
proposed to model the relative motion about unperturbed elliptical
orbits [9–11]. In particular, the linear-time-invariant (LTI) HCW
equations have been extended to arbitrary eccentricity by Inalhan
et al. [8] by formulating the dynamics as a linear-parameter-varying
(LPV) system. Such a dynamics model is especially well suited for
controller design purposes, by making use of LPV control techniques,
such as model predictive control [12]. Making use of the fact that the
orbit angular rate and the radius are functions of the true anomaly, these
equations can also be expressed using true anomaly derivatives instead
of time derivatives [13]. The resulting differential equations are also
time-varying, but are not parameter-varying because the true anomaly
has been used to formulate the derivatives. Solutions to these linear-
time-varying (LTV) equations are available in the literature in various
forms using different reference frames and variables. The first
derivation with singularities in the closed-form solution was provided
by Lawden [14]. Then, Carter [15] provided a set of solutions without
singularities. These homogenous solutions are extremely useful for
well-behavednumerical and analytical analysis on the shape, structure,
and optimization of passive apertures in eccentric reference orbits.
Interestingly, the same solutions can be obtained via incremental
changes in orbital elements, as demonstrated byMarec [16]. Lane and
Axelrad [17] developed a time-explicit closed-form solution and
studied the relative motion for bounded elliptical orbits. Melton [18]
also proposed an alternative solution for small eccentricity reference
orbits.Recentwork fromGuffanti et al. [19] approaches the problemof
analytical propagation of satellite relative motion in perturbed,
eccentric orbits using a relative orbital element state representation
augmented with force model parameters. The resulting formulations
capture the secular and long-periodic effects of the perturbations, but
average out the short-periodic effects. Recent work from Mahajan,
Vadali, and Alfriend has presented a sophisticated model for
analytically propagating relative motion with second-order short-
periodic and secular effects, and first-order long-periodic effects for
arbitrary zonal harmonics [20]. The same authors have alsoworked on
propagating spacecraft motion on arbitrary eccentricity orbits while
taking into account tesseral and sectorial spherical harmonics via the
Delaunay normalization of the perturbed Keplerian Hamiltonian [21].
A closed-form analytical solution that is valid for Keplerian

eccentric orbits was developed byGurfil andKholshevnikov [22,23].
This simple analytical solution explicitly parameterizes the relative
motion using classical orbital elements as constants of the unperturbed
Keplerian orbit, instead of Cartesian initial conditions. This concept,
originally suggested by Hill [24], has been widely used in the analysis
of relative spacecraft dynamics [25,26].
In view of the above, themain contribution of this paper consists in

the development of nonlinear, analytical equation of relative motion
that are applicable to J2-perturbed eccentric orbits. To do so, the
results of Gurfil and Kholshevnikov [22,23] are herein extended by
using J2-perturbed osculating orbital elements in the solution instead
of constant orbital elements. Specifically, J2-perturbed osculating
orbital elements are obtained by adding mean orbital elements to the
J2-induced short-periodic variations. The accuracy of this new
analytical solution will then validated through comparison with a
numerical simulator, and is compared with the accuracy of the
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original Gurfil and Kholshevnikov solution. Finally, this paper
develops a terminal-point guidance law based on the back-propagation
of these equations. The resulting guidance law is then validated in a
closed-loop guidance control scenario, demonstrating its efficiency in
terms of propellant consumption for a reconfiguration maneuver.
Although simpler thanmore sophisticatedmethodsbeing developed

for propagating perturbed relative motion analytically, this paper may
provide a slightly different viewpoint on developing relative motion
methodologies. Specifically, the methodology presented here lends
itself to a relative motion viewpoint involving relative distances, or
metrics, as thework is a direct continuation of themethod presented by
Gurfil and Kholshevnikov in their work on metrics [23]. Thus, a
contributionof thisNote is to demonstrate the effectiveness of thenewly
proposed analytical equations of relative motion, and to demonstrate
their use in a closed-loop-control scenario.
The remainder of this paper is organized as follows: Sec. II reviews

the original solution to the relative motion on eccentric orbits
problem proposed by Gurfil and Kholshevnikov [22,23], Sec. III
presents the newly developed analytical solution for relative motion
on J2-perturbed eccentric orbits, Sec. IV compares the accuracy of
the new solution with a numerical simulator, Sec. V presents the
use of the new equations in a terminal-point guidance system and
demonstrates the use of this guidance in a closed-loop control
simulation, and finally Sec. VI provides concluding remarks.

