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Abstract

The use of differential evolution (DE) is investigated for the optimization of a novel

rocket based combined cycle (RBCC) engine inlet, over the supersonic flight regime.

An RBCC engine is designed to incorporate the advantages of both rocket propul-

sion and airbreathing engines. This novel design is the result of ongoing research,

at Carleton University, to improve the efficiency of future single stage to orbit en-

gine designs. This novel inlet design, referred to as the exchange inlet, is designed

to entrain air using a semi-annular rocket-ejector exhaust profile. The purpose of

the exchange inlet is to increase the air mass flow and air/fuel mixing over existing

rocket ejector/RBCC designs. In addition, by using a single circular rocket throat

the exchange inlet is designed to be compatible with existing rockets.

In supersonic flight, the exchange inlet external geometry generates shock waves

which affect both the air mass flow and total pressure recovery of the entrained air.

The geometry of the exchange inlet is controlled by 8 normalized input variables.

Using these 8 input variables to create both an internal (rocket path) and external

geometry, results in 100 million possibilities in design geometries. Since investigating

each geometry is not practical, DE is used to find near optimal solutions. By treating

each unique exchange inlet geometry as an individual in a population, the DE algo-

rithm can narrow in on potential optimal designs using a process similar to natural

selection. As there are multiple design objectives, each individual design is evaluated

using a weighted sum method to determine how fit (or optimal) the design is. Varying
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the objective weights shows the trade-off in the different optimal designs at a single

flight speed. A single optimum is selected for three flight conditions M∞=1.5, 2.5

and 3.5. By comparing their off-design performance over the supersonic flight range,

each geometry is compared to determine an optimal for a fixed geometry design. The

final fixed geometry design is selected to be the optimum at M∞=2.5. In addition,

a variable geometry is considered, however, it is not recommended given its added

complexity for resulting minimal performance gains.
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Chapter 1

Introduction

1.1 Overview and Motivation

The human desire to reach the stars has been embedded in our minds and civiliza-

tions throughout history, from artists, to inventors, to scientists and engineers. From

Leonardo da Vinci’s concept of a flying machine, to the Wright brothers first flight

over 400 years later. From Jules Verne’s 1865 novel (From the Earth to the Moon),

to Wernher von Braun’s development of the V2 rocket in WWII, and the space race

of the 20th century. The progress of humanity has always been towards the stars and

its future will continue to lie in the exploration of space, both for scientific knowledge

and practical applications. The world will continue to expand its reliance on space

transportation, for applications such as global communications, geomatics, navigation

and weather forecasting. These applications benefit our society on a global scale and

are the result of the ever-increasing number of artificial satellites.

The mainstay of space transportation and exploration has been liquid rocket en-

gines, which are sometimes accompanied with solid rockets as boosters. Liquid rocket

engines use fuel and an oxidizer, which is pressurized, and injected into the combus-

tion chamber to provide thrust, see Fig. 1.1 [1].

After combustion, the gases flow through a converging-diverging nozzle before

1
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Pressurized
Fuel

From Tank

Pressurized
Oxidizer

From Tank

Propellant Valves

Coolant Passages

Exhaust Nozzle

Combustion Chamber

Figure 1.1: Simplified schematic of a rocket engine [1].

exiting the vehicle. The disadvantage of rocket engines is that they carry both their

fuel and oxidizer onboard, which contributes to the vehicle weight. In contrast to

this, airbreathing engines carry only fuel, as they utilize oxygen from the atmosphere.

Airbreathing propulsion systems include conventional turbojet engines, ramjets and

scramjets. Turbojet engines work by pulling air into a combustion chamber using a

mechanical compressor at the inlet. In a ramjet, this compression is provided by the

forward speed of the vehicle, and the engine inlet geometry. This, however, requires

a minimum speed of M∞ ≈ 2.5, to achieve the required aerodynamic ram effect [2],

but requires no mechanical compressor and its associated weight. After the inlet, the

speed of the air is reduced to subsonic speeds (M = 0.4 − 0.6) and the pressure is

increased by a diffuser [3], prior to combustion. Like rockets, converging-diverging

nozzles are used in ramjet engines [4]. Ramjet engine afterburners are commonly

combined with turbojet engines on fighter planes. The Pratt & Whitney J58 engines

on the SR-71 BlackBird are an example of a turbojet/ramjet combination, which can

cruise at Mach 3.2 [5]. Beyond M∞ ≈ 5, the deceleration of the air to subsonic speeds

causes excessive stagnation/momentum losses due to the terminal shock, which affects
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thrust performance [6]. For Mach numbers between M∞ ≈ 5 to M∞ ≈ 15 a scramjet

(supersonic combustion ramjet) engine is required, where flow remains supersonic, as

there is no diffuser [3]. This requires the flow path to be straight and/or diverging.

A scramjet, therefore, burns fuel at supersonic speeds, as this becomes more efficient

after M∞ ≈ 5. To prevent blow off at supersonic speeds, fuels such as hydrogen (H2)

or ethylene (C2H4) with high reaction rates are required [2]. An example of a scramjet

powered aircraft is the NASA X-43A, which achieved a speed of Mach 9.6 [7].

Typically, oxygen fluxes for airbreathing vehicles are around 10 (kg/s)/m2 [8] and

are measured per air capture area. Since density decreases with increasing altitude,

an airbreathing vehicle will need to fly faster as its altitude increases. Liquid rockets

typically have 4 to 10 times as much oxygen flux, measured per vehicle cross sectional

area [8]. This leads to different flight profiles as is illustrated in Fig. 1.2 [8].

Typical rocket launch trajectory
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Figure 1.2: Flight profiles of airbreathing vs rocket engines [8].

Rocket vehicles take a much steeper trajectory to orbit to avoid atmospheric drag,

due to dynamic pressure on the front of the vehicle. Airbreathing engines, however,

remain in the atmosphere, to maintain the oxygen flux needed for thrust [8]. By

using this atmospheric oxygen, airbreathing vehicles have lower vehicle propellent

mass fractions compared to rocket engines. However, airbreathing vehicles are limited
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to atmospheric operation.

1.1.1 Combined Cycle Engines

To reduce launch vehicle propellant mass fractions and costs, programs such as the

NASA Advanced Space Transportation Program [9] have investigated alternatives

to traditional rocket engines. One approach that has been examined is to combine

rocket engines with other forms of airbreathing propulsion. This is referred to as a

combined cycle engine. Since airbreathing engines do not carry their oxidizer, they

offer high specific impulse (Isp), but low thrust to weight. Rocket engines, on the other

hand, offer high thrust to weight, but low specific impulse. The impulse provided by

an engine is simply its average thrust, or force (Fth), multiplied by the total time

it is applied to the vehicle (∆t). This is also referred to as total impulse (I) [10].

Specific impulse is the total impulse divided by the weight of the fuel mixture (i.e.

propellants), see Eq.(1.1).

Isp =
I

mvg0
=

Fth∆t

mvg0
=

Fth

ṁvg0
(1.1)

As Eq.(1.1) shows, the specific impulse is a measure of efficiency, in that it’s the

ratio of thrust force produced, per unit of propellant mass flow. The specific impulse

for different airbreathing and rocket engines is shown in Fig. 1.3 [4].

As Fig. 1.3 indicates, turbojet engines provide superior specific impulse at speeds

below Mach number M∞ ≈ 3. For increasing speed, the ramjet mode is superior

between M∞ ≈ 3 to M∞ ≈ 6. After M∞ ≈ 6 the scramjet mode is the mode of

choice, until the lack of oxygen at high altitudes requires rocket propulsion. The

purpose of a combined cycle engine, therefore, is to combine one or more of these

cycles together, to utilize the advantages of each mode over the entire flight range.

There are two main types of combined cycle engines, the turbine based combined
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Figure 1.3: Specific impulse performance for various propulsion cycles [4].

cycle (TBCC) and the rocket based combined cycle (RBCC). For atmospheric flight,

these two combined cycles differ mainly in their first stage [11], below the minimum

ramjet speed. The TBCC engine uses a turbojet to accelerate up to M∞ ≈ 3, whereas

the RBCC engine uses a rocket-ejector. An ejector is a device which uses a high

velocity fluid to act as a pump, without the use of moving parts. A rocket-ejector,

therefore, uses high velocity rocket exhaust to pump (or pull) air into the engine for

downstream mixing and combustion. A simple example is shown in Fig. 1.4, in which

a single rocket engine is surrounded by a duct.

Air

Primary
rocket

Mixing
zone

Fuel

Combustion

Figure 1.4: A simple rocket-ejector [4].
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Therefore, a rocket-ejector in an RBCC engine and a turbojet in a TBCC engine

serve the same purpose of accelerating the vehicle up to M∞ ≈ 3. After M∞ ≈ 3

a TBCC engine turbojet (or RBCC engine) transitions to ramjet mode. To avoid

instability, the transition between these two modes has been investigated, by varying

fuel flow and geometry [12].

The TBCC engine concept has also been studied at the NASA Glenn Research

Center (GRC), where the air flow path was split into a low speed turbine section above

and a high speed dual mode scramjet (DMSJ) section below [13]. This is referred to

as an over/under configuration [13,14]. Simulation at the GRC was completed using

their High Mach Transient Engine Combined Cycle (HiTECC) software [15], with

validation at the GRC’s 10x10ft supersonic wind tunnel [13]. Since only airbreathing

cycles are used, the TBCC engine is considered a two stage to orbit vehicle (TSTO)

[6, 13], as it would require additional rocket propulsion for low earth orbit. Though

the turbojet offers superior specific impulse below M∞ ≈ 3, it also adds extra weight

and moving parts, which are unused during later flight modes. Other concepts such

as the turbojet-rocket hybrid system KLINTM have been explored as well [16].The

focus of this work, however, is on the RBCC concept, which is described in the next

section.

1.1.2 The RBCC Engine

The RBCC engine combines rocket-ejector, ramjet and scramjet modes for atmo-

spheric flight, but can transition back to rocket propulsion for transatmospheric flight

and low earth orbit. Therefore, the RBCC engine allows for a single stage to orbit

vehicle (SSTO). An example of an RBCC powered vehicle is the NASA GTX air-

breathing SSTO Vehicle Concept [17]. This vehicle consists of a main body with

three RBCC engines, two of which are located on each side and the third on the top

of the vehicle. The fuel (liquid H2/O2) is stored inside the main body of the vehicle,
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which was designed for vertical launches and horizontal landings [17]. Black Brant

solid rockets could also be added between the RBCC engines for additional thrust.

A concept image of the vehicle is shown in Fig. 1.5.

Figure 1.5: NASA GTX concept vehicle [17].

By utilizing atmospheric oxygen, the vehicle propellent mass fractions of RBCC

powered vehicles can be reduced by up to 20% when compared to rocket engines. [18].

An RBCC engine consist of a primary rocket-ejector surrounded by a mixing duct,

see Fig. 1.6, which can have a circular or annular exhaust flow.

Air

Primary Rocket
(Circular Exhaust)

Primary Rocket
(Annular Exhaust) Fuel Injection

Mixing Combustion Nozzle

Inlet

Figure 1.6: RBCC engine cross section [6].
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The primary rocket-ejector effect is used in place of a turbine, where the high

velocity primary rocket exhaust transfers its momentum to air at the inlet/mixing

sections [19]. In addition, as momentum is transferred through the shear area the two

streams are mixed. This serves to entrain air into the engine, and allow afterburning,

for thrust augmentation via the ramjet/scramjet fuel injectors [20]. In ejector mode,

the primary rocket still produces the majority of the thrust [21]. As the rocket-ejector

accelerates the vehicle towards M∞ ≈ 3 the incoming air has a higher inlet velocity.

Thus, the transfer of momentum is highest at static conditions and is reduced as the

vehicle approaches the primary rocket exhaust velocity [22].

There are two common methods for thrust augmentation and afterburning, known

as diffusion and afterburning (DAB) and simultaneous mixing and combustion (SMC)

[23]. In DAB, the rocket exhaust is inert and serves only to transfer momentum,

and provide mixing, as the fuel is added downstream by injectors. This allows high

thermodynamic performance, at the expense of a relatively longer mixing duct [23].

The performance of DAB is higher than SMC at static sea level, but degrades as

the vehicle Mach number increases [6]. In SMC, the primary rocket exhaust is fuel

rich and the combustion happens simultaneously, as the two streams mix. The SMC

scheme does not require a convergent-divergent nozzle, as opposed to DAB that does,

which is advantageous for subsequent scramjet operation [23].

The shape of the primary rocket-ejector shear area profile affects both the mixing

duct length and air mass flow into the engine [4,6]. An increased mixing duct length

is detrimental to vehicle performance, as it adds extra weight. Therefore, a high

shear area between the rocket exhaust and entrained air is desirable, as it promotes

increased mixing and reduces the L/D ratio of the duct [24]. A single circular rocket

exhaust configuration requires L/D ratios of 8-10, whereas this ratio can be reduced

to 2.5-1, by using either multiple circular exhaust bells or annular exhaust bells [24].

Additionally, it has been shown that a key aspect of RBCC engine performance is
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the air mass flow at the inlet [25]. Therefore, increasing air entrainment by utilizing

an annular rocket-ejector exhaust profile has been the focus of both numerical [26]

and experimental [27, 28] studies. In both the simulation and experimental data,

the results indicated that an annular, or semi-annular, exhaust provides superior air

entrainment over a circular profile.

Once the rocket-ejector accelerates the vehicle to M∞ ≈ 2.5− 3 the ramjet mode

is implemented, followed by the scramjet mode. Investigations into the rocket-ejector

to ramjet mode have shown that M∞ = 2.6 provides an optimal transition point,

when fuel throttling is employed [29]. The transition from ramjet to scramjet mode is

also sensitive to the fuel injection scheme, which according to computational analysis,

affects the development of a shock wave train inside the engine [30]. The air mass flow

into the engine remains a key performance metric. In supersonic flight, shock waves

are generated at the engine inlet due to its external geometry. These shockwaves

affect both air mass flow and total pressure drop at the inlet. Stronger (bow) shock

waves cause a larger total pressure drop across the shock, therefore reducing total

pressure recovery of the inlet [31]. Since total pressure recovery is important to inlet

performance [32], the design of the inlet external geometry is critical to overall RBCC

engine performance. The focus of this work is on the optimization of an RBCC engine

inlet performance over the supersonic flight regime. The RBCC inlet of interest is

described in detail in the next section.

1.2 The Exchange Inlet

Since an RBCC engine inlet must operate over all flight modes, its design is of critical

importance [33]. To utilize the advantages of a semi-annular rocket exhaust profile, for

both improved mixing and air entrainment, previous research at Carleton University

has resulted in the development of the exchange inlet [34, 35], see Fig. 1.7.
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Figure 1.7: The exchange inlet cutaway views [36].

The inlet is composed of an internal rocket path [34] and an external geometry [35],

consisting of a center body, fairings and cowl. The center body houses the combustion

chamber, while the fairings contain an internal flow path for the primary rocket

exhaust and provide structural support. The cowl surrounds the air flow path and

provides the exit for the primary rocket exhaust.

