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Abstract

Lévy flight is a type of random walk that characterizes the behaviour of many natural phe-

nomena studied across a multiplicity of academic disciplines; within biology specifically, the

behaviour of fish, birds, insects, mollusks, bacteria, plants, slime molds, t-cells, and human

populations. The Lévy flight foraging hypothesis states that because Lévy flights can maxi-

mize an organism’s search efficiency, natural selection should result in Lévy-like behaviour.

Empirical and theoretical research has provided ample evidence of Lévy walks in both

extinct and extant species, and its efficiency across models with a diversity of resource dis-

tributions. However, no model has addressed the maintenance of Lévy flight foraging

through evolutionary processes, and existing models lack ecological breadth. We use

numerical simulations, including lineage-based models of evolution with a distribution of

move lengths as a variable and heritable trait, to test the Lévy flight foraging hypothesis. We

include biological and ecological contexts such as population size, searching costs, lifespan,

resource distribution, speed, and consider both energy accumulated at the end of a lifespan

and averaged over a lifespan. We demonstrate that selection often results in Lévy-like

behaviour, although conditional; smaller populations, longer searches, and low searching

costs increase the fitness of Lévy-like behaviour relative to Brownian behaviour. Interest-

ingly, our results also evidence a bet-hedging strategy; Lévy-like behaviour reduces fitness

variance, thus maximizing geometric mean fitness over multiple generations.

Author summary

In heterotrophs, incuding animals, survival depends on the net energy gained through for-

aging. The expectation, then, is that natural selection results in adaptations for efficient

foraging that optimize the balance of searching costs and rewards. Lévy flight foraging has

been proposed as an optimal foraging solution. The hypothesis states, if no information

about resource locations are available, and the locations are re-visitable, then selection will

result in adaptations for Lévy flight foraging, a type of random walk. It has been argued

that Levy-like foraging behaviour may simply reflect how resources are distributed, but

empirical and theoretical research suggests that this behaviour is intrinsic or innate. How-

ever, this research does not address evolutionary mechanisms, and lacks ecological
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breadth. We extend the current theoretical framework by including evolutionary ecologi-

cal contexts. We treat an organism’s random walk as a heritable trait, and explore ecologi-

cal contexts such as population size, lifespan, carrying capacity, searching costs,

reproductive strategies, and different distributions of food. Our evolutionary simulations

overwhelmingly resulted in selection for Lévy-like foraging, regardless of the distribution

of food, and evidences Lévy flight foraging as a bet-hedging strategy. Thus, here we pro-

vide some of the first evidence for the evolutionary maintenance of Lévy flight foraging.

Introduction

A Lévy flight can be described as a random walk with move lengths pulled from a heavy-tailed

distribution, P(l) * l−u with power-law exponent 1< u< 3 [1–4] (Fig 1). Levy flights model

the behaviour of phenomena in several areas including, but not limited to, finance [5–7], crim-

inology [8, 9], optimization algorithms and cryptography [10–13], epidemiology [14–16],

earthquake analysis [17], and physics and astronomy [18–22]. In behavioural ecology, Levy

flights have also been shown to be an efficient searching strategy for foragers [2–4]. Efficiency

of the search for food is given by the balance between cost and reward, and is key to survival

[23–26]. If the distribution of resources is unknown, the resources are sparse, randomly dis-

tributed and revisitable, and the searcher has no memory, then the Lévy flight foraging hypoth-

esis states that a Lévy flight with power-law exponent u’ 2 is an optimal or near-optimal

searching strategy. There is ample evidence demonstrating the prevalence of ‘Lévy-like’

Fig 1. Examples of random walks. Four random walks (top) of 104 segments with move lengths pulled from a discrete truncated power-law distribution with

exponents u = 1.0, 2.0, 3.0 and 5.0, with random direction from {0, π/2, π, 3π/2}. The walks begin at a random location on a 1000 × 1000 toroidal environment and

their power-law distribution (bottom) is shown as a histogram of 104 logged move lengths truncated to half the length of the environment. Walks with exponents near

u = 1.0 exhibit ballistic movement, diffusive movement near u = 2.0, and superdiffusion for u� 3.

https://doi.org/10.1371/journal.pcbi.1009490.g001
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behaviour in the foraging and movement patterns among biological units, including species of

fish, birds, insects, mollusks, slime molds, t-cells, bacteria, plants, human populations, and in

the fossil records of 50 My-old sea urchins [27–38]. Although prevalent, whether Lévy-like

behaviour is the result of selection for behavioural adaptations (the intrinsic or adaptationist

hypothesis) or is an emergent phenomenon due to the encounters within an environment’s

distribution of resources (the extrinsic or emergentist hypothesis) remains a topic of debate

[30, 39]. An additional source of debate is whether Lévy strategies are always advantageous

over Brownian strategies [2, 4, 40, 41]. If Lévy flight is an optimal or near-optimal searching

strategy, and a heritable trait, then adaptations for Lévy flight foraging should result from natu-

ral selection.

