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Abstract

The survival of an animal depends on its success as a forager, and understanding the adaptations

that result in successful foraging strategies is an enduring endeavour of behaviour ecology. Ran-

dom walks are one of the primary mathematical descriptions of foraging behaviour. Power-law

distributions are often used to model random walks as they can characterize a wide range of

behaviours, including Lévy walks. Empirical evidence indicates the prevalence and efficiency of

Lévy walks as a foraging strategy, and theoretical work suggests an evolutionary origin. How-

ever, previous evolutionary models have assumed a priori that move lengths are drawn from a

power-law or other families of distributions. Here, we remove this restriction with a model that

allows for the evolution of any distribution. Instead of Lévy walks, our model unfailingly results

in the evolution of intermittent search; a random walk composed of two disjoint modes: frequent

localized walks and infrequent extensive moves, which consistently outcompeted Lévy walks.

We also demonstrate that foraging using intermittent search may resemble Lévy walk due to

interactions with the resources within an environment. These extrinsically-generated Lévy-like

walks belie an underlying behaviour and may explain the prevalence of Lévy walks reported in

the literature.
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Introduction

An important component of an individual animal’s fitness depends on the net energy gained

through foraging, and the differential fitness of individual animals can depend on the varia-

tion among their foraging strategies; more efficient strategies result in more net energy gained

thereby increasing the probability of survival (Krebs et al. 1977; Meire and Ervynck 1986; Werner

and Hall 1974). Thus, natural selection could favour those strategies which maximize net energy

most efficiently. Random walks are often used to model different strategies of animal movement,

with move lengths which vary according to an underlying probability distribution. Lévy flight, a

type of random walk with move lengths distributed according to the power-law P(l) ∼ l−u where

1 < u < 3, characterized by a mixture of frequent short steps and infrequent longer steps, has

been argued to be a particularly efficient searching strategy (Campeau et al. 2022; Viswanathan

et al. 1999; Wosniack et al. 2017), and is a searching behaviour that has been observed among

many organisms, across multiple taxa (Ariel et al. 2015; Harris et al. 2012; Humphries et al. 2010,

2012; Kölzsch et al. 2015; Lihoreau et al. 2016; Raichlen et al. 2014; Reijers et al. 2019; Reynolds

et al. 2018; Shirakawa et al. 2019; Sims et al. 2019, 2014, 2008). Specifically, the Lévy flight forag-

ing hypothesis states that if the searcher has no memory, and resources are scarce, re-visitable,

and information of their distribution is unknown to the forager, then a Lévy flight with exponent

u ≃ 2 is an optimal or near-optimal searching strategy (Viswanathan et al. 2008).

The efficiency and adaptive potential of Lévy flight foraging has been substantiated by both

empirical (Humphries et al. 2010, 2012; Lihoreau et al. 2016; Sims et al. 2019, 2008) and theoretical

(Campeau et al. 2022; Dannemann et al. 2018; Guinard and Korman 2021; Levernier et al. 2021;

Wosniack et al. 2017) evidence; thus, selection could favour Lévy-like behaviour. However, there

is an ongoing debate over the relative importance of Lévy-like behaviour as the result of selec-

tion (the adaptationist or intrinsic hypothesis) or as an emergent property due to the features of

the environment (the emergentist or extrinsic hypothesis). For example, Spider monkeys (Ate-
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les geoffroyi) exhibit emergent Lévy-like behaviour in response to naturally-occurring Lévy-like

tree-size distributions, utilizing mental maps, i.e. memory and perception, when determining

which fruiting trees to visit (Boyer et al. 2006). In contrast, free-moving Drosophila larvae whose

sensory neurons, supraoesophageal ganglion, and brain synaptic activity were blocked exhib-

ited intrinsically generated Lévy-like behaviour (Sims et al. 2019). There is also evidence that

some Lévy walks may simply be the by-product of crawling (such as the larvae from Sims et al.

(2019)), and are in fact Weierstrassian Lévy walks or stick-slip locomotion (Reynolds 2018, 2021).

Whereas there is support for both the extrinsic and intrinsic hypotheses, or even mathematical

proof for the optimality of Lévy walks, e.g., Guinard and Korman (2021), the intrinsic hypothesis

suggests that natural selection favours Lévy-like behaviour, and poses the additional challenge

of requiring evidence of ecological contexts driving its evolution through selection.

There are three notable lines of theoretical evidence which support an evolutionary origin

for Lévy flight foraging. Wosniack et al. (2017) demonstrated that among the random walks

governed by the the power-law exponents of 1 ≤ u ≤ 3, ranging from ballistic (u = 1), to Lévy

(u = 2), to Brownian motion (u = 3), a Lévy searching pattern was the most efficient over multi-

ple distinct environments. Dannemann et al. (2018), using the same range of searching patterns,

provided evidence that Lévy-like behaviour can maximize the population abundance and mini-

mize the extinctions of a predator-prey system. The combination of Wosniack and Dannemann’s

research clearly evidence the advantages of Lévy-like behaviour but not evolution through re-

sponse to selection. One of the first models to demonstrate a response to selection used an

evolutionary algorithm where the power-law exponent u, was modeled as a variable and her-

itable trait (Campeau et al. 2022). The results of the model corroborated both the advantages

of Lévy-like behaviour over different environments and its long-term stability, while including

both ecological and evolutionary contexts. Although evidence thus far supports the Lévy flight

foraging hypothesis, its interpretation is limited by a common constraint; the a priori assumption

that the searching patterns are governed by a power law. Greater insight into the evolution of for-
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aging patterns requires a model that is free of such restrictions on the type of distribution upon

which natural selection acts. The de novo emergence of Lévy-like distributions would provide a

more compelling case of an evolutionary origin.

Here, we use an evolutionary algorithm which includes several important evolutionary eco-

logical contexts from previous models, but dispenses with the a priori assumption of search

patterns governed by a power-law. In fact, our model makes no assumptions about any family

of distributions. Furthermore, our model is meant to be rudimentary in that it isolates the effect

of adaptations due to resource encounters, and does not consider interesting extensions such

as mate and predator interactions, or a limit to home range. Our model allows for the de novo

evolution of search patterns with three possible interesting outcomes: 1) search patterns which

approximate the resource distributions of the environment, 2) search patterns which approxi-

mate a Lévy-like distribution, regardless of the resource distribution and 3) novel search patterns

which outcompete at least a Lévy walk. We encode a finite-size list of move lengths as a ‘pseudo-

genome’, where novel genomes are the result of recombination and a round of mutation. The

shape of a genome’s distribution of move lengths is therefore limited primarily by the size of the

genome, thus allowing for a large solution space, and providing firm theoretical grounds for not

only testing the Lévy flght foraging hypothesis, but the discovery of any optimal search pattern.

