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Abstract

An active area of research is the development of advanced space transportation

technologies to allow more cost effective access to space. In order to reduce launch

cost, more efficient propulsion systems are being considered. An approach that in-

corporates existing rocket technologies that can increase propulsive efficiency is a

Rocket-Based Combined-Cycle (RBCC) engine. A launch vehicle with this engine

will operate in four modes from lift-off to orbit: rocket-ejector mode, ramjet, scram-

jet, and pure-rocket mode.

A novel RBCC design is being developed at Carleton University. This design aims

to increase the efficiency of a conventional RBCC engine by improving the perfor-

mance of the rocket-ejector mode. The novel geometry of this design increases mix-

ing of the primary rocket stream and the secondary atmospheric air stream, thereby

increasing the potential thrust augmentation of the rocket-ejector mode.

This thesis develops a Genetic Algorithm (GA) that optimizes the configuration

of the novel rocket-ejector based on pre-specified performance criteria. The GA uses

an adaptive technique that shows better performance when compared with standard

techniques.
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Chapter 1

Introduction

1.1 Motivation for Research

“Throughout history, the great nations have always been the ones at the forefront of

the frontiers of their time” [1]. The Roman Empire (27 BC - 416 AD) expanded to

cover most of Southern Europe and parts of Northern Africa and the Middle East [2].

The British Empire was dominant throughout the 17th and 18th century due to its

exploration and mastery of the seas. The 20th century saw America rise to power

due largely to its mastery of the air. It seems that the next nation will rise to power

through mastery of outer space.

There are many foreseeable benefits for humanity to explore outer space. Several

benefits are being realized at the present day. Telecommunication satellites enable

global communication, navigation, and entertainment systems. Earth observation

1
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satellites have environmental monitoring and meteorological capabilities. Scientific

satellites provide insight to the nature of our universe. There are also many theoretical

benefits that may come to fruition as a result of the exploitation and exploration of

outer space. Space-based solar power proposes to generate enough electricity for the

world with the help of a network of solar panels orbiting around the sun. Colonization

of celestial bodies might solve the world’s over population problem. Mining the

asteroid belt could supply all necessary materials for future generations.

In order to facilitate the exploration of outer space, it has been widely stated that

the development of reliable and cost effective access to outer space is crucial. This goal

has served as the driving force for many recent research projects. One such project

is the Highly Reusable Space Transportation (HRST) Study conducted by NASA [3].

Mankins highlighted Combined-Cycle Propulsion (CCP) as a potential solution. He

defined CCP as “incorporating two or more primary propulsion cycles/modes into a

single thrust-generating machine”. A candidate example of CCP is the Rocket-Based

Combined-Cycle (RBCC) propulsion system.

The RBCC propulsion system proposed by NASA is shown in Fig 1.1 [4]. Trail-

blazer is a Reusable Launch Vehicle (RLV) with three RBCC engines built into the

airframe. Fig. 1.2 shows a schematic diagram of a typical RBCC engine with an

annular rocket exhaust profile. This RLV will operate in four modes from lift-off to

orbit: rocket-ejector mode, ramjet, scramjet, and pure-rocket mode. RBCC engines

have been thoroughly studied over the past 50 years. The focus of this thesis is the

first mode of operation, the rocket-ejector mode. The purpose of the rocket-ejector is

to entrain atmospheric air into the mixer of the RBCC engine. Therefore, this thesis

considers the geometry of the RBCC engine upstream of the mixer.

The rocket-ejector mode serves two purposes in the operation of the RBCC engine.

The first purpose is to entrain atmospheric air for afterburning. The goal is that

this operation will generate more thrust than the rocket itself (i.e. positive thrust
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Figure 1.1: NASA GTX reference vehicle (A.K.A. Trailblazer) [4].

Air

Mixer Combustor Nozzle

Primary Rocket Fuel Injection

Rocket-Ejector

Figure 1.2: Schematic diagram of a typical RBCC engine.

augmentation). The second purpose is to accelerate the launch vehicle to the velocity

required for the ramjet mode to become operational. Fig 1.3 illustrates this point.

The dashed line showing a thrust augmentation ratio of one represents the thrust

developed by the rocket-only mode. Fig 1.3(a) shows an ideal case with positive

thrust augmentation for all flight conditions. Fig 1.3(b) shows a case where the

rocket-ejector mode produces negative thrust augmentation at low Mach numbers.

Although this situation is not ideal, the RBCC engine does outperform the rocket-

only engine because the mission averaged thrust augmentation is greater than one.

Negative thrust augmentation may result due to poor air intake design. For example

the rocket-ejector may produce more drag than additional thrust or the primary

rocket stream may not mix well with the atmospheric air stream, leading to poor

combustion and afterburning.
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Φ

Mach number

1

Rocket-
ejector

Ramjet Scramjet Rocket-
only

(a) Ideal Case

Φ

Mach number

1

Rocket-
ejector

Ramjet Scramjet Rocket-
only

(b) Non-Ideal Case

Figure 1.3: Mission thrust augmentation ratio.

The performance of the rocket-ejector mode depends on the quality of mixing and

combustion of the atmospheric air stream and the primary rocket stream. Therefore,

mixing configuration is a crucial matter. There are two general strategies for combus-

tion: Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion

(SMC). In the DAB cycle, the inert rocket stream and atmospheric air stream are

mixed and diffused, then fueled and burned subsonically in an afterburner. In the

SMC cycle, the fuel-rich rocket stream is continuously mixed and reacted with the

air stream. DAB yields better performance than SMC at sea-level static conditions,

however the performance converges with increasing altitude and flight speed [5]. The

SMC cycle is less complex than the DAB cycle and requires a shorter mixing duct,

leading to lower structural weight.

Other mixing schemes have been considered. The Independent Ramjet Stream

(IRS) cycle has been considered by NASA [6]. In this cycle, the air stream is fueled

upstream and the rocket plume is used to ignite the fuel-air mixture. It has been

found by Yungster and Trefny that at subsonic speeds the IRS cycle shows lower

performance when compared with other rocket-ejector schemes [7].

The Shielded Primary Injection (SPI) scheme, developed by Russel et al. [8], is

a combination of the SMC and DAB cycles. Fuel is injected upstream in the inert
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rocket stream and is shielded from the oxidizing air stream. Russell et al. have shown

that SPI combines the advantages of DAB and SMC. A comparison of computational

analyses and experimental data shows that delayed combustion results in increased

mixing, which allows for shorter mixing ducts.

Brocco and Daines [9] studied how the primary rocket exit pressure affects the

rocket-ejector performance. They found that as rocket exit pressure decreased, thrust

and specific impulse decreased, while air entrainment increased. Mixing of the pri-

mary rocket stream and secondary air stream appeared to increase with decreased

rocket exit pressure. The potential for afterburning could offset the loss of thrust and

specific impulse.

Daines and Russell [5] conducted a multidimensional computational analysis of

reacting flowfields in RBCC engines operating in the rocket-ejector mode at sea-level

static conditions. Comparison of SMC and DAB configurations showed that SMC

produced negative thrust augmentation except for very fuel-rich conditions (O/F=

2.7). DAB produced positive thrust augmentation for cases where fuel was injected

after significant mixing.

Cramer et al. [10] experimentally examined the effects of twin thruster config-

uration on the mixing and pumping processes of the rocket-ejector mode at flight

conditions from Mach 0 (sea-level static) to Mach 1.9. The results indicate that the

twin thruster configuration entrains more air (≈ 15%), mixes in a shorter distance

(≈ 50%), and produces a higher static pressure rise in the duct (≈ 26%) than the

single thrust configuration at the same operating point.

At Purdue University, Jos et al. [11] tested the effects of varying fuel injection rates

for afterburning and air flow rates for a RBCC engine using the SMC scheme. Thrust

augmentation was found to increase with airflow before ignition became unsteady.

The same was true for increasing afterburning fuel injection.

At The Pennsylvania Sate University, Lehman et al. [12] conducted experiments
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of a RBCC engine operating for both DAB and SMC schemes. Results show that for

the DAB configuration, the thrust developed is higher for stoichiometric rocket cases

than that of the corresponding fuel-rich rocket cases.

At the Glenn Research Center’s Engine Components Research Laboratory,

Kamhawi et al. [13] evaluated the rocket-ejector and ramjet mode of a semi-

axisymmetric RBCC engine operating under the SMC scheme at sea-level static and

Mach 2.5. Results showed that little mixing and combustion occurred between the

fuel-rich rocket exhaust and the air stream. They suggest that a significantly longer

duct or some form of mixing enhancement would be required for the SMC scheme to

be operable with a single-thruster arrangement.

Dijkstra et al. [14] conducted an experimental study to investigate the performance

of the rocket-ejector mode at Mach numbers between 0 and 2.2. Their results show

that the rocket-ejector mode can achieve a thrust augmentation ratio of 1.1–1.2 at

sea-level static conditions. The entrained air mass flow rate primarily depends on

ejector geometry and secondarily on the primary rocket flow rate.

The shape of the rocket exhaust profile affects mixing between the primary rocket

stream and secondary air stream, which then affects the efficiency of the rocket-ejector

mode. The Marquardt Corporation [15] developed a correlation for mixing length as

a function of several parameters, including the total number of thrusters in the duct;

the relationship states that the mixing length is inversely proportional to the number

of thrusters in the duct. It has also been found that mixing performance improved

with an annular rocket exhaust profile [16,17]. It was found that the increased shear

layer area between the annular rocket stream and the central air stream produced

better mixing for shorter duct lengths.
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1.2 A Novel Rocket-Ejector Design

To take advantage of the performance improvements due to an annular rocket ex-

haust profile, such as: increased entrainment of atmospheric air, improved mixing of

primary rocket stream and secondary air stream, and shorter mixing duct length, a

novel rocket-ejector concept has been developed at Carleton University. The novel

rocket-ejector is composed of two geometries: a rocket flowpath and an air flowpath.

The combination of these two geometries forms a single rocket-ejector inlet called

the Exchange Inlet. The rocket flowpath produces an annular or segmented-annular

rocket exhaust profile from a single circular throat. The air flowpath surrounds the

rocket flowpath and defines the contour of the entrained atmospheric air. The pur-

pose of these two geometries is to generate an annular primary rocket stream that

encircles the secondary atmospheric air stream in order to produce high shear layer

area between the two streams in the mixing duct. Fig. 1.4 shows an example of one

possible configuration of the Exchange Inlet.

Figure 1.4: An example of one Exchange Inlet configuration.

It is expected that the Exchange Inlet design will show performance increases over

conventional rocket-ejector designs due to the expected increase of mixing efficiency

and potential for high entrainment of atmospheric air. Several computation studies

conducted by Etele et al. [18] have shown that an annular rocket exhaust profile
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results in increased mixing of the primary rocket stream and secondary air stream.

Furthermore, the experimental results of Escher et al. [19] have shown that a high

rocket exhaust shear layer area configuration results in minimum required mixing

duct length, which is an indication of the efficiency of the rocket-ejector.

1.3 Problem Statement

The design of the Exchange Inlet is controlled by many geometric variables. Each

variable has corresponding bounds and constraints. The matter is further complicated

by the fact that the variables are interdependent. By manipulating these variables the

user is capable of generating a wide variety of Exchange Inlet configurations, each with

varying performance. Thus, the problem is: Given user defined performance criteria

which Exchange Inlet configuration is best? More specifically, which combination of

geometric variables results in an optimal Exchange Inlet design.

This is a nonlinear combinatorial optimization problem. The solution space is

expected to have many local optima and potentially several global optima. Depending

on the definition of the fitness function, it is conceivable that two or more solutions

may produce the same optimal fitness. For example, suppose a problem is posed to

find the optimal path between two points. If the fitness function is based on the

distance traveled, then the optimal solution is a straight line between the two points.

However if speed is a variable in this problem, then an infinite number of optimal

solutions exist, since one can travel in a straight line between the two points at any

desired speed. Therefore, it is more appropriate to define a fitness function that is

based on distance traveled and duration of travel.

In engineering design optimization problems finding a global optimal solution

is not necessarily required; a more realistic goal is to find a near-optimal solution.