Perhaps the most compelling empirical evidence for the intrinsic hypothesis is the demon-

stration of Lévy-like behaviour in ‘brain-blocked’ Drosophila larvae [30]. The mean power-law

exponent of larvae with blocked synaptic activity, suboesophageal ganglion, and sensory neu-

rons was found to be 1.96, suggesting a selective pressure for autonomous Lévy walks close to

the theoretical optimum. And on the theoretical end, using reaction-diffusion algorithms,

Lévy walks have been shown to be an optimal solution across a broad range of environments

[4]. Since the extrinsic hypothesis relies on searching strategies specific to distinct environ-

ments, the broad success of Lévy walks counters this argument. Another theoretical approach

incorporates spatial memory (via Gaussian mixture models) with a diffusion model, where the

strength of memory effects resulted in the proclivity to not leave the first few visited sites, aban-

doning Lévy-like behaviour and favouring Brownian behaviour [42]. If resource locations are

static and revisitable, then strong spatial memory is a sufficient strategy as an organism can

revisit known resources indefinitely. However, in a fluctuating environment strong spatial

memory may lose its utility if the distribution of resources is continually changing. Given that

a temporally fluctuating environment is inextricably linked with evolution [43–48], there are

arguably cases where more explorative searching behaviour, due to weaker memory, would

lead to higher fitness outcomes over evolutionary time. And if strength of memory is a herita-

ble trait, the selective pressure for a weaker spatial memory—or Lévy-like behavior—would be

higher, thus providing additional argumentation for the intrinsic hypothesis.

These theoretical models have advanced our understanding of the advantages of Lévy-like

behaviour, but provide an incomplete and only proximate explanation. In order to support the

claim of an evolutionary origin we must first address several key aspects of evolutionary ecol-

ogy. These aspects can be divided into two main categories, evolutionary mechanisms and eco-

logical contexts. Much of the theoretical research on Lévy walks concerns itself more with

physical explanations [4, 40, 42] and does not include evolutionary mechanisms. The intrinsic

hypothesis relies on the selection and heritability of an organism’s distribution of move

lengths; thus, testing the hypothesis should consider at least these two factors. A more com-

plete understanding of the evolution of a foraging behaviour depends on the success under

ecological contexts such as energetic costs and reproductive strategies. To determine whether

selection will result in adaptations for Lévy-like behaviour, we test the Lévy flight foraging

hypothesis using numerical simulations that include biological contexts such as population

size, searching costs, lifespans, resource distribution, speed of movement, competition, and

different measures of energy accumulation as proxies for semelparity and iteroparity. Our evo-

lutionary models include clear aspects of selection & heritability, and utilize the searching

costs and rewards of foraging as the medium through which selection acts on foraging behav-

iour. Thus, if Lévy-like foraging behaviour is both adaptive and instrinsic, then our simulations

should result in the selection and evolution of Lévy-like behaviour, over a broad array of con-

ditions. Whereas if Lévy-like foraging behaviour is extrinsic, the expectation is that selection
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will result in foraging exponents that are positively correlated with the spatial exponent gov-

erning the distribution of resources.

Materials and methods

We used a combination of two methods of simulation to test the Lévy flight foraging hypothe-

sis; a set of selection simulations which probe the parameter space to determine fitness curves

over a single generation, and lineage-based models of evolution which test subsets of parame-

ters determined by the single-generation simulations to be of interest. Both methods utilize

matrix environments with resources distributed according to Lévy dust (LD) and uniform ran-

dom patterns. Digital organisms (DO) with variable power-law exponents of move lengths tra-

verse these environments until they have exhausted their lifespan, during which their energy

yield, our surrogate for fitness, is computed. We then determine the optimal exponent of a

population of DOs by comparing calculations of their resultant energies.

Generation of environments

The model environment is a n × n toroidal matrix (Fig 2) (i.e. if a DO travels over an edge of

the matrix, then it would appear on the opposite edge), E, with resource entries ei;j i; j 2 Zn

with n = 1000, which are all initialized with zeros. Two methods were used to populate the

matrix with resources; uniform random distributions and Lévy dust, a fractal point pattern. If

a location (i, j) is selected during resource distribution, then ei,j is incremented by 1. Each envi-

ronment recieves exactly n2 � 10−4 re-visitable resources; this number corresponds to the

Fig 2. Demonstration of a toroidal environment. A set of five non-empty resource entries in a cross formation is

centered at entry e0,0 and then translated to e5,5 on a 11 × 11 toroidal matrix environment.

https://doi.org/10.1371/journal.pcbi.1009490.g002
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density of resources used by Wosniak et al. [4], where exponent u* 2 was found to maximize

search efficiency, regardless of resource distribution.

Uniform random distribution of resources. We include environments with uniform

randomly distributed resources in our simulations because this was the focal type of environ-

ment studied in the seminal work for the Lévy flight foraging hypothesis [3]. Uniform distribu-

tions also describe several species’ distributions; some examples are trees, shrubs, marine

invertebrates, and three-spined sticklebacks [49–53]. Patches are distributed by taking a ran-

dom uniform sample, with replacement, of all possible locations on the matrix. The resource

entry at each selected location is then incremented (Fig 3). There is also the choice of random

uniform sampling without replacement, but one-hundred locations sampled out of one-mil-

lion is unlikely to differ significantly in composition from that of samples without replacement,

and sampling with replacement is also consistent with the Lévy dust distributions which can

result in ei,j> 1.

Fig 3. Uniform random and Lévy dust environments. Examples of 1000 × 1000 environments with 105 uniform random, Lévy

dust dimensions u = 1.0, 2.0, and 3.0 distributed resources. There are 105 patches instead of n2 � 10−4 to more clearly reveal the

nature of the distributions. Note that the homogeneity of patch distribution decreases with increasing u.

https://doi.org/10.1371/journal.pcbi.1009490.g003
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Lévy dust. Lévy dust (LD) is a distribution which generates a fractal pattern known to

mimic resource dispersal in nature, including at least plants [54, 55] and marine organisms

[27, 56] and was utilized in perhaps the most comprehensive evolutionary study of Lévy walks

[4]. For a LD environment, patches are placed using a Lévy flight with successive move lengths,

l, selected from a distribution defined by the following probability mass function (pmf):

PðlÞ ¼
0 l < 1 or l > n=2

l� u 1 � l � n=2

(

ð1Þ

where n is the size of the environment, and u − 1 is the fractal dimension (Fig 3). In previous

studies, each move length is selected with a uniform random direction θ from [0, π), but our

model is discrete and the DOs move perpendicular to the axes; thus, we sample a random

direction from {0, π/2, π, 3π/2} so that both the DO walks and the environments they traverse

share the same generative mechanism. However, the distribution of directions will still

approach a uniform distribution over an increasing number of consecutive moves (Fig 4). We

chose the upper limit of l = n/2 in Eq (1) as that is the maximum distance for movement per-

pendicular to the axes in an n × n toroidal environment.

