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Abstract—This paper proposes several enhancements to the
softPOSIT algorithm with applications to spacecraft pose estima-
tion using a monocular camera. First, the proposed enhancements
include a technique for reducing false matches as result of local
minimum trapping. Second, this paper provides two strategies
for iteration control parameter initialization by using the trace
of the correspondence distance, and by using image centroid
matching. The method of image centroid matching allows the
world model center of geometry to align with the image centroid.
The alignment result in reasonable correspondence weighting
values used for match optimization. The various algorithm
enhancements were tested on 26,180 simulations with varying
geometries and initial pose conditions. Results show a significant
increase in accuracy when compared with the original method.

I. INTRODUCTION

THE technology of using camera images for robotic and

unmanned aerial vehicle guidance, navigation, and control

(GNC) have significantly matured in the recent years. For

example, the advances in vision techniques can benefit multi-

spacecraft formation flying missions [1] using monocular

optical and thermal cameras as proximity operation navigation

sensors. Pose estimation using monocular camera images

determines position and orientation of the target spacecraft

relative to the observer camera coordinate system. Many

techniques are available in solving the pose estimation problem

although the most advanced techniques based on complex non-

geometric features requires significant computational resources

and are less efficient for some space applications where the

target image can be approximated by simple geometries [2]. A

more suitable approach is by finding correspondence between

the internal 3D model with the 2D camera image hence

inferring the target pose. This is called the model-to-image
registration problem or simultaneous pose and correspondence
problem. The image point correspondence is also known as

the Perspective-n-Point (PnP) problem. [3] For the unknown

space vehicle, the focus remains to solve the arbitrary n point

problem. Some selected solution to the PnP problem include

the use of numerical scheme solutions such as RANdom

SAmple Consensus (RANSAC) [4], Iterative Closest Point

(ICP) [5], Newton-Raphson Method (NRM) [6], and non-

iterative solution such as the EPnP [7] solution that is on the

order of O(n).
David et al. [8] solve the PnP problem by combining

Simulated Annealing (SA) and Scaled Orthographic Projection

(SOP) [9]. This method is termed SoftPOSIT (Softassign [10]

and Pose from Orthography and Scaling with ITerations). Soft-
POSIT is an iterative point correspondence scheme minimizing

a global energy function based on the 2D and 3D projection

points differences. There has been several implementations of

the SoftPOSIT method in terrestrial applications. For example,

Jager et al. [11] used SoftPOSIT to determine the pose of a

ground vehicle based on thermal camera images, and Diaz and

Abderrahim [12] used it to estimate the pose of a spinning

spacecraft model. Once converged, SoftPOSIT can produce

accurate pose estimation results with low computation re-

sources; however, some shortcomings of the algorithm include

local minimum trapping and iteration control parameter to

correspondence compatibility. This paper proposes several

techniques to address the above mentioned issues. First, a

novel checking criteria is introduced to find the best initializa-

tion orientation. A proper initialization minimizes the chances

for the optimization to converge into a local minimum. Second,

two strategies are proposed on initializing the iteration control

parameter by using the trace of the correspondence distance,

and by approximating target object center of geometry with

image centroid. Both strategies eliminates non-viable itera-

tion control parameter prior to match optimization. Finally,

optimization reset conditions will be discussed for practical

considerations to numerical anomalies.

This paper is organized as follows, Sec. II formulates the

SoftPOSIT methodology and provides definitions for frames

and algorithm parameters. Sec. III provides the enhancement

formulations for global minimum search and strategies for

iteration control parameter selection. This includes the deriva-

tion of the centroid matching technique. Sec. IV provides

descriptions of models and ICs used in the algorithm valida-

tion. Sec. V provides results and discussions of the simulation

findings. Finally, Sec. VI concludes the study by comparing

the enhancements to the original SoftPOSIT algorithm.

II. SOFTPOSIT FORMULATION

This section provides problem definition and formulates the

SoftPOSIT [8] methodology. Define a tracker body FSB

equipped with a single camera FVW pointed towards a target

object FCB . The frames FSB and FCB are located at the

object Center of Geometry (COG). The camera frame FVW

has its z axis pointed outwards from the boresight of the
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Fig. 1. Camera coordinate system definition.

camera, with the y axis pointed vertically downwards and x
completing the right-handed frame. The frame Fia is centered

on the camera image with its x and y axes being parallel

to FVW . Figure 1 shows the various coordinate systems

considered. Let PWk be the kth point on the target that is

projected on the image plane. This projected point is denoted

as pik. The total number of points from the target model is

M . These points are the corner vertices of the target body.