The exchange inlet is designed to provide increased shear area compared to a cir-

cular primary rocket design, while maximizing entrained air through the air passages

around the central axis. The momentum is transferred to the entrained air, around

the annulus, to improve thrust and reduce the L/D ratio via improved mixing. The

center body also provides a convenient attachment for existing rocket designs, while

an axisymmetric profile allows for compatibility with existing nozzle designs. The

leading point of the center body has a conical shape, while the fairings and cowl have

rounded leading edges. In supersonic freestream conditions, these leading edges lead

to the development of shock waves at the inlet. The conical center body causes the

formation of a weak oblique shock wave, while the blunt leading edges of the fairings
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and cowl cause strong (detached) bow shock waves [37, 38], see Fig. 1.8.

Cone
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M > 1
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Sonic
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shock

Figure 1.8: Cone shock vs bow shocks generated at leading edges [36, 38].

The oblique shock wave causes the flow direction to turn [39], but remain locally

supersonic, after the shock [38]. The bow shocks have a region near the leading edge

which is normal or near normal to the flow, and more oblique regions father away

from the leading edge. This causes regions of both locally subsonic and supersonic

flow after the shock depending on the location [38]. By changing the direction and

speed of the incoming air, these shock waves not only affect the air mass flow into

the engine, but also the total pressure drop across the inlet. These are the primary

performance objectives of the exchange inlet.

1.3 Problem Statement

To facilitate the design and optimization process, both the internal and external ge-

ometry of the exchange inlet is determined by multiple input variables. Through the

geometry creation, the selection of these variables then affects the performance objec-

tives of the exchange inlet. Since the performance of the exchange inlet is determined
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by more than one objective, the design problem becomes a multi-objective optimiza-

tion problem. In addition, the objectives may also become competitive with each

other. Therefore, the problem becomes one of determining the specific combination

of input variables that results in maximizing each objective without compromising

the others. The resulting combination solution will yield an optimized exchange inlet

based on the user defined objectives.

This represents a non-linear multiple input, multiple output objective problem,

where the dimensionality of the search space (domain) is determined by the number of

input variables. Correspondingly, the dimensionality of the objective space (range) is

determined by the number of objectives. The objective space is expected to have local

optima, global optima and invalid solution regions. The optimality of an individual

input combination is determined by its location in the objective space. The inability

to predict the shape of the resulting objective space means that any optimization must

be explorative enough to cover a wide range of the search space, while still being able

to exploit regions of potential global optima. A random search function would be an

inefficient way to find the global optimum due the large number of potential input

combinations.

In engineering optimization problems it is expected that solutions do not need

to be the exact optimum, especially if a near optimal solution will satisfy the re-

quirements. In this way, solution time can be decreased at the expense of accuracy,

provided the accuracy is adequate for engineering requirements. Evolutionary algo-

rithms, such as differential evolution (DE), are well suited for this type of problem

as their metaheuristic nature allows them to find near optimal solutions. The pur-

pose of this thesis is to use differential evolution (DE) to solve the multiple objective

exchange inlet optimization problem in the supersonic flight regime.
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1.4 Overview of Evolutionary Algorithms

Evolutionary algorithms are heuristic (or metaheuristic) optimization methods, which

means they are designed to find solutions that are near optimal, rather than an exact

optimum. The algorithms achieve this by attempting to mimic nature, through rep-

resenting solutions as individuals in a population. Using Darwin’s theory of natural

selection as an inspiration, the population is allowed to evolve to better suit its en-

vironment. As in nature, the evolution occurs by creating new generations through

reproduction, where more fit individuals have a better chance of mating. The fitness

of an individual, in nature, is determined by its environment. In evolutionary algo-

rithms, the program iterates to create new generations in a similar manner, where

the fitness of an individual is determined by the objectives. The objective space then

becomes equivalent to the natural environment and a more optimal solution is a more

fit individual. The fitness of an individual is determined by a fitness function, which

determines an individual’s fitness (in the objective space) based on single or multiple

optimization objectives [40]. Over time this causes the algorithm to converge an ini-

tial set of solutions towards a near optimal solution, in the same way natural selection

favours individuals who are more fit for their environment. In nature, an individual’s

characteristics are defined by its genes, which through its environment, determines

its fitness. Similarly, in engineering and mathematics, solutions can be expressed

as vectors, which through the objective space fitness function define their optimality.

The comparison of evolutionary algorithms and natural selection is further illustrated

in Table 1.1.

An evolutionary algorithm allows the population to evolve by applying the biolog-

ical processes of selection, reproduction, and mutation. This allows new generations

to be created and evaluated for their fitness. There are many subsets of evolutionary

algorithms, however, genetic algorithms (GA) and differential evolution (DE) are two
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Table 1.1: A comparison of EA with natural selection.

EA Natural Selection

Set of solutions Population

Potential solution vector Individual

Program iteration Generation

Optimality Fitness

More optimal solution More fit individual

Variables in a vector Genes in a chromosome

Values of variables Alleles of genes

of the most common represented in literature and engineering applications.

1.4.1 Genetic Algorithms

The development of the genetic algorithm (GA) began during the 1960’s, and contin-

ued into the 1970’s, by John Holland and his associates [41]. The GA uses Darwin’s

theory of natural selection as its model, where each iteration is considered analogous

to a generation. As it explores the n-dimensional search space, the GA will evolve

(converge) towards more fit individuals. The adaptive heuristic nature of these al-

gorithms makes them well suited for real world engineering problems, that require

the determination of optimal parameters [42]. An example of this, was the use of

a GA for the subsonic optimization of the exchange inlet by Chorkawy [43]. Other

examples of aerospace engineering GA applications range from wind tunnels [44], to

injector systems [45, 46] and scramjet inlets [47].

For a GA to mimic nature, it follows the steps of genetic representation, selection,

reproduction, and mutation. The alleles of a gene can be either binary numbers [48]
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or real numbers [49], however, unlike nature only one chromosome represents an in-

dividual. The determination of the size of the chromosome and the number of genes

is determined by the engineering problem in question. Once a given population is

generated, then their fitness can be evaluated by the fitness function. The fitness

function value is required for the process of selection. Like natural selection, a GA

creates new individuals by mating two selected parents from the current generation,

of the existing population. The process of selection can have both stochastic and

deterministic properties. An example of a stochastic selection method is the Roulette

wheel, where individuals with a higher fitness have a higher probability of being se-

lected [40]. The selection method known as elitism is a deterministic selection method

where the most fit individual is always selected for reproduction. Both methods were

used by Chorkawy [43] in the previous subsonic optimization of the exchange inlet.

Reproduction takes place by the genetic operator known as crossover. This opera-

tor can switch out individual genes, sections of genes or arithmetically combine genes

of the parents to create a child [49]. As in nature, mutation can occur on individual

genes. In a GA, mutation is stochastically carried out on individual genes of the child,

following reproduction. Crossover is an exploitative process, which promotes conver-

gence by exploiting the genes of the parent individuals in the population. Depending

on the selection process, these parents may have a higher probability of being selected

for reproduction. Mutation, on the other hand, is an explorative process designed to

help explore new regions of the search space [41]. Random mutation, therefore, at-

tempts to prevent the solution from prematurely converging in a local optimum by

promoting gene combinations that are outside of the current population. The process

is repeated, with each generation, with the aim that the individuals will converge

near a global optimal solution.
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1.4.2 Differential Evolution

Building on the success of genetic algorithms in engineering optimization problems,

R. Storn and K. Price [50] developed the metaheuristic search algorithm Differential

evolution (DE). As a more recent development than genetic algorithms, it is consid-

ered a further evolution of them [41]. Like genetic algorithms, it has seen use in a wide

range of engineering optimization problems ranging from chemical synthesis [51], to

interplanetary trajectory design [52] and RBCC engines [53].

In their original 1996 paper, Storn and Price [50] laid out three requirements of

any practical optimization technique. That (1) for any initial conditions it should

converge to the true global optimum, (2) it should be fast and (3) that the number of

input control parameters be minimized. The third condition is to ensure ease of use.

To implement these requirements, differential evolution uses the operators of selec-

tion, reproduction and mutation in a different manner from both genetic algorithms

and natural selection. Rather than mate two individuals in the population, a single

individual is mated with a donor individual, which is a hybrid of three randomly

selected members of the population. This represents a stochastic selection; however,

DE implicitly maintains elitist selection in that the new child replaces the original

parent in the population pool only if it is more fit. The donor is always discarded. By

reproducing with a donor individual the operations of crossover (in reproduction) and

mutation (through the randomly created donor) are combined into a single operation.

By reducing the number of operations, the number of input parameters is reduced.

Differential evolution remains similar to genetic algorithms and natural selection

in that it still uses the same operators, but differs in how they are implemented. In

addition, as with GAs, a single chromosome (vector) represents an individual. How-

ever, DE only uses real numbers to represent the alleles of genes. The DE algorithm

converges in the same way a GA does, as the generations evolve in the objective
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space. Fitness is also determined by a fitness function, the same as in a GA. Both

algorithms may suffer from premature convergence on a local optimum if their input

control parameters are not set correctly. A performance comparison of GA and DE is

discussed below, while the DE algorithm used in this work is discussed in more detail

in Chapter 2.

Many studies have compared the results of the heuristic optimization techniques

of genetic algorithms and differential evolution. A performance evaluation between

differential evolution and a real number genetic algorithm, conducted by Tusar and

Filipic [54], compared the results of 16 numerical tests. These experiments were

done using multi-objective problems. The results of the experiments showed that

DE significantly outperformed a standard GA 20% of the time. Only 3% of the

time did the GA significantly outperform DE. In another comparison of differential

evolution, real number genetic algorithms, and other optimization methods, Deb et al.

[55] compared these techniques to optimize the design process of circularly polarized

microstrip antennas. The results indicated that DE had statistically better results,

in the optimization of microstrip antennas, over the other optimization methods,

including real number GA.

Differential evolution and a real number genetic algorithm were also compared by

Amorim et al. [56]. The comparison was performed using four case studies. The re-

sults showed that GA actually converged faster for the initial generations, but suffered

in the later generations in refining the solution. The DE algorithm showed greater

success in refining the solution to obtain higher fitness values. Given the performance

and simplicity advantages of differential evolution over genetic algorithms, the DE

algorithm will be examined for optimizing the exchange inlet problem.



Chapter 2

Methodology

2.1 Multi-Objective Optimization

In simple optimization problems, a solution can be found by minimizing or maximizing

a single objective. In this scenario, the objective space is one dimensional, and the

scalar objective solution is easily observed. Problems with more than one objective,

such as the exchange inlet, are referred to as multi-objective optimization problems,

and are described using Pareto optimality [40]. In this type of problem, the objective

space becomes multi-dimensional and the objectives can be described using a vector

[57]. There are two spaces to consider in this type of problem, the search space and

the objective space. The transformation between these two multi-dimensional spaces

is given by the system model, see Fig. 2.1.

The input vector (x), and the variables in this vector, in Fig. 2.1, are the chromo-

some and genes described in Table 1.1. The number of genes (n), therefore, dictates

the dimensionality of the search space, or the domain, while number of objectives

(d) gives the dimensionality of the objective space, or the range. The location in

the search space is given by x, while the location in the objective space is given by

the vector H. Each space is bounded by a feasible region. In the search space, the

bounds are given by the designer based on practical or engineering limitations. The

18
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Figure 2.1: Overview of a multi-objective system.

feasible region of the objective space, however, is determined by the system model.

In each space there are a set of values known as a Pareto optimal set. In the objective

space, this set is often referred to as a Pareto front, since it exists at the boundary of

the feasible region [58]. This Pareto front is a region which contains many possible

optimal solutions. As the system model transfers the domain of the search space

onto the range of the objective space, the Pareto front forms at this boundary. The

location of the Pareto front, on this boundary, depends on whether the objectives are

to be maximized or minimized.

The dimensionality of the Pareto front depends on the dimensionality of the ob-

jective space. In a two-dimensional space, it can be represented as a line, however in

three dimensions it can become a surface. Higher dimensions, therefore, result in a

front which is at least one dimension less than the objective space [59]. An example

of a Pareto set and a Pareto front, where objectives are to be maximized, for two

genes and two objectives is given in Fig. 2.2.

The Pareto front represents solutions, or in this case individuals, which are said

to be non-dominated. Individuals behind this front are said to be dominated, in that

they can be improved in one objective, while not negatively impacting another. In the

example shown in Fig. 2.2, individuals which lie in the feasible region of the objective

space can improve on H1, while not impacting H2 (or in a straight line). The Pareto
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Figure 2.2: Pareto optimal set in search and objective spaces.

front, therefore, is said to be the region in which an individuals location cannot be

moved to improve one objective, without negatively impacting another [40, 60].

In multi-objective problems, it is convenient to have a single value to determine

the fitness of the resulting location in the objective space. Since the objectives can

vary greatly in magnitudes, and represent different unit quantities, they are often

normalized. In addition, the designer may also have different preferences for each

objective. These preferences are determined by assigning weights to each objective.

Consequently, the weighted sum method, see Eq.(2.1), is commonly used for multi-

objective design problems.

fk
i = W ·H = w1H1 + w2H2 + ...+ wdHd (2.1)

Equation (2.1), is referred to as an objective or fitness function, where all weights

are positive and sum to 1. The weights can be written as a vector W, see Eq.(2.2).

W =
[
w1, w2, w3, ..., wd

]
(2.2)
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The fitness function in Eq.(2.1) is the dot product of the objective vector H and

the weight vector W. The resulting most fit individual on the Pareto front depends on

the weights assigned to the objectives. By varying the weights, the most fit location

will move along the Pareto front [58]. In problems with more than two objectives,

hyperplanes can be used to graphically demonstrate the Pareto front, as is the case

for the exchange inlet. The fitness function is used to feedback information to the

differential evolution algorithm for its selection process.

The objective space shown in Fig. 2.2 represents a simple feasible region, which

has a concave Pareto front. In real engineering problems, the objective space may

not always present such a simple shape. In addition, for problems with more than

two objectives, the shape and location of the Pareto front region may be further

complicated, when represented on a two-dimensional hyperplane. The Pareto front

may have convex, irregular, or disconnected regions, due to the resulting shape of

the feasible boundary in the objective space. Since gaps can appear between these

disconnected regions, individuals with different weight settings, in the fitness function,

may be forced onto the same Pareto optimal point [61, 62]. Subsequently, it is not

possible to determine the shape of the feasible region or the Pareto front beforehand.

Therefore, it is not possible to predict which set of weights might overlap on a point.

This can be illustrated in Fig.2.3, as the most fit location on the front changes for

different weight vectors.

The exchange inlet problem has more than two objectives. The air mass flow and

total pressure drop represent the primary objectives, while the remaining secondary

objectives relate to the rocket path and mixing. These are covered more extensively

in section 2.2, along with the system model. By varying the weights of any two objec-

tives, where the sum of the two weights remains constant, a Pareto front hyperplane

can be developed. This not only allows insight for the designer, but also demon-

strates the trade off between the two objectives. The shape of this front, however, is
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Figure 2.3: Disconnected Pareto front (adapted from [62]).

unpredictable and will depend on the system model.