Simulation methods

We simulate populations of DOs. An individual DO is defined by the following list:

½S; x; ax; i; j; l; d; ad�

Fig 4. Continuity of θ over consecutive moves. Distributions of direction, θ, for random walks with power-law

exponents u = 1.0, 2.0, 3.0, and 5.0, within windows of 25 consecutive moves, over 104 moves.

https://doi.org/10.1371/journal.pcbi.1009490.g004
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S is a list of 104 integer move lengths generated by the pmf described in Eq 1, with exponent,

u, and n = 1000. The current amount of resources a DO has encountered, ξ, and the sum of

resource encounters since birth, αξ, are used to compute the metrics of search efficiency and

fitness in our evolutionary models. A DO’s energy starts at zero, increases by ei,j upon finding

a resource at position (i, j), and decreases with movement by a fixed searching cost χ. The

parameters i and j are a DO’s position in the environment. All DOs use a truncated random

walk with movement perpendicular to the axes to search their environment; they draw a ran-

dom move length from S and a random direction from {0, π/2, π, 3π/2}, and continue moving

along the environment, entry by entry, until they have either exhausted their move length or

have located a resource. A search starts at a random location in the environment (i, j) which is

updated after every move. The lifespan, λ, is the amount of time a DO can travel before it is

removed from a simulation. The total distance a DO has traveled over its lifespan to date is

denoted by d, and the sum of those distances since birth by αd. The variables ξ, αξ, d, i, j and

αd are functions of time and will be subscripted by t when specifying the time is necessary.

We vary the searching cost to simulate a range of conditions from those where cost is

extremely low (e.g. wandering albatross [57, 58]), to those where the energetic requirements of

movement may be higher (e.g. insect flight or movement in denser mediums, such as water).

We compute a DO’s fitness in two ways, 1) using energy at the end of a lifespan (EOL); a proxy

for fitness assuming semelparity or a single reproductive event just before death, and 2) using

the average of energy over a lifespan (AOL); a proxy for lifetime reproductive success assuming

iteroparity, or multiple reproductive events over a lifetime. To illustrate the differences

between the two fitness metrics, and demonstrate how they correspond to semelparity and

iteroparity, we provide the following example. If two DOs traveled the same total distance over

their lifespan and encountered 100 patches each, then their fitness as determined by the EOL

metric would be equivalent. However, one of the DOs might have found those 100 patches at

the very end of its lifespan, while the other encountered its 100 patches early in its lifespan.

The fitness of a DO with the earlier encounters would be higher by the AOL metric, as it has

had access to the same resources for longer, thus with respect to iteroparity, the possibility of

more reproductive events over a lifespan.

Searching cost is applied in a post-processing round after each generation. We include a

short proof (Box 1), and a detailed proof (S1 Appendix) that this is equivalent to running simu-

lations where a cost is applied at each timestep; thus, computational cost can be reduced. We

denote a DO’s speed as the distance traveled per timestep by s, the number of resources

encountered at timestep t, by et (a resource entry with temporal notation now, rather than spa-

tial), the distance traveled in a timestep by δt, and set the rule that a move of length l takes dl/se
timesteps to traverse.

Single-generation simulations. The single-generation simulations consisted of 5 � 104

DOs with power-law exponents drawn from a continuous uniform distribution on [0, 6].

Choosing from this range permitted exploration of the fitness outcomes of both Lévy-like

exponents, 1< u< 3, and Brownian-like exponents, u� 3. These simulations were restricted

to a single generation with fixed patch distribution types, speed, and lifespan. The following

steps describe how the simulation then proceeds:

1. E is constructed with n = 1000 and populated with n2 � 10−4 re-visitable patches.

2. Each of the 5 � 104 DOs traverse a unique copy of E until their lifespan is exhausted.

3. The DOs’ u, ξ, αξ, d, and αd are saved for post-processing.

The results of these simulations are analyzed in two ways. Cost is applied post-hoc for both

analyses, and any DO with �� 0 is considered dead, thus is not admitted. The first method of
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analysis is plotting the entirety of the DO population’s fitness as a function of their exponents,

along with a sliding window of the energy’s first moment, positive-only first moment, and

standard deviation. We use a positive-only first moment to ensure only DO’s with fitness � > 0

are considered. The second is sampling 1000 sub-populations each of sizes 10 through 1500

with step-sizes of 10 and extracting the exponents of the top 1% performing DOs from each

sample. These two analyses were used to provide insight on which subsets of the parameter

space should be tested with evolutionary simulations.

Box 1. Searching costs are a linear transformation of zero cost
models

Proposition

Both of a DO’s EOL and AOL energy can be computed from s, λ, ξλ, αξλ, dλ, αdλ, for any

cost χ.