II. Gurfil and Kholshevnikov Solution

As previously mentioned, works by Gurfil and Kholshevnikov
[22,23] form the basis for the analytical solution derived herein. In their
work, the authors proposed a simple method of calculating the relative
position of a follower spacecraft with respect to a leader using orbital
elements. This allows the equations of relative motion to remain
accurate for arbitrarily largevalues of eccentricity. Todo so, consecutive
rotations and a translation are applied to obtain an analytical expression
for ρ, which denotes the components of the relative position vector in
the LVLH reference frame, denoted FL, that is

ρ � rL − r 0L (1)

where rL and r 0L, respectively, denote the components of the follower
and leader spacecraft position vector expressed in FL. In Eq. (1), the
termrL is obtained from rP, that is, its components in its perifocal frame,
FP, using three subsequent rotations in a 3-1-3 sequence as follows:

ρ � CLP 0 �ν 0� CP 0I�ω 0; i 0;Ω 0�CIP�ω; i;Ω�rP − r 0L 0 (2)

where i, ω, and Ω, respectively, denote the inclination, argument of
perigee, and right ascension of the ascending node of the spacecraft,
and the superscript fg 0 symbol refers to the leader spacecraft of the
formation, with the lack of this superscript indicating the follower. The
rotation matrices used in Eq. (2) are defined as follows:

CIP�ω; i;Ω� �

2
64
cΩcω − sΩsωci −cΩsω − sΩcωci sΩsi

sΩcω � cΩsωci −sΩsω − cΩcωci −cΩsi
sωsi cωsi ci

3
75
(3)

CP0I�ω0;i 0;Ω 0��

2
64

cΩ0cω 0 −sΩ 0sω0ci0 sΩ 0cω0 �cΩ0sω 0ci 0 sω 0si0

−cΩ 0sω0 −sΩ0cω 0ci 0 −sΩ0sω0 −cΩ0cω0ci 0 cω 0si0

sΩ0si 0 −cΩ0si0 ci0

3
75

(4)

CLP 0 �ν 0� �

2
64

cν 0 sν 0 0

−sν 0 cν 0 0

0 0 1

3
75 (5)

where the notations cx and sx represent the cosine and sine function of
the variable x, respectively, used here to keep the rotation matrices to a
manageable size. rP and r 0L are given by

rP � � r cos ν r sin ν 0 �T (6)

r 0L � � r 0 0 0 �T (7)

whereν denotes the true anomalyand r denotes theorbit radius obtained
from the orbit equation as follows:

r � a�1 − e2�
1� e cos ν

(8)

wherea denotes the semimajor axis, ande denotes the eccentricityof the
orbit. The orbit radius of the leader can be determined by using the
leader’s orbital elements in Eq. (8). Note that Eq. (2) can be written
component-wise and further simplified through theuseof relativeorbital
elements. For more details, the readers are referred to Refs. [22,23].

III. Analytical Relative Motion Solution on
J2-Perturbed Eccentric Orbits

For ease of use as a guidance law, the relative motion solution
should be described in a set of three analytical equations; one for each
direction of the local-vertical-local-horizontal reference frame FL.
From Eq. (2), the following set of three equations can be obtained:

x�t�� rcosν�k 01k1�k 02k4�k 03k7��rsinν�k 01k2�k 02k5�k 03k8�−r 0

y�t�� rcosν�k 04k1�k 05k4�k 06k7��rsinν�k 04k2�k 05k5�k 06k8�
z�t�� rcosν�k 07k1�k 08k4�k 09k7��rsinν�k 07k2�k 08k5�k 09k8� (9)

where the constants, denoted by k’s, are herein defined as

k1 � cosΩ cosω − sinΩ sinω cos i

k2 � − cosΩ sinω − sinΩ cosω cos i

k3 � sinΩ sin i

k4 � sinΩ cosω� cosΩ sinω cos i

k5 � − sinΩ sinω − cosΩ cosω cos i

k6 � − cosΩ sin i

k7 � sinω sin i

k8 � cosω cos i

k9 � cos i (10)

k 0
1 � cosΩ 0 cos u 0 − sinΩ 0 sin u 0 cos i 0

k 0
2 � sinΩ 0 cos u 0 � cosΩ 0 sin u 0 cos i 0

k 0
3 � sin u 0 sin i 0

k 0
4 � − cosΩ 0 sinu 0 − sinΩ 0 cos u 0 cos i 0

k 0
5 � − sinΩ 0 sin u 0 − cosΩ 0 cos u 0 cos i 0

k 0
6 � cos u 0 sin i 0

k 0
7 � sinΩ 0 sin i 0

k 0
8 � − cosΩ 0 sin i 0

k 0
9 � cos i 0 (11)