2.2 The Differential Evolution Algorithm

Differential evolution represents the different geometrical solutions, of the exchange

inlet, as individuals in a population. The DE algorithm, therefore, must be able to

genetically represent the population, allow reproduction to create new individuals,

and perform selection to determine which individuals end up in the next generation.

Each individual contains a single chromosome with the genes that describe the ge-

ometry of the exchange inlet. Through selection and reproduction, these individuals

evolve to better suit their environment, which is akin to their location in the objective

space. Through evolution, the population then migrates towards the Pareto front.

The population is mathematically represented by Eq.(2.3), where the index of an
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individual is given by the subscript i = 1, 2...m, with m representing the population

size. The generation is represented with the superscript k, with the initial (k = 1)

generation having a random distribution.

Xk = [xk

1
xk

2
...xk

i
...xk

m
] (2.3)

Within the population, an individual can then be expressed, using the single

chromosome, as shown in Eq.(2.4).

xk

i
= [xk

i,1 xk
i,2...x

k
i,j ...x

k
i,n] (2.4)

The index of a gene, within the chromosome, is given by the subscript j =

1, 2, 3...n. The value of n represents the number of genes, and therefore the di-

mensionality of the search space.

In order to evolve and create new individuals, the DE algorithm must generate

new potential child candidates for the next generation. Therefore, for every individ-

ual xk

i
, in the current population Xk, a temporary donor (or mutant) individual vk

i

is created. The donor individual is created from three other randomly selected, and

mutually exclusive, members of the population (xk

r0
, xk

r1
, xk

r2
). This donor individual

is temporary, as a new one is created for each individual of the population, from i = 1

to i = m. Therefore, for every generation, an m number of donor individuals must be

created. Since the population size is fixed, these donor individuals exist outside the

population. Their sole purpose is to be used for mating, and they are discarded after-

wards. The donor individual vk

i
is created by first generating a difference vector (δ∗ ),

from two of the randomly selected individuals (xk

r1
−xk

r2
). Using a scaling factor, or

differential weight (F ), the difference vector δ∗ becomes a weighted difference vector

(δ). This weighted difference vector is then added to the remaining randomly selected

individual xk

r0
. The creation of a donor individual is given by Eq.(2.5) [50, 63].
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vk

i
= xk

r0
+ F (xk

r1
− xk

r2
) = xk

r0
+ Fδ∗ = xk

r0
+ δ (2.5)

The differential weight F ∈ [0, 1] is set as a real positive number. Since the selec-

tion of the individuals xk

r1
and xk

r2
used to create the difference vector δ∗ is random,

this allows the algorithm to explore regions beyond where the current population

may lie. This occurs as δ is added to the randomly selected (current member) of the

population xk

r0
. To illustrate this, consider the two-dimensional search space, and a

one-dimensional objective space, shown in Fig. 2.4.

x1
x2

H1

Local
Optima

Global
Optimum

Figure 2.4: Objective function in two-dimensional search space.

As the figure shows, the higher regions are optimal locations, if the objective is

to be maximized. The figure also contains both local and global optimal regions. By

projecting the objective space contours, onto the search space, a 2D image of the

process used to produce the donor individual vk

i
, can be illustrated by Fig. 2.5.

For an initial (k = 1) randomly distributed population, there is a high probability
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Figure 2.5: DE donor vector generation (adapted from [41]).

that the distances between the individuals (xk

r1
and xk

r2
) in the search space will be

relatively large. This means that initially the magnitudes of the difference vectors

δ∗ will also be large, which helps explore competing optimal regions of the search

space, and corresponding objective space. This occurs when δ perturbs the donor

individual vk

i
towards more optimal regions, as illustrated in Fig. 2.5. Consequently,

the value of F also contributes to the distance of the exploratory perturbations. As

the population evolves, and more individuals end up in the global optimal region, the

distance between them decreases. This means that the distance of the δ perturbations

also decreases, so the exploratory behaviour becomes more confined to the most

optimal region found. As a consequence of this, the exploratory nature becomes

more exploitative, as it is exploits the region of the potential global optima.

For each index i = 1, 2...m, a new child candidate u
k+1

i
is produced, through

reproduction of the parent xk

i
, with the newly created donor vk

i
. As with other

evolutionary algorithms, reproduction takes place by crossover of genes between the
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parent xk

i
and the donor vk

i
. In differential evolution there are two commonly used

methods for implementing crossover, binomial (scattered) crossover and exponential

(contiguous) crossover. The later, crosses over a random contiguous section of the

genome, from the donor to the child. This method is less commonly used and, in

general, it has been shown that binomial crossover can be slightly more efficient [64].

Since the nature of the of search and objective spaces are unknown, and adjacent

genes are not necessarily correlated in terms of the objectives, the binomial scheme,

see Fig. 2.6, is used in this work.

vk

i
u

k+1

i xk

i

Figure 2.6: Binomial crossover in DE.

As Fig. 2.6 shows, the binomial scheme is where individual genes, from j = 1, 2...n,

are crossed over from the parent xk

i
and the donor vk

i
to create the child u

k+1

i
. This

occurs via the crossover probability Cr parameter and a randomly generated number

Ri [65]. The creation of the child candidate is given by Eq.(2.6).

uk+1

i,j =





vki,j, if Ri ∈ [0, 1] ≤ Cr or j = Jrand

xk
i,j, otherwise.

(2.6)

The child will inherit a gene from the donor vk

i
if the value of the random number

Ri is less than or equal to Cr. Otherwise, it will inherit a gene from the parent xk

i
.

Therefore, if Cr is set to a low value, then the probability of inheriting a gene from
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the donor becomes low, and vice versa. A low Cr value may result in the child not

inheriting any genes from the donor, resulting in duplication of the parent xk

i
. The

result would be an inefficient algorithm, therefore, the term j = Jrand is added to

ensure that one gene is always inherited from the donor. The randomly selected gene

index term Jrand, is different for each individual i = 1, 2...m.

Following reproduction, the new child candidate u
k+1

i
for generation (k + 1) is

generated. The remaining process of selection is used to compare the fitness of this

child candidate u
k+1

i
with that of its parent xk

i
. Since the population size remains

constant, only one of these two individuals can survive into the next generation. If

the child is more fit than its parent, then it replaces the parent individual in the next

generation, otherwise it is discarded. Since the objectives are to be maximized, a

more fit individual will have a higher fitness value. The selection process is given by

Eq.(2.7), where the fitness value (f) is determined by the fitness function (fk
i ).

x
k+1

i
=






u
k+1

i
, if f(uk+1

i
) ≥ f(xk

i
)

xk

i
, otherwise.

(2.7)

This introduces the concept of selection pressure, since the parent individual xk

i
is

only replaced if the child u
k+1

i
is more fit. The selection pressure is what drives the

evolution of the population, towards the most fit (global) location, in the Pareto front.

This ensures that the next generation (k+1) is more fit, or at least as fit, as the current

generation (k). The selection pressure introduced by Eq.(2.7), is a deterministic

process, which ensures only the most fit individuals will ultimately end up in the

next generation. This implicitly integrates elitism into the DE algorithm [54], as only

a more fit child individual uk+1

i
can replace its parent xk

i
, for all i = 1, 2...m . The

DE algorithm flowchart is illustrated in Fig. 2.7.
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Figure 2.7: DE algorithm flowchart overview
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2.2.1 DE Parameter Selection

As with any evolutionary algorithm, the efficiency of the DE algorithm will depend

on the selection and tuning of its control parameters. It was noted in section 1.4.2,

that the DE algorithm was developed with the intent to minimize the number of

control parameters. The result is that using the binomial crossover scheme there are

only three input parameters that control the algorithm. These are the population

size (m), the differential weight (F ) and the crossover probability (Cr).

The population size is critical in natural selection, as when this becomes too small

genetic diversity is lost and more individuals become genetically identical. Similarly,

this effect occurs in DE where population size can have a significant effect on the rate

of convergence, or evolution, of the population. A small population size may result

in the premature convergence of DE on a local optimum as the result of a rapid loss

in population diversity [66]. In addition, fewer initial candidates means that less of

the search space can be covered in any given generation. From Eq.(2.5), this loss of

diversity means that its ability to perturb the donor, through δ, is lost if xk

r1
and xk

r2

become identical. Reproduction then becomes a crossover between xk

i
and xk

r0
, which

can cause the DE algorithm to stagnate, as more individuals share identical genes.

Selection pressure will always cause a loss in diversity as it forces the population to

evolve (converge) towards higher fitness values in more optimal locations. However,

it is the effect of population size on the rate of this convergence, which must be

considered. By contrast, using a large population size will prolong diversity, and slow

the rate of this convergence, which allows the algorithm more time to explore the

search space. Simply using a very large population, however, may result in a very

slow algorithm, thus a method for selecting a proper population size range is needed.

One approach that has been developed, is to select the range of the population size

(m) based on the number of genes (n). In their papers, Ronkkonen et al. [67] and
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Mallipeddi et al. [66] suggested a minimum population size of 2n and a maximum

size of 40n, as a common range. However, a smaller range of 2n to 10n was preferred

by Mallipeddi et al. [66]. Additionally, in their original work, Storn and Price also

preferred a similar range of 3n to 10n. To examine the effect of population size, three

values of m = 25, 50, & 75 will be selected. This then corresponds to 3.125n, 6.25n

and 9.375n, for the exchange inlet problem, where there are n = 8 genes.

The second parameter is the differential weight F , which theoretically can be

any positive real number. Values above 1, however, are rarely considered effective or

reliable [67,68]. The common range is F ∈ [0, 1], though the value of F=1 represents a

discontinuity, where the number of potential donor individuals is reduced by half [63],

see Eq.(2.8).

xk

r0
+ xk

r1
− xk

r2
=





xk

r0
+ (1)(xk

r1
− xk

r2
)

xk

r1
+ (1)(xk

r0
− xk

r2
)

(2.8)

The lower limit of F has been explored by Zaharie [69], based on maintaining the

population diversity, as measured by its variance. As DE progresses, the population

diversity (variance) is reduced by the selection pressure. If the objective space is flat,

all locations have equal fitness, then the selection pressure does not exist. Zaharie

demonstrates that, even in the absence of this selection pressure, a minimum theo-

retical value of Fcrit = 0.1341 is required. Experiments [69], however, show having

Fcrit = 0.3 is more useful, since low values can lead to premature convergence [70].

The larger experimental value is the result of using more practical curved objective

spaces. These curved objective spaces require a larger value of Fcrit = 0.3, to coun-

teract the selection pressure. The value of F affects the diversity, since it partially

controls the magnitude of the perturbation δ. If the perturbation is initially too small,
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then the ability to explore competing optimal regions can be compromised. There-

fore, higher values are preferred. The generally useful range for F is F ∈ [0.4, 0.95],

with values around 0.9 demonstrating good results [67]. Therefore, the effects of

F = 0.85, 0.9,&0.95 will be investigated.

The final parameter, crossover Cr ∈ [0, 1], controls the probability that a gene

from the donor vk

i
will be inherited by the child u

k+1

i
. This is an explorative process,

where each gene represents an axis of the search space. A lower Cr value, then, means

the algorithm explores along fewer axes of the search space at a time. If, for example,

Cr = 0, then only a single axis, or dimension, of the search space is explored at a

given time, due to j = Jrand. Conversely, high Cr values explore multiple axes at

a time, which equates to multi-dimensional movements in the search space. From

a performance standpoint, the shape and orientation of the objective space, relative

to the search space, determines the selection of low vs high values for crossover [71].

Low Cr values are favored, when the objective space contours are oriented along the

axes of the search space. If the objective space is oriented at angles to the axis of the

search space, high values of Cr would be favored, as a single exploratory move occurs

at angles to the axes of the search space [71, 72]. As the objective space orientation

is not known in advance, both high and low values of Cr must be explored. Using

Cr = 0.5 as an initial value [41], the crossover parameter test range will include

Cr = 0.3, 0.5, 0.7, & 0.9 values.

2.3 Application to the Exchange Inlet

The exchange inlet system model encompasses the creation of an internal rocket

flow path, an external geometry, and the evaluation of the external supersonic flow

into/around the resulting geometry. Each individual xk

i
, contains n = 8 genes, which

create both the internal and external geometries. The first 4 genes control the creation



32

of the internal rocket path, while the remaining 4 genes create the external geometry,

around this internal path. The supersonic flow characteristics are determined from

the external geometry using a semi-analytical shock fitting method [36]. The system

model uses the genes of an individual to create a unique exchange inlet geometry, and

from this provides the objectives, required by the fitness function.

2.3.1 Geometry Creation

The internal rocket path is a hollow path through which the rocket exhaust is ex-

panded from a single central throat region into a semi-annular profile. The profile is

designed to replace the diverging portion of a converging-diverging rocket nozzle. To

allow air into the exchange inlet, the rocket flow path is divided into distinct clovers.

The creation of these rocket path clovers is based around creating an inviscid rocket

nozzle area (assuming isentropic expansion) from a predefined Mach number distri-

bution, and then adjusts for boundary layer growth. The predefined Mach number

distribution for this work is based on reproducing the performance characteristics of

the liquid (O2/H2) fueled LE-7A rocket engine. The LE-7A engine is used as the first

stage of the H-IIA launch vehicle, by the Japanese Aerospace Exploration Agency. It

is also the profile from which Waung [35], based the exchange inlet external geometry

creation on. From the LE-7A, the throat radius (rth = 0.121m) is fixed [34, 35, 43]

and to match its performance characteristics the exhaust plane depth is ze = 8.81m.

The exit radius (re = 3.1m) is also fixed, at 1m larger than a H-IIA launch vehicle

exit radius [34, 43]. The exit Mach number of this rocket engine profile is M = 3.95.

Its Mach distribution is illustrated in Fig. 2.8.

Since the viscous forces near the walls reduce the velocity, and therefore mass

flow, this rocket nozzle area is then increased using a displacement thickness. This

is done to ensure the predefined Mach number distribution [34]. The resulting area

is made up of cross-sectional slices, beginning at the throat and ending at the exit.
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Figure 2.8: Rocket engine predefined Mach number distribution.

The cross-sectional areas for a single clover are shown in Fig. 2.9.
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Figure 2.9: Cross-sectional area distribution for a single clover

The rocket path cross-sectional areas, illustrated in Fig. 2.9, show slices of a single

clover, however, the internal rocket path, for this work, consists of four clovers. As the

rocket exhaust expands through the predefined areas, it passes through a gate. The

location and angle of this gate, are determined through the gate depth (zg), the gate

radius (rg) and the gate arc angle (Ψg). The exhaust exit arc angle (Ψe), affects the

shear layer area of the rocket exhaust at the exit. These four variables (Ψe,Ψg, zg, rg)
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then are needed to define the different individual rocket paths, as shown in Fig. 2.10.
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Exit (AR)
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(b) Top view

Figure 2.10: Rocket internal flow path variables [43].

Around this internal rocket flow path is the external geometry of the exchange

inlet. The external geometry has three main components: the center body, the fairings

and the cowl. These are illustrated in the cutaway view in Fig. 2.11.