Proof

The energy of a DO at time t is �t, and for t = 0, �0 = 0. When speed s = 1, moving a dis-

tance of one consumes exactly one timestep. Thus, if dt+1 = dt + δt and s = 1, then δt = 1

and dt = t 8t. The DO’s energy is updated by,

�tþ1 ¼ �t þ et � wdt ¼ �t þ et � w

By letting xt ¼
Pt

t¼0
et be the sum of resource entries found at time t since birth, the

energy at the end of a DO’s lifespan, �EOL, can be described as:

�EOL ¼
Xl

t¼0

ðet � wÞ ¼ xl � lw

and �AOL as:

�AOL ¼
1

l

Xl

t¼0

�t ¼
1

l

Xl

t¼0

Xt

t¼0

ðet � wÞ ¼
1

l
axl �

w

l

lðlþ 1Þ

2

Speeds of s> 1 result in δt> 1, where generalization for any s is achieved by tracking the

distance a DO has traveled:

�EOL ¼ �l ¼
Xl

t¼0

ðet � wdtÞ ¼ xl � dlw

�AOL ¼
1

l

Xl

t¼0

�t ¼
1

l

Xl

t¼0

Xt

t¼0

ðet � wdtÞ ¼
1

l
axl �

w

l
adl

Thus, models with χ 6¼ 0 remain a simple linear transformations of χ = 0 models, with

the additional requirement of recording dλ and αdλ for speeds of s> 1.

See supplementary information (S1 Appendix) for a more detailed proof.
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Evolutionary simulations. The evolutionary simulations are lineage-based and multi-

generational extensions of the single-generation simulations, where the power-law exponent

of a DO’s S is treated as a heritable and normally distributed trait. A DO’s fitness is measured

either by �EOL or �AOL, and the composition of subsequent populations was determined by rela-

tive fitness. The following is a step-by-step outline of how the evolutionary model operates:

1. Initialization

1.1. Select searching cost χ, number of generations G, resource distribution type, popula-

tion size K (also the carrying capacity), and speed s.

1.2. Generate the starting population of size K with exponents u 2 N(μ, σsv) where μ is the

mean foraging exponent of the population prior to evolution and σsv is the standing

variation.

2. DO Search

2.1. In each generation, an E is constructed with n = 1000 and populated with n2 � 10−4 re-

visitable patches.

2.2. The population of DOs traverse E until all lifespans are exhausted.

2.3. Searching costs are then applied to each DO.

3. Relative Fitness Function

3.1. For each DO, i, a triple (ui, fi, ωi) is stored, where u is the power-law exponent, f is the

fitness, and ω is the number of offspring. Initially, ωi = 0.

3.2. Any triple (ui, fi, ωi) with fi� 0 is removed. If all fi� 0, the simulation ends.

Otherwise,

3.3. the remaining triples are stored in descending order of fi. This is the parent list, O of

length m.

3.4. The number of offspring are then assigned by oi ¼ d
K�fiPm

j¼0
fi
e, until

Pm
i2O oi ¼ K.

4. Next Population

4.1. For each parent DO, 0� i�m, ωi offspring DOs are created with u = ui + N(0, σsv)

4.2. The previous generation is replaced by its offspring.

5. Repeat steps 2)-4) G times.

To elucidate steps 3) & 4), we give a brief example. If a simulation after steps 1) and 2) with

K = 4 resulted in the following set of DOs being passed to the relative fitness function {(u = 3.4,

f = 7), (u = 5.0, f = 2), (u = 2.3, f = 2), (u = 1.5, f = −1)}, then the respective number of offspring

assigned to each DO would be 3, 1, 0, and 0. Each offspring’s foraging exponent is their parent’s

exponent, plus a random normal value with mean zero and σsv. The extreme case is σsv = 0 in

which offspring are exact copies of their parents; thus all pheontypic variance is due to genetic var-

iance among DO lineages and heritability (h2) = 1. With increasing σsv, h2 is effectively reduced,

and offspring are increasingly likely to look dissimilar to their parents. The subsets of the parame-

ter space extracted from the single-generation simulations were combined with σsv to explore the

differential survival and evolution of DO’s due to differences in their power-law exponents.

Relative performance under direct competition is an important component of evolution;

thus, competitive assays provide additional insight into fitness [59]. Importantly, they can help
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discern whether an evolved trait has any biologically significant fitness advantages over an

ancestral trait. Thus, we included a set of simulations in which populations of fixed foraging

exponents competed for a fraction of a carrying capacity. The competition simulations operate

similarly to the evolutionary simulations, but with two main differences, 1) they start with two

equally-sized populations, each with a unique and fixed foraging exponent, and 2) σsv = 0.

Determining the relationship between �EOL & �AOL. We wanted to determine the rela-

tionship between our two measures of fitness, �EOL and �AOL, the average energy over a lifespan

and the energy at the end of a lifespan, respectively. Given a strong relationship, some compu-

tational time could be saved by focusing on a single measure of fitness. We compared the

results of 5 � 104 DO’s �AOL and �EOL for lifespans λ = 1M, 2.5M, 5M, 10M, for s = 1 and χ = 0,

across all environments with n2 � 10−4 re-visitable patches using simple linear regression. The

Thiel-Sen estimator, a robust form of simple regression, was also used to evaluate comparisons

as some of the results had visible skew and heteroskedasticity.