Note that u is the argument of latitude, defined as the sum of ν and
ω, which allows the matrices from Eqs. (4) and (5) to be combined
as follows:

CL 0I�u 0; i 0;Ω 0� �

2
64

cΩ 0cu 0 − sΩ 0su 0ci 0 sΩ 0cu 0 �cΩ 0su 0ci 0 su 0si 0

−cΩ 0su 0 − sΩ 0cu 0ci 0 −sΩ 0su 0 −cΩ 0cu 0ci 0 cu 0si 0

sΩ 0si 0 −cΩ 0si 0 ci 0

3
75

(12)
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Equation (9), along with definitions of constants previously defined,
is simply a more compact way of expressing the Gurfil and
Kholshevnikov solution presented in the previous section. This is an
exact solution for the relative position of a follower spacecraft inFL as
long as the orbital elements used in the calculation of this relative
position are accurate. Assuming that the orbital elements are constant
leads to an exact solution for relative position on Keplerian orbits. The
same equations can be applied with the J2-perturbed osculating orbital
elements to obtain a relative position solution that accounts for the J2
perturbation.
It should be noted that using Eq. (9) in this way implies that the

expressions inEqs. (10) and (11) are not truly constants, but functions
of time (this is not shown in the equations). Thismeans that theymust
be calculated at a given time to find the relative position, but they still
serve to help simplify the equations of relative position. The use of
J2-perturbed osculating orbital elements implies that the orbital
elements used to calculate each constant in Eqs. (10) and (11) are also
functions of time, but the �t� notation is omitted here to aid in the
readability of the expressions.
The J2-perturbed osculating orbital elements can be approximated

by adding the mean orbital elements to the time-varying short-
periodic variation of each element caused by J2, as follows:

a � �a� Δasp
e � �e� Δesp
i � �i� Δisp
ω � �ω� Δωsp

Ω � �Ω� ΔΩsp

M � �M� ΔMsp (13)

where �f g denotes the mean orbital element and Δfgsp denotes the
short-periodic variation of the element as a result of the J2
perturbation. In Eq. (13) the mean anomaly, denoted asM, is used in
place of true anomaly, but the values are closely related, and the true
anomaly can be found easily from themean anomaly aswill be shown
later in the paper. These expressions for the J2-perturbed osculating
orbital elements are not exact as there are higher-order effects on the
orbital elements caused by J2. For example, there are also long-
periodic variations. However, using the sum of the mean orbital
elements and these short-periodic variations is a reasonably accurate
method of accounting for the J2-perturbation in the short-term,
thereby balancing accuracy and complexity.
The mean semimajor axis, eccentricity, and inclination have no

secular variation caused by J2, and are therefore equal to their initial
mean values, that is, �a � �a0, �e � �e0, and �i � �i0, as well as �a 0 � �a 0

0,
�e 0 � �e 0

0, and
�i 0 � �i 0. The mean orbital motion and mean semilatus

rectum for each spacecraft, f �n; �pg and f �n 0; �p 0g for the follower and
leader spacecraft, respectively, are only functions of mean semimajor
axis and mean eccentricity, that is,

�n �
�����
μ

�a3

r
(14)

�p � �a�1 − �e2� (15)

The remaining mean orbital elements, f �ω; �Ω; �Mg and
f �ω 0; �Ω 0; �M 0g, can be propagated forward in time, from t0 to t, by
summing initial mean orbital elements with the J2-induced secular
variations, as follows:

�ω � �ω0 � _�ωt

�Ω � �Ω0 � _�Ωt

�M � �M0 � _�Mt (16)

where the secular variations due to J2 are given by [27]

_�ω � 1

2
�nJ2

�
Re

�p

�
2

�4 − 5sin2 �i� (17)

_�Ω � −
3

2
�nJ2

�
Re

�p

�
2

cos �i (18)

_�M � �n� 3

2
�nJ2

�
Re

�a

�
2 1

�1 − �e2�3∕2
�
1 −

3

2
sin2 �i

�
(19)

The short-periodic variations for each spacecraft are calculated as a

function of the osculating orbital elements, as follows [28]:

Δasp �
J2R

2
e

a

��
a

r

�
3

−
1

�1 − e2�3∕2 �
�
−
�
a

r

�
3

� 1

�1 − e2�3∕2

�
�
a

r

�
3

cos�2ω� 2ν�
�
3sin2i

2

�
(20)