The objective is to determine the pose, i.e. , T and R of the

target with respect to the camera defined as follows,

T= rVW,CB
VW =

[
Tx Ty Tz

]T
(1)

R=RVW,CB =

⎡
⎣ RT

x

RT
y

RT
z

⎤
⎦ (2)

where T is the position of FCB w.r.t. FVW expressed in

FVW and R is the rotation matrix rotating FCB to FVW , and

RT
x , RT

y , and RT
z are row matrices of R. These are also the

FVW unit vectors expressed in FCB . Let N be the number of

detected image points, and pij denoting the jth image point.

The position of PWk w.r.t. FVW expressed in FVW and

the position of pik w.r.t. Fia is denoted by r
VW,PWk
VW and

r
ia,pij
ia =

[
xj yj

]T
respectively, and their relationships to

the target pose is:

r
VW,PWk
VW = rVW,CB

VW +RVW,CBr
CB,PWk
CB (3)

r
ia,pik
ia =

f

ZC
Υr

VW,PWk
VW (4)

where Υ=
[
1 0

]
and 1 is an 2×2 identity matrix and 0 is

a 2×1 zero matrix and ZC is the z component of r
VW,PWk
VW .

Let define the scaling ratio s as f/Tz and the prospective ratio

wk as ZC/Tz , such that the prospective scaling term from Eq.

(4) f/ZC
can be replaced with s/wk

. If the object is far away

from the camera and field of view (FOV) is not large, then wk

is nearly one. Evaluating Eq. (3), wk can be written as

wk =
RT

z r
CB,PWk
CB

Tz
+1 (5)

Let define the pose matrix Qx, Qy , and model point matrix

Pk as, Qx � s
[
RT

x Tx
]T

, Qy � s
[
RT

y Ty
]T

, and

P̂k =

[ (
r
CB,PWk
CB

)T
1

]T
. Since PWk will be deter-

mined from an existing model, M and N are in practice rarely

equal. The distance between the projected model points and

the camera points is

d2jk = (QT
x P̂k−wkxj)

2+(QT
y P̂k−wkyj)

2 (6)

A Global Objective Function is formulated as:

E =
N

∑
j=1

M

∑
k=1

mjk(d
2
jk−α) (7)

For a maximum correspondence between image and model

points, the partial derivative of E with respect to the pose

matrices is zero. Hence,

L=
N

∑
j=1

M

∑
k=1

mjkP̂kP̂
T
k (8)

Qx = L−1
N

∑
j=1

M

∑
k=1

mjkwkxjP̂k

Qy = L−1
N

∑
j=1

M

∑
k=1

mjkwkyjP̂k

(9)

where the weights mjk are computed at every step based on

a iteration control parameter β as follows,

mjk = γ exp(−β(d2jk−α)) (10)

where γ is a normalization factor and α is to allow amplifica-

tion of the djk distance. The corresponding distance between

image and model points can be grouped in a matrix format as

following:

D=

⎡
⎢⎣

d21,1 . . . d21,M
...

. . .
...

d2N,1 . . . d2N,M

⎤
⎥⎦ (11)

Once the pose matrices are computed, x and y rows of the

rotation matrix axis can be found using the Singular Value

Decomposition (SVD),[
Rx
Tz

Ry

Tz

]
=UΣVT (12)

the rotation axis and Tz can be determined by[
Rx Ry

]
=UΥTVT (13)

Tz =
2

Σ1,1+Σ2,2
(14)

Finally, Rz can be computed from the cross product between

Rx and Ry . The algorithm is terminated if the estimated pose

converges below a user-defined tolerance.
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Fig. 2. 30-Point Cylinder Successful Pose Estimation. (red circles-image
points, blue points-final estimated model points).

Fig. 3. 30-Point Cylinder Local Minimum Pose Estimation Failure. (red
circles-image points, blue points-final estimated model points).

III. ENHANCEMENT FORMULATIONS

This section provides formulations for enhancements to the

original SoftPOSIT algorithm. These enhancements include

methods for obtaining global minimum search, iteration con-

trol parameter initialization by correspondence and by centroid

matching.