Center
body

Rocket path
clover

Cowl

Throat

Exit (AR)

Gate

Fairing

Figure 2.11: External geometry and internal rocket path of EI (adapted from [36]).

Each clover begins at the throat, located in the center body, and expands through
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the fairings and exits inside the cowl. Therefore, there are four fairings, each contain-

ing a rocket clover. The 2D side profile of the exchange inlet external geometry and

internal rocket path are illustrated in Fig. 2.12.

rCB1

z2

ze = z3 = 8.81m

ALE
t3

Center
Body

Fairing

Cowl

Throat
(Plane 1)

Minimum inlet
area (Plane 2)

Exit
(Plane 3)

Entrained air
path

Figure 2.12: Exchange inlet external flow path variables.

The four input variables (z2, t3, rCB1, ALE) control the creation of the external

geometry around the rocket path. The input variable (z2) controls the location of the

minimum inlet area (Plane 2), relative to the rocket exhaust exit (Plane 3). Plane 2

is also the location of the maximum fairing chord width, at its outer radial position.

The remaining radial locations of the maximum fairing profile chord width follow the

internal rocket clover path until intersection with the center body, see Fig. 2.13.

Max chord width
at outer radius

Outer radial
fairing profile

Plane 2

Fairing LE

r

z
Rocket path

clover

Fairing TE

Figure 2.13: Fairing radial profiles [35].
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The variable (t3) is a material thickness constraint, which affects the cowl inner

radius at the rocket exhaust exit (Plane 3). At the throat (Plane 1), the center

body radius is controlled by (rCB1). This variable also affects the overall center body

curvature. The remaining variable is the area at the cowl leading edge (ALE).

The 8 input variables, which determine the geometry, are controlled by the genes

of an individual. The 8 genes (Ψ̃e, Ψ̃g, z̃g, r̃g, z̃2, t̃3, r̃CB1, CR) of the individuals xk

i..m
,

are normalized inputs of these 8 variables. The values of the genes are discretized

over a predefined range. The genes, along with their bounds and resolutions, are

listed in Table 2.1, and are defined to be compatible with the previous subsonic

optimization [43].

Table 2.1: Rocket path and air geometry variables.

Gene Controls Normalized Min Max Resolution

variable by (Bjmin
) (Bjmax

) (resj)

Ψ̃e Ψe 45◦ 0.3 1 0.02

Ψ̃g Ψg 45◦ 0.3 0.9 0.02

z̃g zg ze 0.2 0.9 0.05

r̃g rg re 0.2 0.9 0.05

z̃2 z3 − z2 z3 0.3 0.5 0.02

t̃3 t3 rNZ3in
0.06 0.2 0.02

r̃CB1 rCB1 rth 2 8 0.5

CR ALE A2 1.06 1.4 0.02

The bounds of the genes, in Table 2.1, are set within the practical limits of the

geometry creation process. For example, consider the gene z̃2. It controls the location

of the minimum inlet area (Plane 2) as a fraction of the overall rocket path length

(ze = z3 = 8.81m) via Eq.(2.9).
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z̃2 =
z3 − z2

z3
(2.9)

If gene z̃2 is set too large, then it forces the minimum inlet area (Plane 2) further

from the rocket exhaust exit (Plane 3), or towards the rocket path throat (Plane

1). However, as minimum inlet area is moved closer to the rocket path throat, the

rocket path must remain contained within the external geometry. Thus, the radial

location of the cowl leading edge decreases. This is due to the decreasing value of

the rocket path radius towards the throat, and therefore, begins to affect the center

body curvature as the minimum inlet area is maintained. This can result in a poor

geometry, as shown in Fig. 2.14(b), if z̃2 continues to increase.
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Figure 2.14: Effect of varying z̃2

Another example of the importance of the bounds can be seen with the gene r̃CB1,

which controls the radius of the center body rCB1 at the rocket path throat (Plane

1), via Eq.(2.10).

r̃CB1 =
rCB1

rth
(2.10)

Since it is normalized by the throat radius, it is physically limited to a minimum

value of 1. This gene, however, also effects the overall curvature of the center body.

If the value is too small, or too large, it can cause regions of large convex and concave

curvatures, which can result in flow separation, as shown in Fig.2.15.

A large value of r̃CB1 can also block the frontal area and lead to low air mass flow
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Figure 2.15: Effect of varying r̃CB1

into the inlet. Therefore, a range of 2-8, as shown in Table 2.1, is appropriate for this

gene.

It is also important to consider a balance between the bound limits and resolution.

If bound limits are too large, and the resolution is maintained, then the number of

gene alleles increases. This can result in many unnecessary evaluations, as the number

of potential combinations is increased. Thus, the bounds set in Table 2.1 are set to

be within the realistic range of what the system model can create. The number of

potential individuals, defined by Eq.(2.11), is a function of the number of genes (n),

the bounds (Bjmax
, Bjmin

), and the resolution (resj), as given by Eq.(2.12).

xk

i
= [ Ψ̃e, Ψ̃g, z̃g, r̃g, z̃2, t̃3, r̃CB1, CR ] (2.11)

S =

n∏

j=1

(
Bjmax

− Bjmin

resj
+ 1

)
(2.12)

For 8 genes, and the bounds/resolution given by Table 2.1, the number of possible

individuals in the search space given by Eq.(2.12) is S ≈ 5 ∗ 109.

The rocket exhaust area (AR) at the rocket exhaust exit (Plane 3), inside the cowl,

and the rocket exhaust inner radius (rNZ3in
), are controlled by the rocket variables

(Ψe,Ψg, zg, rg). The minimum inlet area (A2) and the exhaust plane inlet area (A3),

however, must also be evaluated in order to determine the curvature of the center
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body, as shown in Fig. 2.16.
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Figure 2.16: Exchange inlet external flow path additional values.

In addition, the fairing maximum chord length (cfairmax
) must also be evaluated

to construct the external geometry of Fig. 2.16. This is achieved by three remaining

values that are not genes, but must be defined. These values of c̃fairmax
= 1.115,

σ = 0.1 and AR = 0.625 are set using default values and are not directly controlled

by the DE optimization. The fairing chord length (cfairmax
) is given by Eq.(2.13).

cfairmax
= z3 ∗ c̃fairmax

(2.13)

The value σ is the ratio of the rocket exhaust flow area AR (refer to Fig. 2.9) to the

total flow area (AR+A3), with 1 being a pure rocket and 0 being a pure airbreathing

engine. This value is important for the rocket-ejector and is set according to the

analysis provided by Waung [35]. The value AR is the ratio of the areas A2 and A3,

where A2 is the minimum exchange inlet area and A3 gradually expands the flow into

the engine. The areas A3 and A2, which in conjunction with r̃CB1, control the center

body curvature, are determined using Eq.(2.14) and Eq.(2.15).
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A3 = AR

(
1

σ
− 1

)
(2.14)

A2 = A3 ∗ AR (2.15)

The area A2 and the gene CR define the area at the leading edge of the cowl ALE ,

via Eq.(2.16).

ALE = CR ∗ A2 (2.16)

The center body radius is defined at the throat by rCB1 and the radii at Plane

2 & Plane 3, which are evaluated based on A2 and A3 and the inner cowl shape.

The center body contour is defined by cubic Hermite curves and the radius (r = 0)

boundary condition for the leading & trailing edges. The slope of the center body

trailing edge is constrained at 1◦ to allow the flow to leave the center body surface as

horizontal as possible [35].

2.3.2 The Objectives and Fitness Function

There are five objectives that are evaluated for a single exchange inlet system model.

Three of the objectives relate to the rocket flow path performance, while the two

remaining objectives are determined by the external geometry and semi-analytical

shock fitting method [36].

2.3.2.1 Rocket Path Objective Space

The first rocket objective is to maximize the arc length of the rocket exhaust (Larc).

This objective is important as it affects the shear layer area between the primary

rocket exhaust and the entrained air. The next objective is the turning angle (φ) of
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the rocket exhaust path. This angle must not be excessively large as it can cause a

sudden reduction in the rocket path cross sectional area thickness (Fig 2.9), due to

sudden or excessive expansion in the circumferential direction. A sudden reduction in

thickness can cause potential shock waves in the rocket exhaust. Since both objectives

affect the inlet frontal area (Ain), see Fig. 2.17, they can become competitive with

each other.
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φ
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Path
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(a) Ain is increased at the expense of
φ.
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re

φ

Ain

Rocket
Path
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(b) φ is decreased at the expense ofAin.

Figure 2.17: Effect of competing objectives φ and Larc on Ain.

The inlet frontal area Ain is the area between the rocket exhaust clovers. This

area directly affects the area between the fairings, and therefore the air mass flow of

the exchange inlet. The remaining rocket objective is the magnitude of the second

derivative ( d
2r̃

dz̃2
) of the radial contour. If the slope changes too rapidly, then shock

waves can occur in the rocket path. To avoid any sudden changes in the curvature of

this path, the rocket exhaust radial contour should be smooth. Examples of both a

good and poor radial contours are illustrated in Fig. 2.18.

The plot in Fig. 2.18, shows the normalized radial contour of the rocket exhaust

path. An ideal rocket path geometry should have a smooth curvature, and therefore

a second derivative very close to zero. If there is a sudden change in the slope

of the rocket path radial contour, this shows up as a spike in the magnitude of
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Figure 2.18: Radial contour profiles for rocket flow path.

the second derivative. Examples of the corresponding good and poor radial contour

second derivatives are illustrated in Fig. 2.19.
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Figure 2.19: Radial contour second derivative profiles for rocket flow path.

2.3.2.2 External Geometry Objective Space

The remaining two objectives are the air mass flow (ṁa) and the total pressure recov-

ery of the inlet (Po). These are affected by the external geometry of the center body,

the fairings and cowl, and the external shock waves that are created during supersonic

flight. Each of these three components that make up the external geometry generate

shock waves. These can be either weak oblique shocks, as in the case of the center

body, or stronger bow shocks, as for the fairings and cowl. The three sets of external

shock waves generated by the external geometry are illustrated in Fig. 2.20.
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Figure 2.20: Main shocks generated by the geometry [36].

The total pressure recovery of the inlet Po, therefore, is the average total pressure

behind the cowl shock.

These objectives are determined by the semi-analytical shock fitting method, de-

veloped by Murzionak [36]. This supersonic shock fitting method provides a quick

estimation and is used instead of a CFD program as a 3D CFD simulation is too time

consuming (there are 5 billion possible individuals that could be evaluated). This

semi-analytical supersonic estimation method, however, was validated using a 3D

CFD simulation, and was found to be within 10% of the CFD simulations, for both

ṁa (1.1 ≤ M∞ ≤ 7) and Po (1.1 ≤ M∞ ≤ 5). The value of Po showed a 30% error at

M∞ = 7. The % error between the estimation method and the CFD simulations for

various Mach numbers is shown in Table 2.2.

The leading edge of the center body generates an oblique shock wave which is

treated as a conical shock. The acceleration along the center body surface, behind

the center body shock, is determined using a Prandtl-Meyer expansion function. In-

terpolation, between the center body and its resulting shock wave, is used to determine
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Table 2.2: Estimation method % error vs CFD over supersonic regime [36].

Mach Number (M∞) 1.1 1.3 1.5 2.0 2.5 3.0 4.0 5.0 7.0

ṁa % error 3.7 6.2 3.3 3.5 -5.0 -3.7 -8.6 -5.1 4.6

Po % error -0.4 2.0 -1.5 -3.9 1.0 -1.4 -7.9 -1.0 -30.6

the Mach distribution in the radial direction, behind the center body shock [36]. This

is illustrated in Fig. 2.21.

x

r

EI centrelineCentre body surface

Mcb(x)

Centre body shock

Mcs

MFF (x, r) interpolated

from Mcb(x) and Mcs

M∞

Figure 2.21: Schematic of cone shock generated by a centre body [36].

The flow field behind the center body shock becomes the input to the fairing

shocks. The fairing shocks, and the cowl shock, are estimated by iteratively fitting the

shock locations, assuming an infinite 2D blunt body solution. The properties behind

the fairing shock become the inputs to the cowl shock estimation. The regions between

the shocks are assumed to be isentropic, with no total pressure drop between them.

The total pressure drop, across each shock, is determined by the normal component

of the local Mach number, using the blunt body shock shape and the radial Mach

number distribution. The total pressure drop is then the sum of all three drops

through the center body, fairings and cowl shocks. The final value of total pressure

behind the cowl shock is then averaged in the radial direction to get Po.

To evalute the ṁa objective for the external geometry, it is assumed that there is
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a dividing streamline, which separates the flow into two paths. One path enters the

exchange inlet, while the other is diverted around the cowl. As shown in Fig. 2.22,

this dividing streamline is perpendicular to the cowl surface at point b© [36].

Centre Body
Surface

Cowl

Cowl shock

Outside
Flow

Flow
through

EI AEI A2

a©
Dividing
streamline

b©

x

r

Figure 2.22: Determination of the air mass flow rate through EI [36].

The streamline from point b© to point a© allows the determination of the area AEI ,

which represents the area through which the air stream enters the exchange inlet. By

integrating along this line, the air mass flow into the inlet can be determined. The

inlet geometry, however, may result in a condition where the flow is choked at A2.

Since the air mass flow into the inlet cannot exceed the choked flow, the minimum

between the two air mass flow evaluations is used as the air mass flow objective.

2.3.2.3 Objective Vector and Fitness Function

Four of the objectives (ṁa, Po, φ, Larc), must be normalized to ensure that they are

on a similar range (0-1) for the weighted sum method proposed by Eq.(2.1). The fifth

objective d2r̃
dz̃2

is already normalized by the throat radius rth. The normalized objective

vector (H), is given by Eq.(2.17).
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H =

[
ṁa

ṁmax

,
Po

Po∞

,
[
1−

∣∣∣
φ

90◦

∣∣∣
]
,
Larc

Lmax

,
[
1−

∣∣∣
d2r̃

dz̃2

∣∣∣
0.5]
]

(2.17)

As shown in Eq.(2.17), the air mass flow objective is normalized by ṁmax. This is

a maximum theoretical value, set by the maximum area (Amax = πr2e) and freestream

conditions, see Eq.(2.18).

ṁmax = P∞

(
M∞

√
γ

RairT∞

)
Amax (2.18)

The total pressure recovery Po, is normalized by the freestream total pressure

(Po∞), while the Larc objective is normalized by the length of a fully annular profile

(Lmax = 2πre). The turning angle (φ) is desired to be minimized, therefore its 1

minus compliment is used in the objective vector H. It is also normalized by 90◦,

as values beyond 90◦ are not realistic and would lead to reverse flow. Similar to the

turning angle, a smaller peak value of the radial contour objective ( d
2r̃

dz̃2
) is desired.

Therefore, its 1 minus compliment is also used in the objective vector H. Its exponent

is used to improve the objective sensitivity for low values. Each of the objectives is

weighted (weights are positive & sum to 1) using the weight vector in Eq.(2.19).