Materials and Methods

We use an evolutionary algorithm to evolve optimal search patterns which may then be compared

to existing hypotheses such as the Lévy flight foraging hypothesis. From previous theoretical

and mathematical models (Campeau et al. 2022; Dannemann et al. 2018; Wosniack et al. 2017)

we include the ecological contexts of population size, lifespan, a proxy for iteroparity (multiple

matings over a lifetime), and we vary the environment using different Lévy dust distributions.
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We build upon the previous evolutionary models by shifting variation from the level of a dis-

tribution parameter (the a priori assumption of selection acting on powerlaw exponents; e.g.,

Campeau et al. 2022; Wosniack et al. 2017), to selection acting on the individual move lengths

within a distribution to ask what distribution will result from selection. Evolutionary change

in search patterns is driven by 1) the proportion of genetic material in subsequent generations

determined by parent individuals’ relative fitness, 2) a round of recombination, and 3) a round

of mutation. Once a simulation has reached a point of equilibrium, we include an additional set

of simulations to assay the fitness of the derived distributions under competition with ancestral

and Lévy distributions, and we attempt to parameterize the derived distributions. We also dis-

cuss several modifications we have implemented to control for possible biases due to movement

occurring on a lattice in the supplementary information.

Environments

A single environment is simulated as an n × n matrix, or lattice E, with resource entries ei,j, and

with periodic boundary conditions (i.e., the matrix is mapped onto a torus). Each environment is

populated with a sequence of re-visitable resources according to a Lévy dust (LD) distribution;

a fractal distribution of resources. The first resource in the sequence is placed at random, with

each subsequent resource placed at a distance of l away from the previous resource, where l is

randomly selected from the probability mass function (pmf):

P(l) =


0 if l < 1 or l > n/2

l−u if 1 ≤ l ≤ n/2
(1)

We chose n/2 as the point of truncation because n/2 is the maximum distance between any two

points to travel in cardinal directions on a lattice with periodic boundary conditions. The direc-

tion of each resource placement in the sequence is selected at random from the set of all locations

exactly l distance away. When a resource is placed, the value at the resultant location ei,j, is

incremented by 1. This process continues until the environment is populated with a sequence of
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n2 · 10−3 resources, rounded down to the nearest integer. We chose random exponents 1 ≤ u ≤ 3,

as well as discrete values u = 1, 2, and 3 for our environments as they represent the distinct dis-

tributions produced from ballistic, Lévy, and Brownian movement, respectively (fig. 1).

To increase the environmental variation individuals encounter, and to approximate larger

environments, we also utilized a type of procedural generation. A library of environments is

produced for each generation of individuals, where each environment has the same amount

of resources. Our simulations included libraries where the LD exponent is either: 1) fixed at

u = 1, 2, or 3, 2) randomly varied between generations, and 3) randomly varied within each gen-

eration. An initial environment is selected at random for each individual. Then, upon crossing

the border of an environment, instead of appearing on the opposite side by periodic bound-

ary conditions, a new environment is selected at random from the library and appended to the

border. See supplementary information for more details on the procedurally-generated environ-

ments.

Evolutionary Algorithm

An evolutionary algorithm is a population-based metaheuristic which borrows evolutionary

mechanisms to approximate the solution to an optimization problem (Bäck and Schwefel 1993;

Sloss and Gustafson 2020). An individual is a candidate solution to the optimization problem,

and the quality of that solution is determined by a fitness function. The following sections will

describe our definition of an individual (or candidate solution), the encoding of our evolutionary

mechanisms (selection, reproduction, recombination, and mutation), and an outline of the main

simulations and subsequent simulations of competition.

Definition of an Individual

An individual was encoded as the following list:

7

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: 

https://doi.org/10.1086/729220. Copyright 2023 The University of Chicago.



[G, pi, pj, ξ, αξ, λ, (I, J),D]

Where G contains the move lengths available to the individual, pi & pj store the position of the

individual within an environment, ξ records the number of encountered resources, αξ is the sum

of ξ over time, λ is the lifespan, (I, J) stores the position of the current environment within a

lattice of procedurally-generated environments, and D is a growing dictionary which maps each

(I, J) to an environment stored in the library of environments.

G is the ‘pseudo-genome’; a finite and unordered list of integer move lengths which can be

initialized with any user-defined values. We propose two initial distributions which are inter-

esting from an evolutionary perspective; random samples from a uniform distribution, and an

all-ones distribution (equivalent to Brownian motion). All move lengths are equally probable

under a uniform distribution; thus, the amount of variation for selection to act upon is maxi-

mized. Whereas the all-ones distribution is initially biased towards smaller move lengths and

has an initial variance of zero, moving the minimal possible distance is perhaps the simplest

initial searching behaviour, barring no movement whatsoever. An individual’s initial position

(pi, pj) is random, and is updated after every move. Individuals use a truncated random walk;

each move is randomly selected from G, and movement occurs until either a resource is located,

or the full length of the move has been travelled. Movement occurs on a lattice, and the direction

of each move length l is determined by randomly selecting an endpoint from the border of all

locations exactly l distance away. An individual will move to the endpoint by taking random

selections without replacement from a list of vertical and horizontal increments, continuing until

the list is empty. See supplementary information for additional details on the turning algorithm.

The range of perception of an individual is limited to their current cell, or location (i, j). In

other words, the “resolution” of the simulation matches the perceptual capabilities of an individ-

ual, and was chosen to intentionally minimize their information on the distribution of resources.
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When an individual encounters a resource at a location (i, j), ξ is incremented by ei,j (a grow-

ing sum), whereas αξ is incremented by ξ after every entry-wise move, regardless of resource

encounter. Thus, ξ measures the total number of resources found, and αξ is used to measure

the average number of resources found over the lifespan of an individual. The lifespan of an

individual λ, is the total distance (or total time) available until that individual is removed from

the simulation. We normalized lifespans by the size of the environment according to ς · n2, i.e.,

each individual can theoretically visit every location of a single environment, ς times (by default

ς = 20). To track an individual’s location within their procedurally-generated environments,

(I, J) is the index of their current environment, which is updated when crossing a boundary of

their current environment, and is stored as a key in a growing dictionary D. Each key stored

in dictionary maps to an environment in the library of environments, and preserves the rela-

tive locations of the procedurally-generated environment for that individual. See supplementary

information for more details on the procedural-generation of environments.