A. Global Minimum Search

A major decrease in the SoftPOSIT estimation accuracy is

caused by local minimum trapping [8], [11], [12]. The local

minimum trap occurs when the iterative solution is driven

by the annealing [10] and Sinkhorn’s normalization process

[13] to a false pose exhibiting minimum correspondences. In

this state, further iterations cannot force the model pose away

from the local minimum. An example of the local minimum

trapping can be demonstrated in the pose estimation of a 30-

points cylinder. Fig. 2 shows a successful pose estimation

where as Fig. 3 demonstrates that with a different set of IC

misalignment, the original algorithm converges to an incorrect

local minimum solution. To solve this inherent problem of

SoftPOSIT, two observations can be made on the convergence

characteristics. First, in most instances, majority of pose error

is removed during the first several steps of the optimization

process, this can be attributed to the exponential term in

Eq. (10). Therefore, one may try several different initial

orientations for only a few steps before selecting the final

path to optimize. Second, after the same number of iteration

steps, the global minimum solution should have a lower

correspondence than all local minimum solutions. As the result

of the first observation, an initial condition switching logic in

the pre-computation phase shall reset the initial orientation to

a group of saved directions. This can be done over an angle

φ about an axis �ai, where i range from 1 to n. The angle φ
needs to be large enough to bring the solution away from the

local minimum. For the purpose of this study, φ is set to 90
degrees, and �ai was selected in 4 directions (1,0,0), (0,1,0),
(0,0,1), and (1,1,1) relative to the initial orientation. Next,

the second observation can be summarized as the smallest
maximum of the closest image to model correspondence for
all n initial orientations is the likely path towards the global
minimum. This statement can be evaluated by the following

steps. First, write the correspondence matrix from Eq. (11) as

an array of column matrices D =
[
D1 . . . DM

]
, these

columns represent the correspondence from all the detected

image points to one model projected point. The minimum

value in the kth column represent the closest image to model

correspondence for the kth model point, that is,

D̂ki = argmin
j∈N

{Djki} (15)

The maximum of these represent the goodness as the result

from optimizing from the ith initial orientation.

Ďi = argmax
k∈M

{D̂ki} (16)

Finally, the minimum Ďi signals the most likely path to the

global minimum solution, as,

D̂g � argmin
i∈n

{Ďi} (17)

In the spirit of annealing optimization, this pre-computation

phase is referred to as preheating.

B. Control Parameter based on Correspondence
From Eq. (10), the iteration control parameter β is used to

control the annealing process. When β is low, the weighting

will be high and vise-versa. The determination for β is

largely based on trials and errors. David et al. [8] used a

β of 0.0004 while Gold et al. [10] used 0.00091. Selecting

the iteration control parameter can be difficult as improper

matching between β and the correspondence matrix D may

lead to numerical anomalies. In view of this, a simple β
initialization is herein proposed as,

β0 = F
(M +N)/2

tr(D)
(18)

where F is some scaling constant set to 2 in this study, and

tr(D) is the trace of the D matrix. Since the trace of a matrix

is also the sum of its eigenvalues, Eq. (18) allows for better

compatibility between β0 and the correspondence distances.
Eq. (18) then provides a convenient mean to select a new

iteration control parameter which is useful incase of an opti-

mization restart. In some instances, the current optimization

path leads to a local minimum or divergence. For instance,

if the optimization weights in Eq. (10) results in an ill-

conditioned L matrix, which is non-inversible. In other cases,

the optimization diverges, pushing the target body further away

in the boresight direction while attempting to minimize the

x− y differences. When these numerical conditions occur, it

is necessary to restart the algorithm and recompute β0 using

Eq. (18).

32



C. Control Parameter based on Centroid Matching

Equation (10) is a variation of the Simulated Annealing (SA)

numerical optimization method, [14] where β is analogous to

the inverse of the annealing temperature. The exponential term

in Eq. (10) requires an appropriate initial temperature to be

selected in order to prevent the weighting mjk from becoming

zero or infinity due to numerical issues. The proposed method

produces a iteration control parameter β that is compatible

with the point correspondence, and eliminates the need for

tedious trial and error tuning campaigns of β. Specifically, it

uses the image point cloud centroid to estimate the target COG.