W =
[
Ka, Kb, Kc, Kd, Ke

]
(2.19)

As the fitness function is the dot product of the objective vector H with the

weight vector W (see Eq.(2.1)), the fitness function for the exchange inlet is given by

Eq.(2.20).

fk
i = Ka

ṁa

ṁmax

+Kb

Po

Po∞

+Kc

[
1−

∣∣∣
φ

90◦

∣∣∣
]
+Kd

Larc

Lmax

+Ke

[
1−

∣∣∣
d2r̃

dz̃2

∣∣∣
0.5]

(2.20)



Chapter 3

Expected Behaviour and Algorithm

Tuning

3.1 Overview

The behaviour and performance of the DE algorithm is important to understand,

especially its ability to avoid becoming trapped in a local optimum. This is a problem

that all evolutionary algorithms can face when not tuned correctly. Therefore, it is

important to establish some measure of probability of being near the global optimum.

In any objective space landscape, there exists a potential for one or more local optima,

which have peaks that are very close in height to the global optimum, regardless of

their proximity to it. In this case, it would appear that all runs have found a single

optimal region, if only the fitness values are observed. However, since these peaks may

be very far apart, they could represent very different individuals, and thus geometries.

To indicate the proximity of the individual solution to the global optimum then, the

deviation in the genome from the global optimum, or best individual, is observed.

The more the magnitudes of the genes differ from this best individual, the farther the

evaluated individual exists from the global optimum. This provides an indication of

whether or not the result of any run has converged on the global optimum region, or

47
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if it has become stuck in a distant local optimum that has a close fitness (peak) value.

To test this concept, it is first implemented on the rocket path in isolation (4 genes),

then adapted to the exchange inlet as a whole (8 genes), to estimate its probability

of converging in the global optimum region. All runs are done using MATLABR© on

a Linux based computer cluster, provided by Carleton University.

3.2 Rocket Path Testing Results

The individuals xk

i
in the rocket path testing are given by Eq.(3.1), which is a sim-

plified version of Eq.(2.11), as they have only 4 genes.

xk

i
= [ Ψ̃e, Ψ̃g, z̃g, r̃g ] (3.1)

In this case, the system model consists only of the rocket geometry creation. The

rocket path also does not provide direct information about the air mass flow ṁa and

total pressure recovery Po objectives. However, the frontal area Ain, can be used in

place of these objectives, to give a simplified fitness function provided by Eq.(3.2).

fk
i = Ka

Ain

Amax

+Kb

[
1−

∣∣∣
φ

90◦

∣∣∣
]
+Kc

Larc

Lmax

+Kd

[
1−

∣∣∣
d2r̃

dz̃2

∣∣∣
0.5]

(3.2)

The progress of the DE algorithm can be assessed by monitoring the fitness of the

most fit (or best) individual for each generation (k), see Eq.(3.3).

fk
best = max(fk

i ) (3.3)

Since each initial population is randomly generated each run provides a unique

path of the most fit (fk
best) individual in the population. For the algorithm to be suc-

cessful, it must be able to evolve, or converge, towards the global optimum, regardless

of the initial locations of the randomly distributed individuals at k = 1. As the total
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number of evaluations (Γ) is a function of both the number of generations k and the

population size m, it is the metric over which the fitness, and other properties, can

be monitored. This is given by Eq.(3.4).

Γ = k ∗m (3.4)

To demonstrate the convergence of the most fit fk
best individual, for different initial

populations, its fitness value is monitored over the total number of evaluations Γ.

The DE parameter of population size is set to m = 38, which equates to 9.5n. The

remaining parameters are set to default values of F = 0.9 and Cr = 0.5. The fitness

of the most fit individual is illustrated, for four separate runs, in Fig. 3.1, where all

weights (Ka, Kb, Kc, & Kd) were equal at 0.25.
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Figure 3.1: Fitness of most fit individual vs total evaluations for rocket path (m=38,
F=0.9, Cr=0.5).

As seen in Fig. 3.1, all 4 runs have a unique path of fk
best as they converge. Three

of the four runs illustrated converge to a similar fitness value, while a 4th appears to

prematurely converge to a lower value. This could indicate that this run has been
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trapped in a local optimum. Not all combinations of genes in the search space result

in valid individuals. In this case they have a fitness of zero, until they produce a

child with a higher fitness. Consequently, the initial population will have only a small

percentage of individuals with non-zero fitness. This will increase overtime, as all

the individuals are allowed to mate, and will eventually be replaced with more fit

children. The number of non-zero (NNZ) fitness individuals is shown in Fig. 3.2, for

the same 4 runs as Fig. 3.1.
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Figure 3.2: Number of non-zero fitness values vs total evaluations for rocket path
(m=38, F=0.9, Cr=0.5).

Figure 3.2 shows all runs with a low number of non-zero fitness initially. However,

after about 13 generations (∼ 500 evaluations) all runs reach a maximum of number

of 38 non-zero individuals, which is the population size m.

With many of the initial population individuals having zero fitness, the variance

in the population fitness values (V ar(fk
i )), will typically initially be low. This will

increase rapidly, as more fit and unique individuals are found. The selection pressure,

however, will eventually begin to reduce the variance as it directs more individuals
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towards optimal locations. This is illustrated in Fig. 3.3, using the same 4 runs as

Fig. 3.1.
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Figure 3.3: Variance of population fitness values vs total evaluations for rocket path
(m=38, F=0.9, Cr=0.5).

The variance in the fitness values is given by Eq.(3.5), where fk
i is the mean of

fk
i .

V ar(fk
i ) =

1

m− 1

m∑

i=1

|fk
i − fk

i |
2 (3.5)

The rocket path also provides a good testing ground for the DE algorithms ability

to find the global optimum, as it has only 4 genes. This yields a much smaller

4-dimensional search space (S ≈ 2.5 ∗ 105 possible combinations) than the entire

exchange inlet. This is four orders of magnitude less than the exchange inlet, with

its 8 genes and S ≈ 5 ∗ 109 possible combinations. In addition, a single evaluation

of Eq.(3.2) only requires approximately 1.5-2 seconds, whereas for the exchange inlet

Eq.(2.20) requires 10-15 seconds. The small size of the rocket path search space,

and its faster evaluation time, allows all of its known possibilities to be calculated in
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advance. By knowing the location of the true global optimum, or best individual, the

probability of the algorithm finding a near optimum solution can be estimated.

The criteria for a near optimal solution is given by its average (%) deviation in its

genome from the true global optimum, in addition to its fitness value. This is easily

accomplished when the true optimal is known, as is the case for the rocket path. For a

given gene j = 1...n of an individual xk

i
, its average deviation (Devi) is determined by

the difference in the number of resolution points (Ni,resj , Eq.(3.6)) from the optimum

(best) individual (xBEST ), divided by the total number of resolution points of that

gene (Si,j, Eq.(3.7)), summed across all the genes (n) in an individual, see Eq.(3.8).

Ni,resj =
|xBEST,j − xk

i,j |

resj
(3.6)

Si,j =

(
Bi,jmax

− Bi,jmin

resj
+ 1

)
(3.7)

Devi =
1

n

n∑

j=1

Ni,resj

Si,j

∗ 100% (3.8)

The top 4 individuals found using DE for 10 runs of the rocket flow path, using

the same parameters as those used to generate Fig. 3.1 to Fig. 3.3, are listed in

Table 3.1, along with the best individual. This best individual xBEST was found by

evaluating all possible (S ≈ 2.5 ∗ 105) individuals in the rocket path search space.

As Table 3.1 shows, the final (Rank 4) individual has as very similar fitness value

to the best xBEST individual, within 0.3%. However, its genome differs from xBEST

by 55%. This indicates that although the fitness value peak is very close in magnitude,

this individual is actually a distant local optimum, with a very different geometry.

The difference in the two rocket path geometries is illustrated in Fig. 3.4.

As shown in Fig. 3.4, the two geometries differ mainly in their frontal area Ain
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Table 3.1: Top 4 fit individuals found vs the best individual.

Rank Fitness Ψ̃e Ψ̃g z̃g r̃g Devi (%)

xBEST 0.7358 0.32 0.32 0.3 0.6 -

1 0.7350 0.32 0.32 0.3 0.5 3.3

2 0.7349 0.32 0.32 0.25 0.4 8.3

3 0.7343 0.36 0.36 0.2 0.35 14.7

4 0.7337 0.64 0.58 0.9 0.2 54.9

(a) Global (best) optimum (b) Local optimum (Rank 4) individual

Figure 3.4: Global (best) rocket path vs distant local optimum.

and arc length Larc objectives. The two have similar fitness values as improving

on one objective compromised another. The distant optimum can also be seen by

looking at the objective space landscape. This is illustrated in Fig. 3.5 for Ψ̃e and

Ψ̃g respectively.

As shown in Fig. 3.5, the xBEST and the first 3 individuals from Table 3.1 are

clustered at low values of Ψ̃e. The remaining 4th individual is located at the local

optimum, with a Ψ̃e = 0.64 and Ψ̃g = 0.58. The two peak regions (global & local

optima) are separated by a dip in the population fitness values. This is seen in the

pattern of the less fit members of the population, represented as smaller dots for

various Γ as the individuals evolve.
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Figure 3.5: Rocket path Ψ̃e, Ψ̃g hyperplane vs Fitness.

From Table 3.1, it can be seen that the largest difference between xBEST and the

final (Rank 4) individual occurs on the z̃g and r̃g genes. For these genes, this distant

local optimum can also be seen in the plot shown in Fig. 3.6.

As with all evolutionary algorithms, DE can become trapped in a local optimum,

especially when that optimum fitness value is very close to the true global optimum.

However, the measure of performance of the algorithm is the probability of finding

the global region on any given run, which can be evaluated using Devi in cases where

the best individual is known. For the case of the rocket flow path, this is illustrated

in Fig. 3.7.
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0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Avg % deviation (Devi) in genome from xBEST

% occurrence

Figure 3.7: Rocket path average genome deviation in final individual from xBEST

vs % occurrence for 10 runs.
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The distant local optimum shows up as a small spike around 55% difference in

the genome. Based on the 10 trails conducted, this distant local optimum spike has a

20% chance of occurring on a given run. Figure 3.7 also shows that 70% of time DE

found an individual that was within 10% of the true optimum, while the remaining

10% of the time it was within 15%. This gives an indication of how the DE algorithm

will perform for a given set of parameters (m,F, Cr).

3.3 Exchange Inlet DE Tuning Results

Using all 8 genes for the individuals xk

i
from Eq.(2.11) the complete system model

for the exchange inlet is able to determine both the air mass flow ṁa and total pres-

sure recovery Po objectives. Thus, the exchange inlet system model uses the fitness

function in Eq. (2.20). Not all individuals are considered fit as their gene combina-

tions may represent non-physical solutions. As mentioned earlier, these individuals

are simply assigned a fitness of zero, but they remain in the population and are al-

lowed to mate. Though these individuals may represent invalid solutions, they can

still produce fit children u
k+1

i
through the donor vk

i
individuals and the crossover

operation. The number of unfit individuals in any randomly generated population is

quite large, while the number of fit individuals f(xk

i
) > 0 is on average 2%. There-

fore, using the total number of possible combinations S ≈ 5∗109 (5 billion), the total

number of valid or fit possible individuals can be approximated as Sfit ≈ 1 ∗ 108 (100

million). Given this large number of possible valid (fit) combinations, and the 10-15

second evaluation time from Eq(2.20), it would take between 32-47 years to check all

combinations. This could be reduced using parallel computing, however, given the

available resources it is clearly not practical and thus differential evolution is utilized.

To prevent excessively large runs times, a maximum number of evaluations Γ =

75000 is used, which equates to k = 1000 generations at population size of m = 75.
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As shown in the previous section, this is the metric over which the fitness of the

most fit individual and population fitness variance is monitored. While the fitness of

fk
best shows the most fit individual, the progress of algorithm population convergence

is shown by its fitness variance V ar(fk
i ). This variance represents the population

diversity, which initially increases, then begins to decrease. As the population fitness

variance (diversity) decreases, more individuals in the population become identical.

Letting the algorithm evaluate individuals that already exist in the population with

known fitness values is a waste computational time. Therefore, to avoid unnecessary

evaluations and determine when the population has converged, each child candidate

is checked to see if it exists in the population already. If it exists in the population,

then the new child candidate u
k+1

i
is simply assigned the same known fitness value.

This takes less than 1ms or four orders of magnitude lower than an evaluation. Thus,

as the population approaches total convergence, with many identical individuals, its

computational time for evaluations rapidly decreases. This essentially terminates the

algorithm upon convergence, as it will reach the maximum number of evaluations

Γ = 75000 in less than 1 minute. The speed at which this convergence occurs will

depend on the parameter settings (m,F, Cr). These settings are tuned to provide the

most accurate results, without producing excessive computational run times. They

are tuned over the ranges provided in section 2.2.1.

To tune the input parameters, a similar approach to section 3.2 is utilized. How-

ever, as it is not possible to know the best individual xBEST given the large number of

fit possible combinations, an approximation or known best x∗

Best
is used in its place.

This known best x∗

Best
represents the best possible individual found during the DE

parameter tuning for a single fixed set of weights (Ka=Kb=0.35, Kc=Kd=Ke=0.1).

This therefore, will represent one point on the ṁa/Po Pareto front. This x∗

Best
in-

dividual along with 8 other most fit individuals found using the fixed set of weights,

while varying the parameters m, F , and Cr are shown in Table 3.2.
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Table 3.2: Top 8 fit individuals found vs the known best individual.

Rank Fitness Ψ̃e Ψ̃g z̃g r̃g z̃2 t̃3 r̃CB1 CR Devi (%)

x∗

Best
0.63844 0.98 0.3 0.5 0.55 0.36 0.1 3.5 1.4 -

1 0.63826 0.98 0.3 0.5 0.55 0.36 0.12 3.5 1.4 1.56

2 0.63818 0.98 0.3 0.5 0.55 0.36 0.06 3.5 1.4 3.13

3 0.6361 0.66 0.3 0.5 0.5 0.32 0.06 3 1.4 12.75

4 0.63582 0.98 0.3 0.5 0.55 0.36 0.08 4 1.4 2.52

5 0.63575 0.98 0.3 0.5 0.55 0.36 0.06 4 1.4 4.09

6 0.63397 0.98 0.3 0.5 0.6 0.38 0.06 4 1.4 6.06

7 0.63239 0.96 0.3 0.5 0.6 0.38 0.06 2 1.4 8.33

8 0.63186 0.98 0.3 0.35 0.65 0.44 0.06 5 1.4 14.72

The individuals listed in Table 3.2 are the 8 different final individuals found during

55 runs that are part of the DE algorithm parameter tuning. Out of the 55 runs

conducted during the algorithm tuning, the single x∗

Best
individual is found 27% of

time. The Rank 3 individual represents a near local optimum with a Devi=12.75%.

The x∗

Best
individual is the known best and is used as the benchmark for detecting

a global optimal region, in the same manner as section 3.2 demonstrated for the

rocket path. Though it is not possible to state with 100% confidence that the known

best is the true global optimum, the random distribution of the initial population

is employed to ensure no large regions of the search space remain unexplored. To

improve search space coverage, repeating runs for each parameter setting is used in

combination with random initial populations.