Continuing the previous example, if we apply a constraint on the maximum speed
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of travel, it becomes obvious that the global optimal solution is to travel along a

straight line at the maximum speed. However, for a realistic engineering problem, a

near-optimal solution that is a fraction of a second slower than the global optimal

solution is also suitable solution. Therefore, the purpose of this thesis is to develop

a Genetic Algorithm (GA) that is capable of finding near-optimal solutions for the

design of the Exchange Inlet.

1.4 History of Genetic Algorithms

A genetic algorithm (GA) is a commonly used optimization technique. This technique

represents a subset of evolutionary algorithms (EA). In general, EAs attempt to

develop numerical models which represent processes that are observed in nature; the

goal being to create a model that can evolve toward the optimal solution of a given

problem. John Holland was the first to apply the idea of evolution to optimization

problems in 1975 [20].

In 1859, Charles Darwin described the tendency of a species or population to

evolve toward a state that enables them to best survive in their environment. It is the

ability to reproduce and pass on genetic information that determines if individuals of

a population are strong survivors. Darwin found that through the process of “natural

selection” individuals who are well adapted to their environment are more likely to

pass on their genetic information than individuals who are not. The measure of how

well adapted an individual is to the environment is called fitness. Over the course

of many generations a population tends to resemble the characteristics of the most

fit individuals, since these individuals pass on their genetic information more often.

GAs mimic Darwin’s natural selection in the following sense. Potential solutions of

the problem are represented as individuals. A set of solutions is represented as a

population of individuals. The optimality of a solution is represented as the fitness
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of an individual.

The combination of Gregor Mendel’s discovery (1865) that hereditary character-

istics, called genes, are passed from parent to child, and Thomas Morgan’s discovery

(1890) that genes are the basis of chromosomes led to the understanding that the

genetic information of an individual can be described by its chromosomes and the ge-

netic information of a child comes from the crossover of chromosomes of the parents.

GAs mimic this natural process by representing the chromosomes of an individual

as a solution vector. Genes within chromosomes are represented as variables within

the solution vector. Alleles of a gene are represented as numerical values of a vari-

able. During reproduction the crossover of chromosomes is represented as crossover

of solution vectors. At this point, GAs differ from nature. In nature, individuals are

described by several chromosomes that contain many genes. However, in general a

GA describes solutions by only one vector that contains several variables.

The final mechanism of evolution that GAs attempt to model is mutation of genes.

The only way that GAs can model mutation is by a simplified stochastic method. This

is another point where GAs differ from nature. It has been proposed that in nature

mutations are responsible for not only creating new alleles but also for creating new

genes and even new chromosomes. The result is that mutations can cause a species to

evolve into a complete different species. The stochastic mutation methods of GAs are

only capable of creating new numerical values for a variable. Thus, mutation cannot

create new variables by which to define the problem at hand.

1.5 Models of Evolution Mechanisms

The majority of literature on GAs is aimed at improving existing models or devel-

oping new, more effective models to make GAs more efficient. There are four basic

evolution mechanisms required for a standard GA: genetic representation, selection,
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reproduction, and mutation.

1.5.1 Genetic Representation

The first evolution mechanism is the genetic representation of solutions. Holland

and the original pioneers of GAs used binary encoding to represent solutions [20,21].

For example, consider an individual who is described by one chromosome with three

genes (n), where each gene has five alleles (r). This example has rn = 53 = 125

possible individuals. The binary genetic representation would require 9 bits and the

chromosomal representation would be {aaa bbb ccc}, where a, b, c are binary numbers

and aaa, bbb, ccc are the first, second, and third genes, respectively. Unfortunately,

the binary encoding model is susceptible to decoding errors. If each gene only has 5

alleles, the allowable alleles for gene aaa would be: {000}, {001}, {010}, {011}, and

{100}. However, it is possible by crossover or mutation that the bit string for gene

aaa, for example, could be altered such that it becomes {111}. When decoded this

would represent a 7th allele, which does not exist.

The variant to this model is real-parameter genetic representation which is

favoured by several researchers [22–24]. Using the example above, the real-parameter

genetic representation of the individual would be {A B C}, where A, B, C ∈ D =

{1, 2, 3, 4, 5}. Again, there are rn = 53 = 125 possible solutions. However, this model

is not susceptible to decoding errors since only five alleles exist.

Due to the simplicity of the real-parameter representation and the fact that this

method is not susceptible to decoding errors, the GA developed in this thesis uses

real-parameter genetic representation of solutions.
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1.5.2 Selection

GAs use a selection mechanism to select individuals from the population to insert into

a mating pool. This mechanism attempts to simulate Darwinian natural selection by

selecting the more fit individuals of the population. There are a wide variety of

selection models used by researchers and there is no general consensus as to which

model is better than the others.

The selection models can be divided into two categories: stochastic and determin-

istic selection methods. Commonly used stochastic selection methods are Tournament

Selection [25], Roulette Wheel [26], Stochastic Universal Sampling (SUS) [27], Trun-

cation Selection [28], and Ranked Selection [29]. A commonly used deterministic

selection method is Elitism [30, 31].

Tournament Selection is accomplished by holding a tournament among sT random

competitors, with sT being the tournament size. The winner of the tournament

is the individual with the highest fitness, and the winner is then inserted into the

mating pool. The selection pressure is controlled by sT (larger sT indicates greater

selection pressure), since larger sT favours the selection of the more fit individuals.

Suppose that sT = m, in this case the tournament size is equal to the size of the

population, only the most fit individual can be selected for insertion into the mating

pool. This would nullify the exploitative power of the selection mechanism. Goldberg

et al. [32] have shown that GAs are successful under a wide range of selection pressures.

However if the selection pressure is too low, the convergence rate will be slow. If the

selection pressure is too high, there is an increased chance of the GA becoming trapped

in a local optimal solution.

Roulette Wheel selection is accomplished by assigning an area of a roulette wheel

to each individual of the population. The area that an individual holds is proportional
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to its fitness and is calculated by Eq 1.1.

Pi =
f s
i

m
∑

u=1

f s
u

(1.1)

The roulette wheel is spun and the selected individual is inserted into the mating

pool. Similar to the Tournament selection method, high selection pressure will favour

the more fit individuals, since they will be assigned a larger area of the roulette wheel.

To illustrate this point, suppose we have a population of m = 4 individuals with

corresponding fitness values shown in Table 1.1. A selection pressure of s = 0.1 results

in a roulette wheel with all individuals having a nearly equal probability of selection,

as shown in Fig 1.5(a). A selection pressure of s = 4 results in the roulette wheel

shown in Fig 1.5(b) where individual 1 has a significantly higher probability of being

selected than the other individuals. The selection pressure of the Roulette Wheel

method is susceptible to the same convergence problems as the selection pressure of

the Tournament Selection method; low selection pressure results in slow convergence

rate, high selection pressure results in increased chance of GA becoming trapped in

a local optimal solution.

Table 1.1: Example of selection pressure influence on selection probability.

Individual fi Pi (s = 0.1) Pi (s = 4)

1 0.6 0.26 0.57

2 0.5 0.25 0.28

3 0.4 0.25 0.11

4 0.3 0.24 0.04

sum 1.8 1 1

SUS selection is similar to Roulette Wheel selection because each individual of the

population is assigned an area of the roulette wheel based on its fitness. However, for
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Figure 1.5: Example of selection pressure influence on selection probability.
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34

(a) SUS
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34

(b) Roulette Wheel

Figure 1.6: SUS versus Roulette Wheel method.

SUS the wheel has m evenly spaced selectors and the wheel is only spun once; the

mating pool is selected by one spin rather thanm spins. Fig 1.6(a) and 1.6(b) show the

difference between the SUS and Roulette Wheel methods. Using the previous example

from Table 1.1 with s = 0.1, the SUS method will select all four individuals for the

mating pool with a probability of 0.99, whereas the Roulette Wheel method (which

requires four spins of the wheel) will select all four individuals with a probability of

P1 ·P2 · P3 · P4 = 0.09375. Thus the SUS selection method maintains better diversity

but results in slow convergence rates.

For Truncation Selection only the top T individuals of the population are eligible

for selection. Each individual above the threshold T is given the same probability of

selection for the mating pool. This selection model is not comparable to Darwinian
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Table 1.2: Rank and selection probability for Ranked Selection method.

Individual fi ri Pi (Linear) Pi (Exponential)

1 0.6 4 0.4 0.64

2 0.5 3 0.3 0.24

3 0.4 2 0.2 0.09

4 0.3 1 0.1 0.03

sum 1.8 10 1 1

natural selection since the selection of individuals is not proportional to their fitness.

For Ranked Selection the individuals are ranked according to their fitness values;

the rank r1 = m is assigned to the most fit individual and the rank rm = 1 to the

least fit individual. The probability of selection is linearly assigned (see Eq 1.2) or

exponentially assigned (see Eq 1.3) according to their rank. Table 1.2 shows the rank

and selection probability using the Rank Selection method for the same example as

Table 1.1. The disadvantage of the Ranked Selection method is the probability of

selection for the mating pool is not proportional to an individual’s fitness but rather

its rank. Two individuals with the same fitness won’t have the same rank, therefore

they won’t have the same probability of being selected for the mating pool. Similar

to Truncation Selection, Ranked Selection is not comparable to Darwinian natural

selection since individuals are selected based on rank rather than fitness.

Pi =
2

m(m+ 1)
ri (1.2)

Pi =
em − 1

e− 1
em−i (1.3)

A commonly used deterministic selection method is the Elitism method. The

Elitism method ensures that the most fit individual of a generation (the elite) is
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passed on to the following generation. This ensures that the GA does not diverge

toward less optimal solutions. There are two disadvantages of the Elitist method: The

mechanisms that explore the search space do not operate on the elite, which could

hinder the progression of the algorithm. The algorithm may become trapped if the

elite represents a local optima. This effect becomes more significant as the number

of elite individuals approaches the population size. Assuming a population size of

m = 2, if Elitism is implemented, then 50% of the population is immediately passed

onto the next generation without allowing the reproduction or mutation mechanisms

to help search for the optimal solution. Therefore, the number of Elite individuals

should represent a small fraction of the population size.

It is the author’s opinion that an ideal selection mechanism should have a bal-

ance of explorative and exploitative capabilities, and should closely mimic Darwinian

natural selection of fitness proportional selection. The ability to manipulate the ex-

ploitative powers of the GA by increasing or decreasing the selection pressure is also

highly desirable. For this reason, the Roulette Wheel method along with the Elitism

method is used throughout the GA developed in this thesis.

Exploration is the ability of the GA to search new regions of the search space,

while exploitation is the ability of the GA to focus on a given local area of the search

space. Eiben and Schippers [59] discuss the effect of exploration versus exploitation,

however there is no generally accepted conclusion as to which is most important.

1.5.3 Reproduction

At the beginning of every generation a new set of individuals is reproduced from

parents in the mating pool of the previous generation. Reproduction is accomplished

via recombination or crossover of the genetic information. The purpose of the re-

production mechanism is to exploit the solution space that is represented by the

current population. Several models for reproduction are used by researchers, such as:
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N-point crossover [33], Cut-and-Splice [34], Arithmetical crossover [35] and Uniform

crossover [36, 37].

The following example illustrates these four reproduction methods. Fig 1.7(a)-

1.7(d) show N-point Crossover, Cut-and-Splice, Arithmetical Crossover, and Uniform

Crossover, respectively. Suppose we have individuals that are described by six genes,

with the circle individual being more fit than the square individual.

Fig 1.7(a) shows N-point Crossover where the random crossover is located between

genes 2 and 3. For individuals with long chromosomes, this method can lead to dras-

tic differences between the parents and the children, which makes the reproduction

mechanism explorative rather than exploitative. Therefore the rate of convergence

will be slow, but good genetic diversity is maintained.

Fig 1.7(b) shows Cut-and-Splice where the random cut point can be different for

each parent, in the example here it is between genes 3 and 4 for the more fit individual

and between genes 1 and 2 for the less fit individual. Since the cut point is differ-

ent, when the genes are spliced back together the children’s chromosomal length has

changed. This presents a problem similar to the decoding issues of the binary repre-

sentation of solutions, a 7th and 8th gene are produced and have no physical meaning.

Therefore this method does not work well for real-parameter genetic representation.