For spacecraft applications where the background is normally

black space, the point cloud centroid is a good estimate of the

target COG. The target image point cloud centroid is computed

as,

ria,piia =
N

∑
j=1

r
ia,pij
ia

N
(19)

Combining Eq. (4), the scaling ratio, and Eq. (19) results in,

ria,piia

f
=Υ

rVW,PW
VW

Zc
(20)

where Zc is the z component of rVW,PW
VW . Allow the image

centroid to be the target COG

rVW,PW
VW � rVW,CB

VW (21)

combining Eqs. (1), (20), and (21), the x and y COG position

in the image plane is,

ria,piia

f
�
[

Tx/Tz
Ty/Tz

]
(22)

Let Γ be the inverse of the matrix L, such that

Γ= L−1 =

[
Γ13

Γ4

]
(23)

where Γ13 and Γ4 is the first three rows and the fourth row of

the inverse L matrix. Combine the scaling ratio and the pose

matrices gives[
Qx/f
Qy/f

]
=
[
RT

x /Tz Tx/Tz RT
y /Tz Ty/Tz

]T

=

⎡
⎢⎢⎣

[
Γ13

Γ4

]
N

∑
j=1

M

∑
k=1

mjkwk
xj

f P̂k[
Γ13

Γ4

]
N

∑
j=1

M

∑
k=1

mjkwk
yj
f P̂k

⎤
⎥⎥⎦

(24)

To rewrite equations in matrix format, let[
U/f
V/f

]
=

[ x1
f . . . xN

f
y1
f . . . yN

f

]
(25)

M=

⎡
⎢⎣

m11 . . . m1M
...

. . .
...

mN1 . . . mNM

⎤
⎥⎦ (26)

PM =
[
P̂1 . . . P̂M

]T
(27)

such that wk, for all image points, can be grouped into a

matrix, by combining Eq. (27) and Eq. (5), as follows

wM =
[
w1 . . . wM

]T
=PM

[
Rz/Tz

1

]
(28)

Also, let

hk = wkΓ4P̂k (29)

hM =
[
h1 . . . hM

]T
=wm ◦

(
PMΓT

4

)
(30)

where A◦B is the Hadamard product between matrix A and

B. Extract Tx and Ty from Eq. (24), substitute in Eqs. (25)-

(30), and rewrite their ratio with Tz as

[
Tx/Tz
Ty/Tz

]
=

⎡
⎢⎢⎣

N

∑
j=1

xj

f

M

∑
k=1

mjkhk

N

∑
j=1

yj
f

M

∑
k=1

mjkhk

⎤
⎥⎥⎦ =

[
U/f
V/f

]
MhM

(31)

The weighting matrix is defined by Eq. (10), let

D3 =

[
U/f
V/f

]
γ exp(−β0(D−α1)) (32)

where 1 is a N×M matrix of ones. Combine Eqs. (22), (31),

and (32) results in,

ria,piia

f
�D3hM (33)

let define the left-hand side term ria,piia /f as r, such that its

square becomes

rT r� hT
MDT

3 D3hM (34)

Let rewrite rT r as r2, and DT
3 D3 as D4 such that Eq. (34)

can be rewritten as

r2 � hT
MD4hM (35)

To solve Eq. (35), let

F� hT
MD4hM − r2 = 0 (36)

The discrete rate of change of F with respect to β is

F′
n−1 =

Fn−Fn−1

βn−βn−1
(37)

Using Newton’s method of gradient descent, the initial itera-

tion control parameter is computed as

βn+1 = βn− Fn

F′
n−1

(38)

Typically, β0 can converge to 10−14 accuracy within 30 iter-

ations. For cases where the Newton’s method cannot produce

the root value, it is appropriate to compute the initial iteration

control parameter β0 from the average trace of the D matrix

as previously obtained by Eq. (18).
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Fig. 4. Elementary building shapes.

IV. SIMULATION SETUP

To test the proposed enhancements, four batches of 6,545
cases were simulated, for a total of 26,180 simulations. The

4 batches represent incremental additions of the proposed

enhancements. The batch orders are: baseline, preheating, β0
by trace with error reset with z-limiting, and β0 by COG.

Within each batch, the number of cases is the result of com-

binations in object shapes, model points, model initial poses,

and target object initial poses. The internal model consists

of stored vertices of elementary shapes such as rectangles,

cylinders, ellipses and cones (see Fig. 4). These elementary

shapes can be used to construct more complex objects such

as spacecraft and space stations. Eleven cases of 5 elementary

shapes with points varying between 3 to 30 are specified to

be within a 2× 2× 2 meter envelope. The termination β is

1,000, the incrementing rate for β is 1.05 [8], and Sinkhorn

normalization iteration was set to 100 cycles. The model initial

condition was varied in 5 directions, these are combinations

of translation and Euler angle misalignments. Pose spans ±10
meters and ±135 degrees on all five axis with the exception

of the camera boresight. The target IC relative to FVW was

varied in seven translational directions and 17 orientations with

maximum magnitude of ±5 meters and ±90 degrees. This

represents a hypercube of 119 directions. Combination of the

target and model IC and the 11 models cases produces 6,545
simulation cases under one batch run.