There are 8 unique parameter combinations of m, F , and Cr for which there are

five repeated runs. The final parameter settings which are selected as the tuned

settings represent a 9th combination of (m = 75,F = 0.85,Cr = 0.3), which is run 15

times for improved accuracy, see Table 3.3.
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Table 3.3: Parameter combinations used in DE tuning.

Combination m F Cr Runs

1 25 0.9 0.5 5

2 50 0.9 0.5 5

3 75 0.9 0.5 5

4 75 0.85 0.5 5

5 75 0.95 0.5 5

6 75 0.9 0.9 5

7 75 0.9 0.7 5

8 75 0.9 0.3 5

9† 75 0.85 0.3 15

† Final selection is run 10 additional times.

The initial search space coverage is examined by the use of hyperplanes. The

amount of coverage will depend on the number of runs and the size of the hyperplane.

Four hyperplanes are illustrated in Fig 3.8, showing the locations of the initial (k = 1)

population members for 5 runs (different markers) at m = 75, F = 0.9 and Cr = 0.5.

As can be seen in the figures, the largest hyperplane is the Ψ̃e, Ψ̃g hyperplane,

with 1116 possible locations determined by the upper and lower bounds, as well as

the gene resolutions. This hyperplane shows 28% coverage for 5 runs, with a uniform

distribution. The smallest hyperplane is the z̃2, t̃3 hyperplane, with 88 possible lo-

cations and 97% coverage. By repeating runs for each setting and demonstrating a

uniform search space coverage, the probability of an unknown and undetected global

optimum region is decreased. Therefore, the probability the known best x∗

Best
is in

the true global region is increased.

As with the rocket path in section 3.2, the path of the fitness of the most fit

individual in the population fk
best is different for each run. The number of non-zero
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Figure 3.8: Initial % coverage of search space hyperplanes for 5 runs at m = 75,
F = 0.9 and Cr = 0.5

fitness NNZ and population fitness variance V ar(fk
i ) also follows a similar trend as

seen in section 3.2. This is illustrated, for example, in Fig. 3.9 to Fig. 3.11 for 5

runs, at m = 75, F = 0.9 and Cr = 0.5.

As the plots in Fig. 3.10 and Fig. 3.11 show, the number of non-zero fitness

individuals and population fitness variance both stabilize around 100 generations

(Γ=7500). This is far sooner than the plot in Fig. 3.9 which stabilizes as late as

250 generations (Γ=18750). This indicates that although after 100 generations the

algorithm has found 75 fit individuals near the optimal region, it requires as much as

another 150 generations to refine the solution and exploit the genes of the individuals

in the population.
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Figure 3.9: Fitness of most fit individual vs total evaluations for EI at m = 75,
F = 0.9 and Cr = 0.5.
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Figure 3.10: Number of non-zero fitness values vs total evaluations for EI atm = 75,
F = 0.9 and Cr = 0.5.

The plots in Fig. 3.9 to Fig. 3.11 represent runs at a single setting of input

parameters (m,F, Cr). For clarity during parameter tuning, however, it is preferable
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Figure 3.11: Variance of population fitness values vs total evaluations for EI at
m = 75, F = 0.9 and Cr = 0.5.

to compare the average values of all 5 runs for each setting. The three input param-

eters of population size (m), differential weight (F ), and crossover probability (Cr)

can be varied sequentially, to determine which combination most often results in a

near optimal solution, based on the known best x∗

Best
. All tuning is performed at

a freestream Mach number of M∞ = 2.5, as it represents the transition point from

ejector to ramjet mode and is near the middle of the supersonic range M∞ = 1.2 to

M∞ = 4 considered.

3.3.1 Effect of Population Size

The input parameter of population size is varied between m = 25, 50, & 75, which

corresponds to 3.125n, 6.25n,& 9.375n. The purpose of tuning is to examine the effect

of the input parameters on the average fitness of the most fit individuals f
k

best, the

average population fitness variance V ar(fk
i ), and the occurrence vs average genome

deviation Devi from the known best. The average population fitness variance V ar(fk
i )
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provides information about the rate of the total population convergence. It is also

a measure of the population diversity, as more individuals that converge on optimal

regions become identical. The occurrence demonstrates how often the parameter

setting results in an individual at or near the known best individual x∗

Best
. For each

population size the values of F and Cr are kept constant, see Table 3.3.

Since m varies in size, Γ is used as the comparative metric (rather than (k))

since smaller populations sizes have fewer individuals to evaluate for each generation.

Therefore, a smaller population size will require more generations to evalute the same

number of individuals as a larger population, refer to Eq. (3.4). Thus, the averaged

values (f
k

best, V ar(fk
i )) will be compared over the number of evaluations Γ only, since

the number of generations will differ between the population sizes. The average fitness

f
k

best and average variance V ar(fk
i ) are shown in Fig. 3.12 and Fig 3.13.
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Figure 3.12: EI average fitness of most fit individual vs total evaluations for varying
m (F = 0.9, Cr = 0.5).
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Figure 3.13: EI average population fitness variance vs total evaluations for varying
m (F = 0.9, Cr = 0.5).

As shown in Fig. 3.12 the average fitness f
k

best of the 5 runs for each population

size increases with population size. This is expected as larger populations would

have more potential child candidates, thereby increasing the amount of search space

that is explored. However, as noted in section 2.2.1, the population size cannot be

arbitrarily increased. If the population size is set too large (> 10n) it can result in

long run times. This can be seen in Fig. 3.12, as larger population sizes tend to take

longer to reach a similar fitness value. This is because larger population sizes will

slow the rate of population convergence of the algorithm, as seen in Fig. 3.13. The

effect, therefore, of slowing the convergence is to give the DE algorithm more time

to explore the search space. This results in higher average fitness values. Though

smaller population sizes have better run times, due to faster convergence, they run the

risk of premature convergence. The premature convergence is a result of the smaller

population size losing diversity too quickly, as more and more individuals become

similar or identical.
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In Fig. 3.13, the variance V ar(fk
i ) starts off low as few fit individuals exist in

the initial population, however this rapidly increases with each generation. After the

diversity peaks, the selection pressure begins reducing the diversity of the population.

This occurs as the population evolves towards more fit regions of the search space,

as individuals become replaced with more fit children at each generation. Eventually,

the selection pressure will force the population to converge into the most optimal

region or regions, corresponding to either a single individual or a very small number

of individuals.

The population size m=75 shows the slowest convergence, but also the best aver-

age fitness value. This population size is also not considered to be too large, as is falls

within the accepted range suggested by Mallipeddi et al. [66] and Storn & Price [50].

The average fitness value, however, does not indicate if these individuals are near the

global region, or if they are distant local optimums with high peak values. Therefore,

the performance of occurrence near the known best x∗

Best
for each population size is

shown in Fig 3.14.
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Figure 3.14: EI occurrence vs average genome deviation (Devi) for 5 runs at m=25,
50 & 75 (F = 0.9, Cr = 0.5).
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The occurrence of each population size, in Fig 3.14, shows that the larger the

population size, the higher the chance it will converge closer to the known best x∗

Best
,

or the only known potential global region. Though the figures show no distant local

optima, Table 3.2 does indicate there is a local optimum near the global region with

a 12.75% (Rank 3 individual) deviation from the known best. This local optimum,

however, falls into the 10-15% Devi region along with the Rank 8 individual from

Table 3.2.

The results of Fig. 3.12 to Fig. 3.14 show that although a smaller population

converges faster, it is less likely to produce an individual at (or very near) x∗

Best
.

Figure 3.14 indicates that the population converges too quickly for smaller populations

as it approaches the potential global region. Thus, in the case m=25 it never comes

within 5% of this region, where as for m=50 and m=75 it occurs 1/5 and 2/5 times

respectively. For the given range tested, the value of m=75 is the best choice of

population size, without arbitrarily increasing beyond 10n.

3.3.2 Effect of Differential Weight

The second input parameter, the differential weight F , is examined in the same

manner as population size. With population size fixed at m = 75, and a default value

of Cr = 0.5, the differential weight can be varied over the range F = 0.85, 0.9,&0.95

as discussed in section 2.2.1. The resulting effect on both the average fitness of

the most fit individual f
k

best and the average population fitness variance V ar(fk
i ) are

averaged over 5 runs. Each run has a different initial population with a uniform

random distribution. The results of f
k

best and V ar(fk
i ) vs the number of evaluations

Γ (& Generations k) are shown Fig. 3.15 and Fig. 3.16.

Both Fig. 3.15 and Fig. 3.16 show that varying the differential weight over the

range F = 0.85 to F = 0.95, did not have a significant effect on the average fitness

f
k

best or the average variance V ar(fk
i ). The average variance was not significantly
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Figure 3.15: EI average fitness of most fit individual vs total evaluations for varying
F (m = 75, Cr = 0.5).
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Figure 3.16: EI average population fitness variance vs total evaluations for varying
F (m = 75, Cr = 0.5).

affected over most of the range, only differing slightly at very low levels of variance.

The results on the occurrence out of 5 runs for F=0.85, F=0.9 and F=0.95 are shown

in Fig. 3.17.
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Figure 3.17: EI occurrence vs average genome deviation (Devi) for 5 runs at F=0.85,
0.9 & 0.95 (m = 75, Cr = 0.5).

Though the results did not differ significantly, Fig. 3.17 shows that only 1 out

of 5 times does F = 0.95 result in an individual that is within 5% average genome

deviation from the known best individual x∗

Best
. Both F = 0.9 and F = 0.85 show

the same 2/5 occurrence for the 5% deviation range, however, in the 5-10% range

the F = 0.85 shows slightly better results at 2/5 occurrence, vs 1/5 for F = 0.9.

Therefore, both F = 0.9 and F = 0.85 will be investigated in the following sections.

3.3.3 Effect of Crossover Probability

The final input parameter is the crossover probability Cr, which is varied from Cr =

0.3, 0.5, 0.7,&0.9, as discussed in section 2.2.1. This is done initially with m = 75

and F = 0.9 for all Cr values. The best value of Cr, however, is also compared for

F = 0.9 vs F = 0.85, as the results from section 3.3.2 indicated F = 0.85 might be

a better choice. The results of f
k

best and V ar(fk
i ) vs the number of evaluations Γ are

shown in Fig. 3.18 and Fig. 3.19.
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Figure 3.18: EI average fitness of most fit individual vs total evaluations for varying
Cr (m = 75, F = 0.9).
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Figure 3.19: EI average population fitness variance vs total evaluations for varying
Cr (m = 75, F = 0.9).

The results of Fig. 3.18 show a general improvement for average fitness f
k

best as Cr

is decreased below 0.7. The value of Cr = 0.9, however, shows a slight improvement
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over Cr = 0.7. Higher Cr values mean a higher probability that child u
k+1

i
will inherit

genes from the donor vk

i
individual. This can increase the explorative properties of

the algorithm, as it results in large multi-dimensional jumps in the search space. On

any given run, this can result in rapidly locating an optimal region. However, it can

also result in many jumps to unfit or invalid regions as well. The result is that even

if an optimal region is found, the algorithm many not progress further if too many

of the crossover operations result in less fit or unfit individuals. In this case, the

algorithm can prematurely converge on the location of the current optimum, before

it has a chance to find a better location. This can be the case if the global optimum

is close to a local optimum. The algorithm may not be exploitative enough to find

nearby optimal regions, as it is exploring on too many axes at once. This is more

likely to be the case when the search space axes and objective space axes are closely

aligned. In this case, lower Cr values are preferred.

The rapid convergence for higher Cr values is illustrated in Fig. 3.19, which shows

the average fitness variance V ar(fk
i ) as a function of the number of evaluations Γ.

The lower values of Cr not only show higher peak diversity, but also a slower rate of

population convergence. The population diversity, therefore, is prolonged and gives

the algorithm more time to not only explore regions, but exploit them, by exploring

on fewer axes at a time. The slower convergence does, however, result in a slower

algorithm. The value of Cr = 0.5, for example, takes on average 2 days to run,

whereas Cr = 0.3 take almost 4 days. To compare the results of nearly doubling the

run time, the improvement in the probability of finding an individual near or at x∗

Best

must be examined. The results on the occurrence out of 5 runs are shown in Fig.

3.20.

The results of Fig. 3.20 demonstrate why the Cr = 0.9 value showed slightly

higher average fitness f
k

best, than the Cr = 0.7 value. The Cr = 0.9 parameter

setting did find a value within 5% of x∗

Best
1 out of 5 times, while the Cr = 0.7
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Figure 3.20: EI occurrence vs average genome deviation (Devi) for 5 runs at Cr=0.3,
0.5, 0.7 & 0.9 (m = 75, F = 0.9).

never did. The Cr = 0.7 did have better results in the 5-10% of known best x∗

Best

range, while Cr = 0.9 prematurely converged on the 10-15% range 4 out of 5 times.

Neither of these values are considered good settings for Cr in the exchange inlet

problem. The values of Cr = 0.5 showed individuals within 5% of x∗

Best
2 out of

5 times, while this value doubled to 4/5 occurrence for Cr = 0.3. Therefore, while

Cr = 0.3 requires approximately double the run time, it also doubled the probability

of finding an individual at or near x∗

Best
. Values below Cr = 0.3, however, required

excessively long run times and are not considered here, since a 4/5 success rate is

deemed acceptable. In addition, the remaining 1/5 of the time the Cr = 0.3 produces

individuals within 5-10% of x∗

Best
.

3.3.4 Final Parameter Selection

The results from Fig. 3.20 are all at F=0.9. However, the values of m=75 and Cr=0.3

will be used in combination with F=0.85. This is due to the slight improvement of
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F=0.85 over F=0.9 that is seen in section 3.3.2. Additionally, since this input param-

eter combination (m=75, F=0.85, Cr=0.3) is selected based on the best performance

of the previous results, 15 runs will be used instead of 5. This is to ensure accuracy

of the final parameter selection in terms of % occurrence. The results are shown in

Fig. 3.21.
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Figure 3.21: EI % occurrence vs average genome deviation (Devi) for 15 runs at
m=75, F=0.85, Cr=0.3.

The Fig. 3.21 shows similar results to the m=75, F=0.9, and Cr=0.3 combination

in Fig. 3.20. The m=75, F=0.85, and Cr=0.3 combination occurred in the 0-5%Devi

range in 12 out of 15 runs, or 80% of the time, while Devi was in the 5-10% range

2/15 or 13.3% of the time. The remaining run occurred in the 10-15% Devi range,

which is not considered acceptable as it contains a local optimum, refer to Table 3.2.

Therefore, the settings in Fig. 3.21 are in the acceptable range in 14/15 runs, or

93.3% of the time. The values of m=75, F=0.85, and Cr=0.3 are selected for the

remainder of this work. The final input parameter values are listed in Table 3.4.
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Table 3.4: Final input parameter settings for DE algorithm.