Fig 1.7(c) shows Arithmetical Crossover with a crossover factor λ = 0.5, mean-

ing that the children have 50% of the genetic characteristics of each parent. This

reproduction method is accomplished by Eq 1.4 and is not applicable to binary rep-

resentation. Arithmetical Crossover is an explorative reproduction method since it

creates new alleles by taking an average of existing alleles.

xk+1

1,j = λxk1,j + (1− λ)xk2,j (1.4)

Fig 1.7(d) shows Uniform Crossover where a probability of crossover, Pc, is applied
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at each gene. Researchers generally set Pc ≈ 60% [38]. The Uniform Crossover

method leads to minor differences between the parents and children, strengthening

the exploitative power of the reproduction mechanism. This method can be easily

applied to both binary and real-parameter genetic representation, and does not lead

to decoding errors.

Parents Children

(a) N-point crossover (N=1)

(b) Cut-and-Splice

(c) Arithmetical crossover (λ = 0.5)

(d) Uniform crossover

Figure 1.7: Example of common crossover methods.

An ideal reproduction mechanism should have stronger exploitative abilities than

explorative, since the purpose of the reproduction mechanism is to exploit the genes

that make each parent fit and produce a child that is more fit. Therefore, the Uniform

Crossover method is used throughout the GA developed in this thesis.
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1.5.4 Mutation

The mutation mechanism is an explorative tool used to search new areas of the

solution space. This is accomplished by randomly altering the alleles of genes. The

mutation mechanism gives GAs the ability to avoid trap situations and to maintain

sufficient variance in the population. It has been suggested that the probability of

mutation should be low (Pm ≈ 1%) [20, 21, 39], since a high probability of mutation

reduces the GA to a random search function. Several mutation mechanisms have been

proposed: RandomMutation [35], Arithmetic Mutation [40], Real Number Creep [41],

Continuous Modal Mutation [42]. RandomMutation and Arithmetic Mutation simply

generate a new random allele for a given gene, whereas Real Number Creep and

Continuous Model Mutation use the current allele of a gene to influence the new

random allele. Real Number Creep randomly alters the allele of a given gene by

increasing or decreasing the value of the allele by one step size of that gene’s resolution.

As a result Real Number Creep behaves similar to a hill climbing method, however the

step is not guaranteed to be “up” the hill. Herrera gives a comprehensive description

of many mutation mechanisms [27].

The purpose of the mutation mechanism is to explore the search space. However

if the mutation mechanism is too dominant the GA may become overly explorative,

therefore it is desirable to use a mutation mechanism where the strength of the explo-

rative ability can be controlled. The Random Mutation method is used throughout

the GA developed in this thesis. By increasing the probability of mutation, Pm, the

GA can become more explorative. By decreasing Pm the GA can be rendered less

explorative, allowing the exploitative mechanisms to become more influential.
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1.6 Variations of the Standard Genetic Algorithm

The standard GA described by Holland and Goldberg [20, 21] used a “generational”

model where a new population is created at each successive generation. A variation

is the “steady-state” model [43], which maintains a relatively constant population by

switching only a few weak individuals with newly produced fit individuals. Vavek et

al. [44] found that the steady-state model, which they referred to as an “incremental

model”, outperforms the generational model in terms of convergence rate (number

of evaluations before the optimum is found). The generational model is better at

exploring the search space since at each generation the entire population (minus the

elite individual) is free to roam the search space.

Several researchers use Adaptive Genetic Algorithms (AGAs) [45,46], which vary

the probability of crossover and mutation depending on the fitness values of the

population in order to improve the performance of GAs. Hybrid GAs can improve

performance by combining a simple GA with a gradient based routine [47]. The GA

is used to find good starting points to seed the gradient based routine. Hybrid GAs

are better at finding exact optimal solutions rather than near-optimal solutions at

the expense of an increased probability of converging to a local optimal solution.

1.7 Applications of Genetic Algorithms

Given the wide variety of methods available, GAs have been widely used for engi-

neering optimization problems. For example, Lampinen used a GA to determine the

optimal shape of a cam shape [40]. His GA used real-parameter genetic represen-

tation and a population size of 40 individuals, where each individual was expressed

by 40 genes. Each gene represented a point along a B-spline curve which defined

the boundary shape of the cam profile. Arithmetic Crossover with Pc = 0.25 and
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Arithmetic Mutation with Pm = 0.015 was implemented. Lampinen compared the

effect of random initial populations versus non-random initial populations on the con-

vergence history; he concluded that non-random initialization improved convergence

rate and produced better optimization results. One run of his optimization routine

was shown to converge after 18000 individuals were evaluated or 450 generations.

Lampinen compared his optimized cam design with a conventional cam design by

trial-and-error and found that his solution was significantly improved.

West used a GA to investigate synthesis of a four bar mechanism for path gener-

ation and design of a mechanical prosthetic knee joint [48]. He used binary genetic

representation. West’s GA implemented Elitism and Population Decimation. Popu-

lation Decimation is a Truncation method whereby an extremely large random initial

population is generated and evaluated, then only the top m individuals are eligible

for selection and reproduction. West studied the effect of varying the genetic oper-

ator parameters. He considered population sizes between m = 40 − 220 and found

that his GA converged within 50000 function evaluations or 830 generations with a

probability of 0.99 for a population size of m = 60. West used Uniform Crossover

with Pc between 0− 1 and found that his GA had the highest probability of success

with Pc = 0.6. He also considered probability of mutation between Pm = 0 − 0.02

and found that the effect of Pm between this range did not significantly affect the

performance of his GA.

In the aerospace field there have been numerous researchers that have employed

GAs for a variety of problems. Oyama used a GA to optimize the shape of a transonic

wing [49]. Oyama’s GA used a population size ofm = 10. Selection was accomplished

by the Stochastic Universal Search method and Elitism with the top two individuals

considered as Elite. Uniform Crossover with Pc = 0.4 and Random Mutation with

Pm = 0.1 was implemented. Oyama optimized a simplified case where only airfoil

thickness and twist angle distributions were used as design variables. A more complex
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case was optimized where the airfoil shape was controlled by five design variables.

The goal of the optimization routine was to design a wing geometry that maximizes

Lift-to-Drag ratio while maintaining enough wing thickness to withstand the bending

moment due to lift distribution. Oyama’s GA used 3D Navier-Stokes equations to

evaluate individuals. Convergence was attained after 25 generations and 2 days of

computational time.

GAs have also been used for launch vehicle and missile design optimization [50–52].

Anderson used a GA to optimize the design of a missile’s solid rocket motor, aero-

dynamic shape, and autopilot [31]. He used binary genetic representation. Anderson

considered Roulette Wheel and Tournament Selection, he also used Elitism. Repro-

duction was accomplished via 1-Point Crossover with Pc = 0.7, the crossover point is

random. Random Mutation with Pm = 0.001 and Creep Mutation was implemented.

For the design of the solid rocket motor, Anderson found that several near-optimal

solutions exist that are 1.5% of the desired thrust level. A global optimal solution

may exist, however additional computational time was not warranted for his prelim-

inary design studies. Convergence was achieved within 100 generations and required

less than 8 hours of computation time. For the aerodynamic shape optimization of

the missile, Anderson used a population size of 250 individuals defined by 15 design

variables. Again, convergence to a near-optimal solution was attained within 100

generations.

Clough used a hybrid GA and gradient based routine to optimize the design of

a Turbine-Based Combined-Cycle engine [53]. Clough used a population size of 50

individuals and set 800 generations as a convergence criteria. Clough states that the

algorithm successfully designed an optimal TBCC engine.

Jahingir and Huque used neural networks to optimize the design of a RBCC

inlet/ejector system [54]. The author has not found work involving the design opti-

mization of a RBCC engine by GA.



Chapter 2

Methodology

The method followed to determine the most fit Exchange Inlet design is described

in this chapter. Section 2.1 describes the development of the GA used throughout this

work. Section 2.2 describes the application of the GA to optimize the rocket flowpath.

Optimization of the rocket flowpath is relatively fast, therefore the convergence studies

in Chapter 3 are based on the rocket flowpath design optimization. Section 2.3

describes the application of the GA to optimize the air flowpath.

2.1 Development of the Genetic Algorithm

There are a wide variety of GA packages available for use. However, there is no guar-

antee that a given GA package will solve a specific problem. Rather than searching

for a GA package to solve the problem at hand, a GA suited to the particular task

has been developed. Fig. 2.1 shows the flow diagram of the GA.

23
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Initial Population. k = 0

Selection s = s+ Selection s = s−

Uniform Crossover

Eq 2.7Mutation Pm = P+
m Mutation Pm = P−

m
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Figure 2.1: Flow diagram of GA.

The algorithm starts with an initial population, X0, of m randomly generated

individuals. Since real-parameter genetic representation is used, this is accomplished

by randomly generating the alleles of each gene. This is an advantage when compared

to conventional optimization techniques where a suitable initial guess is required to

begin the optimization process. In general, a population of individuals is represented
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by

Xk =

[

xk1 xk2 · · · xki · · · xkm

]

(2.1)

where k is the generation number, i is an individual, and m is the population size.

An individual is then expressed by

xki =

[

xki,1 xki,2 · · · xki,j · · · xki,n

]

(2.2)

where j is an arbitrary gene and n is the number of genes that define an individual.

All individuals are passed through the evaluation function and ranked by the

fitness function (the evaluation function and fitness function will be discussed in the

following sections). The fitness of the population is expressed by

F k =

[

fk
1 fk

2 · · · fk
i · · · fk

m

]

(2.3)

The most fit individual, fk
1 , is immediately pushed to the following generation by

the Elitist method. Next, 2(m − 1) individuals are selected by the Roulette Wheel

method to enter the mating pool. The probability of an individual being selected for

the mating pool is given by Eq 2.4.

P (xki ) =
f(xki )

s

m
∑

u=1

f(xku)
s

(2.4)

In order to help improve the performance of the GA, if the algorithm has been

trapped for kT consecutive generations then a loose selection pressure of s = s− is

used to exploit a large portion of the current search space. Otherwise a selection

pressure of s = s+ is used to exploit a smaller portion of the current search space

(see Section 1.5.2 for more details). The current search space (without considering
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mutation) is defined by all possible combinations of the alleles of the fertile individuals

of the current generation. A fertile individual is an individual with a fitness greater

than zero. Conversely, an infertile individual is an individual with a fitness equal

to zero. An infertile individual represents an invalid solution, this will be discussed

in Section 2.4. A trap situation is defined by Eq 2.5. This is simply an indication

that the most fit individual has not changed for kT consecutive generations. For the

purposes of this work kT = 20 (which is a user defined parameter).

f(xk1) = f(xk−1
1 ) = f(xk−2

1 ) = · · · = f(xk−kT
1 ) (2.5)

The parents in the mating pool produce m−1 children via the Uniform Crossover

method. Pc is the probability that a child receives a given gene from the more fit

parent. An example of a possible result of reproduction is shown below.

Parent u : xku =

[

xku,1 xku,2 · · · xku,j · · · xku,n

]

Parent v : xkv =

[

xkv,1 xkv,2 · · · xkv,j · · · xkv,n

]

Child w : xk+1
w =

[

xku,1 xkv,2 · · · xkv,j · · · xku,n

]

=

[

xk+1
w,1 xk+1

w,2 · · · xk+1

w,j · · · xk+1
w,n

]

The diversity of the population is calculated by Eq 2.6 and is a measure of the

variance of the population’s fitness. If the population is not diverse (see Eq 2.7) then

a high mutation probability of Pm = P+
m is applied in order to increase the diversity of

the population, otherwise a lower mutation probability of Pm = P−

m is used to avoid

genetic drift. D∗

k is a user defined parameter. For the purpose of this work D∗

k = 0.01.

Dk = V ar(Fk) = E[F 2
k ]− (E[Fk])

2 (2.6)
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Dk < D∗

k (2.7)

After the crossover and mutation steps, the next generation is now fixed. This

new population, Xk+1, is now passed through the evaluation function and ranked by

the fitness function. The algorithm continues to loop until Eq 2.8 is satisfied,

k ≥
kC
m

(2.8)

where kC is the maximum number of times the evaluation function is called. For the

purposes of this work kC = 20000.