V. SIMULATION RESULTS

The SA optimization contains many local minimums for the

pose solution to become trapped. One solution is by using

restarts based on a percentage match between the image

point correspondence to the model. On each restart, the initial

condition is changed randomly to ensure a different path is

taken. However, this method can be costly, the mean number

of restarts for finding a good pose can range between 100 to

1,000 and the time for finding a good pose is on the order

of 4 seconds to 6 minutes a for targets with 20 to 30 points.

aSimulated in Linux Matlab with 2.4GHz Pentium 4 processor [8]
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Fig. 5. Number of Successes as a function of Error Tolerances.

[8] Setting the minimum pose success criteria to 5 cm and 1
degree, which is roughly 1 percent of the IC misalignment.

Without any restarts, the baseline success rate for a single

batch is 131 out of 6,454 cases with a mean time of just

less than 3 seconds *. This is primarily due to the results

falling into the local minimum traps. The objective of this

work is to increase the pose estimation accuracy but still keep

optimization time low enough for near real-time operations. To

test the proposed enhancements, the four batches of tests were

ran each with accumulating enhancements added to it. Success

is evaluated by comparing the pose error to the ground truth

and the acceptable pose tolerance. With changes in acceptable

pose tolerance, the success rate also differs, Figure 5 shows

the successful cases as the pose tolerance increased from 1 to

20 degrees and 5 cm to 1 meter. For all enhancements with

the exception of the β0 initialization by COG, the success

rate remain relatively constant with increasing error tolerance.

The β0 initialization by COG show a steady increase as

error tolerance increased. Considering the minimum tolerance

case, the preheating global minimization search produced a

pose success increase of 507 cases. With β0 initialization

by correspondence matrix trace and reset due to numerical

anomaly, the pose success increased to 1,667 cases. Finally,

there was 2,067 successful cases with β0 COG initialization. It

should be noted the basic shapes tested are symmetrical and in

some cases circular, which may result in ambiguous solutions.

However, a real world target vehicle given its geometric details

will most likely not be symmetrical and therefore resolving the

pose ambiguities. Figure 6 shows the average match time as a

percentage of the of the baseline algorithm. The results show

almost 50 percent time increase in each enhancement with the

β0 COG initialization time increasing by 75 percent.

Figure 7 shows the enhanced SoftPOSIT estimation of a

Radarsat model image captured by a monocular infrared (IR)

camera. The position initial condition for the internal model

*Simulated in 32bit-Windows Matlab with 2.4GHz Intel® CoreTM 2 Quad
Q6600 processor
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SB to CB Pose (m;deg):

x   : 0.750;y    :−0.020;z  :−0.003

roll: −88.0;pitch:  86.0;yaw:  −2.2

SB to CB Pose (m;deg):

x   : 0.650;y    :−0.025;z  :−0.083

roll: −62.4;pitch: 105.1;yaw: −21.3

(a) pre-match

Final

SB to CB Pose (m;deg):

x   : 0.683;y    :−0.014;z  :−0.006

roll: −87.6;pitch:  86.3;yaw:  −0.9

SB to CB Pose (m;deg):

x   : 0.683;y    :−0.014;z  :−0.006

roll: −87.6;pitch:  86.3;yaw:  −0.9

SB to CB Pose (m;deg):

x   : 0.676;y    :−0.016;z  :−0.006

roll: −85.2;pitch: 111.5;yaw:  −5.7

SB to CB Pose (m;deg):

x   : 0.686;y    :−0.013;z  :−0.005

roll: −88.1;pitch:  90.7;yaw:  −1.2

SB to CB Pose (m;deg):

x   : 0.676;y    :−0.016;z  :−0.006

roll: −85.2;pitch: 111.5;yaw:  −5.7

SB to CB Pose (m;deg):

x   : 0.680;y    :−0.014;z  :−0.007

roll: −87.2;pitch:  88.9;yaw:  −1.2

SB to CB Pose (m;deg):