Selection or Fitness Function

Once all individuals have exhausted their lifespans, their resultant average number of resources

found over their lifespans (αξ) are consigned to the fitness function. There is also the option to

use the total number of resources located (ξ) as a measure of fitness, but we used αξ for two

reasons. The first is that ξ and αξ are strongly correlated; thus, fitness differences are minimal

(Campeau et al. 2022). The second reason is that the average energy over a lifespan αξ, would

be markedly different for an individual that locates all of its resources at the beginning of its

lifespan rather than at the end, but this would be indistinguishable using ξ, the energy at the

end of a lifespan. Thus, ξ resembles semelparity because of a lifetime of energy invested into

reproduction only at the end of a lifespan, whereas αξ resembles a proxy for iteroparity because

it considers the average amount of energy available over a lifespan, and could be interpreted

as the energy available for multiple rounds of reproduction. Organisms also more frequently

evolve iteroparous reproduction strategies (Hughes 2017), and many semelparous strategies ap-
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proximate iteroparity over shorter timescales (Hughes and Simons 2014), thus αξ is arguably the

more appropriate choice.

The fitness function uses the αξ values to determine the number of gametes that each parent

will contribute to form the subsequent generation according to:

ωi =

 K · αξi

∑
ψ
j=0 αξ j

 (2)

where for each parent, each half increment of ωi represents one gamete, and the total number

of gametes is based on the ratio of the carrying capacity (K) and their individual fitness relative

to the sum of all surviving individuals (rounded up to the nearest integer). We index parents

until ψ, instead of K, because an individual does not “survive” if its αξ ≤ 0; thus, ψ is the

number of surviving individuals. Each parent is assigned a value of ωi, in descending order of

αξ, until there are enough gametes to generate the next generation (i.e., ∑ ωi = K). Therefore,

although an individual may have the potential to have ωi > 0, there remains the possibility that

its genetic information is not included in the reproductive pool. The resultant output is a list of

pairs (Gi, ωi) ∈ Ω, which are used to generate the next generation of individuals.

Reproduction Through Recombination and Mutation

Mating is random, syngamous, and without incompatible mating types. Two parent pairs (Gi, ωi)

& (Gj, ωj) are randomly selected from Ω, and upon selection, each parental genome (Gi & Gj) is

first randomly rearranged (i.e., no linkage). One half of each parental genome is then assigned

at random as its gametic contribution to the single offspring, Gk (fig. 2). Accordingly, ωi and ωj

are then decremented by one half. Whereas we recognize the differential energetic burdens of

reproduction and its evolutionary importance, we believe its inclusion would add unnecessary

complexity in the scope of this paper.

The resultant offspring genome then undergoes a round of mutation. First, a fixed num-
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ber of move lengths are randomly selected for mutation. Each move length is then modified

by a random value m, from a scaled and discretized unit normal distribution. We discretize by

rounding to comply with the integer requirement, and use a scalar η, to vary the magnitude of

mutation. We extend the same bound restrictions from equation (1), such that a mutated move

length cannot go below one, and cannot exceed n/2. Mutations resulting in move lengths below

one or above n/2 will roll back into the space of 1 ≤ l ≤ n/2, where the amount of roll back is

the difference over the bound. For example, if n/2 = 100, then l = 110 would become l = 90,

and l = −10 would become l = 11. The value of η should be carefully selected as to not result

in mutations so large that the resultant move lengths bounce over the bounds until reaching an

equilibrium (5η < n/2 is a sufficient condition to avoid this behaviour). The process of repro-

duction, recombination, and mutation continues until all ωi = 0. In the case where there is only

one parent remaining, reproduction switches to asexual, and the offspring genome is a mutated

copy of the parent genome.

The simulation is initialized by choosing an exponent(s) for the distribution of resources, the

maximum number of generations, the mutation rate and magnitude, the size of the environment

and the library which contains them, and the size of the population and their genomes. The

library of environments is generated first, with each environment receiving n2 · 10−3 resources,

rounded down to the nearest integer. Next, the starting population is generated, with a specified

initial distribution for G; all-ones or random uniform move lengths for this study. The individu-

als traverse procedurally-generated environments until all of their lifespans are exhausted. The

population is then assessed by the fitness function, and the offspring are generated by the re-

combination and mutation of random selections from any two parents who were admitted to the

reproductive pool. This process continues until the number of offspring is equal to the selected

population size. The offspring become the subsequent population, and the process is repeated

until either the mean population αξ stabilizes or the total number of generations is exhausted

(104 by default).
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All genomes are saved every gth generation (by default, g = 1) as a “fossil record”, similar to

the fossil record in Lenski’s Long-Term Evolution Experiment (Wiser and Lenski 2015), allowing

the simulation to be restarted at any point, if necessary. This data also allows for competitive

fitness assays between our ancestral and derived foraging patterns, and further, assays of the

derived foraging patterns competing with Lévy foraging patterns to determine quantitative dif-

ferences, and provide qualitative insight. For the competition simulations, the initial population

was composed of either derived and ancestral individuals, or derived and Lévy individuals, in

equal frequency. In these competition assays, reproduction was strictly asexual; parents pro-

duced offspring with exact copies of their genomes. And lastly, the two populations competed

for a fraction of a carrying capacity, and a simulation was stopped once an equilibrium was

reached (i.e., only one type remained).

Simulations and results were programmed using Python 3.10.6 and the numpy (Harris et al.

2020), scipy (Virtanen et al. 2020), pandas (Wes McKinney 2010), multiprocessing (McKerns et al.

2012), and Matplotlib (Caswell et al. 2021) libraries in addition to the Python standard library.

Computations were performed on the Graham, Cedar, Narval, and Niagara supercomputers at

the Digital Research Alliance of Canada (Loken et al. 2010; Ponce et al. 2019).

Distribution Characterization

Our evolutionary algorithm constrains the evolution of distributions to containing s move lengths

(the total number of move lengths in G) where each move length cannot exceed a value of n/2.

This means our algorithm can result in a potential( n
2 + s − 1

s

)
unique distributions. For example, s = 100 and n/2 = 100 is approximately 4.5 · 1058 possibilities

and, albeit not without many correlated distributions, it is difficult to anticipate exactly what
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methods would be necessary to characterize the derived distributions (i.e., there is no guaran-

tee whether distribution fitting will be informative). Based on visual inspection of the derived

distributions and their behaviour, we considered comparisons with an array of candidate mod-

els of random walks (e.g., composite random walks or power-laws), and measured their scaling

exponents by their mean-squared displacement.