2.2 Rocket Flowpath

The purpose of the rocket flowpath is to channel the supersonic rocket exhaust from

a single circular throat to an annular or segmented-annular exhaust profile. This is

accomplished by replacing the diverging portion of a conventional rocket nozzle with

the rocket flowpath geometry shown in Fig 2.2 [55]. The rocket flowpath must also

allow for the possibility of entraining atmospheric air into the center of the annulus.

Therefore, the geometry shown in Fig. 2.2 is described as having distinct clovers.

Each clover represents the flowpath of the rocket exhaust and the openings between

each clover allow the possibility for secondary air to be drawn into the engine.

The shape of each clover is calculated to yield a pre-specified Mach number dis-

tribution while passing through a gate. By adjusting the location and shape of the

gate, a wide variety of rocket flowpath configurations can be produced. Using a sym-

metry plane along the center of the clover, the geometry of the gate only covers half

a clover. Fig 2.2(a) and 2.2(b) show the nine geometric variables that along with the

pre-specified Mach number distribution define the shape of the rocket flowpath.
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Figure 2.2: Orthographic views of the rocket flowpath. The dashed lines on (a)
represent half a clover.

2.2.1 Rocket Flowpath Design Variables

In order for the evolution mechanisms of the GA to be able to manipulate poten-

tial rocket flowpath configurations a genetic representation of individuals is required.

This section describes the selection of the design variables that make up the genetic

representation.

In order to define the Exchange Inlet shape, several of the design variables must

be set by the user. Table 2.1 shows the design variables used in this work. These five

design variables (of the nine in total) are selected because they strongly influence the

rocket flowpath design. The remaining variables are fixed throughout the optimization

process. All the design variables are non-dimensionalized to make the GA more robust

as this makes the bounds of each design variable more predictable. For each individual

the GA selects the value for the five non-dimensionalized design variables shown in

Table 2.1.

The number of clovers, ε, determines the number of channels through which the

rocket flowpath is ducted. This can be any integer greater than 2. However, for the



29

Table 2.1: Rocket Flowpath Design Variables.

Design Variable Equation Description Bounds (B) Resolution (R)

ε 2.9 Number of clovers 3 → 6 1

ψ̃e 2.10 Exit arc angle ratio 0.3 → 1 0.02

ψ̃g 2.11 Gate arc angle ratio 0.3 → 0.9 0.02

z̃g 2.12 Gate depth ratio 0.2 → 0.9 0.05

r̃g 2.13 Gate radius ratio 0.2 → 0.9 0.05

purposes of this work ε ∈ {3, 4, 5, 6}. The clover half-angle, χ, is a function of ε.

χ = 180/ε (2.9)

The exit arc angle ratio, ψ̃e, determines the percentage of the circumference that the

rocket flowpath covers at the exit. The exit arc angle, ψe, is calculated from,

ψe = ψ̃eχ (2.10)

Similarly, the gate arc angle ratio, ψ̃g, determines the percentage of the circumference

that the rocket flowpath covers at the gate. The gate arc angle, ψg, is determined by,

ψg = ψ̃gχ (2.11)

The gate depth ratio, z̃g, determines the axial location of the gate between the throat

(z = 0) and the exit (z = ze),

zg = z̃g ze (2.12)

The gate radius ratio, r̃g, determines the radial location of the gate between the
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centerline (r = 0) and the exit radius (r = re),

rg = r̃g re (2.13)

In order to define the shape of the rocket flowpath using Eq 2.12 and 2.13, two

user defined inputs are required. They are the overall length (ze) and the exhaust

radius (re) which represent the outer dimensions of the exhaust path. These are

considered constraints that the user would input based on the available space for the

rocket flowpath design.

Real-parameter genetic representation is used, therefore each design variable cor-

responds to a gene of an individual (Eq 2.14). For the rocket flowpath design opti-

mization five genes are used to describe each individual. Therefore, the search space

has five dimensions with a total of S ≈ 1× 106 possible individuals, as calculated by

Eq 2.15 with n = 5.

xki =

[

ε ψ̃e ψ̃g z̃g r̃g

]

(2.14)

S =
n
∏

j=1

(

(Bjmax
− Bjmin

)

Rj

+ 1

)

(2.15)

The bounds, B, of each design variable define the boundaries of the search space.

Increasing the bounds will increase the size of the search space and increase the

complexity of the problem. The bounds are set such that the GA does not consider

values of the design variables that cannot produce valid solutions. For example, the

maximum boundary of ψ̃e is set at B2max
= 1 since ψe cannot be greater than χ. If it

were, the rocket flowpath would overlap itself at the exhaust plane.

The resolution, R, of a design variable defines the precision or step size at which

that variable is considered. A fine resolution results in many possible solutions, which

increases the size of the search space and the complexity of the problem. A coarse

resolution reduces the number of possible solutions, but as a result the optimized
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solution may not be as good as that found by a fine resolution. A trade-off must be

made between the size of the search space and the quality of the optimized solution.

A fine resolution is guaranteed to find an equal if not better solution than a coarse

resolution, the cost is the amount of computational time required. In some cases

the resolution cannot be adjusted. For example, the number of clovers must be an

integer, therefore the resolution of ε is R1 = 1.

2.2.2 Rocket Flowpath Evaluation

At the beginning of each generation the individuals of the population are passed

one at a time through the evaluation function in order to determine the individual’s

performance characteristics. For this work three performance criterion are highlighted

as characteristics of a desirable rocket flowpath design. Fig 2.3 shows a top view of a

four clover configuration and illustrates the three performance criterion.

Lexit

Aintake

φ

Figure 2.3: Three performance criteria of rocket flowpath design.

• Large air intake area, Aintake, for entraining atmospheric air. This is considered

important since the air intake area will have a direct influence on the amount

of atmospheric air which the Exchange Inlet is able to entrain.

• Large exhaust arc length, Lexit, to increase the shear layer area between the

primary rocket stream and secondary air stream. This is considered important
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since it has been shown by previous researchers that the quality of mixing of

the two streams is related to the shear layer area between the two streams.

• Low flow-turning angle at the gate, φ, so that the rocket exhaust does not

experience excessive expansion in the circumferential direction.

The fitness function (Eq 2.16) assigns a fitness value to each individual based on

the desirable performance characteristics shown above. The fitness function is a linear

combination of the normalized criterion with weighting factors. The weighting factors

allow the user to easily manipulate the fitness function. By varying the weights more

significance can be applied to one of the three performance criteria. The effects of

varying the weighting factors is discussed in Chapter 4. The weighting factors must

satisfy Eq 2.17 and Eq 2.18.

fk
i = Ka

Aintake

Amax

+Kb

[

1−

∣

∣

∣

∣

φ

180o

∣

∣

∣

∣

]

+Kc

Lexit

Lmax

(2.16)

Ka ≥ 0 Kb ≥ 0 Kc ≥ 0 (2.17)

Ka +Kb +Kc = 1 (2.18)

The terms of the fitness function are normalized such that each term cannot be

greater than one. The first term is normalized by Amax = π r2e , which represents the

entire frontal area of the rocket flowpath. The air intake area, Aintake, will always be

less than Amax. Therefore, when the first term is considered in Eq 2.16 (i.e. Ka 6= 0)

the fitness will also be less than one (fk
i < 1). The second term is normalized by

180o. The ideal case of φ = 0 results in the second term equating to Kb. If Kb = 1

then it follows that fk
i = 1. Similarly, a fully annular rocket exhaust profile gives

Lexit = Lmax = 2 π re, and if Kc = 1 then fk
i = 1. The manner in which the fitness

function is formulated results in the fact that the fitness of any possible solution is

bounded between 0 and 1. As a result, the fitness of the most fit individual will
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approach 1. It is not possible to achieve a fitness of exactly 1 because the terms

of the fitness function are normalized by exaggerated values. For example, Amax is

significantly greater than the most optimistic value of Aintake.

2.3 Air Flowpath

The purpose of the air flowpath is to provide a smooth contour to entrain atmospheric

air into the mixing duct, while minimizing total pressure and mass flow losses. The

air flowpath also provides the structural body in which the rocket flowpath is housed.

The air flowpath is composed of three bodies: a center body, cowl, and fairings.

The center body is the fore body of the engine and houses the combustion chamber.

The cowl is the forward section of the nacelle. The fairings are symmetric airfoils

that provide a streamline body to enclose the rocket flowpath, they also provide a

structural member between the center body and cowl. A thorough description of the

design is given by Waung [56]. Fig. 2.4 shows the 15 geometric variables that, along

with the rocket flowpath geometry, control the shape of the air flowpath.

t3

cfairmax

A3

A2

ALE

z2

rCB1

Plane 1 (Fig 2.2) Plane 2 Plane 3 (Fig 2.2)

z3 = ze

rCB2 rCB3

rCW3
rNZ3 in

rNZ3 out

AR

lD

Center Body

Fairing

Cowl

Figure 2.4: Side view of half of the air flowpath. The dotted line shows the rocket
flowpath within the air flowpath.



34

2.3.1 Air Flowpath Design Variables

Five design variables are chosen to define the air flowpath within the GA (shown in

Table 2.2). These variables control the geometry of the three air intake bodies.

Table 2.2: Air Flowpath Design Variables.

Design Variable Equation Description Bounds Resolution

z̃2 2.19 Duct length ratio 0.3 → 0.5 0.02

c̃fairmax
2.20 Max fairing chord ratio 0.9 → 1.3 0.02

t̃3 2.21 Cowl thickness ratio 0.06 → 0.2 0.02

r̃CB1
2.22 Center body radius ratio 2 → 8 0.5

CR 2.23 Cowl lip contraction ratio 1.06 → 1.4 0.02

The duct length ratio, z̃2, determines the position of the minimum airflow area

(A2), z2, relative to the length of the rocket flowpath, z3 = ze,

z2 = z3(1− z̃2) (2.19)

The air intake duct can be any length up to the length of the rocket flowpath.

Fig 2.5(a) shows an example of a duct length ratio of z̃2 = 0.9. The result is plane

2 is nearly coincident with plane 3 of Fig 2.4. The cowl is moved radially outward

and longitudinally downstream. In order to maintain a consistent air flowpath area

profile throughout the air intake duct the shape of the center body shape becomes

more broad. Conversely, a duct length ratio of z̃2 = 0.1 would result in plane 2 being

nearly coincident with plane 1 (see Fig 2.5(b)). As a result the cowl becomes thicker

and is moved inward and forward. The cowl and the center body intersect, resulting

in complete air flowpath blockage. Obviously this is not a valid solution and thus for

the purposes of this work the air intake duct length is bounded between 30% – 50%

of the length of the rocket flowpath.
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(a) z̃2 = 0.9 (b) z̃2 = 0.1

Figure 2.5: Two examples of the effect of varying z̃2.

The maximum fairing chord ratio, c̃fairmax
, determines the chord length of the

fairing, cfairmax
, at the outer most radial position relative to the length of the rocket

flowpath, z3 = ze,

cfairmax
= c̃fairmax

z3 (2.20)

The chord length of the fairing can be any non-zero length. However, if cfairmax
is

too long (i.e. c̃fairmax
= 2) then the leading edge of the fairing will pass the leading

edge of the center body (see Fig 2.6(a)). This is an undesirable situation since the

leading edge of the fairing is not as streamlined as the center body and will lead to

higher drag. A short chord length (i.e. c̃fairmax
= 0.5) is detrimental if the maximum

thickness of the fairing is large relative to the chord length, since this will produce a

fairing profile that causes separation and high drag (see Fig 2.6(b)).

(a) c̃fairmax
= 2

Cross-section of fairing profile

(b) c̃fairmax
= 0.5

Figure 2.6: Two examples of the effect of varying c̃fairmax
.

The cowl thickness ratio, t̃3, determines the thickness of the cowl, t3, at plane 3
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relative to the inner radius of the rocket flowpath exit, rNZ3 in
,

t3 = t̃3 rNZ3 in
(2.21)

As the cowl thickness approaches rNZ3 in
(i.e. t̃3 → 1), the cowl blocks more

and more of the air flowpath, eventually leading to complete air flowpath blockage.