Among the regression models, all coefficients of determination fell within 0.76 and 0.87

with p<< 0.05. The coefficients of determination consistently increased with lifespan, which

is likely due to the probabilistic nature of the searching behaviours; as searching time increases,

sampling time increases, thus the error in the estimated slope decreases. Regardless of environ-

ment, lifespan, or statistical estimator, a slope of * 0.5 was consistently reported. A slope of

0.5 likely implies that resource discovery is balanced over a lifespan. As an example, say a DO

travels a distance n over its lifespan, and encounters a resource entry every k steps. Assuming k
divides n, then the DO will visit exactly n/k resource entries and,

�EOL ¼ n=k

�AOL ¼

P
i2n�EOLi

n
¼

nþ 2

2k
�

1

2

When n>> k, the ratio �AOL: �EOL will approach * 0.5, and will linearly depart from 0.5 as k
approaches n. As an example, consider k = 104 and the shortest lifespan examined λ = 1M,

then the ratio of the two measures is * 0.495. This result is commensurate with the average

result of Brownian-like DOs with lifespans of λ = 1M with an average �EOL’ 100, and average

�AOL’ 50, thus a ratio of * 0.5 (S1 Fig). For contrast, if a DO found all n/k resources in

sequence at the start or end of its lifespan, then

�AOL ¼

start;
n �

n
k

k
þ

n
k
þ 1

2k

end;

n
k
þ 1

2k

8
>>>>><

>>>>>:

where in either case, the only value of k which satisfies a ratio of 0.5 is k = 1, and values of

k> 1 asymptotically approach 1 and 0 for the start and end cases, respectively. Due to the

strong relationship between our two fitness metrics, and because reproduction strategies tend

towards iteroparity [60, 61], we chose to focus on the �AOL fitness metric for both visualizations

and evolutionary simulations. However, any notable differences in results between the two fit-

ness measures will be pointed out when necessary.

All simulations were programmed in Python 3.7.9 using the numpy [62], scipy [63], and

pandas [64] libraries in addition to the Python standard library. Parallelization was accom-

plished using a combination of GNU parallel [65], multiprocessing [66], and bash scripting.

Data visualizations were accomplished with a combination of Matplotlib [67] and R [68].

Computations were performed on the Niagara, Graham, and Cedar supercomputers at the
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HPC consortium which provided access to as many as 200 CPU cores and 875GB of RAM [69,

70]. Code for the single-generation and evolutionary simulations (S1 Code), and the results

(S1 Data), are available in the supplementary information.

Results & discussion

Lévy flights have been evidenced as an optimal, or near-optimal, method of searching for

resources given that the information on the distribution of resources is unknown, the

resources are sparse, randomly distributed and revisitable, and the searcher has no memory.

Building on this premise, the Lévy flight foraging hypothesis states that natural selection

should result in Lévy flight foraging. However, the maintenance of Lévy flight foraging

through evolutionary processes is lacking in existing models, and they lack ecological breadth.

Building upon existing theoretical models, we treated a distribution of move lengths as a vari-

able and heritable trait, and added ecological contexts such as population size, searching costs,

speed of movement, lifespans, reproductive strategies, and different resource distributions.

The results presented here support the Lévy flight foraging hypothesis, suggest that Lévy flight

foraging may be selected for over the longer term as a bet-hedging strategy, but also indicate it

may not be universally optimal.

Single-generation

Our single-generation simulations explored how fitness varied with various population sizes,

foraging exponents, searching costs, speeds, and lifespans over a single generation. These sim-

ulations confirmed that Lévy-like exponents have higher mean fitness outcomes under a broad

array of circumstances. A foraging exponent of u’ 2 had the highest mean fitness when there

were no associated costs for searching (Fig 5), and this remained true regardless of the resource

distribution, consistent with the previous findings of Wosniak [4]. However, while the simula-

tions without searching costs consistently demonstrated Levy-like exponents had the highest

mean fitness, the fitness variance of Brownian-like exponents was large enough to produce

individual DOs with fitness which exceeded that of any individual Levy-like DO (Fig 6).

Once a sufficiently high searching cost is applied, the variance in fitness results in the sur-

vival primarily of DOs with high fitness Brownian exponents compared to the relatively lower

fitness (although, optimal on average) Lévy-like exponents. This result is in agreement with

Palyulin’s 1-dimensional searching model [40], where including the effect of external drift

indicated Brownian strategies as the most advantageous. However, the magnitude of this effect,

here, is conditional on population size, length of lifespan, the resource distribution, and

searching costs. Results from all 5 � 104 DOs demonstrated that the foraging exponent with the

highest mean fitness tends to be Brownian for clumpy resource distributions (LD fractal

dimension u = 2.0, 3.0), shorter lifespans, and high searching costs (Fig 7). Nevertheless, selec-

tion tends towards Lévy-like exponents with sufficiently long lifespans, regardless of a search-

ing cost, and the strength of selection increases when resources are uniformly distributed.

Interestingly, while both fitness metrics mainly share the same fitness outcomes, the end of

lifespan fitness metric more often resulted in selection for Lévy-like exponents for lifespans λ
= 10M.

The differences in selection for Lévy-like and Brownian exponents are highlighted when

subsampling from populations of 5 � 104 DOs, and collecting the top 1% performing DOs.

Those DOs which traversed random uniform environments see increasing selection for Lévy-

like exponents when lifespans are longer, population size is smaller, or the searching costs are

low (Fig 8). This trend holds true for all resource distributions, but selection for Lévy-like
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exponents is reduced for LD environments, compared to random uniform environments, and

with decreasing clumpiness of resources (Fig 9).

The results presented so far can be attributed to two kinds of sampling effects: population

size and lifespan. The fitness variance of Brownian-like exponents often produces more indi-

vidual DOs with fitness lower than Lévy-like exponents than it does with higher fitness; thus

smaller population sizes are more likely to sample low fitness Brownian DOs, which explains

the fitness advantage of Lévy-like exponents for small population sizes. And the longer a DO

has to traverse an environment, the more it can ‘sample’ the environment; thus fitness variance

decreases with increasing lifespan (Figs 5 and 6), and the resultant fitness is closer to the mean

fitness associated with its foraging exponent.