Results

We ran simulations where populations of 100 individuals would search for re-visitable resources

within a procedurally-generated environment. Their initial environment was encoded as a matrix

En×n, with dimension n = 997 (see supplementary information for why n is prime). Each matrix

had resources distributed by either successive ballistic, Lévy, or Brownian flights (fig. 1), or

mixtures of resource distributions with random LD exponents. Simulating evolution over these

distinct distributions enabled us to test whether the derived distributions would converge to

environmental, Lévy-like, or novel distributions. Each individual was assigned a lifespan of

λ = 20 · n2 steps, and an initial G composed of either 200 random uniform move lengths 1 ≤

l ≤ n/2 or 200 ones. We ran simulations with each initial G for the environments with discrete

LD exponents, and with only the random uniform G for environments with randomly varied LD

exponents between and within generations. We ran replications for only the random uniform

starting G, thus resulting in a total of 13 evolutionary simulations. We set a fixed mutation

rate such that 12 out of 200 move lengths were always admitted for mutation, with magnitude

η = 2. Once the evolution of G stabilized, we then competed the derived distributions against

ancestral distributions to test for adaptive evolution, and against Lévy distributions to determine

quantitative and qualitative differences, if any.
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Distribution Evolution & Characterization

All simulations resulted in similar derived distributions, and regardless of their environment

(fig. 3, video S1, video S2). The random uniform and all-ones starting conditions required ap-

proximately 400 and 5000 generations to reach equilibration, respectively. The derived distribu-

tions are bimodal with the primary mode clustered near one, and a secondary mode clustered on

the n/2 point of truncation. The resultant behaviour of the bimodal distributions is an emergent

two-phase walk (fig 4CDE, video S3A). The primary phase is highly localized, and visually simi-

lar to a Brownian walk. The secondary phase could be described as a ballistic or scaled Brownian

walk, where the most common move length was l ≈ n/2 constituting ≈ 17% of 18 unique val-

ues, although the size of the secondary modes (2.5 move lengths on average) were too small for

distribution fitting. From the non-continuity of the derived distributions and visual inspection,

we proposed two candidate composite random walks:

p(l) = pprimary((1 − pgeometric)
l−1 pgeometric) + (1 − pprimary)(n/2) (3)

p(l) = pprimary(l−u) + (1 − pprimary)(n/2), 1 ≤ u ≤ 5 (4)

where pprimary is the probability of drawing a move length from the primary mode, modelled

by either a geometric distribution (the discrete equivalent of an exponential distribution) with

pgeometric, or a power law with 1 ≤ u ≤ 5, and a 1 − pprimary probability of drawing from the

secondary mode which is simply a move length of l = n/2. To determine the suitability of each

model we first isolated the primary modes from each of our 1300 derived distributions and com-

pared their cumulative distribution functions (CDF) over an array of 103 power-law exponents

u from [1.0, 5.0] and pgeometric from [0, 1] using k-sample Anderson-Darling (AD) tests. The null

hypothesis of the k-sample AD test is that two (or more) samples are drawn from the same dis-

tribution; a power law with u ≈ 1.9 resulted in a failure to reject the null hypothesis for ≈ 1% of

the comparisons, whereas a geometric distribution with pgeometric ≈ 0.33 resulted in a failure to
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reject the null hypothesis for ≈ 58% of the comparisons. Randomly adding either two or three

move lengths of l = n/2 to the optimal geometric distribution resulted in a failure to reject the

null for ≈ 60% of the comparisons with the complete derived distributions. The behaviour of the

resultant model was then visually compared with a distribution derived from each environment

(fig. 4, video S3AB).

Next, we computed the scaling exponent of one of the derived populations, and included

a Lévy walk (as defined by the pmf in equation (1) for comparison. The scaling exponent is

obtained by measuring the displacement of multiple individuals over increasing periods of time,

taking the mean of their squared displacements, and observing how those mean-squared dis-

placements (MSD) change over time, i.e., measuring the slope. The scaling exponent can be used

to compare and characterize the exploratory behaviour of different random walks (Einstein 1905;

Frenkel and Smit 2023). A simple Brownian walk has a scaling exponent of α = 1, indicating

a walk which displaces linearly in time, whereas the scaling exponents for the Lévy walks and

derived walks, computed using a least-squares Levenberg-Marquardt algorithm based on the

statistical regularity of the data and its use for similar analysis (Liu et al. 2021; Zhou et al. 2018),

were found to be α = 1.97 (R2 = 0.999) and α = 1.997 (R2 = 0.999), respectively (fig. S1). These

values indicate that individuals using either strategy will explore the environment much faster

than a Brownian walk, and that the derived walks will do so marginally faster than Lévy walks,

but are otherwise difficult to distinguish by their scaling exponents, alone.

Lastly, we performed an exploratory analysis to examine the ‘realized’ distributions of move

lengths. We define a realized distribution as the result of the truncated move lengths, rather than

the lengths pulled from a distribution. For example, an individual might pull l = 498 from their

distribution but encounter a resource after only 10 steps; thus, the realized length is the truncated

length of 10 steps. We collected the realized distributions from each type of environment, over

a range of resource densities (the tested n2 · 10−3, and one fold up & down) and a lifespan
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of λ = n2 (the minimum to span the entire environment) to determine how they might differ

from the derived distributions. The distributions of realized move lengths were increasingly

contiguous with increasing resource density, and decreasing resource clumpiness, i.e., u < 3

(fig. 5). We also measured the degree of contiguousness by sorting the realized distributions

in increasing order and measuring the largest gap (any difference greater than one between

successive move lengths). Whereas the largest gap of the derived distributions tended towards

(n/2)− 1, the realized distributions were either contiguous or had gaps no larger than size four.

Assuming a power-law fit almost always resulted in exponents falling in the “Lévy-like” range,

with 1 < u < 3, often close to a “true” Lévy walk of u = 2.0 (fig. S2).

Competition Simulations

We computed a sum total of 324 competition simulations between the derived distributions and

either a Lévy walk with u = 2.0 or root and mid-generation ancestors from the simulated fossil

records. Competition between derived and Lévy occurred over environments LD = 1.0, 2.0, and

3.0 with either n2 · 10−3 or n2 · 10−4 resources, with lifespans of λ = 20 · n2 or λ = n2, starting

with either populations of 10 or 100 each (i.e., competing for carrying capacities of either 20 or

200), and with the Lévy walks having access to a G of size 200 or 2000. Three replicates were

computed for each of these 48 possible combinations, and therefore totalling 144 simulations

for a single population of derived distributions. The derived populations from our six evolu-

tionary simulations were near indistinguishable, so we replicated the competition simulations

using only two of the derived populations: individuals evolved from all-ones distributions and

LD u = 2.0 and random uniform distributions and LD u = 1.0, thus totalling 288 simulations.