Δesp �
J2R

2
e

4

�
−2

a2e
�������������
1 − e2

p � 2a�1 − e2�
er3

�
�

3

a2e
�������������
1 − e2

p

−
3a�1 − e2�

er3
−
3�1 − e2� cos�ν� 2ω�

p2
−
3 cos�2ν� 2ω�
a2e�1 − e2�

� 3a�1 − e2� cos�2ν� 2ω�
er3

−
�1 − e2� cos�3ν� 2ω�

p2

�
sin2i

�

(21)

Δisp �
J2R

2
e sin�2i�
8p2

�3 cos�2ω� 2ν� � 3e cos�2ω� ν�

� e cos�2ω� 3ν�� (22)

ΔΩsp �
J2R

2
e cos�i�
4p2

�6�ν −M� e sin ν� − 3 sin�2ω� 2ν�

− 3e sin�2ω� ν� − e sin�2ω� 3ν�� (23)

Δωsp�
3J2R

2
e

2p2

��
2−

5

2
sin2i

�
�ν−M�esinν�

�
�
1−

3

2
sin2i

��
1

e

�
1−

1

4
e2
�
sinν�1

2
sin�2ν�� e

12
sin�3ν�

�

−
1

e

�
1

4
sin2i�

�
1

2
−
15

16
sin2i

�
e2
�
sin�ν�2ω�� e

16
sin2isin�ν−2ω�

−
1

2

�
1−

5

2
sin2i

�
sin�2ν�2ω��1

e

�
7

12
sin2i−

1

6

�
1−

19

8
sin2i

�
e2
�

× sin�3ν�2ω��3

8
sin2isin�4ν�2ω�� e

16
sin2isin�5ν�2ω�

�

(24)

ΔMsp �
3J2R

2
e

�������������
1 − e2

p

2ep2

�
−
�
1 −

3

2
sin2�i�

���
1 −

e2

4

�
sin ν

� e

2
sin�2ν� � e2

12
sin�3ν�

�
� sin2i

�
1

4

�
1� 5

4
e2
�
sin�ν� 2ω�

−
e2

16
sin�ν − 2ω� − 7

12

�
1 −

e2

28

�
sin�3ν� 2ω�

−
3e

8
sin�4ν� 2ω� − e2

16
sin�5ν� 2ω�

��
(25)
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where the true anomaly can be calculated from the mean anomaly

as follows:

ν � tan−1

�������������
1 − e2

p
sinE

cosE − e
(26)

where

E � M� e sin�M� e sin�M� e sin�M�; ⋅ ⋅ ⋅;�e sin�M����
(27)

with the number of terms used in the approximation in Eq. (27) can be

adjusted to increase accuracy. Using these above expressions,

accurate approximations for the J2-perturbed orbital elements for

both a leader and follower spacecraft in formation are obtained

analytically, and used with Eq. (9) to find the relative position

between both spacecraft.

IV. Numerical Simulations

To verify the accuracy of the newly developed method of

calculating the relative position between two spacecraft, numerical

simulations are performed in MATLAB. The results obtained with

the analytical solution provided in this paper were compared with a

simulator that numerically integrates the exact, nonlinear differential

equations of motion in F I . Specifically, the simulator integrates, for

each spacecraft, the inertial two-body equations of motion to which

the J2 inertial perturbing acceleration is added. Both spacecraft

position vectors are then transformed into FL. Finally, the leader

position vector is subtracted from the follower position vector, to

obtain ρ. The simulator was initialized using, for both spacecraft,

the initial osculating orbital elements that were converted into

components of the initial position and velocity vectors in F I. The

exact same initial osculating orbital elements were also used to

initialize the proposed method of calculating relative position

outlined in the previous section. Unless otherwise specified in the

Fig. 1 Analytical solutions compared with numerical simulator for PROBA-3 example.
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captions of the subsequent figures (or in the text in the case of Fig. 1),

Table 1 presents the initial osculating orbital elements used for both

models (numerical simulator and analytical equations). The orbital

elements given in this table correspond to a simple in-plane elliptical

formation.