x   : 0.677;y    :−0.016;z  :−0.006

roll: −85.4;pitch: 111.8;yaw:  −5.5

SB to CB Pose (m;deg):

x   : 0.677;y    :−0.016;z  :−0.006

roll: −85.4;pitch: 111.8;yaw:  −5.5

SB to CB Pose (m;deg):

x   : 0.686;y    :−0.013;z  :−0.005

roll: −88.1;pitch:  90.7;yaw:  −1.2

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.005

roll: −88.2;pitch:  92.0;yaw:  −1.3

SB to CB Pose (m;deg):

x   : 0.676;y    :−0.016;z  :−0.006

roll: −85.2;pitch: 111.5;yaw:  −5.7

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.005

roll: −88.2;pitch:  92.0;yaw:  −1.3

SB to CB Pose (m;deg):

x   : 0.642;y    :−0.050;z  :−0.006

roll:  12.4;pitch:  80.8;yaw:  34.1

SB to CB Pose (m;deg):

x   : 0.616;y    :−0.047;z  :−0.005

roll:  12.9;pitch:  75.3;yaw:  28.2

SB to CB Pose (m;deg):

x   : 0.637;y    :−0.049;z  :−0.004

roll:  10.8;pitch:  81.3;yaw:  33.3

SB to CB Pose (m;deg):

x   : 0.614;y    :−0.047;z  :−0.005

roll:  13.4;pitch:  74.8;yaw:  28.3

SB to CB Pose (m;deg):

x   : 0.617;y    :−0.047;z  :−0.005

roll:  12.2;pitch:  76.1;yaw:  28.2

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.005

roll: −88.2;pitch:  92.0;yaw:  −1.3

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.005

roll: −88.2;pitch:  92.0;yaw:  −1.3

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.004

roll: −88.1;pitch:  92.6;yaw:  −1.5

SB to CB Pose (m;deg):

x   : 0.686;y    :−0.013;z  :−0.005

roll: −88.1;pitch:  90.4;yaw:  −1.1

SB to CB Pose (m;deg):

x   : 0.686;y    :−0.013;z  :−0.005

roll: −88.1;pitch:  90.4;yaw:  −1.1

SB to CB Pose (m;deg):

x   : 0.687;y    :−0.013;z  :−0.004

roll: −88.1;pitch:  92.6;yaw:  −1.5

SB to CB Pose (m;deg):

x   : 0.686;y    :−0.013;z  :−0.005

roll: −88.1;pitch:  90.4;yaw:  −1.1

(b) post-match

Fig. 7. SoftPOSIT pose estimation of a Radarsat model captured by an
monocular infrared camera.

is 0.650, −0.025, and −0.083 meters for x, y, and z axis

respectively, from the FSB frame to the FCB frame expressed

in the FSB frame. The orientation initial condition for the

internal model is −62.4, 105.1, and −21.3 degrees for roll,
pitch, and yaw respectively. The orientation angles are in the

p-y-r Euler angle rotation sequence, rotating from the FSB

frame to the FCB frame. For the IR image in Figure 7, the

enhanced softPOSIT iteration took 1.031 seconds to complete

43 iterations. The final target model satellite pose is 0.686,

−0.013, −0.005 meters and −88.1, 90.4, −1.1 degrees. In

this case, the initial misalignment of the internal model is

large, this will increase the complexity of the iteration process

and lengthens the optimization time. Large misalignments will

have more chances of falling into local minimum traps as

they must traverse across a large path before settling into

the global optimal path. Consider the misalignment case over

one single video frame. The frame rate update is typically

between one to 30 hertz. Given the rotational rate of a tumbling

target satellite is on the order of 1−2 deg/s [15]. Assuming 1
second frame update rate, this is roughly 10 times lower than

the initial misalignment of the test example. When the initial

misalignment is on the order of 2 degrees, the same test case

reaches a solution in 0.873 seconds.

VI. CONCLUSIONS

In conclusion, enhancements made to the SoftPOSIT algorithm

include global optimization search, iteration control parameter

initialization by trace of the correspondence matrix, and by

COG. The goal of the enhancements were to increase pose

estimation accuracy while maintaining computation speed.

Results show a significant accuracy increase w.r.t. the baseline

with relatively low increase in computation time. It should

be noted however there is still much room to improve the

algorithm to gain acceptable reliability. Future work include

investigation of efficient ways to restart the algorithm based

on recursive learning.
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