We competed the derived distributions against their root ancestor (i.e., the 0th generation), and

a mid-generation distribution (100th for the random uniform case and 2000th for all ones), under

the same conditions in which they evolved, and with three replicates each, totalling 36 simula-

tions.
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The derived populations won 100% of the 324 competition simulations. The median number

of generations required to displace the Lévy populations across all simulations was two. The

largest source of variance in generational time among the simulations were due to lifespan, and

the derived population (fig. 6). Lifespans of λ = 20 · n2 required a median of two generations

(min=1, max=3), whereas λ = n2 took three generations (min=1, max=11). Within the lifespan of

λ = 20 · n2, the initial all-ones distribution required a median of two generations (min=1, max=3),

whereas the initial random uniform distributions required one (min=1, max=2), and within the

lifespan of λ = n2 the initial all-ones distributions required a median of four generations (min=1,

max=11), whereas the initial random uniform distributions required three generations (min=1,

max=6). We also include a subset of simulations using very small lifespans λ = 0.1 · n2, avail-

able in the supplementary information. The overall median number of generations required to

displace the ancestral populations was two (min=1, max=2). Although the derived distributions

were largely indistinguishable, the differences in generational time among the two starting con-

ditions to displace the Lévy populations motivated an additional set of analyses and simulation

to explain those differences, and these results are available in the supplementary information.

In a final, and additional, set of simulations we assayed the success of the derived populations

against Lévy populations scaled with n. We scaled the environment up and down by a factor of

two (2n = 1994 and n/2 = 498), and set the: lifespan λ = 20 · n2, patch density 10−3 · n2, and a

G of size 2000 for the Lévy individuals, and over each environment type, with three replications.

We adjusted the derived distributions by simply scaling only the secondary mode by the same

factor of two. The scaled derived distributions won 100% of these 18 additional simulations.

The median number of generations required to displace the Lévy distributions in the upscaled

environments was two (min=2, max=2), and a median of three generations for the downscaled

environments (min=2, max=3).
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Discussion

The Lévy flight foraging hypothesis, in its simplest form, is the claim that because Lévy flight is

an optimal or at least adaptive searching strategy, then natural selection should result in Lévy-like

behvaiour. Empirical evidence has indicated that many organisms exhibit Lévy-like behaviour,

but whether that behaviour is intrinsic and the result of natural selection, is extrinsic and an

emergent phenomenon due to interactions with the environment, or even a mixture of both, is

unclear. Lévy walks have been evidenced as adaptive over various environments (Wosniack et al.

2017), a strategy which increases the stability of Lotka-Volterra systems (Dannemann et al. 2018),

and as a response to selection regardless of the fractal dimension of resources and under sev-

eral evolutionary and ecological contexts (Campeau et al. 2022). However a common limitation

of these studies is the a priori assumption that foragers adhere to search patterns governed by

power-laws. Building upon existing models, we removed this limitation and constructed an evo-

lutionary algorithm which allowed for the de novo evolution of search patterns; we shifted the

resolution on which evolutionary mechanisms could act on from the parameters of a distribution

to the distributions themselves. We proposed three possible interesting outcomes: 1) the patterns

approximate their environment, 2) the patterns converge to Lévy-like distributions, or 3) novel

search patterns which also outcompete at least a Lévy walk. Our results unequivocally point to

the third outcome.

The search patterns of our derived populations, regardless of their initial conditions, all con-

verged to a search comprised of two emergent phases: a long & highly localized phase and

a shorter ballistic phase, where under competition they outcompeted Lévy walks, including in

scaled environments. This search pattern is not new to the literature, and is commonly referred to

as intermittent search (Bénichou et al. 2005, 2011; Bénichou et al. 2006), a composite random walk

which is known to outcompete Lévy-like behaviour (Benhamou and Collet 2015), and character-

izes the behaviour of some organisms (Reynolds and Frye 2007). The advantage of intermittent
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search should feel intuitive; when searching for food (e.g., mushrooms) or something lost, hu-

mans will sometimes search a small area intensively before eventually giving up and switching

to a new location (Pacheco-Cobos et al. 2019). The primary mode of the derived distributions,

composed of smaller moves, provides the capability to search intensively and exploit clustered

resources. The secondary mode, composed of a few large moves, allows an individual to quickly

explore the environment before eventually encountering another resource. We also conjecture

that limiting the size of the larger moves may be unnecessary. For example, it may be sufficient

to simply continue walking until a resource is located, which does not require a predetermined

distance, but accomplishes the same result.

A similar search, area-restricted search (Dorfman et al. 2022; Kareiva and Odell 1987), can be

characterized by an intermittent search as foragers switch between an intense localized search

and an exploratory global phase. The primary difference between the two strategies being that

turning angles increase following resource encounters under an area-restricted search – our

evolved walks do not react in response to resource encounters, they are simply random draws

from a single distribution. Evolutionary algorithms and models of reinforcement learning have

previously been used to evidence the adaptive value of area-restricted search, but these models

either acted primarily on the duration spent in the local search, and the directionality of the local

and global phases (therefore presupposing the option of intermittent search; Hills 2006; Scharf

et al. 2009), or included an explicit capability to learn (López-Incera et al. 2020). In contrast,

our derived distributions are the result of combinatorial optimization from random processes

in the absence of sensory or memory effects; each distribution G is a multiset of size 200, with

move lengths belonging to a finite set of size 498 (the restriction set by equation (1), thus there

were a possible 697!/(200!497!) unique distributions – more than the sum of both the legal and

theoretical number of positions is the game ‘Go’ (Tromp 2016; Walraet and Tromp 2016). Fur-

ther, we utilized a form of procedurally-generated environments, whose increased environmental

variation decreased the risk of artifacts that might incur from a single environment with periodic
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boundary conditions. Thus, the consistent result of intermittent search in all of our simulations is

a strong indication of the selective advantage of intermittent search as an intrinsically-generated

behaviour.

If intermittent search is intrinsically-generated, then its behaviour may only ever be observed

within a vacuum, and may be mistaken for Lévy-like behaviour, since interactions with the en-

vironment will inevitably affect the observed searching behaviour. For example, ‘brain-blocked’

free-moving Drosophila larvae exhibited movement similar to a Lévy walk with an power-law

exponent of 1.96 (Sims et al. 2019). By eliminating the larvae’s sensory information of the envi-

ronment, an alluring hypothesis is that their movement was an intrinsically-generated Lévy walk.