Fig 5. DO fitness curves. The average energy over a lifespan �AOL, of populations of 5 � 104 DOs with foraging

exponents 1� u� 6 and lifespans λ = 1M (top) & λ = 10M (bottom) traversing all environments types (RU = Random

Uniform [red ‘x’s], LD = Lévy Dust u = 1 [blue circles], u = 2 [green triangles], and u = 3 [purple diamonds]) with no

searching costs. The fitness trends were captured with a sliding window of first moments. The theoretical optimal

foraging exponent (TO) is indicated with the vertical dashed line u = 2.0.

https://doi.org/10.1371/journal.pcbi.1009490.g005
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A subset of our single-generation simulations explored the idea of how increasing speed

might alter fitness outcomes. When speed is one, traveling a distance of length l is equivalent

to l timesteps of a DO’s lifespan, and when s> 1, it takes dl/se timesteps to travel. For simula-

tions without cost, increasing speed results in selection for DOs with ballistic-like foraging

(Fig 10). The reason ballistic DOs are advantageous in this scenario is because they are allowed

to travel much further in their lifespans than Lévy-like or Brownian-like DOs. For contrast,

higher foraging exponents, u> 3, will increasingly result in a move length distribution of all

ones, while an exponent of u = 1 constitutes a distribution with many move lengths larger than

one (Fig 1). As speed increases, DOs with higher foraging exponents will travel a total distance

approximately equal to their lifespan, whereas ballistic exponents will travel distances several-

fold their lifespan, thus encountering more resources by virtue of total distance traveled alone.

Adding a cost penalizes DOs differentially due to the total distance traveled corresponding to

their foraging exponent. The result is peak fitness shifting towards Lévy-like exponents, and

then to Brownian-like exponents, with increasing searching cost. This result assumes no meta-

bolic or physical constraints due to increasing speed, which might be unrealistic as drag, for

example, increases with speed. Our model of increasing speed can also be thought of as differ-

ences in timings in a DO’s decision-making; at faster speeds, longer and shorter move lengths

are traveled over the same amount of time. Brownian-like DOs would ‘decide’ to travel pri-

marily distances of one, when in the same amount of time, those DOs could just as well have

traveled a longer distance in increments of one. Our simulations of faster speeds deviate from

the behaviour of current models, and were not included in the evolutionary simulations; how-

ever, they serve as a conceptual framework previously unexplored in the literature.

Fig 6. Fitness variance and the effect of a searching cost. The average energy over a lifespan �AOL, of populations of 5 � 104 with foraging exponents 1� u� 6 and

lifespans λ = 1M & λ = 10M traversing random uniform (RU) and Lévy dust (LD) dimension u = 1.0 environments. The fitness trends were captured with a sliding

window of the first moment (WFM, red) and positive-only first moment (PWFM, blue), with two standard deviations surrounding the trend. The exponent which

maximizes fitness, uMAX, is extracted from the sliding windows and marked with a dashed vertical line. Note that the first moments and standard deviations are

superimposed in the zero-cost (χ = 0) plots.

https://doi.org/10.1371/journal.pcbi.1009490.g006
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The results of the single-generation simulations demonstrated that most scenarios would

result in selection for DOs with Lévy-like exponents, particularly with longer lifespans. How-

ever, they also demonstrated a potential interplay between the large fitness variance of Brown-

ian-like DOs and the higher mean fitness of Lévy-like DOs when lifespans are short, or when

Fig 7. Optimal foraging exponents. The exponent which maximizes fitness, uMAX, extracted from the sliding window

of the positive-only first moments from the 5 � 104 after applying searching costs (χ = 0 [pink], χ = 1/9000 [green], χ =

1/8000 [blue]), as a function of log10 lifespan λ. The left column is the average of energy over a lifespan, �AOL, the right

column is energy at the end of a lifespan, �EOL, and the rows are indexed by the resource distribution type

(RU = Random Uniform, LD = Lévy Dust where u − 1 = fractal dimension).

https://doi.org/10.1371/journal.pcbi.1009490.g007
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searching in ballistcally distributed resources. Therefore, we primarily focused on comparing

evolutionary simulations with no searching costs (χ = 0) and high costs (χ = 1/8000), small

(K = 10) and large (K = 1500) population size, lifespans of λ = 1M, and across all resource dis-

tributions. As natural selection is predicted to result in Lévy-like behaviour, the 0th generation

of each run began with a population of DOs with a mean foraging exponent of either u = 1.0

or u = 5.0 with the predicted outcome that, after several generations, the mean foraging expo-

nent would approach u = 2.0. The alternative, the extrinsic hypothesis, is that selection will

result in foraging exponents that are positively correlated with the spatial exponent governing

the distribution of resources.

Evolutionary simulations

The evolutionary simulations with no cost resulted in overwhelming selection and evolution

of Lévy-like DOs (Fig 11A), and demonstrated a negative correlation between evolved foraging

exponent and Lévy dust dimension (Fig 12), but there is some nuance. The mean fitness of the

surviving DOs increased, but the number which survived decreased, with increasing clumpi-

ness of resources. However, the mean fitness of Brownian-like DOs exceeded Lévy-like DOs,

with fewer surviving DOs for LD dimensions u = 2.0 & 3.0. This provides evidence that Lévy-

like behaviour acts to maximize the, long-term, or geometric-mean fitness, and may thus

evolve as bet hedging [48, 71], a strategy known to be especially important in small populations

[72]: although Brownian-like behaviour can result in the highest fitness individuals within a

generation, geometric-mean fitness is reduced because survival is variable, whereas Lévy-like

behaviour results in higher reliability of survival, thus maximizing geometric-mean fitness