Ideally, t3 is minimal with enough thickness to provide structural integrity. The cowl

thickness is not fixed since the ability to manipulate t3 gives control over the air

flowpath area profile.

The center body radius ratio, r̃CB1
, determines the radius of the center body at

plane 1, rCB1
, relative to the rocket flowpath throat radius, rth,

rCB1
= r̃CB1

rth (2.22)

The center body radius at plane 1 can be any real value greater than one. How-

ever, as r̃CB1
→ 1 the gap between the rocket flowpath throat and the center body

approaches zero. Since the air flowpath area ratio must remain consistent, rCB1
also

influences the curvature of the center body downstream of plane 1 (see Fig 2.7(a)).

Therefore, the minimum bound is set at r̃CB1
= 2. If rCB1

is too large (i.e. r̃CB1
= 10),

the resulting curvature of the center body may lead to flow separation and low en-

trainment of atmospheric air (see Fig 2.7(b)).

(a) r̃CB1
= 1 (b) r̃CB1

= 10

Figure 2.7: Two examples of the effect of varying r̃CB1
.



37

The cowl lip contraction ratio, CR, determines the cowl leading edge area, ALE ,

relative to A2,

ALE = CRA2 (2.23)

The cowl lip contraction ratio also has a strong influence on the incoming atmo-

spheric flow field. At low free stream Mach conditions, a low CR causes the incoming

flow to turn an abrupt corner, leading to high peak velocities and flow separation off

of the cowl lip. As the free stream Mach number approaches supersonic conditions a

large CR will lead to increased drag. The cowl lip contraction ratio must be greater

than one, since CR < 1 would represent an air flowpath throat upstream of plane 2

which is not a valid solution.

The real-parameter genetic representation of individuals for the air flowpath design

is expressed by five genes (Eq 2.24). The search space has five dimensions with a total

of S ≈ 430× 103 possible individuals, as calculated by Eq 2.15 with n = 5.

xki =

[

z̃2 c̃fairmax
t̃3 r̃CB1

CR

]

(2.24)

2.3.2 Air Flowpath Evaluation

The evaluation function for the air flowpath design is the air intake design code

developed by Waung [56]. The code generates the three-dimensional geometry of

the air flowpath design and provides estimates for total pressure loss, entrained air

mass flow rate, and separation point. The air flowpath is designed for a given flight

condition. For this work, the flight condition corresponds to the beginning of a launch

at static sea-level conditions (M∞ = 0.01, halt = 40 m, p3 = 97.7 kPa). Table 2.3 lists

the flight conditions of five points along the trajectory of the Ariane 4 flight profile.

This flight profile was selected as an example of a typical launch vehicle profile and

was derived from Turner [57].
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Table 2.3: Simulated Ariane 4 Flight Profile [56].

Flight Profile Point 1 2 3 4 5

M∞ 0.01 0.19 0.41 0.64 0.89

halt (m) 40 929 2196 3800 5741

p3 (kPa) 97.7 89.2 83.1 79.1 77.6

The performance criteria of the rocket flowpath considered the air intake area,

Aintake, as an indication of the potential for entrainment of atmospheric air. Since

the panel method of the air flowpath design provides a more accurate indication of

the entrained atmospheric air, the performance criteria of the air flowpath design is

described by the following criterion:

• High entrainment ratio, α. Where α is defined by Eq 2.25.

• Large exit arc length, Lexit, to increase the shear layer area between the primary

rocket stream and secondary air stream.

• Low flow-turning angle at the gate, φ, so that the rocket exhaust does not

experience excessive expansion in the circumferential direction.

α =
ṁair

ṁrocket

(2.25)

The fitness function for the air flowpath design (Eq 2.26) is a linear combination of

the normalized criterion with corresponding weighting factors. Similar to the rocket

flowpath fitness function, by varying the weights of Eq 2.26 more significance can be

applied to one of the three performance criteria.

fk
i = Ka

α

αmax

+Kb

[

1−

∣

∣

∣

∣

φ

180o

∣

∣

∣

∣

]

+Kc

Lexit

Lmax

(2.26)

The weighting factors must satisfy Eq 2.17 and 2.18. The first term of Eq 2.26
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is normalized by αmax = 7.52 which represents the ideal value of α with no viscous

losses and complete mixing of the rocket stream and entrained air stream. The 1-D

rocket-ejector analysis method developed by Etele et al. [58] was used to determine

αmax based on flight profile point 1 in Table 2.3. For conditions 2, 3, 4, and 5 the

values of αmax = 6.96, 6.96, 6.93, 6.79, respectively. These values are calculated

based on the assumption that the area of the rocket exhaust relative to the overall

air flowpath area is 10%.

2.4 Dealing with Invalid Solutions

Despite efforts made to implement bounds that prevent the creation of invalid solu-

tions, it is inevitable that an invalid solution will arise. An invalid solution is defined

as an individual that cannot be translated into a realistic physical solution. An in-

valid solution is considered to be an infertile individual by applying a fitness value of

zero, fk
i = 0. As a result infertile individuals cannot be selected for the mating and

therefore cannot reproduce.



Chapter 3

Genetic Algorithm Convergence Results

A study of the convergence trends of the GA is conducted to observe the behaviour

of the GA. The rocket flowpath design is used to conduct the following analyses since it

can be calculated in a shorter period of time than the air flowpath design. This is due

to the fact that the evaluation of the rocket flowpath design requires approximately 1

second to evaluate each individual, whereas the evaluation of the air flowpath design

requires approximately 2 minutes. One iteration of the GA without evaluating the

individuals requires approximately 20 ms. Therefore, it is the evaluation function

that is the most significant in terms of computational time.

MATLAB R©7.0.1 is used to run the GA and the evaluation functions. The system

used throughout the analyses is an AMD AthlonTM64 X2 Dual Core Processor (2.21

GHz, 1.75 GB of RAM).

The effects of various population sizes, probability of mutation, and selection

pressure is discussed. The effect of elitism is also studied. A comparison of constant

genetic operator parameters versus adaptive genetic operator parameters is presented.

40
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3.1 Expected Convergence History

The stochastic nature of GAs make prediction of the convergence trends difficult. A

given run of the GA might converge within a few generations or might require many

generations and several hours of computational time. The GA might successfully

find the most fit solution or might become trapped and prematurely converge to a

sub-optimal solution.

Successful, quick convergence may be due to any of the following reasons: The

random initial population contains one or more very fit individuals (near-optimal

solutions). One or more favourable crossovers or mutations produce a very fit in-

dividual. The population size is so large that a significant portion of the possible

individuals are evaluated at each generation.

An extremely large population size might reach convergence after a few genera-

tions, but this is not a good measure of the rate of convergence (how much time is

required to attain the most fit solution). A better metric to compare rate of conver-

gence is the number of times the evaluation function is called, since this is the most

computationally intensive component of the GA. Eq 3.1 shows the metric used to

compare rate of convergence. The metric is the population size (m) multiplied by the

generation number (k).

Γ = mk (3.1)

Consider an extremely large population size of m = 100000. If the GA converges to

the most fit solution after only two generations (k = 2), then the convergence metric

would be Γ = 200000. Since the size of the search space for the rocket flowpath design

optimization is S ≈ 1 × 106, this means that 20% (Γ/S · 100%) of the entire search

space would have been evaluated in order to find the most fit solution. However, a

population size of m = 50 might converge after 100 generations (k = 100) resulting

in a convergence metric of Γ = 5000 which represents only 0.5% of the search space
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being evaluated. Furthermore, the percentage of the explored search space will always

be less than Γ/S · 100% because at each generation not every individual is unique.

In order to compare the effects of varying the genetic operator parameters, the

algorithm is seeded with the same initial population for each run. This ensures that

a “lucky” initial population will not make one run appear better than an “unlucky”

run. For all of the following simulations the GA is run until Γ = 20000. However,

the history is only plotted up to the point of convergence, since all data points after

convergence are not relevant to the following analyzes. As a result, convergence is

defined as the point at which the GA reaches the maximum fitness value.

Fig 3.1 shows three runs of the GA starting from the same initial population. The

fitness of the most fit individual (fk
1 ) is plotted versus Γ. The solid line converges

first (Γ = 800), followed by the dotted line (Γ = 1400), and the dashed line converges

last (Γ = 1850) even though it showed the best progress earlier in the convergence

history. Despite the consistent initial population, each run has a unique convergence

rate and follows a different path toward convergence. This is due to a combination

of all the stochastic processes of the GA.

Fig 3.1 depicts the characteristic shape of the GA’s convergence history: the

asymptotic trend illustrates the fact that the algorithm easily finds improved solutions

early in the convergence history, then progress slows as it becomes more difficult to

find an improved solution later in the convergence history. Occasionally, a large step

improvement is observed as a result of a fortunate crossover or mutation.

Fig 3.2 illustrates three sample runs (of approximately 100 trials) of the GA

starting from random initial populations. The solid line (Γ = 1400) represents a

lucky initial population with a higher initial fitness than the other two examples

and is the first to converge to the most fit solution. The dotted line represents an

unlucky initial population with the lowest initial fitness. Despite the unlucky initial

population, the dotted line (Γ = 1750) converges before the dashed line (Γ = 2250).
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Figure 3.1: Three sample runs of GA with same initial population X0.

Γ

fk
1

k

500 1000 1500 2000

10 20 30 40

0.60

0.64

0.68

0.72

Figure 3.2: Three sample runs of GA with random initial population X0.
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3.2 Effect of Population Size

The effect of population size is studied by analyzing the convergence trends of three

population sizes: m = 10, 50, 100. Fig 3.3(a), 3.3(b), and 3.3(c) illustrate three

typical runs of the GA corresponding to m = 10, 50, and 100, respectively. Each plot

shows the convergence history of the most fit individual of the population (fk
1 ), the

average fitness of the population (F k), and the least fit individual of the mating pool

(fk
i−). The remaining genetic operator parameters are fixed throughout the analyzes

(Pm = 0.1, s = 1, and Pc = 0.6). Fig 3.4(a), 3.4(b), and 3.4(c) show histogram plots of

the convergence rate for 100 simulations of the GA corresponding to m = 10, 50, 100,

respectively.

Fig 3.4(a) shows that for m = 10 the most frequent convergence rate corresponds

to the Γ = 250 − 500 bin (k = 25 − 50), with a percent occurrence of 28%. It is

expected that for this setting of the genetic operator parameters (m = 10, Pm = 0.1,

s = 1, and Pc = 0.6), the GA will converge to the most fit solution within Γ = 0−500

(k = 0−50) 34.7% of the time. The next most frequent convergence rate corresponds

to the Γ = 500−750 bin, with a frequency of 21.3%. The GA is expected to converge

to the most fit solution within Γ = 0 − 750 (k = 0 − 75) 56% of the time. The bars

in the 20000+ bin indicates the GA had not converged to the global most fit solution

after Γ = 20000 evaluations and was terminated. For a population size of m = 10 the

GA is expected to require more than Γ = 20000 evaluations (k = 2000 generations)

18.7% of the time.

Fig 3.3(a) shows a typical convergence history for m = 10 with convergence being

reached at Γ = 580 (k = 58). Considering Fig 3.3(a) it is observed that at Γ = 330

and 580, fk
1 ≈ F k ≈ fk

i− indicating that the majority of the population is composed of

identical individuals. This is an undesirable situation since the algorithm is needlessly

evaluating the same individual and genetic diversity is lost. Fig 3.3(b) and 3.3(c) do
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not show this situation since the population size is large enough to maintain genetic

diversity.

Fig 3.4(b) shows that for m = 50 the most frequent convergence rate corresponds

to the Γ = 500 − 750 bin (k = 10 − 15), with a percent occurrence of 32%. It is

expected that for this setting of the genetic operator parameters (m = 50, Pm = 0.1,

s = 1, and Pc = 0.6), the GA will converge to the most fit solution within Γ = 0−750

(k = 0− 15) 56% of the time. For m = 50 the GA is expected to require more than

Γ = 20000 evaluations (k = 400 generations) only 4% of the time.