However, the larvae could collide with one another and the edges of their arena, and the agar

coating the arena may have not been featureless. We demonstrated this possibility by allowing

the derived individuals to search within environments with various distributions and densities

of resources and collecting the ‘realized’ move lengths (fig. 5). Whereas the evolved distributions

were bimodal and disjoint, the observed distributions were contiguous, heavy-tailed, and under

the assumption of a power law exhibited exponents which fell within the range of “Lévy-like”

behaviour, 1 < u < 3 (fig. S2). The MSD scaling exponent of the derived behaviour, α = 1.997,

was nearly identical to that of a Lévy-walk, α = 1.97, and scaling exponents have been reported in

the literature as evidence to characterize organisms as using Lévy walk, with many 1.6 ≤ α ≤ 1.9

(Ariel et al. 2015; Miramontes et al. 2014; Murakami et al. 2015; Ramos-Fernandez et al. 2003),

further conflating the two behaviours. The scaling exponent of our derived individuals is also a

near exact match with the results of the model from López-Incera et al. (2020), despite our unique

assumptions.

Although our results strongly indicate the adaptiveness of intermittent search, we recognize

that our model is chasing after an optimal and potentially universal strategy that may not exist.

Selection acts on preexisting variation, and intermittent search may be unattainable or costly
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to evolve in real-life organisms, despite its advantages. Thus, we do not necessarily expect

intrinsically-generated intermittent search, or any other distribution generated by our model,

to be a universally-available strategy. However, with the appropriate ecological contexts, and

given the evolutionary nature of the model’s heuristics, we believe our model has the potential

to reveal a class of biologically-relevant and intrinsically-generated search patterns, and that

includes intermittent search.

Conclusion

We overcame the a priori constraint of searching behaviour governed by power laws, and con-

structed a model which allowed for the evolution of virtually any probability distribution. Whereas

the Lévy flight foraging hypothesis predicts the evolution of adaptations for Lévy-like behaviour,

our model instead resulted in intermittent search, a behaviour which characterizes an area-

restricted search. Our results do not eliminate the possibility of intrinsically-generated Lévy-

like behaviour, but they do evidence the optimality of an intrinsically-generated intermittent

searching behaviour – a behaviour which outcompeted Lévy walks in all 324 of our tested in-

stances, most often only requiring two generations. We also demonstrated that intermittent

search could be perceived as Lévy-like behaviour due to interactions with the environment, thus

supporting aspects of the extrinsic hypothesis. The results of our model could be confirmed

with experiments which minimize or eliminate truncated movement due to interactions with the

environment. Further, if intermittent search is intrinsically-generated, then the Fourier analysis

of neuronal activity in, say, peristaltic-driven motion (e.g., pedal waves in larvae as described

by Reynolds (2021)), might reveal two primary oscillatory components: a low-frequency & large-

amplitude component, and a high-frequency & low-amplitude component which accounts for the

majority of the power spectrum. Our model, as presented here, is most appropriate for exploring

the evolution of intrinsically-generated behaviour, specifically in the absence of information on

the environment. The model could be extended by subjecting the distribution of turning angles to

21

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: 

https://doi.org/10.1086/729220. Copyright 2023 The University of Chicago.



selection, or including aspects of memory (working memory, as opposed to a genetic memory) to

explore more complex behaviours. For example, turning angles are not independent of resource

encounters under area-restricted search (Dorfman et al. 2022), and selection could act on the cor-

relation of turning angles and resource encounters. The evolutionary mechanisms could include

saltatory mutations (i.e., mutation probabilities other than normal), and considerations for the

relatedness of individuals to alter how the algorithm explores the solution space. The model

could also include predator and mate encounters to determine how combinations of encounters

affect the evolution of individual walks. The environments could include spatiotemporal fluctu-

ations in resource density to assess how food availability alters searching behaviour. And lastly,

our model could include costs for cognitive or physiological adaptations, and explore how those

costs might affect the evolution of intermittent search or whichever resultant evolved walks. We

hope the results presented here will encourage further research on the potential evolutionary

origins of an intrinsic and intermittent search.
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searching strategies outperform scale-free ones even when prey are scarce and cryptic. Journal

of Theoretical Biology 387:221–227.

Bénichou, O., M. Coppey, M. Moreau, P.-H. Suet, and R. Voituriez. 2005. Optimal search strategies

for hidden targets. Phys. Rev. Lett. 94:198101.

Bénichou, O., C. Loverdo, M. Moreau, and R. Voituriez. 2011. Intermittent search strategies. Rev.

Mod. Phys. 83:81–129.

Boyer, D., G. Ramos-Fernandez, O. Miramontes, J. Mateos, C. Germinal, H. Larralde, H. Ramos,

and F. Rojas. 2006. Scale-free foraging by primates emerges from their interaction with a

complex environment. Proceedings. Biological sciences / The Royal Society 273:1743–50.

Bénichou, O., M. Coppey, M. Moreau, and R. Voituriez. 2006. Intermittent search strategies:

When losing time becomes efficient. Europhysics Letters 75:349.

23

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: 

https://doi.org/10.1086/729220. Copyright 2023 The University of Chicago.



Campeau, W., A. Simons, and B. Stevens. 2023. Data For: Intermittent search, not strict Lévy
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burst patterns in primate cerebral cortex. Communications Biology 4:739.

Loken, C., D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu,

J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. V. Zon. 2010. SciNet:

Lessons learned from building a power-efficient top-20 system and data centre. Journal of

Physics: Conference Series 256:012026.
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patterns of rural humans. PLoS ONE 13.

Reynolds, A. M. 2018. Current status and future directions of Lévy walk research. Biology Open
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Figure legends

Figure 1: Examples of Lévy dust environments. Panels A-C, E997×997 with n2 · 10−1 (rounded

down to the nearest integer) Lévy dust (LD) distributed resources with u = 1, 2, and 3, re-

spectively. Panels D-F, histograms of the distributions used to produce panels A-C. We used

100-fold more resources than in our simulations to better illustrate the spatial nature of each

exponent, and log-transformed the distributions to elucidate differences in shape; longer move

lengths decrease in frequency with increasing u. Note: the y-axes of panels D-F are normalized

frequencies.