Input parameter Value

Population size (m) 75

Differential weight (F ) 0.85

Crossover probability (Cr) 0.3



Chapter 4

Exchange Inlet Optimization Results

4.1 Supersonic Trajectory and Overview

To follow a path similar to the airbreathing flight requirement laid out by Whitehead

[8] in Fig. 1.2 of Chapter 1, the freestream velocity (and Mach number) is increased

with altitude to allow the oxygen flux needed for airbreathing propulsion. However,

rather than a constant oxygen flux, this is done by maintaining a constant dynamic

pressure (q) of 30 kPa, given by Eq. (4.1).

q =
γP∞M2

∞

2
(4.1)

The resulting flight profile for the RBCC engine is determined by this dynamic

pressure (as described by Murzionak [36]) using a NASA atmospheric model. The

constant dynamic pressure is selected to be within both structural/thermal limits of

materials and combustion stability [36]. A flight profile of the RBCC engine from

M∞=1.2 (363 m/s) to M∞=4 (1180 m/s) is shown in Fig. 4.1, along with both the

rocket and airbreathing engine profiles, and the oxygen flux lines (1,10,100 kg

s∗m2 ) from

Fig. 1.2.

As Fig.4.1 shows, the RBCC flight profile starts off near the rocket trajectory,

74
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Figure 4.1: RBCC engine flight profile [8, 36].

however, as its speed increases it begins to assume a profile closer to other air-

breathing vehicles. To maintain a constant dynamic pressure of 30 kPa, the altitude

increases with increasing RBCC vehicle speed. Correspondingly, the density (and

temperature) change as a function of altitude based on the NASA atmospheric model.

Therefore, since the air mass flow ṁa and total pressure recovery Po are normalized

in the fitness function using theoretical maximums (ṁmax & Po∞ , refer to Eq.(2.18)

& Eq.(2.20)) from freestream properties, each flight speed will require a different

theoretical maximum value of ṁmax and Po∞ . Each point on the RBCC flight

profile in Fig. 4.1 represents a different vehicle speed between M∞=1.2 and M∞=4,

however, only M∞=1.5, M∞=2.5 and M∞=3.5 will be examined for optimization in

this work. The altitude, freestream values, and theoretical maximums ṁmax & Po∞

for each of the RBCC vehicle flight speeds shown in Fig. 4.1 are listed in Table 4.1.
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Table 4.1: Altitude and freestream air properties over a flight profile at constant
dynamic pressure of 30 kPa.

Static Static Total Max air

Speed Altitude pressure Temp. pressure mass flow

Mach (m/s) (km) P∞(kPa) T∞(K) Po∞(kPa) ṁmax(kg/s)

1.2 363 9.24 29.76 228.25 72.17 4984.6

1.5† 443 12.12 19.04 216.69 69.91 4091.7

2 590 15.79 10.71 216.69 83.82 3069.1

2.5† 738 18.63 6.86 216.69 117.16 2455.5

3 885 20.95 4.76 216.69 174.87 2045.8

3.5† 1032 22.92 3.50 216.69 266.76 1753.5

4 1180 24.62 2.68 216.69 406.64 1534.5

†Freestream Mach number used in optimization.

Recalling Fig. 2.20, each of the three exchange inlet components (center body,

fairings, cowl) generates a shock wave. These shock waves affect both the air mass

flow and total pressure recovery at the inlet. For a fixed geometry then, these shock

waves will change in shape and strength as the freestream Mach number changes.

Therefore, a fixed geometry can only be optimized at a single flight Mach number.

The alternative is to use a geometry than can vary in shape as the freestream Mach

number is increased, however, this would add extra complexity to the design of the

engine inlet.

To optimize the exchange inlet (assuming a fixed geometry) over the supersonic

flight regime, a Pareto front is developed at M∞=2.5. From the Pareto front, a single

individual corresponding to a single weight setting can be selected as the most fit

individual for that freestream flight Mach number. This will be done for two other
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Mach numbers, M∞=1.5 and M∞=3.5, which will result in three different optimized

fixed geometries for three different flight Mach numbers.

Each of the three most fit geometries, corresponding to M∞=1.5, 2.5 & 3.5, can

then be observed over the full flight rangeM∞=1.2 to M∞=4 to compare their perfor-

mance for the ṁa and Po objectives. Using fixed geometries, each design is expected

to be the most optimal near its corresponding flight (M∞) number. The trade off

between using a fixed or variable geometry can then by seen by examining the per-

formance improvements in the off design flight conditions over the supersonic range.

The following results show the RBCC inlet performance objectives, and the Pareto

fronts for each of the three Mach numbers.

4.2 Fixed Geometries at a Single Mach Number

4.2.1 Mach 2.5 Results

4.2.1.1 Ka vs Kb Pareto front

The exchange inlet fitness function, Eq.(2.20), has five objectives, each with its own

weight. Each of these objectives represents an axis of the objective space. There-

fore, the objective space is a 5-dimensional space, which contains a feasible region

(5-dimensional ’volume’) of all possible solutions. The Pareto front is then a 4-

dimensional ’surface’ at the boundary of the feasible region, which contains the most

fit (or optimal) individuals. A two-dimensional example was given in section 2.1 with

Fig. 2.2 & Fig. 2.3. As discussed in section 2.1, with all multi-objective problems the

optimal or most fit individuals will consist of many solutions along the Pareto front

corresponding to all possible weight vectors. The location of the most fit individual

(on this front) is a function of the weights. In order to determine a desired optimum,

a Pareto front must be obtained to observe the effect of the weights on the desired
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objectives. In addition, for a true Pareto front to exist the objectives must be com-

petitive with each other, i.e. they must have a negative correlation. If the objectives

do not compete with each other, then there is no trade off and the objectives can

simply be maximized.

Since the objective space is 5-dimensional, hyperplanes are used to observe two

objectives at a time. To investigate the Pareto front then, only two weights will

be varied at a time with their sum remaining constant. The remaining objectives

are assigned a fixed weight of 0.1, or 10% of the fitness function contribution. This

means that the two weights investigated will sum to 0.7, or 70% of the fitness function

contribution.

The two primary objectives which vary over the supersonic range are the air mass

flow ṁa and total pressure recovery Po. These objectives are important for the air

breathing ramjet (& scramjet) flight modes. Using a single set of weights (Ka,Kb) for

these two objectives, the fitness function and selection process of the DE algorithm

will direct the evolution of an initial population towards a specific point on the Pareto

front hyperplane of the ṁa and Po objectives. This is illustrated in Fig. 4.2 and Fig.

4.3 for weights Ka=Kb=0.35.
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Figure 4.2: Evolution of fk
best vs Γ, k for Ka=Kb=0.35 (Kc=Kd=Ke=0.1)
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Figure 4.2 shows the evolution of the most fit individual fk
best for each generation k

(as was demonstrated in section 3.3). Correspondingly, Fig. 4.3 shows this evolution

in the objective space ṁa

ṁmax
, Po

Po∞
hyperplane for the single set of weights at the initial

(k=1) generation and later at k=13, 67 and 267. The initial population is randomly

generated with only two valid (fk
i 6= 0) individuals in the plane, but as the selection

process occurs at each generation more valid individuals appear, and the population

moves towards a specific location on the Pareto front. The most fit individual at

each generation fk
best is shown in black, while the less fit (but valid) members of the

population are shown as grey dots. All individuals which are behind the Pareto front
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are said to be dominated (refer to section 2.1). Even the most fit individuals at

generations (k=1,13 & 67) are considered dominated as they have not yet reached

the Pareto front, and are still improving. Eventually, the population converges on a

single location on the Pareto front as seen at k=267 in Fig. 4.3(d), which represents

the most fit individual for a specific set of weights (Ka=Kb=0.35). The Pareto front

is considered to be reached in this case as the individual f 267
best is the known best x∗

Best

individual from Table 3.2. Subsequently, this individual can no longer be improved

in one objective, without compromising another. The individual is then said to be

non-dominated and therefore lies on the Pareto front. As the population moves

towards this point in Fig. 4.3 (a)-(d), the diversity of the population decreases as

the individuals become clustered together. This is the result of all members of the

population converging towards the most optimal location. If the weights are changed

then the fitness function will direct the DE algorithm to a new location on the Pareto

front. By repeating the process for each new set of weights the shape of the Pareto

front (in this hyperplane) can be realized.

For each weight setting of Ka and Kb, therefore, there will be a new most fit

individual fk
best, which corresponds to a new non-dominated point in the ṁa

ṁmax
, Po

Po∞

hyperplane. Combining these points will define the shape of the Pareto front in the

hyperplane. By varying the weights Ka and Kb (both sum to 0.7) this effect can be

observed in Fig. 4.4, at M∞ = 2.5, with the weights listed in Table 4.2 along with

the objectives of fk
best for each weight setting (maximums in bold).

The Pareto front points (black dots) in Fig. 4.4 represent the most fit individual for

each of the different weight settings shown in Table 4.2, while the dominated (grey

dots) represent the less fit possibilities that demonstrate the shape of the feasible

region (section 2.1). These less fit (dominated) individuals are shown simply for

observing the general shape of the feasible region. They are the locations of population

members from earlier generations, before they converged onto the Pareto front.
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Table 4.2: Weights Ka & Kb and objectives of fk
best for M∞=2.5 (Kc=Kd=Ke=0.1)

ṁa Po φ Larc

Point Ka Kb (kg/s) (kPa) (◦) (m) d2r̃
dz̃2

1 0 0.7 872.14 74.48 11.10 9.15 0.01321

2 0.15 0.55 1210.6 74.72 55.39 17.66 0.03736

3 0.25 0.45 1568.3 71.46 56.71 19.45 0.12564

4 0.35 0.35 1568.3 71.46 56.71 19.45 0.12564

5 0.45 0.25 1569.5 71.44 56.71 19.46 0.12564

6 0.55 0.15 1705.3 72.50 47.57 15.82 0.30061

7 0.7 0 1550.7 68.04 60.73 18.37 0.05068
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Figure 4.4: Pareto front for Ka and Kb objectives at M∞ = 2.5 (Kc=Kd=Ke=0.1).

As Ka increases (Kb decreases) the location of the most fit individual moves along

the Pareto front towards higher values of ṁa (recall Ka is the weight associated
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with ṁa from Eq.(2.20)). This hyperplane is only a 2-dimensional slice of a higher

dimensional space, therefore, there are some less fit individuals near Point 7© which

appear to be near the Pareto front boundary. These individuals, however, are less fit

than those on the Pareto front as the shape of the Pareto front is multi-dimensional.

For a Pareto front in a two-objective problem, all less fit (dominated) individuals

would be located behind the front. The other objectives (dimensions) are weighted

much lower at 10% of the fitness function, therefore, they do have a minor affect

on this boundary in other dimensions outside of the hyperplane. The Pareto front

boundary is not defined after Ka=0.7 (Point 7©).

The objective space hyperplane in Fig. 4.4 shows that the Pareto front appears

relatively flat with a triangular point near the maximum for both objectives. This

shape does not involve a gradual trade off, as would be expected with a concave

shaped Pareto front (refer to Fig. 2.2 & Fig. 2.3). By increasing the weight Ka of

the air mass flow ṁa objective, the total pressure objective Po first decreases slightly

between Points 1© & 3© then increases between Points 3© & 6©, even though its

own weight continues to decrease. The flatness of the upper boundary also shows

little variation in the total pressure recovery objective. The total pressure recovery

noticeably decreases at the extreme value at Point 7©, where it is effectively removed

as an objective due to Kb = 0. There is in fact a positive correlation between Points

3© & 7© for the two objectives for different weight settings, which can be illustrated

by plotting the objectives as a function of their weights, see Fig. 4.5.

As Fig. 4.5 shows, for values below Ka = 0.25, there is a slight trade off as the

value of Ka increases. This was also seen as a slight dip in Po

Po∞
from Points 1© to 3© in

Fig. 4.4. The value of ṁa increases with Ka, while the value of Po decreases slightly.

However, for Ka values above 0.25, there is indeed a positive correlation between the

normalized value of ṁa and Po as Ka is increased, with a maximum occurring around

Ka = 0.55.
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Figure 4.5: Effect of varying weights (Ka&Kb) on normalized objectives at M∞ =
2.5 (Kc=Kd=Ke=0.1).

These two objectives, therefore, are not directly competitive with each other for

most weight settings of Ka and Kb. In fact, other than for very low Ka < 0.25 (Kb >

0.45) the air mass flow is proportional to the total pressure. The relationship between

air mass flow and total pressure drop is illustrated in Fig. 4.6 and Eq.(4.2) [36].

ṁa =

√
γ

RairTo

(∫ r=a

r=rCB

Mx1AEIPo1

(
2

2 + (γ − 1)M2
x1

) γ+1
2(γ−1)

dA

)
(4.2)

The air mass flow is also calculated for the condition where the mass flow rate is

choked using Eq.(4.3) [36]. The minimum mass flow rate between Eq.(4.2) & Eq.(4.3)

is used as the ṁa objective. However, none of the individuals in Table 4.2, Fig. 4.4

& Fig. 4.5 are in a choked condition.

ṁ∗
a =

√
γ

RairTo

(
A2Po

(
2

2 + (γ − 1)

) γ+1
2(γ−1)

)
(4.3)

As described in section 2.3.2.2, the air mass flow in Eq.(4.2) is integrated along the
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Figure 4.6: EI cross section for air mass flow rate calculation variables [36].

area AEI , which is below the dividing streamline, shown in Fig. 4.6. Since the area

AEI is integrated (dA = rdrdθ) around the center body, it is affected by the shape

of all three EI components (center body, fairings & cowl). Equation (4.2) shows

that air mass flow is proportional to both the inlet area AEI and the total pressure

after the fairing shock Po1, but before the cowl shock. The total pressure recovery

objective Po is the resulting average total pressure behind the cowl shock. Therefore,

improvements in the average total pressure recovery after the fairing shock Po1 can

improve both ṁa and Po, for a similar area AEI and cowl shock strength. The values

of AEI and Po1 are listed in Table 4.3 along with the ṁa and Po objectives.

Between Points 3© & 7© (Ka ≥0.25) the area AEI only varies between 18-19.4 m2,

however, at Point 2© (Ka=0.15) this rapidly decreases to 15.2 m2 and again to 11.8

m2 at Point 1© (Ka=0). At these points 1© & 2© the value of Po1 also decreases,

while Po increases. This indicates that the cowl shock for these two geometries has

become much weaker (as AEI is much lower) than for the remaining points. Thus,

below Ka=0.25 the reduction in area dominates the air mass flow objective, but as

the area AEI begins to stabilize after Ka=0.25 the air mass flow is improved by both

Po1 and AEI improvements.
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Table 4.3: Area AEI and total pressure Po1 change with weights Ka & Kb and
objectives of fk

best for M∞=2.5 (Kc=Kd=Ke=0.1)

AEI Po1 ṁa Po

Point Ka Kb (m2) (kPa) (kg/s) (kPa)

1 0 0.7 11.83 99.36 872.14 74.48

2 0.15 0.55 15.15 99.18 1210.6 74.72

3 0.25 0.45 18.01 104.73 1568.3 71.46

4 0.35 0.35 18.01 104.73 1568.3 71.46

5 0.45 0.25 18.04 104.70 1569.5 71.44

6 0.55 0.15 19.40 106.03 1705.3 72.50

7 0.7 0 19.17 105.3 1550.7 68.04

These two objectives, therefore, are not suitable for demonstrating the trade-off

of the Pareto front due to their positive correlation for most weight settings. The

trade-off must occur between two or more objectives which are competitive with each

other. Thus, another set of weights must be selected in order to observe a more

complete Pareto front and objective trade off. The following section will evaluate

using Ka and Kc as the trade off objectives.