Each of the figures in this section presents three analytical

solutions for comparison with the numerical simulator. First, the

numerical simulator was compared with the original Gurfil and

Kholshevnikov equations without any modification, and therefore

with no attempt to account for the J2 perturbation. Second, the

numerical simulator is compared with the Gurfil and Kholshevnikov

solution using the initial mean orbital elements in the analytical

solution instead of initial osculating orbital elements. This is

accomplished by rearranging Eq. (13) to solve for the mean orbital

elements, or in other words by subtracting by the initial short

periodic variations caused by J2 [from Eqs. (20–25)] from the initial

osculating orbital elements. This represents a case in between

simply using the original Gurfil and Kholshevnikov equations and

propagating the J2-perturbed osculating orbital elements. It still

accounts for the J2 perturbation to some extent, namely, by

evaluating the effect of J2 on the initial orbital elements, but does not

Fig. 2 Analytical solutions compared with numerical simulator.

Table 1 Initial osculating orbital elements

Orbital element Leader Follower

Semimajor axis, km 7106.14 a 0
Eccentricity 0.05 e 0 � 0.001
Inclination, deg 98.3 98.3
Argument of perigee, deg 0 0
Right ascension of the ascending node, deg 270 270
True anomaly, deg 0 0
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continue to follow the osculating orbital elements. It is therefore

much less computational intensive than the new solution proposed in

this paper, but still offers improvement over the original Gurfil and

Kholshevnikov solution. Finally, the numerical simulator is also

comparedwith the new equations derived in the previous section. The

in-plane motion (on the left side of the figures) and the position error

(on the right side of the figure), defined as the difference between the

analytical solution and the numerical simulator are given for each of

the three cases, labeled a), b), and c), respectively.

Figure 2 reports the results obtained by propagating the relative

motion at a relatively low eccentricity over six orbits with the

analytical equations and the numerical simulator. The use of the new

equations greatly reduces error compared with the Gurfil and

Kholshevnikov solution when the orbit is J2-perturbed. This error
remains bounded (for all practical purposes) with an accuracy better

than 5 m along each direction. Although there is a slight increase in

the error in the along-track direction, this minimal drift is negligible

over the six orbital periods shown. It is interesting to note that the

error when using initial mean orbital elements is significantly

improved compared with using initial osculating orbital elements. In

other words, amore accurate solution can be obtained from theGurfil

and Kholshevnikov solution by converting the initial conditions to

mean orbital elements, which requires little computational effort.

Then, if an even more accurate solution is desired, the new equations

accounting for the short-periodic variations throughout the orbits can

be used at the expense of a heavier computational load.

Another interesting note that should be made is that the error

differences between using initial mean and initial osculating orbital

elements is greatest if the initial conditions are near perigee. The

reason for this is that the short-periodic variations affecting most of

the orbital elements tend to reach their highest magnitudes near these

points. Intuitively, at orbit points where the short-periodic variations

Fig. 3 Analytical solutions compared with numerical simulator for e 0 � 0.2 and a 0 � 9 000 km.
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are smallest, the difference between mean and J2-perturbed
osculating orbital elements is small, and the errors resulting from

initializing theGurfil andKholshevnikov solutionwith either of them

become similar.

Figure 3 shows the results obtained when the leader reference

orbit is significantly more elliptical. As before, the accuracy of the

analytical solutions increases from a) to c) as would be expected for

taking into account the J2 perturbation to greater degrees. Similarly

to the previous near-circular orbit case, the errors are practically

bounded for the new equations, and the new analytical solution is

representative of the actual spacecraft motion, as predicted by the

numerical simulator. However, it is clear that as the eccentricity

increases, the ability of the analytical solution to track the relative

motion accurately decreases. This is especially true in the along-track

direction, where the error increases significantly with increase in

eccentricity.

To further study the application of the proposed analytical solution

for formations on a highly-eccentric orbit (HEO), the relative

equations of motion were applied to case similar to the European

Space Agency’s PROBA-3 mission. This Sun observation mission

will involve two spacecraft in precise formation in highly eccentric

orbits, with the formation forming a solar coronagraph. The PROBA-3

leader’s orbit is defined with a 0
0 � 37040 km, e 0

0 � 0.806,
i 00 � 59 deg, Ω 0

0 � 84 deg, and ω 0
0 � 188 deg, as well as a

spacecraft separation on the order of 100 m [29]. Setting up a

simulation with two spacecraft in this orbit, with the follower

eccentricity given by e � e 0 � 0.000005 is a gross simplification of

the ultimate relative motion for the mission, but it may still provide

Fig. 4 Analytical solutions compared with numerical simulator for e 0 � 0.2 and a 0 � 9000 km and i � i 0 � 0.05 deg.