Figure 2: Modelled assortment and syngamous offspring production. Following selection (see

text), one of two halves of each randomly rearranged parental genomes (G, a finite, unordered

list of move lengths l) is assigned through independent assortment as the gamete to form one of

four possible offspring genomes (indicated by the ‘--’, ‘· · · ’, ‘—’, and ‘-··’ lines). An offspring’s

genome is thus composed of a random sample of move lengths inherited equally from both

selected parental genomes.
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Figure 3: Evolution of foraging behaviour in response to LD u = 2.0 resources (fig 1B). The

labelled red points highlight changes in the move-length distributions over generational time.

Panel A shows the change in mean fitness (AOL = average number of resources found over a

lifespan) starting from a uniform distribution. Panels AI, AII, AIII are frequency plots of the

ancestral and derived distributions corresponding with the labelled points in A, occurring at

the 0th, 100th, and final generation. Panel B shows the change in mean fitness starting from

an all-ones distribution. Panels BI, BII, BIII are frequency plots of the ancestral and derived

distributions corresponding with the labelled points in B, occurring at the 0th, 2000th, and final

generation. The y-axis breaks in panels AIII, BII, and BIII highlight the secondary mode of the

distributions.

Figure 4: Geometric distribution-based model fitted to the derived distributions. Panel A is the

move-length probability distribution averaged over all individuals. Panel B contains the super-

imposed CDF of each individual in comparison to the best-fit CDF obtained from equation (3)

with pprimary = 0.9875 and pgeometric = 0.33. Panels C-E are walks derived from LD environments

with u = 1, 2, 3, respectively, whereas panel F shows a walk from the model of best-fit.

Figure 5: Impact of resource density and distribution on the distribution of realized move lengths

pulled from a fixed derived distribution shown in figure 3, panel AIII. Realized distributions of

move lengths over each tested environment – ballistic (u = 1.0), Lévy (u = 2.0), and Brownian

(u = 3.0) distributed resources – and with the tested density of 10−3 · n2 resources in addition to

a 10-fold factor above and below. Each distribution was generated from the truncated moves of

a 5 walks, each with lifespan λ = n2 steps. Note: move lengths are on a logarithmic scale.

Figure 6: Number of generations required for the derived populations to displace the Lévy

populations from the competition simulations. Panel A is lifespans λ = n2 and panel B is

lifespans λ = 20 · n2.
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Video S1: Animation of figure 3A, evolution of distributions starting with random uniform move

lengths, where successive frames are the successive generations saved within our digital fossil

record. The histogram represents the concatenated distributions of all individuals.

Video S2: Animation of figure 3B, evolution of distributions starting with ’all-one’ move lengths,

where successive frames are the successive generations saved within our digital fossil record.

The histogram represents the concatenated distributions of all individuals.

Video S3: Animations of individual walks over 104 steps. Panel A is a walk from one of the

derived distributions, panel B is the model fitted walk (same as fig 4F), and panel C is a Lévy

Walk.
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Supplementary Figures & Results

Figure S1: Mean squared displacement (MSD), a measure of diffusivity, as a function of lag time

τ, averaged over 104 walks, each with a lifespan of λ = 224, for Lévy and derived distributions.

The MSD was sampled every 28 steps, but the plot begins τ = 216, where the sampling rate is

higher between log-intervals, for better visual comparisons of the trends. Note: the axes are on

logarithmic scales.
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Figure S2: Power-law analysis of the realized distributions of move lengths over different resource

distributions and densities. Each point is the average of five trials from an individual with

lifespan λ = n2. Error bars are the standard error of the mean power-law exponent, and are

otherwise not visible if the error was small.

Competition Simulations

We computed an additional set of competition simulations with very small lifespans λ = 0.1 · n2,

using the derived distributions from the random uniform starting condition, only. Here, we also

provided the Lévy walks with access to strictly a G of size 2000. The derived distributions won

35 of the 36 simulations. The median number of generations needed to displace the Lévy walks

was 8, with a minimum of 1, and maximum of 26. In the one instance were the Lévy walks suc-

ceeded, the population size was 10 and the simulation elapsed over 11 generations, as compared

to the other two replicates where the derived distributions displaced the Lévy walks in only four

generations. Due to the small lifespan and population size, we ascribe this singular loss as a
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result of random chance.

Whereas the average probability of drawing a move length of n/2 between the two modes

was approximately 1% among all derived populations, variation within each population differed,

although was similar between the environments. The derived distributions evolved in ballistic

environments (LD, u = 1.0) had one or zero individuals with no secondary mode, eight or nine

individuals with no secondary mode in Lévy environments (LD, u = 2.0), and four individuals

with no secondary modes in Brownian environments (LD, u = 3.0). Our competition simulations

included the populations with the second largest difference in missing secondary modes; zero

from the random uniform distributions evolved under ballistic environments, and eight from the

all-ones distributions evolved under Lévy environments. To determine whether the proportion

of strict primary modes was adaptive, we first compared the generational time required to dis-

place the Lévy populations among the two derived populations in their original and opposing

environments (fig. S3). In either case, the derived population with only bimodal walkers required

fewer generations to displace the Lévy populations. We then competed the derived population

with eight primary-mode walkers against itself in each environment type, with all 200 individ-

uals, lifespans of λ = 20 · n2, and patch density n2 · 10−3, to determine whether the proportion

of strict primary modes were adaptive. The bimodal individuals completely displaced the strict

primary-mode individuals in each instance, with an approximate overall increase of 7% in fitness

after a single generation, 9% after four generations, and 10% after eight generations.
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Figure S3: The number of generations required for the derived populations to displace the Lévy

populations in their original and opposing environments. Panel A is ballistic environments (LD,

u = 1.0) and panel B is Lévy environments (LD, u = 2.0).

Additional Methods

Here, we provide detailed descriptions for all of the methodologies we utilized in our simula-

tions. We also discuss the “harmonics” from the testing stages of our simulations, and cover

reasoning behind the utility of each method. We noticed that selection would often result in

individuals with move lengths which were divisors of n, and that the frequency of a divisor

increased as it approached n/2, where n/2 was always the most frequent divisor (besides n = 1).

We wanted to ascertain the behaviour of these harmonics, and developed several methods to

probe their behaviour. The following section summarizes the choices which were most effective

at explaining the harmonics, and which were most consistent with previous methodology. But as

we will see, the frequency of n/2 move lengths is a feature of the dominant evolved distribution,

so its appearance is due to more than these causes.

5

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: 

https://doi.org/10.1086/729220. Copyright 2023 The University of Chicago.



Supplement to Campeau et al. (2024), “The evolution of intermittent search” Am. Nat.