Fig 3.4(c) shows that for m = 100 the most frequent convergence rate corresponds

to the Γ = 500−750 bin (k = 5−7.5), with a percent occurrence of 28%. It is expected

that for this setting of the genetic operator parameters (m = 100, Pm = 0.1, s = 1,

and Pc = 0.6), the GA will converge to the most fit solution within Γ = 0 − 750

(k = 0 − 7.5) 49.3% of the time. For m = 100 the GA is expected to require more

than Γ = 20000 evaluations (k = 200 generations) 9.3% of the time.

Comparing the results of Fig 3.3 and 3.4 it is observed that a mid population size

of m = 50 shows a consistently good rate of convergence with a low probability of

failed convergence and termination. A low population size of m = 10 shows a similar

rate of convergence, however the probability of failed convergence and termination is

significantly greater (18.7% compared to 4%). This is due to the fact that the GA

becomes inefficient when genetic diversity is lost. A high population size of m = 100

shows a slower rate of convergence and a greater probability of failed convergence

when compared with m = 50. This is a result of the GA spending too much time

evaluating individuals rather than allowing the explorative and exploitative genetic

operators to perform their task. The explorative and exploitative operators are only

effective as new generations are developed.
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Figure 3.3: Effect of varying popu-
lation size. Constant genetic op-
erators: Pm = 0.1, s = 1 and
Pc = 0.6.
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Figure 3.4: Histogram plots for sev-
eral values of m showing the ex-
pected rate of convergence.
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3.3 Effect of Probability of Mutation

The effect of probability of mutation is studied by analyzing the convergence trends of

three probabilities of mutation: Pm = 0.01, 0.1, 0.5. Figs 3.5(a), 3.5(b), and 3.5(c)

illustrate three runs of the GA corresponding to Pm = 0.01, 0.10, and 0.50, respec-

tively. The remaining genetic operators are fixed throughout the analyzes (m = 50,

s = 1, and Pc = 0.6). Fig 3.6(a), 3.6(b), and 3.6(c) show histogram plots of the con-

vergence rate for 100 simulations of the GA corresponding to Pm = 0.01, 0.10, 0.50,

respectively.

Fig 3.6(a) shows that for Pm = 0.01 the most frequent occurrence corresponds to

the Γ = 20000+ bin, with a percent occurrence of 18.3%. This indicates that there

is a high chance of the GA failing to converge to the global most fit solution. The

GA is expected to converge to the most fit solution within Γ = 0− 2000 (k = 0− 40)

33.5% of the time.

Fig 3.5(a) shows a typical convergence history for Pm = 0.01. It is observed

that there are many instances of the majority of the population being composed of

identical individuals, as shown by fk
1 ≈ F k ≈ fk

i−. This indicates that despite the

mid population size of m = 50, a low probability of mutation of Pm = 0.01 is not

high enough to maintain genetic diversity throughout the population.

Fig 3.6(b) is identical to Fig 3.4(b) since the genetic operator parameters are

identical. The histogram shows that a probability of mutation of Pm = 0.1 is expected

to show a fast rate of convergence with a low probability of failed convergence. The

GA is expected to converge to the most fit solution within Γ = 0− 2000 (k = 0− 40)

89.3% of the time. Fig 3.5(b) shows a typical convergence history for Pm = 0.1.

It is observed that genetic diversity of the population is maintained throughout the

convergence history, as shown by the spacing between fk
1 , F

k, and fk
i−.

Fig 3.5(c) shows that for Pm = 0.5 the most frequent occurrence corresponds to
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the Γ = 20000+ bin, with a percent occurrence of 56%. This indicates that a high

probability of mutation of Pm = 0.5 results in an extremely high chance of the GA

failing to converge to the global most fit solution. In fact the GA is more likely

to converge to a sub-optimal solution than the global optimal solution. The GA is

expected to converge to the most fit solution within Γ = 0− 2000 (k = 0 − 40) 20%

of the time. Fig 3.5(c) shows an atypical convergence history for Pm = 0.5. For

this sample run the GA converged to the most fit solution at Γ = 2200 (k = 44).

The high probability of mutation and high diversity is shown by the fact that F k is

approximately midway between fk
1 and fk

i−. This indicates the average fitness of the

population is low which leads to a slow rate of convergence.

Comparing the results of Fig 3.5 and 3.6 it is observed that a moderate proba-

bility of mutation of Pm = 0.1 shows a consistently good rate of convergence with a

low probability of failed convergence. A low probability of mutation of Pm = 0.01

results in a slower expected rate of convergence with a higher probability of failed

convergence. This is due to the fact that a low Pm is not sufficient to maintain genetic

diversity and the GA becomes inefficient. A high probability of mutation of Pm = 0.5

results in an extremely high probability of failed convergence since a high Pm reduces

the GA to an ineffective random search function.
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Figure 3.5: Effect of varying proba-
bility of mutation. Constant ge-
netic operators: m = 50, s = 1
and Pc = 0.6.
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Figure 3.6: Histogram plots for sev-
eral values of Pm showing the ex-
pected rate of convergence.
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3.4 Effect of Selection Pressure

For the Roulette Wheel method the selection pressure influences the probability that

an individual will be selected for reproduction. A high selection pressure favours

the more fit individuals being selected, whereas a low selection pressure shows no

favoritism. The effect of selection pressure is studied by analyzing the convergence

trends of three selection pressure: s = 0.1, 1, 5. Fig 3.7(a), 3.7(b), and 3.7(c) illustrate

three runs of the GA corresponding to s = 0.1, 1, and 5, respectively. The remaining

genetic operator parameters are fixed throughout the analyzes (m = 50, Pm = 0.1,

and Pc = 0.6). Fig 3.8(a), 3.8(b), and 3.8(c) show histogram plots of the convergence

rate for 100 simulations of the GA corresponding to s = 0.1, 1, and 5, respectively.

Fig 3.8(a) shows that for s = 0.1 the most frequent convergence rate occurrence

corresponds to the Γ = 500 − 750 (k = 10 − 15) bin, with a percent occurrence

of 26.7%. It is expected that the GA will converge to the most fit solution within

Γ = 0−1000 (k = 0−20) 66.7% of the time. Failed convergence is expected to occur

8% of the time.

Fig 3.8(b) is identical to Fig 3.4(b) and 3.6(b) since the genetic operator param-

eters are identical. Fig 3.8(b) shows that a selection pressure of s = 1 is expected to

show a fast rate of convergence with a low probability of failed convergence (4%). The

GA is expected to converge to the most fit solution within Γ = 0− 1000 (k = 0− 20)

76% of the time.

Fig 3.8(c) shows that for s = 5 the most frequent convergence rate occurrence

corresponds to the Γ = 250 − 500 (k = 5 − 10) bin, with a percent occurrence 28%.

It is expected that the GA will converge to the most fit solution within Γ = 0− 1000

(k = 0− 20) 76% of the time. The probability of failed convergence is 6.7%.

Comparing the results of Fig 3.8 it is observed that the selection pressure does

not have as strong an influence on the rate of convergence or probability of failed
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convergence as the population size or probability of mutation. However, a selection

pressure of s = 1 showed a good combination of consistently fast rate of convergence

and low percent occurrence of failed convergence. Therefore since both s = 1 and

s = 5 show convergence within Γ = 1000 76% of the time, but s = 1 fails to converge

to the most fit solution only 4% of the time compared to 6.7% for s = 5, a selection

pressure of s = 1 is used for the remainder of this work.

Considering Fig 3.7 it is observed that manipulating the selection pressure does not

adversely affect the diversity of the population throughout the convergence history.

This is shown by the fact that for all three values of selection pressure, the fitness of

the most fit individual of the population and the least fit individual of the mating

pool maintain a good separation.
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Figure 3.7: Effect of varying selection
pressure. Constant genetic oper-
ators: m = 50, Pm = 0.1 and
Pc = 0.6.
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Figure 3.8: Histogram plots for sev-
eral values of s showing the ex-
pected rate of convergence.
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3.5 Effect of Elitism

Up to this point all simulations of the GA have used the Elitism method where the

most fit individual of the current generation is passed onto the following generation.

This is evident by the fact that fk
1 never decreases or diverges toward less optimal

solutions (see Fig 3.3, 3.5, 3.7).

Fig 3.9 shows three runs of the GA without Elitism. fk
1 is plotted versus Γ.

Comparing Fig 3.9 with Fig 3.1, it is observed that the familiar asymptotic trend is

present for the case of no Elitism. However, the average convergence rate without

Elitism is slower than when Elitism is implemented. It should also be noted that

without Elitism as Γ → ∞, fk
1 is not guaranteed to be the global optimum. Instead

fk
1 will likely fluctuate about a fitness value close to the global optimum, as shown

by the solid and dotted line in Fig 3.9.
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Figure 3.9: Three runs of GA without Elitism. Constant genetic operators: m = 50,
Pm = 0.1, s = 1 and Pc = 0.6.
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3.6 Effect of Adaptive Genetic Operators

The solid bars of Fig 3.10 show a histogram plot of the convergence rate for several

population sizes using constant genetic operator parameters (Pm = 0.1 and s = 1).

The hollow bars of Fig 3.10 shows a histogram plot for the same population sizes

using adaptive genetic operator parameters (Pm = 0.1 ↔ 0.5 and s = 1 ↔ 0.8). In

each case the GA is run to convergence 100 times (i.e. the sum of all the bars for a

given population size totals 100).

In the adaptive technique Pm is altered based on the homogeneity of the population

at a given generation. When the population is deemed to be too homogenous, Pm

is increased to 0.5 in order to increase the diversity of the population. When the

population is deemed to have sufficient genetic diversity Pm is decreased to 0.1. The

goal is to maintain sufficient genetic diversity while ensuring that the GA is not

reduced to a random search function. The selection pressure is switched between 1

and 0.8 based on trap situations (Eq 2.5). When the GA is suspected to be trapped

in a local maximum, s is decreased to 0.8 to increase the explorative power of the GA

(i.e. less fit individuals of the mating pool have a greater chance to mate, thereby

reducing the dominance of the locally most fit individuals).

Comparing the solid and hollow bars of Fig 3.10 it is observed that the technique

of constant genetic operator parameters is susceptible to trap situations. The bars in

the Γ = 20000+ bin are indicative of situations of failed convergence; the GA did not

converge to the most fit solution after Γ = 20000 and was terminated. The technique

of adaptive genetic operator parameters, however, did not show any instances of

failed convergence, as shown by the absence of hollow bars in the Γ = 20000+ bin of

Fig 3.10.

It is also observed that for each population size, the adaptive technique converges
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faster than the constant technique. The solid lines of Fig 3.10 represent the distri-

bution of the convergence rate of the constant parameter technique, while the dotted

lines represent the distribution of the convergence rate of the adaptive parameter

technique. The skewness of the adaptive technique toward lower values of Γ indicates

that the adaptive technique has a higher probability of converging to the most fit

solution in a shorter period of time than the constant technique.

m
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30 40 50 60 70 80

4000

8000

12000

16000

20000+

Figure 3.10: Histogram of Γ for several population sizes. Comparing constant
genetic operator parameters (solid bars and solid lines) versus adaptive genetic
operator parameters (hollow bars and dotted lines).
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As a consequence of the previous results, the following genetic operator parameters

are used throughout the analyses of Chapters 4 and 5. Table 3.1 lists the selected

genetic operator parameters.

Table 3.1: Genetic Operators of GA.

Mechanism Model

Genetic Representation Real-parameter

Population Size m = 50

Selection Roulette wheel with Elitism

s− = 0.8, s+ = 1

Reproduction Uniform crossover

Pc = 0.6

Mutation Adaptive mutation

P−

m = 0.1, P+
m = 0.5



Chapter 4

Rocket Flowpath Optimization Results

4.1 Atlas E/F LR-105-5

The rocket flowpath developed by Cerantola and Etele [55,60] was designed to match

the performance of the Atlas E/F LR-105-5 sustainer engine. The specifications used

to approximate the kerosene C12H24/air LR-105-5 engine are given in Table 4.1. The

fixed geometric variables for this design are a throat radius (rth = 0.0551m) cor-

responding to the throat of the LR-105-5 nozzle and an exit radius (re = 0.5m).

This is four times greater than the exit radius of the axisymmetric LR-105-5 noz-

zle (r = 0.12m) to allow for potential air intake area. Fig 4.1 shows the desired

Mach number distribution of the LR-105-5 nozzle. The rocket flowpath design code

generates rocket flowpath geometries that produce this Mach number distribution.