Fig 8. DO fitness landscape with random uniform resources. A matrix of surface plots of the top 1% performing DOs from sub-populations of the single-

generation simulations which traversed random uniform environments. Fitness is determined by the average energy over a lifespan, �AOL. The matrix rows

are indexed by lifespan λ, and the columns by the searching cost χ. A reference plot has been provided in order to interpret the axes of the individual surface

plots; the x-axis is foraging exponent, the y-axis is population size, and the z-axis is frequency normalized to [0, 1].

https://doi.org/10.1371/journal.pcbi.1009490.g008
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[73]. However, there was one exceptional set of simulations: small population size with LD

dimension u = 1.0 environments. Small populations are highly subject to drift, and while

many runs resulted in Lévy-like behaviour (25/40 runs for σsv = 0.25, 12/40 runs for σsv = 0.50),

a roughly equal number of runs evolved towards large positive, and even negative exponents,

indicative of the flat fitness curve for LD dimension u = 1.0 environments. The magnitude of

the effect of drift, as well as selection, varied with the standing variation σsv: larger standing

variation amplifies the effects of drift and speed in which evolution transpired. Including a

high searching cost resulted in overwhelming selection for Brownian-like DOs for large popu-

lation sizes (Fig 11B), but Lévy-like DOs for small population sizes, except for LD dimension

u = 1.0 environments. It should be noted that most small population simulations with cost

resulted in extinctions, and selection in this case means a foraging exponent persisted for tens

to hundreds of generations longer relative to another foraging exponent. The simulations with

cost accentuated some of the fitness differences of the zero-cost simulations. Brownian-like

DOs always had higher mean fitness, but Lévy-like DOs (especially foraging exponent u = 2.0)

still had the highest number of surviving DOs, again, with the exception of LD dimension

u = 1.0 environments. These results prompted us to dig deeper in two of the more polarizing

results; the Brownian dominance in LD dimension u = 1.0 environments and the larger num-

ber of offspring survival for Lévy-like DOs in LD dimension u = 3.0 environments.

The two final sets of simulations with high cost were 1) evolutionary simulations with life-

spans increased from λ = 1M to λ = 2.5M, and with large population size, and 2) competition

simulations of equal-sized populations of fixed exponents, Brownian-like (u = 5.0) and Lévy-

like (u = 2.0) DOs for large (K = 3000) and small (K = 20) population sizes. Longer lifespans

resulted in the selection and evolution for Lévy-like exponents despite the high searching cost

Fig 9. DO fitness landscape with LD u = 1.0 resources. A matrix of surface plots of the top 1% performing DOs from sub-populations of the single-

generation simulations which traversed Lévy dust environments with dimension u = 1.0. Fitness is determined by the average energy over a lifespan, �AOL.

The matrix rows are indexed by lifespan λ, and the columns by the searching cost χ. A reference plot has been provided in order to interpret the axes of the

individual surface plots; the x-axis is foraging exponent, the y-axis is population size, and the z-axis is frequency normalized to [0, 1].

https://doi.org/10.1371/journal.pcbi.1009490.g009
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and the results of the single-generation simulations—indicating the importance of simulating

evolutionary mechanisms and ecological contexts when making evolutionary predictions.

Interestingly, the distribution of foraging exponents differed between the LD u = 1.0 and 3.0

environments (Fig 13). Whereas * 85% of foraging exponents fell within the Lévy-like zone

of 1< u< 3 for the final generation in LD dimension u = 3.0 environments, only* 60% did

for LD dimension u = 1.0, with comparatively heavy skew into Brownian-like foraging expo-

nents. This is indicative of the flatter fitness curves associated with increased resource homoge-

neity. The competition simulations consistently selected for Lévy-like DOs in LD dimension

Fig 10. Increasing the speed of DOs results in ballistic optimums. The final average energy over a lifespan �AOL, of 5

� 104 DOs with foraging exponents 1� u� 6, lifespans λ = 5M, traveling with speed s = 8, in random uniform

environments, and with an increasing searching cost χ, by row. The fitness trends were captured with a sliding window

of the first moment (FM) and positive-only first moment (PFM), with two standard deviations surrounding the trend.

The exponent which maximizes fitness, uMAX, is extracted from the sliding windows.

https://doi.org/10.1371/journal.pcbi.1009490.g010
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Fig 11. Evolution of DO foraging exponents. Evolutionary simulations of DOs with lifespans of λ = 1M over 100

generations. (A) Searching costs χ = 0. (B) Searching costs χ = 1/8000. Each row comprises ten runs of an initial

population of 1500 DOs, five runs starting with mean foraging exponent (denoted as FE) u = 1.0 (red), the remaining

five with u = 5.0 (blue), both with σsv = 0.5. Each row also represents a different environment (RU = Random Uniform,

LD = Lévy Dust where u−1 = fractal dimension). Note: we exclude the random uniform results as they were simply an

intermediate result between the LD u = 1.0 and u = 2.0 results.

https://doi.org/10.1371/journal.pcbi.1009490.g011
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u = 3.0 (Fig 14, right column), contrary to the evolutionary simulations, and for Brownian-like

DOs in LD dimension u = 1.0 (Fig 14, left column), in agreement with the evolutionary simu-

lations. Performance when in competition is an important component of evolution, and thus

provides an additional context necessary for making evolutionary predictions. In this case,

Brownian foraging behaviour would be outcompeted by Lévy behaviour, even with large popu-

lation size in environments with clumpy resources. But with short lifespans and a homoge-

neous distribution of resources, Brownian behaviour is advantageous.