2670 J. GUIDANCE, VOL. 41, NO. 12: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 C

A
R

L
E

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

27
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

37
23

 



some insight regarding the accuracy of the proposed analytical solution
in a HEO. Figure 1 shows the results of the simulation. Although the
resulting errors are unbounded for the new equations, the error is
controlled quite well, staying below 30 m over six orbital periods.
In each of the previous cases, the formation was defined such that

there is no out-of-plane motion. To assess the ability of the analytical
solution to handle out-of-plane motion, another simulation was
performed with a small inclination difference between the two
spacecraft. The result is reported in Fig. 4. This figure shows that the
equations can indeed handle out-of-plane motion.
Each of Figs. 2–4 illustrates the improvement of the new equations

over the original Gurfil and Kholshevnikov equations, and also
proves the good accuracy obtained from using the new analytical
solution.

V. Back-Propagation Guidance Law for
Reconfiguration Maneuvers

Another benefit to the new analytical equations of relative motion
is that they can easily be propagated both backward and forward in
time. This has potential applications in spacecraft formation flying, as
often times the desired final configuration of the formation is known,
but at the present the spacecraftmaybe in somearbitrary configuration.
By taking the desired spacecraft dynamics at some known time in the
future, and back-propagating through the previously presented
equations of relative motion, the ideal motion of each spacecraft at the
present timecanbe calculated.That is, the position andvelocity of each
spacecraft at the present time that will passively result in the desired
formation at the future time can be calculated. In many situations this
should result in fuel savings, as instead of letting the spacecraft track
some arbitrary relative motion until a specific relative motion is
required and then performing the required Δv maneuvers, the
spacecraft are initially placed (using smaller Δv maneuvers) onto a
trajectory that naturally drifts, thanks to J2, toward the desired final
formation.

A. Back-Propagating the Nonlinear Analytical Equations of Motion

Back-propagation can be implemented through the nonlinear
J2-perturbed analytical equations of relative motion in a similar way
to what is commonly done for the HCW linear equations of motion.
Instead of starting a scenario with initial conditions, the scenario is
startedwith desired final conditions for each spacecraft, in the formof
final osculating orbital elements. These elements are then propagated
backward from zero to the negative of the final time, while taking into
account the J2 perturbation. Finally, along the way, the relative

position of the two spacecraft can be solved for based on the time-

varying orbital elements.

A simulation was performed to validate the accuracy of the back-

propagation guidance strategy. A desired final relative position of

spacecraft was defined, and then propagated backward to the initial

time. The relative position at the initial time was then propagated

forward in time with a numerical simulator. Figure 5 compares the

time-history of the relative position components inFL obtained from

the back-propagation guidance strategy against those obtained from

the numerical simulator.

Looking at Fig. 5, it can be seen that, although there are small

differences between the relative positions obtained from back-

propagation and the numerical simulation, the back-propagation

models accurately the relative motion. These results prove that the

concept of back-propagation guidance can be used with the newly

developed equations to accurately determine the necessary initial

conditions of spacecraft in formation to passively achieve some

desired final relative position in the future.

B. Closed-Loop Implementation

One potential application of the back-propagation guidance

strategy is to use it to perform more efficient reconfiguration

maneuvers. The idea is that, instead of performing maneuvers at the

time that the spacecraft are required to be in a specific configuration,

more efficient maneuvers can be performed at some earlier time,

placing the spacecraft in a position that will allow them to drift

naturally into the desired final configuration.

To test the feasibility of this concept, let us assume an active

follower spacecraft to bemaneuvered closer to an uncontrolled leader

spacecraft. The orbital elements of the leader are known, as is a desired

set of orbital elements for the follower spacecraft corresponding to a

simple in-plane elliptical formation, which should be achieved within

10 orbital periods of the leader. The orbital elements for the initial

position of the follower are also known.

Two cases can be compared in this scenario, with both

accomplishing the desired reconfigurationmaneuvers after 10 orbital

periods. In the first case, a maneuver is performed to achieve the

desired final formation immediately before the formation is required,

based on the motion of each spacecraft at that time. In the second

case, a more efficient strategy is implemented, which corresponds to

the newly developed back-propagation guidance law that finds the set

of orbital elements at the initial time that will lead to the desired final

orbital elements at the final time. A maneuver is then applied

immediately to achieve this ideal set of initial orbital elements, and

Fig. 5 Comparison of relative position from numerical simulator and back-propagation.
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the spacecraft is allowed to drift naturally into the desired

configuration, thereby minimizing fuel consumption.