57
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Table 4.1: Approximate Atlas E/F LR-105-5 Specifications.

Specification Value

Thrust 190 kN

Isp 220 s

Chamber Pressure 48 atm

Equivalence Ratio 1.49

Length (ze) 1.12 m

Mass Flow Rate (ṁrocket) 29.8 kg/s
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Figure 4.1: Pre-specified Mach number distribution corresponding to Atlas E/F
LR-105-5 nozzle.
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4.1.1 Performamce Criteria Weights

By varying the performance criteria weights of the rocket flowpath fitness function

(Eq 2.16 shown below), the GA can be made to converge to different optimal solutions.

Each solution is optimal since it performs best for its corresponding fitness function.

In order to study the effect of various weights, four cases are presented, as given by

Table 4.2. The user can manipulate the fitness function weights to meet the desired

criteria, however the following analysis shows that a balance of the three performance

criteria weights is necessary to produce a rocket flowpath that is expected to perform

well as a rocket-ejector nozzle under the expected operating conditions.

f(xki ) = Ka

Aintake

Amax

+Kb

[

1−

∣

∣

∣

∣

φ

180o

∣

∣

∣

∣

]

+Kc

Lexit

Lmax

(2.16)

Table 4.2: Rocket flowpath fitness function weights.

Case Ka Kb Kc

A 1 0 0

B 0 1 0

C 0 0 1

D 0.34 0.23 0.43

For case A, the first term of the fitness function is given 100% weight. Thus the GA

produces a rocket flowpath that is optimized for air intake area only (see Fig 4.2(a)).

The optimized rocket flowpath has large air intake area (Aintake = 0.56m2). However,

the rocket flowpath exhaust profile is not annular and has low shear layer length

(Lexit = 1.49m). Therefore, it is expected that this rocket flowpath will not provide

good mixing of the primary rocket stream and the secondary air stream.

For case B, the fitness function considers only the second term. Thus the GA
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produces a rocket flowpath that is optimized for flow turning angle at the gate (see

Fig 4.2(b)). The flow turning angle at the gate is φ = 0o and thus the rocket exhaust

does not experience large expansion in the circumferential direction. This is desirable

since the rocket flowpath should avoid excessive boundary layer thickening and sepa-

ration. However, this solution does not have large air intake area (Aintake = 0.22m2)

or large shear layer length (Lexit = 2.49m).

For case C, the third term of the fitness function is given 100% weight. Thus the

GA produces a rocket flowpath that is optimized for rocket exhaust shear layer length.

As expected, the most fit solution (see Fig 4.2(c)) represents a rocket flowpath config-

uration that has a fully-annular exhaust shear layer length (Lexit = 3.14m). A large

Lexit is expected to result in thorough mixing of the primary rocket stream and the

secondary air stream within the remainder of the RBCC engine. However, this rocket

flowpath is likely not an ideal design since the low air intake area (Aintake = 0.14m2)

suggests low entrainment of atmospheric air. Without sufficient air entrainment the

RBCC performs more like a simple rocket and thus the potential for good mixing is

irrelevant as there are no longer two flow streams.

Case D considers a nearly equal balance of all three performance criteria. Thus the

GA produces a rocket flowpath that is optimized for a combination of the three criteria

(see Fig 4.2(d)). This solution has a relatively large air intake area (Aintake = 0.36m2)

which is only 36% lower then the maximum Aintake found by Case A, fully-annular

exhaust profile (Lexit = 3.14m), and a reasonable flow turning angle (φ = 32o). Thus,

it is expected that this rocket flowpath is well suited for a rocket-ejector nozzle within

an RBCC engine. Table 4.3 summarizes the results of the four cases.
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(a) Case A (b) Case B

(c) Case C (d) Case D

Figure 4.2: Four cases of different fitness function weights showing the most fit
rocket flowpath for each case.

Table 4.3: Performance criteria results.

Case Aintake (m
2) φ (deg.) Lexit (m)

A 0.56 2 1.49

B 0.22 0 2.49

C 0.14 18 3.14

D 0.36 32 3.14
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4.2 H-IIA LE-7A

The following analysis is presented to show that the GA can optimize a variety of

rocket flowpath designs. Section 4.1 discussed the successful optimization of the

rocket flowpath design for the LR-105-5 engine under a variety of performance criteria

weights. This section discusses the optimization of the rocket flowpath for the LE-7A

engine using the performance criteria weights corresponding to case D.

The rocket flowpath used throughout Waung’s analysis [56] was designed to match

the performance of the LE-7A rocket engine. This rocket engine is used by the

Japanese Aerospace Exploration Agency as the first stage of the H-IIA launch vehicle.

The specifications for the LE-7A liquid O2/liquid H2 rocket engine are provided in

Table 4.4 [61]. The fixed geometric variables for this design are a throat radius

(rth = 0.121 m) corresponding to the throat of the LE-7A nozzle, and an exit radius

(re = 3.1 m) that is set to be 1 m greater than the radius of the H-IIA launch vehicle.

Fig 4.3 shows the desired Mach number distribution to produce the specifications

similar to those of the LE-7A nozzle.

Table 4.4: Approximate LE-7A Specifications.

Specification Value

Thrust 870 kN

Isp 338 s

Chamber Pressure 121 bar

O/F Ratio 5.90

Length (ze) 8.7 m

Mass Flow Rate (ṁrocket) 247 kg/s
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Figure 4.3: Pre-specified Mach number distribution corresponding to H-IIA LE-7A.

4.2.1 LE-7A: Rocket Flowpath Convergence History

Fig 4.4 shows the convergence history of population’s fitness and Fig 4.5 shows the

convergence history of the three performance criteria (Aintake, Lexit, φ) of the most fit

individual at each generation. Fig 4.6 shows the rocket flowpath design corresponding

to the most fit individual at k = 0, 5, 40.

Considering Fig 4.4, 4.5, and 4.6 the influence of the performance criteria on the

fitness of an individual is observed. For example, the most fit individual of the initial

population (see Fig 4.6(a)) has a low fitness (f(x01) = 0.58) because the exhaust shear

layer length is low, Lexit(x
0
1) = 10.3m. At k = 5, the most fit individual has evolved

(see Fig 4.6(b)) to an improved fitness (f(x51) = 0.66) because the shear layer length

increased by 97% to Lexit(x
5
1) = 20.3m. This improvement was achieved despite

a decrease of air intake area by 31% (A(x51) = 11.4m2). At k = 40, the most fit

individual (see Fig 4.6(c)) reached the most fit solution (f(x401 ) = 0.71) due to the

increase of air intake area by 63% (Aintake(x
40
1 ) = 18.6m2) while maintaining the

shear layer length of 20.3 m.



64

k

fk
i−

fk
i−

F k
F k

fk
1

fk
1

8 24 40

400 1200 2000
Γ

0.56

0.60

0.64

0.68

0.72

Fig 4.6(a) Fig 4.6(b) Fig 4.6(c)

Figure 4.4: LE-7A fitness convergence history.
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Figure 4.5: LE-7A performance criteria convergence history.



65

(a) k = 0 (Γ = 0)

(b) k = 5 (Γ = 250)

(c) k = 40 (Γ = 2000)

Figure 4.6: Most fit individual at k = 0, 5, 40 (Γ = 0, 250, 2000).
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4.3 Solution Space Hyperplanes

The rocket flowpath design is controlled by five design variables, therefore the solution

space has five dimensions. The solution space can be thought of as a 5-D hypercube

[62]. A hyperplane is then a 4-D cross-section through the 5-D hypercube. Fig 4.8

shows four z̃g − r̃g (rocket flowpath gate depth-gate radius) projection-planes and

Fig 4.9 shows four ψ̃e − ψ̃g (rocket flowpath exit arc angle-gate arc angle) projection-

planes.

Each projection-plane is a snapshot of the solution space as the GA converges

toward the most fit solution. The circles represent solutions that have been evaluated.

An empty circle represents an invalid solution, which is assigned a fitness of zero

so that it cannot be selected for reproduction. A filled circle represents a viable

solution with a fitness greater than zero. The double circle represents the most fit

individual of the population at the given generation k.

There is one z̃g − r̃g plane for each combination of the remaining three design

variables ([ε, ψ̃e, ψ̃g]). For this example there would be 4464 z̃g − r̃g planes at each

generation k (the number of z̃g − r̃g planes is determined by Eq 2.15 with j = 1, 2,

3). By projecting all of the z̃g − r̃g planes onto one projection-plane we are able to

visualize the progression of the GA along the z̃g − r̃g dimensions. For a given [z̃g, r̃g]

combination there could potentially be 4464 circles stacked on top of each other.

Therefore only the most fit [z̃g, r̃g] combination is plotted. Similarly, there are 900

ψ̃e − ψ̃g planes projected onto one projection-plane with only the most fit [ψ̃e, ψ̃g]

combination plotted (refer to Eq 2.15 with j = 1, 4, 5).

Fig 4.7 shows an example of how several z̃g − r̃g planes are projected onto one

projection plane. In this example, there are a total of nine unique individuals that

have been evaluated (4 on z̃g− r̃g−1, 2 on z̃g− r̃g−2 and 3 on z̃g− r̃g−3). Projecting

the three planes onto z̃g − r̃g results in the overlap of four individuals so that only
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five individuals can be visualized on the projection-plane. Fig 4.7 also illustrates an

interesting effect of the interrelationship of the five design variables. It is observed

that a [z̃g, r̃g] combination can be invalid on one plane but valid on another due to

changes in the remaining three design variables. This illustrates that a GA is a good

choice for this type of design problem.
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Figure 4.7: An example of the creation of the z̃g − r̃g projection-plane.
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Considering Fig 4.8 it can be seen that the number of newly evaluated solutions

increases with k. However the rate of newly evaluated solutions decreases with k. This

is due to the fact that as k → ∞ there are repeated individuals from one generation

to another. For instance, the Elitism method ensures that at least one individual is

repeated in the following generation.

Fig 4.8 illustrates the progression of the most fit solution with k. This is indicated

by the arrows pointing from the location of the previous most fit solution to the

location of the new most fit solution. No change occurs between k = 25 − 100

(Fig 4.8(c)-4.8(d)), meaning the GA reached the most fit [z̃g, r̃g] combination between

10 < k ≤ 25.

Considering Fig 4.9 the same effect of the number of newly evaluated solutions

increasing with k can also be seen. The progression of the most fit solution is also

illustrated. A slight change occurs between k = 25−100 (Fig 4.9(c)-4.9(d)), meaning

the GA reached the most fit [ψ̃e, ψ̃g] combination between 25 < k ≤ 100. In fact,

convergence is achieved at k = 40.

Fig 4.8 and 4.9 illustrate the tendency of the GA to focus exploration along hyper-

planes of the solution space. Holland’s Schema Theory says that schemata (groups

of genes with the same alleles) define hyperplanes, and a GA will focus on strong

schemata with high fitness. This tendency is more easily observed in Fig 4.9. Consid-

ering Fig 4.9(b), the most fit solution is located at [ψ̃e, ψ̃g] = [0.92, 0.32]. Therefore the

schemata defined by [*,0.92,*,*,*] and [*,*,0.32,*,*] are found to be strong schemata

(* is a wild card). Considering Fig 4.9(c), it can be seen that many good solutions

appear along the hyperplanes defined by the strong schemata. Fig 4.9(d) shows that

as the strongest schemata shifts to [*,0.96,*,*,*] and [*,*,0.30,*,*], new hyperplanes

are developed as k increases.

This tendency to explore for solutions along strong hyperplanes is what makes

the GA a powerful optimization technique. Fig 4.9(d) shows that the GA focuses the
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majority of evaluations on hyperplanes close to the most fit solution and does not

waste computational resources by evaluating many individuals far from the most fit

solution.
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Figure 4.8: z̃g − r̃g projection-plane illustrating evaluation of new solutions, pro-
gression of the most fit solution, and formation of hyperplanes. The most fit
individual of the population is represented by a double circle. Individuals with
fitness greater than zero are represented by filled circles. Invalid individuals are
represented by empty circles.
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Figure 4.9: ψ̃e − ψ̃g projection-plane illustrating evaluation of new solutions, pro-
gression of the most fit solution, and formation of hyperplanes. The most fit
individual of the population is represented by a double circle. Individuals with
fitness greater than zero are represented by filled circles. Invalid individuals are
represented by empty circles.