Each method outlined here resulted in reduced selection for harmonics, but in combination

were still not sufficient to completely explain them. In fact, the final method which most ef-

fectively accounted for persistent harmonics, was our model’s method of recombination. We

had previously only used our proxy for independent assortment to generate offspring genomes.,

without resampling them beforehand. This allowed specific move lengths to persist in the “alle-

les” and would often result in pre-mature convergence and/or punctuated equilibria. Including

a resampling of each genome before assortment resolved the phenomenon of persistent harmon-

ics and pre-mature convergence (at least, up to the derived results presented in this paper). This

result is visualized nicely in video S2 where a divisor of n transitions from l = 1 to l = n/2.

Prime and Larger Dimensions

Say there is an environment En×n, with a singular re-visitable resource located at ei,j. If there is

an individual which is restricted to a single movelength, which is also a divisor of n, then that

individual is restricted to grid-movement. The grid has (n/l)2 quadrants of size l × l, where each

edge of a quadrant is shared with its four neighbours. If the resource located at ei,j happens to

be on the edge of any quadrant, then the individual will return to that same resource with very

high probability. Conversely, if ei,j does not fall on the edge of a quadrant, then the individual

is certain to never encounter the resource (barring the base case of l = 1). If a grid intersects a

resource, the search efficiency is unusually high because of the restricted number of visitable lo-

cations. For example, when l = n/2, each edge is shared twice between neighbouring quadrants,

each vertex contains the intersection of every quadrant, and there are 4(n − 1) visitable locations

on the grid. The probability of selection resulting in grid-movement is contingent on the pop-

ulation size, number of resources, and the size and divisors of n. A greater population size, or

number of resources, increases the likelihood that one of the individuals’ grids will intersect with

a resource. Environments with larger n decrease the efficacy of a grid pattern by increasing the

distance between resources (especially if resources are clumped together). Lastly, if n is prime,

the efficacy of grid-movement is altered as it will continually shift; thus, losing the property of
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extreme success or failure due to chance intersections with resources.

Whereas we acknowledge the potential efficacy of grid-movement, we believe it is a highly

circumstantial result. So, each individual is assigned a unique environment, with larger and

prime n (specifically, n = 997 for the final results), to reduce the probability of a grid intersecting

resources by chance.

Cycling Resource Positions

If grid-movement is successful simply due to chance intersections with resources, then an addi-

tional method to control for those chance intersections is cycling resource positions. We create a

queue of resources (Fig 2). We generate 2n2 · 10−3 (rounded down to the nearest integer) Lévy

dust resources, where the first half are distributed onto the environment, and the second half are

stored in a queue. Once a resource is located by a individual, it is removed from the environ-

ment, and its position is stored at the beginning of the queue. The position at end of the queue

is then added to the environment. Queued resources maintain the property of re-visitability, the

governing powerlaw exponent, and reduces the efficacy of grid-movement by cycling resource

locations. Below is a simple illustration of how resources can be cycled using a queue of resource

locations:

We did pursue this methodology as it was not as consistent with previous methodology,

whereas procedural-generation was consistent and provided the same solution of increased en-

vironmental variance.

Procedurally-generated Environments

Many simulations utilize periodic boundary conditions to approximate larger environments, in-

cluding research on Lévy flight foraging. However, revisiting the same environment invites the

possibility of selection for features unique to a particular environment. Larger environments
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Initial Resources = [e0,0, e∗1,1, e2,2]

Queued Resources = [e0,2, e1,2, e@
2,0]

1 0 0

0 1∗ 0

0 0 1


︸ ︷︷ ︸
Initial Environment

→


1 0 0

0 0 0

1@ 0 1


︸ ︷︷ ︸

Updated Environment

Updated Queue = [e∗1,1, e0,2, e1,2]

Figure S4: An individual encounters a resource located at e1,1 (indicated by *) in the initial

environment. The resource is removed from the environment and placed at the beginning of the

queue. The environment is then updated by adding a resource to the location at the end of the

queue e2,0 (indicated by @), and the location is subsequently removed from the queue.

can also be achieved with procedural generation, removing the need for periodic boundary

conditions on individual movement. Before the main simulation begins, a library of unique

environments is generated (210 by default), and each individual is assigned a random starting

environment from the library. Each environment has the same distribution and density of re-

sources, as described in the first subsection of our methods. New environments are appended

when an individual crosses over the edge of its current environment, and the relative locations

are saved in an expanding dictionary. Our method of procedural generation increases environ-

mental variability and reduces the possibility for selection of artifacts due to revisiting the same

environment.

In our simulations we use lifespans which theoretically allow each individual to span a single

environment 20 times. Thus, traversing a single environment 20 times, which also has sparsely
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distributed resources, has a stronger possibility for selection resulting in adaptations for features

which occur by chance. Note that although we generate a library of 210 environments, this is

likely “overkill”, and a realistic minimum library size is the spanning number, i.e., as many

environments for as many times an individual can theoretically span a single environment (20 in

the case of this paper, or 25 if you insist on using powers of two). Also note, a library containing

only one environment, is equivalent to a typical model with periodic boundary conditions.

Turning Algorithm

As a grid is a network of rectangles, selection for grid-like movement may be exacerbated by

turning angles which are always perpendicular to the axes. Adding to the previous methodol-

ogy, we employed an alternative and more complex method of movement which more closely

resembles selecting a random direction from [0, 2π). Upon selecting a move length l, a random

selection from the border of all locations exactly l distance away becomes the endpoint (i.e., the ℓ1

radius). That move length is the sum of displacements, say x, y, such that |x|+ |y| = l. Whereas

resources are simply placed at the end of successive flights, an individual must walk to the end-

point, and this can be achieved by any permutation of the increments in x and y. Instead of

choosing arbitrary paths or permutations, we allow for all possible paths. A random selection

without replacement is made from a list of vertical and horizontal increments leading towards

the chosen endpoint, and this process continues until the list is empty. The probability of visiting

any location ei,j with a move length of l, which is the sum of its x and y components, is:(
i + j

i

)(
x + y − i − j

x − i

)(
x + y

x

)−1

(S1)

i.e., the product of all possible paths from the starting location to ei,j, from ei,j to ex,y, and the

inverse from the starting location to ex,y. Note that whereas this method of movement eliminates

the bias of choosing an arbitrary path, and concomitantly increases sampling of the environment,

the diagonal remains the most probable path (fig. S5).
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Figure S5: An example of the resultant probability space from our turning algorithm by a move

length l = 20, from location [0, 0] to [10, 10]. Panel A is the theoretical probability for visiting each

location, as calculated in equation S1. Panel B is the probability of visiting each location averaged

over 103 simulated walks. The scale maps the gradient to the corresponding probabilities.
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