Clearly, most scenarios result in the selection of Lévy-like exponents, but the outcome of

selection is conditional on the length of a lifespan, whether the search is costly, the resource

distribution, and the population size. The only results in opposition to the Lévy flight foraging

hypothesis were contingent on a searching cost and shorter lifespans; thus, the realism of those

parameters, and their predictions, should be addressed. We found that costs χ> 10−4 were suf-

ficient to shift the outcomes of selection towards Brownian-like DOs, and our simulations hap-

pened to have environments with resource densities of 10−4 (i.e. 102 resources entries within

106 locations). In fact, a few test simulations determined that the effect of a cost remains the

same after a 1:1 scaling with resource density, at least up to 10-fold density. A DO with a life-

span of λ = 1M, and speed s = 1, can theoretically visit every single location in our 1000 × 1000

matrices exactly once, in which case a cost of χ = 10−4 would result in a fitness of exactly zero.

Fig 12. Testing the extrinsic hypothesis. Determining whether the evolved foraging exponents from simulations with

K = 1500, χ = 0, and σsv = (0.25, 0.5) positively correlate with the Lévy dust dimension. Simulations of populations with

an initial mean foraging exponent of u = 1.0 are marked with red circles, u = 5.0 with blue circles, and their trends are

marked with a colour corresponding dashed line; u = 1.0: r = −0.70 (P< 0.05, tdf=28 = −5.2), u = 5.0: r = −0.74

(P< 0.05, tdf=28 = −5.9). Note: jitter was added to the x-axis to help differentiate points.

https://doi.org/10.1371/journal.pcbi.1009490.g012
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Therefore, Brownian foraging behaviour is predicted if the cost to search an environment is

greater or equal to the resource density, and if the population size is sufficiently large to pro-

duce high-performing individuals—assuming the resources are re-visitable and the total dis-

tance searched is close to spanning the environment. Organisms with Brownian behaviour

have a higher probability of re-visiting the same resource and their behaviour may be

optimal for shorter lifespans, but with sufficient time they would diffuse in to empty space

reducing the probability of re-visits. A Lévy-like exponent, however, would have a higher

probability of leaving that empty space and eventually encountering resources; exactly why the

fitness variance in Brownian-like DOs decreases with increasing lifespan. Similarly, this

explains why Brownian DOs had higher mean fitness in clumpy environments, but a higher

number of surviving offspring in uniform environments, when lifespan was short. These

results are in agreement with those of Dannemann’s Lotka-Volterra models, where the most

resilient predators (least likely to face extinction) utilized a Lévy like movement strategy, with

u’ 2 [74].

Fig 13. Increasing the length of a lifespan selects for Lévy-like exponents. The density curves of foraging exponents for

the initial, intermediate, and final generations of evolutionary simulations with lifespans of λ = 2.5M and a searching cost

χ = 1/8000. The first generations were composed of 1500 DOs with mean foraging exponents u = 1.0 or u = 5.0, and σsv =

0.5. The top row is the results from a LD dimension u = 1.0 resource distribution, the bottom LD dimension u = 3.0.

https://doi.org/10.1371/journal.pcbi.1009490.g013
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Conclusion

These results provide evidence that the intrinsic, or adaptationist, hypothesis is a sufficient

explanation for Levy-like behaviour: Lévy flight can be the result of selection for behavioural

adaptations, rather than an emergent phenomenon due to the encounters within an environ-

ment’s distribution of resources. Indeed, there are examples of emergent Lévy-like behaviour,

such as Boyer’s model of primate foraging, which corresponded with empirical evidence of spi-

der monkey foraging patterns [75], or deterministic walks resulting in self-avoiding behaviour

[76]. However, these models deviate from the assumptions of the Lévy flight foraging hypothe-

sis, and are concerned with non-evolutionary explanations; we find no support for the extrin-

sic, or emergentist, hypothesis within the purview of our evolutionary models. The fitness of

Lévy-like foraging is realized over longer timespans, be it over a lifespan or multiple genera-

tions, and with the evidence that the behaviour spans multiple taxa, Lévy flight foraging is per-

haps a deep, evolutionarily conserved trait [48]. Memory and sensory adaptations most likely

Fig 14. Competition between fixed Lévy and Brownian foraging exponents. Competition simulations of equal-sized populations with fixed

foraging exponents (denoted as FE), lifespans λ = 1M, and searching cost χ = 1/8000; Lévy-like u = 2.0 (red) versus Brownian-like u = 5.0

(blue). The carrying capacity of the top row is K = 20 DOs, the bottom row is K = 3000 DOs. The left column is DOs traversing LD

environments with dimension u = 1.0, and the right column is fractal dimension u = 3.0.

https://doi.org/10.1371/journal.pcbi.1009490.g014
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trump a random walk in most scenarios. But, given that environmental variation is inevitable,

Lévy-like behaviour is a searching strategy which offers a sufficient amount of success regard-

less of that variation, especially for cases where environmental cues, or memory, may be inef-

fective. We provided no evidence here on de novo distributions of move lengths resembling

Lévy-like behaviour, or selection due to variable environments (i.e. temporally varying the

density and/or distribution of resources). Such studies, empirical or theoretical, will be be

instrumental in providing further evidence for the Lévy flight foraging hypothesis, and in

determining whether Lévy-like foraging behaviour is a form of bet-hedging. We hope the

results provided here will motivate further exploration into determining the ultimate explana-

tion for Lévy flight foraging.
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Lévy flights recorded in situ. Proceedings of the National Academy of Sciences of the United States of

America. 2012; 109(19):7169–7174. https://doi.org/10.1073/pnas.1121201109 PMID: 22529349

29. Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, et al. Environmental context
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