Chapter 5

Air Flowpath Optimization Results

The purpose of the air flowpath optimization is to produce a rocket-ejector design

that is expected to perform well during the first mode of operation of the RBCC

propulsion system. In order to design the rocket-ejector one must specify the operat-

ing conditions and desired performance. For this work, the operating conditions rep-

resent flight conditions just after takeoff (M∞ = 0.01, halt = 40m and p3 = 97.7 kPa).

The desired performance is measured by the entrainment ratio α which is influenced

by σ, the ratio between the rocket exhaust flow area (AR) and the total air flow area

at plane 3 (A3). For this work, σ = 0.1 leads to A3 = 9 · AR, as found using Eq 5.1.

A3 = (
1

σ
− 1)AR (5.1)

where AR is a set value based on the defined rocket flowpath throat radius (rth) and

the exhaust Mach number (see Fig 4.3).

The 1-D rocket-ejector analysis developed by Etele et al. [58] is used to determine
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the maximum α that can be expected based on the operating conditions and σ.

Fig 5.1 shows a diagram of the 1-D rocket-ejector used for the analysis where under

isentropic conditions and expansion of the exhaust to patm, completely mixed flow

within the RBCC engine would achieve an entrainment ratio (α) of 7.52. As this

represents an ideal configuration, this value will be used in the fitness function for

non-dimensionalization purposes.

M∞

po p3

AR

A3

Plane 2 Plane 3

ṁair

ṁrocket

patm

Figure 5.1: 1-D rocket-ejector used for rocket-ejector analysis.

The axisymmetric potential flow panel method used by Waung [56] calculates

a more realistic estimate of the entrainment ratio (α) of the rocket-ejector design.

This estimate of α will always be lower than αmax since the code accounts for ṁair

losses due to separation, boundary layers, and viscous effects. All of these losses are

influenced by the geometry of the air flowpath. Therefore, the GA is implemented

to determine the most fit air flowpath design which will minimize these losses and

maximize α, with the goal of approaching αmax.

Optimization of the air flowpath design uses the same GA settings as the rocket

flowpath design. The only differences are the genetic representation of solutions,

the evaluation function, and the fitness function as described in Section 2.3. Sec-

tion 5.1 discusses the optimization results of the air flowpath design based on the five

air flowpath design variables and the previously optimized LE-7A rocket flowpath.

Section 5.2 discusses the optimization results of the entire Exchange Inlet design

considering all 10 design variables throughout the optimization process.
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5.1 Air Flowpath Optimization

The most fit rocket flowpath design found in Section 4.2.1 is used as the basis around

which the air flowpath design is optimized. The rocket flowpath design variables are

fixed, therefore the rocket flowpath has a nearly annular exhaust profile and has a six

clover configuration (see Fig 4.6(c)). Since the rocket flowpath design variables are

fixed, the second and third terms of the fitness function are also fixed. Therefore the

GA is used to determine the best combination of the five air flowpath design variables

to produce a design with maximum entrainment ratio α. Eq 2.26 from Section 2.3.2

is the fitness function used throughout the optimization process with the following

weighting factors: Ka = 0.34, Kb = 0.23, and Kc = 0.43. The second and third term

can be simplified since they are constant throughout the optimization process.

fk
i = Ka

α

αmax

+Kb

[

1−

∣

∣

∣

∣

φ

180o

∣

∣

∣

∣

]

+Kc

Lexit

Lmax

= 0.34
α

αmax

+ 0.58

(5.2)

Fig 5.2 shows the convergence history for the optimization of the air flowpath

design. Convergence is reached at Γ = 400 (k = 8), which indicates that the rate

of convergence is slightly faster when compared with the optimization of the rocket

flowpath design. This result is expected since the size of the search space defined by

the five air flowpath design variables is less than the size of the search space defined by

the five rocket flowpath design variables. However, the computational time required

to reach convergence is greater since each evaluation (Γ) of the air flowpath requires

approximately 1 minute of computational time, as compared to approximately 2 sec-

onds for the rocket flowpath design. Therefore, for the air flowpath optimization,

Γ = 400 equates to approximately 7 hours of computational time. Whereas for the

rocket flowpath optimization, Γ = 400 is only 13 minutes of computational time.
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Fig 5.3 shows the optimized air flowpath design corresponding to Γ = 400. The de-

sign has an annular rocket exhaust profile (Lexit = 20.7 m), a moderate flow turning

angle (φ = 64o), and an entrainment ratio of α = 7.16. The fitness value of this

individual is found by substituting these values into Eq 5.2 and gives f 8
1 = 0.90.

Γ

k

fk
i−

F k

fk
1

0 200 400 600

0 4 8 12

0.6

0.7

0.8

0.9

Figure 5.2: Convergence history for the optimization of the air flowpath design.
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(a) 3D View

(b) Front View

(c) Side View

(d) Wire View

Figure 5.3: Optimized Exchange Inlet design considering five air flowpath design
variables.
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5.2 Exchange Inlet Optimization

Simultaneous optimization of the five rocket flowpath design variables and the five air

flowpath design variables is accomplished by using 10 genes to define individuals (see

Eq 5.3). Therefore, the GA is able to manipulate the entire Exchange Inlet design

(the rocket flowpath geometry and the air flowpath geometry) as it searches for the

most fit design. The fitness function from Section 2.3.2 (Eq 2.26) is used throughout

the optimization process with the following weighting factors: Ka = 0.34, Kb = 0.23,

and Kc = 0.43. In this case all terms of the fitness function are relevant since all 10

design variable are manipulated by the GA.

xki = [ ε ψ̃e ψ̃g z̃g r̃g z̃2 c̃fairmax
t̃3 r̃CB1

CR ] (5.3)

Given that the 10 design variables that define the Exchange Inlet design of Fig 5.3

are contained within the current search space and that the same fitness function is

used, it is expected that the simultaneous optimization of all the Exchange Inlet

design variables will yield a more fit solution (or at least equally fit) when compared

to the solution of Section 5.1.

Fig 5.4 shows the convergence history of the population’s fitness. Convergence

is reached at Γ = 8000 (k = 160). This result indicates that convergence rate is

slower when the size of the search space increases. Considering the 10 design variables

increases the size of the search space to S ≈ 430×109. The convergence history shows

that the GA found a near-optimal solution at Γ = 1400 (k = 28) and remained at this

solution until Γ = 8000. From Γ = 8000–20000 the most fit solution did not change,

therefore convergence is achieved at Γ = 8000. Fig 5.5 shows the optimized Exchange

Inlet design, the design has a nearly-annular rocket exhaust profile (Lexit = 15.2 m),

a low flow turning angle (φ = 3o), and an entrainment ratio of α = 7.07. The fitness

value of this individual is found by substituting these values into Eq 2.26 and gives
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f 160
1 = 0.88.
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Figure 5.4: Convergence history for the optimization of the Exchange Inlet design.

Comparing the result of the air flowpath design optimization (Fig 5.3) and the

result of the Exchange Inlet design optimization (Fig 5.5), it is observed that the two

designs are similar. Both designs represent a six clover configuration with a near-

annular rocket exhaust profile. The optimized air flowpath design from Section 5.1

has a slightly higher fitness since the rocket exhaust shear length is closer to fully-

annular and the entrainment ratio is higher. This result indicates the optimization

routine from Section 5.2 converged to a near-optimal solution. It is expected that

given more computational time (such as Γ = 100000) the GA will converge to the

same solution as Section 5.1 or an even better solution.

The fact that the GA reached a better solution in Section 5.1 than Section 5.2

indicates that if the amount of computational time is limited, a two stage optimiza-

tion process is a good choice for determining a near-optimal Exchange Inlet design.
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However, if the designer has extensive computational resources, the single stage op-

timization of all the design variables will produce the same, if not better Exchange

Inlet design.
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(a) 3D View

(b) Front View

(c) Side View

(d) Wire View

Figure 5.5: Optimized Exchange Inlet design considering all 10 design variables.



Chapter 6

Conclusions and Recommendations

This thesis considers using a Genetic Algorithm as an optimization tool for the

design of a Rocket-Based Combined-Cycle rocket-ejector known as the Exchange Inlet.

As a starting point, the GA was used to optimize the design of the rocket flowpath of

the Exchange Inlet. The GA was then used to optimize the design of the air flowpath

and finally the entire Exchange Inlet design was optimized. It has been shown that by

formulating a different set of design variables, fitness function and evaluation function,

the GA is capable of optimizing a wide variety of design problems.

The optimization of the rocket flowpath was found to be computationally inex-

pensive since the size of the search space was relatively small and the evaluation of

solutions was relatively fast. Therefore, a convergence study of the GA was conducted

using the optimization of the rocket flowpath as a test case. The effect of varying the

genetic operator parameters was studied and the conclusion is that the GA will find

a near-optimal solution in a relatively short period of time when the GA has a good

balance of explorative and exploitative genetic operators.
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It was found that a moderate population size results in good rate of convergence

while maintaining genetic diversity of the population. Low population sizes showed a

loss of genetic diversity, meaning that a high probability of mutation would be neces-

sary to offset the genetic drift. High population sizes showed low rates of convergence

since the GA evaluated many individuals.

Results showed that a low probability of mutation leads to loss of genetic diversity

and makes the GA susceptible to convergence toward local optima. A high probability

of mutation reduces the GA to a random search function and also makes the GA

susceptible to trap situations. Therefore, a moderate probability of mutation is ideal

to maintain genetic diversity while not hindering the exploitative power of the GA.

A comparison of the effect of selection pressure showed that weak selection pres-

sure maintains good genetic diversity but results in low rates of convergences since

the GA does not exploit the current search space. A strong selection pressure has

a detrimental affect on the rate of convergence of the GA since a strong selection

pressure hinders the explorative power of the GA. A moderate selection pressure per-

mits the GA to exploit the current search space while also exploring new areas of the

search space.

The GA developed in this thesis implemented a technique known as Adaptive

Genetic Algorithms. Comparison of the convergence results of the adaptive technique

versus the constant technique showed that by allowing the probability of mutation to

adapt to the genetic diversity of the population and the selection pressure to adapt

to the state of convergence (whether or not the GA is trapped), the GA experienced

faster rates of convergence while also avoiding trap situations. Therefore, the adaptive

technique not only makes the GA faster, but also increases the likelihood of converging

to a near-optimal solution rather than a local optimum.

Using the adaptive technique and the genetic operator parameters found from the

convergence study, the GA was used to optimize the design of the rocket flowpath.
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The rocket flowpath was optimized using a variety of the fitness function weights. As

expected, it was found that varying performance criteria weights significantly altered

the most fit solution. Therefore, the user is required to define the combination of

performance criteria weights that will best suit his/her desired rocket flowpath design.

It was shown that the GA is robust and is capable of optimizing multiple rocket

designs, including the Atlas E/F LR-105-5 engine and the H-IIA LE-7A engine.

The GA was then applied to a more complex and more computationally expen-

sive optimization problem, that of optimizing the Exchange Inlet. Initially, five design

variables were used to define the air flowpath, the five rocket flowpath design variables

were fixed. Next, all 10 design variables were used to define the combined Exchange

Inlet design (five rocket flowpath design variables and five air flowpath design vari-

ables). This increased the size of the search space and the amount of time required

to attain the most fit solution. However, the GA was able to find a near-optimal

solution. This shows how the GA can solve a simple optimization problem and by

adding more and more complexity the same GA is capable of solving a highly complex

optimization problem.

The amount of computational resources required to optimize the entire Exchange

Inlet design is significant. On a single desktop computer, the amount of time required

is on the order of magnitude of days. This is due to the computationally intensive

potential flow panel method implemented during the Exchange Inlet design. In order

to reduce the run time of the GA, it is recommended that an alternative calculation

method be implemented to approximate the atmospheric air mass flow rate losses

across the Exchange Inlet. If an accurate estimation of the air mass flow rate is

desired, then it is suggested that a distributed computing technique be incorporated

into the GA.
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