C. Control Method Selection

To assess the potential benefits of the proposed back-propagation

method in a closed-loop scenario, the back-propagation guidance law

is combinedwith the impulsive feedback controlmethod proposed by

Schaub and Alfriend [4]. This particular control scheme is convenient,

as the impulsive maneuvers are quite simple to implement, and theΔv
maneuvers are defined in terms of orbital element differences. For

completeness, this impulsive control law is summarized in this

subsection.
This controlmethod consists of five different impulsivemaneuvers

that are applied at three different locations over the course of an orbit.

The first maneuver corrects the inclination and the right ascension of

the ascending node of the spacecraft, and is fired in the orbit normal

direction; the magnitude of the impulse is given by

Δvh � �h∕r�
��������������������������������
δi2 � δΩ2 sin i2

p
(28)

where h is orbital angular momentum, r is the spacecraft position

magnitude, and δi and δΩ are the orbital element differences, defined

as the desired final orbital element subtracted by the current orbital

element. This maneuver must take place at a critical true latitude

angle defined (between 0 and 180 deg) as

Fig. 6 Closed-loop back-propagation guidance and impulsive control performance validation for case 1.

Table 3 Comparison of required Δv for

the two simulation cases

Maneuver Case 1 Case 2

Δvh, m∕s 140.6 149.7
Δvrp;1, m∕s 0 0
Δvra;1, m∕s 0 0
Δvtp;1, m∕s 10.1 10.2
Δvta;1, m∕s 13.5 13.5
Δvrp;2, m∕s 42.0 11.4
Δvra;2, m∕s 41.4 10.2
Δvtp;2, m∕s 1.2 1.3
Δvta;2, m∕s 0.2 0.2
Total Δv, m∕s 249.0 196.5

Table 2 Orbital elements for closed-loop guidance and

control simulation

Orbital element
Desired

leader final
Desired

follower final
Follower
initial

Semimajor axis, km 15,000 15,000 15,010
Eccentricity 0.2 0.201 0.21
Inclination, deg 59 59 58
Argument of perigee, deg 20 20 20.3
RAAN, deg 84 84 83.5
True anomaly, deg 3 3 2

2672 J. GUIDANCE, VOL. 41, NO. 12: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 C

A
R

L
E

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

27
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

37
23

 



uc � tan−1�δΩ sin i∕δi� (29)

This first maneuver is onlymeant to affect the inclination and right

ascension of the ascending node; however, it should be noted that it

will also affect the argument of perigee. This effect will be accounted

for in the equations for the next maneuvers, which correct the

argument of perigee and mean anomaly errors. To correct these two

elements, two maneuvers are performed, one at perigee and one at

apogee, each in the radial direction. The twomaneuvers are defined in

the following equations:

Δvrp � −�na∕4�f��1� e�2∕n��δω� δΩ cos i� � δMg (30)

Δvra � �na∕4�f��1 − e�2∕n��δω� δΩ cos i� � δMg (31)

The final two maneuvers are performed to correct the semimajor

axis and the eccentricity error, with one taking place at perigee and

one at apogee. In this case, each maneuver is fired in the tangential

direction, and themagnitude of the respective impulsivemaneuvers is

defined as

Δvtp � �naη∕4��δa∕a� δe∕�1� e�� (32)

Δvta � �naη∕4��δa∕a − δe∕�1 − e�� (33)

where η �
�������������
1 − e2

p
.

By performing these fivemaneuvers over the course of an orbit, the

desired set of orbital elements for a spacecraft can be achieved. It

should be noted that the two apogee and two perigee maneuvers

can be performed simultaneously, and thus the five maneuvers are

performed at three discrete points in the orbit.

D. Simulation Results

To verify the practical application of the new equations of relative

motion, along with the proposed idea of back-propagation, a

simulation was performed. The simulation follows the scenario

outlined previously in this section. The orbital elements for the leader

and follower spacecraft are given in Table 2.
In this scenario, the desired final configuration must be achieved

10 orbital periods from the initial time, and only the follower is

controlled. As previously discussed, there exists two potential

methods of achieving the final configuration, both using the same

impulsive control method. In case 1, the follower is uncontrolled

until closer to the final time, at which point, based on the current

orbital elements, the impulsive control law is applied. In case 2,

back-propagation is used to determine a set of ideal orbital

elements at the initial time, the impulsive control law is

immediately applied, and the spacecraft drift into the desired

formation for the rest of the simulation time. Although in each case

a similar maneuver is used, the magnitude of impulsive control

inputs applied in each case will vary as a result of the orbital

elements varying with time due to J2. In other words, the objective
of case 2 and the back-propagation method is to take advantage of

the effects of the J2 perturbation.

Fig. 7 Closed-loop back-propagation guidance and impulsive control performance validation for case 2.

J. GUIDANCE, VOL. 41, NO. 12: ENGINEERING NOTES 2673

D
ow

nl
oa

de
d 

by
 C

A
R

L
E

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

27
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

37
23

 



It should also be noted here that, in an effort to correct the orbital
elements better, two sets of tangential in-plane maneuvers were
applied. The magnitudes of the second set of maneuvers were
calculated based on the orbital element errors after the first set of
maneuvers was applied. Only one set of radial maneuvers is applied,
and these maneuvers take placewith the second tangential maneuvers,
when the semimajor axis and eccentricity have already been corrected
to be closer to the desired values. The magnitudes of the impulsive
maneuvers are summarized inTable 3.Additionally, tovalidate that the
spacecraft was being controlled correctly, the orbital element errors
(defined as the desired orbital elements subtracted by the actual orbital
elements) for cases 1 and 2 for the follower spacecraft are provided in
Figs. 6 and 7.
As shown in Figs. 6 and 7, the control maneuvers successfully

correct the orbital elements. There are still errors in each orbital
element after 10 orbits, but these errors are small compared with the
initial errors. In a real-world scenario it would be more realistic to
perform multiple sets of maneuvers (more than two) over the course
of a few orbits to ensure that the orbital elements are corrected
perfectly. It also should be noted that, as can be seen in Figs. 6 and 7,
each orbital element does vary somewhat with time due to J2,
affecting the orbital elements through periodic variations.
Table 3 shows that case 2 uses significantly less Δv to accomplish

the same reconfiguration maneuver. From this table, it is clear that,
although there might be small differences between the Δv for each
maneuver, case 2’s decreased fuel usage is mainly a result of much
smaller radial Δvmaneuvers. This is expected, as theΔv differences
are a function of the effects of the J2 perturbation on the orbital
elements. For most of the orbital elements, J2 has very little effect
over the course of 10 orbits, or no effect at all. However, the difference
between desired and actual mean anomaly does vary significantly over
the course of a few orbits, due both to a difference in period of the
spacecraft, and a relative drift between the spacecraft due to J2. The
meananomalydifference (δM) directly affects the radialΔvmaneuvers.
It should be noted that in this particular scenario the back-

propagation method is more efficient mainly because, based on the
initial conditions, the spacecraft would tend to drift apart from each
other. In cases where the spacecraft would initially drift closer to their
desired formation, the improvement fromusing the back-propagation
guidance will almost certainly be much less, and in some cases the
better option may actually be to perform the maneuvers later in time
without using this guidance strategy. Ideally, spacecraft in formation
would be able to plan multiple potential maneuvers based on their
predicted motion, and choose the most efficient option.
Overall, the numerical simulation results successfully demonstrate

that the back-propagation method for performing reconfiguration
maneuvers of spacecraft in formationcanbe successfully integratedwith
an impulsive controller for reconfiguration purposes. Additionally, the
simulation demonstrates a potential application of the back-propagation
guidance method and the new equations of relative motion, validating
that these new methods can be used to plan more efficient maneuvers.

VI. Conclusions

A set of nonlinear analytical equations for the relative motion
between two spacecraft in formation that is applicable to a wide
variety of orbits, and also takes into account the J2 perturbation was
derived in this Note. These equations take into account the J2
perturbation through the use of time-varying expressions that simplify
the rotationof vectors between reference frames.Onebenefit of the new
equations is the ease with which they can be used to predict relative
motion through forward and backward propagation. Specifically, the
concept of back-propagation is introduced as a method of determining
efficient reconfiguration maneuvers based on a desired set of final
relative orbital elements, thereby allowing the formation to naturally
drift into the desired configuration. This conceptwas tested in a closed-
loop control scenario using an impulsive controller demonstrating that
maneuvers based on back-propagation can effectively reconfigure the
formation, and, in many cases, will be more fuel-efficient than other
maneuvers resulting in the same desired relative motion. Future work
will focus on implementing the new guidance and controlmethods in a

more realistic hardware-in-the-loop situation, implementing other
control methods with the new guidance equations, and the use of more
sophisticated guidance systems with the analytical equations. Of
particular interest is the possibility of using an impulsive controller that
takes into account the J2 perturbation to further reduce propellant
usage, and the possibility of a guidance system that searches for the
optimal time for performing back-propagation maneuvers.
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