4.2.1.2 Ka vs Kc Pareto front

The air mass flow is considered to be a primary objective, due to the ramjet air

breathing mode requirements. The shear layer area objective Larc is also a concern

for the ejector mode. As was seen in Fig. 2.17, of subsection 2.3.2.1, it is possible

to have a large frontal area Ain and a large Larc, at the expense of increased turn

angle objective φ. This effectively becomes a three-way trade-off (for the rocket path)

between Ain, Larc and φ, as both Ain and Larc are desired to be maximized, while φ

is to be minimized.
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The inlet area Ain represents the frontal area of the rocket path only, which only

considers the area between the rocket clovers (refer to Fig. 2.17)). As shown in Fig.

2.13 in subsection 2.3.1, the maximum chord width of the fairings for the external

geometry follows the radial profile of the rocket clovers. This means that as the

clovers increase in frontal area (Ain reduced), the width of the fairings also increases

proportionally. The exchange inlet frontal area, however, is also affected by the shape

of both the center body and cowl, in addition to the fairings.

The air mass flow objective ṁa is proportional to the external geometry inlet area

below the dividing streamline AEI (refer to Fig. 4.6 & Eq.(4.2)). This EI inlet area

is directly affected by the opening between the fairings, in addition to the center

body and cowl shapes. The opening between the fairings is proportional to the area

between the clovers Ain. Therefore, Ain indirectly affects ṁa, by affecting the value

of AEI .

The two objectives ṁa and Larc, therefore, can become competitive with each

other through the turn angle φ in a similar manner as Ain and Larc can for the rocket

path, if the weight Kc is increased. In addition, as shown in Fig. 4.5, ṁa and Po

show a positive correlation for higher values of Ka. A Pareto front trade off between

ṁa and φ will, thus, also indirectly involve Po and Larc.

To observe the trade off between the objectives ṁa and φ, the weights of Ka

and Kc will be varied (both sum to 0.7) to develop a Pareto front, in the ṁa

ṁmax
and

1 − φ

90
objective space hyperplane. Varying the weight Ka ensures that the primary

objective of air mass flow is observed in the Pareto front. As was shown in the

previous section, each new weight setting will correspond to a new most fit individual

fk
best on the Pareto front. The weights and resulting objectives are shown in Table

4.4, while the Pareto front for the ṁa

ṁmax
and 1− φ

90
objectives is shown in Fig. 4.7.
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Table 4.4: Weights Ka & Kc and objectives of fk
best for M∞=2.5 (Kb=Kd=Ke=0.1)

ṁa Po φ Larc

Point Ka Kc (kg/s) (kPa) (◦) (m) d2r̃
dz̃2

1 0.15 0.55 908.43 55.08 1.02 12.75 0.01479

2 0.25 0.45 964.2 54.71 1.02 12.75 0.01479

3 0.35 0.35 1185.7 61.94 4.64 10.39 0.01583

4 0.45 0.25 1284.6 69.39 6.08 8.30 0.05211

5 0.47 0.23 1367.9 70.10 15.29 10.10 0.05063

6 0.50 0.20 1367.9 70.10 15.29 10.10 0.05063

7 0.52 0.18 1684.0 72.72 39.64 13.98 0.23954

8 0.55 0.15 1644.6 70.71 47.19 16.94 0.22755

9 0.58 0.12 1632.3 67.17 51.96 19.10 0.18734

10 0.65 0.05 1566.2 71.47 56.71 19.46 0.12564
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Figure 4.7: Pareto front for Ka and Kc objectives at M∞=2.5 (Kb=Kd=Ke=0.1).
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As Fig. 4.7 indicates, there are two regions in the Pareto front. Initially, the turn

angle objective 1− φ

90
shows high values for low Ka (high Kc). The turn angle φ is to

be minimized (1− φ

90
maximized). As Ka increases, however, the turn angle objective

1 − φ

90
begins to decrease (φ increases). This occurs slowly until the value of 0.47 ≥

Ka ≤ 0.5 (Points 5© & 6©), beyond which there is a sudden change in the Pareto front

shape. This is shown in Table 4.4 as φ increases from 15.29◦ to 39.64◦ between points

6© & 7©. This sudden change is the result of the turn angle becoming competitive

with the arc length Larc, as the turn angle weight Kc is reduced to a critical point

relative to both the Ka and Kd = 0.1 (arc weight) values. The competition between

Larc and φ with an increasing Ka (decreasing Kc) value is illustrated in Fig. 4.8

for the rocket path. (Recall Ain directly affects AEI which is proportional to ṁa in

Eq.(4.2)).

As shown in Fig. 4.8(a) and Fig. 4.8(b) the turn angle is relatively small, which

forces a near triangular profile of the rocket clovers. As Ka is increased, this clover

frontal profile is forced to become narrower to increase ṁa=f(AEI) ≈ f(Ain), which

in turn decreases the arc length Larc (increasing Ain). At Ka = 0.47/0.50, however,

the turn angle begins to increase due to the decreasing weight of Kc, until it rapidly

transitions from Point 6© to Point 7© (corresponding to Ka = 0.5 and Ka = 0.52) in

Fig. 4.8(c) and Fig. 4.8(d). This sudden change in the Pareto front objectives is best

illustrated in a plot of the weights and objectives shown in Fig. 4.9.

From Fig. 4.9(a), the peak values of both ṁa and Po occur around Ka = 0.52,

right after the change in the Pareto front (from Point 6© to 7©). After Ka = 0.52

the mass flow begins to decrease as it begins competing with Larc. The turn angle φ

strongly competes with Larc after Ka = 0.52, as shown by their negative correlation in

Fig. 4.9(b). The two points of interest are at Ka=0.50 ( 6©) & Ka=0.52 ( 7©) as this is

where the critical trade-off or compromise is occurring between ṁa (& correspondingly

Po), Larc and φ. It is also noted that neither of these points are in a choked air mass



89

Larc

φ
A†

in

(a) Point 2© Ka = 0.25

Larc

φ
A†

in

(b) Point 3© Ka = 0.35

Larc

φ
A†

in

(c) Point 6© Ka = 0.50

Larc φ

A†
in

(d) Point 7© Ka = 0.52

Figure 4.8: Rocket path frontal area profiles for varying Ka values at M∞=2.5
(Kb=Kd=Ke=0.1). †Area AEI ≈ f(Ain) is also affected by center body radius
& cowl (shock) shape.

flow condition. The changes in the exchange inlet external geometry between these

two points ( 6© & 7©) are illustrated in the images shown in Fig. 4.10 and Fig. 4.11.

The images in Fig. 4.10 and Fig.4.11 appear to show a larger frontal area at Point

6© (Ka=0.5) than at Point 7© (Ka=0.52). This is true for Ain, but not for AEI as

the inlet area is also affected by the center body and the shape of the cowl shock &

corresponding location of the dividing streamline shown in Fig. 4.6. The area AEI

increases from 16.1 m2 at Point 6© to 19.1 m2 at Point 7©. The improvement in AEI

is due to the indirect affect the rocket area AR has on the area of the leading edge

of the cowl ALE (see Fig. 2.12). As described in subsection 2.3.1, the area at leading

edge of the cowl ALE is controlled by the gene CR and the area A2 ∝ A3 ∝ AR (see
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Figure 4.9: Effect of varying weights (Ka&Kc) on normalized objectives at M∞=2.5
(Kb=Kd=Ke=0.1).

Eq.(2.14) and (2.15)). The gene CR is the same (1.4) for the individuals at both

points 6© and 7©.

Once the turn angle begins to compromise, then the fairing can maintain a nar-

rower frontal profile (at lower radial locations) to maintain frontal area, while allowing
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(a) Front view (b) Isometric view

Figure 4.10: External geometry at Point 6© Ka=0.50, Kc=0.20 at M∞=2.5
(Kb=Kd=Ke=0.1).

(a) Front view (b) Isometric view

Figure 4.11: External geometry at Point 7© Ka=0.52, Kc=0.18 at M∞=2.5
(Kb=Kd=Ke=0.1).

Larc to increase again. A larger value of Larc can result in a larger AR value, which is

the area slice at the rocket exit plane shown in Fig. 2.9. This in turn increases ALE

in Fig. 2.16 via Eq.(2.14), (2.15) and (2.16). The value of the area at the cowl leading

edge ALE affects the shape of the cowl shock wave, and the resulting exchange inlet

area AEI shown in Fig. 4.6. Therefore, larger values of AR can improve the frontal

area AEI between the cowl and center body. This occurs in the geometries between

Point 6© and Point 7©, as AR increases from 1.88m2 to 2.15m2. This benefit of in-

creasing AR, however, is limited by the external geometry creation as the cowl leading
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edge area ALE can only be increased so far, as the outer radius of the rocket path is

fixed (re = 3.1m). Thus, increasing Larc beyond Point 7© (Kc = 0.52) does not show

additional benefit, and results in a decreasing area due to further increasing Larc and

affecting the frontal area of the fairing. This is due to a resulting wider fairing profile

at higher radial locations. Furthermore, in the Pareto front 2D hyperplane of Fig.

4.7 and again in Fig. 4.9, the optimal trade-off occurs at the points which show the

largest improvement on one axis at the expense of another. In this case, in Fig. 4.7,

the two points of interest ( 6© & 7©) in this front correspond to weights Ka = 0.5 and

Ka = 0.52. The difference in frontal area and cowl shape between these two points is

further illustrated in Fig. 4.12.
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Figure 4.12: Side profile for Point 6© (Ka=0.50) & 7© (Ka=0.52) at M∞=2.5
(Kb=Kd=Ke=0.1)

The shape of the cowls shown in Fig. 4.12 affects the cowl shock wave, which in

turn affects the total pressure drop across it. The external geometry of Point 6© shows
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that near the cowl its corresponding shock wave has a sharper turn relative to the

flow direction. The more normal the shock wave is to the flow direction the stronger

the shock wave is, and the larger the total pressure drop across it will be. The optimal

choice based on weight selection is the peak at Ka = 0.52, since it corresponds with

the highest ṁa and Po values, and an increase of 23.1% and 3.73% respectively over

Ka = 0.5. An averaged total pressure comparison is shown in Table 4.5.

Table 4.5: Avg. total pressure (kPa) behind shocks for Point 6© (Ka=0.50) & 7©
(Ka=0.52) at M∞=2.5 (Kb=Kd=Ke=0.1).

after center after fairing after cowl

body shock shocks (Po1) shock (Po)

(kPa) (kPa) (kPa)

Point 6© 117.08 104.36 70.10

Point 7© 117.08 105.89 72.72

% change - +1.46 +3.74

The results in Table 4.5 show that the individual at Point 7© has a higher average

total pressure after the fairing shock (Po1). This higher Po1 value, in addition to its

larger area AEI , gives a higher ṁa via Eq.(4.2). Table 4.5 also shows its average total

pressure recovery objective (Po) is larger than the individual at Point 6©. Therefore,

if the rocket turn angle of φ = 39.64◦ (Table 4.4) is considered to be acceptable, then

the individual at Point 7© is considered to be the optimal individual due to its higher

ṁa and Po objectives. If a lower turn angle φ = 15.29◦ (Table 4.4) is required then the

individual at Point 6© would be considered the optimal individual. For this work the

individual at Point 7© (shown in Fig. 4.11) is selected as the optimal individual for

its higher ṁa and Po objectives (the
d2r̃
dz̃2

objective exists only to weed out geometries

with poor radial contours).

These results demonstrate the behaviour of varying weights, and selection for the
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optimal exchange inlet geometry at a single Mach number (M∞=2.5). However, in

order to provide more information about optimization over the full flight range, two

other Mach numbers will be selected to determine additional optimal geometries.

These three geometries will be compared over the supersonic flight range profile to

evaluate their overall performance at off-design conditions.

4.2.2 Mach 1.5 and 3.5 Results

Using the same procedure as subsection 4.2.1.2, the weights of Ka & Kc are var-

ied (both sum to 0.7) at the freestream Mach number M∞=1.5 and then again at

M∞=3.5. The remaining weights stay at Kb=Kd=Ke=0.1. The results of varying

the weights Ka and Kc at M∞=1.5 are shown in Table 4.6, with the Pareto front in

Fig. 4.13.
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Figure 4.13: Pareto front for Ka and Kc objectives at M∞=1.5 (Kb=Kd=Ke=0.1).
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Table 4.6: Weights Ka & Kc and objectives of fk
best for M∞=1.5 (Kb=Kd=Ke=0.1)

ṁa Po φ Larc

Point Ka Kc (kg/s) (kPa) (◦) (m) d2r̃
dz̃2

1a 0.25 0.45 1826.1 65.70 2.39 13.78 0.01464

2a 0.35 0.35 1848.5 65.75 2.48 13.44 0.01462

3a 0.45 0.25 1973.0 65.75 4.41 13.77 0.01375

4a 0.5 0.2 1975.3 66.01 4.41 12.41 0.01462

5a 0.52 0.18 1982.5 65.82 6.68 13.42 0.01425

6a 0.55 0.15 1996.6 65.83 10.08 13.76 0.01430

7a 0.58 0.12 2143.0 66.02 35.20 18.73 0.03484

8a 0.6 0.1 2142.6 66.02 36.68 19.10 0.03226

9a 0.62 0.08 2142.6 66.02 36.68 19.10 0.03226

10a 0.65 0.05 2075.5 65.90 47.97 19.46 0.01827

11a 0.68 0.02 2130.5 66.26 47.13 19.46 0.04748

12a 0.7 0 2180.2 66.96 66.6 18.73 0.05143

As with the results from the previous section there is a trade-off point where the

turn angle jumps from φ = 10.08◦ at Point 6a© (Ka = 0.55) to φ = 35.2◦ at Point 7a©

(Ka = 0.58) in Fig. 4.13. The air mass flow increases from 1996.6 kg/s to 2143 kg/s

respectively. This is illustrated in the weight vs objective plots for M∞=1.5 shown in

Fig. 4.14.

The Fig. 4.14(a) shows a similar but less pronounced profile to that which was

observed for ṁa and Po shown in Fig. 4.9(a). The normalized total pressure recovery

shows little variation over the range, however, the normalized air mass flow shows

a jump between Ka = 0.55 (Kc = 0.15) and Ka = 0.58 (Kc = 0.12). The increase

in ṁa comes at the expense of φ, as indicated by its drop between Ka = 0.55 and

Ka = 0.58 in Fig. 4.14(b). This transition also occurs at the same point where φ
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(a) Air mass flow and total pressure recovery objectives.
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(b) Turn angle and arc length objectives.

Figure 4.14: Effect of varying weights (Ka & Kc) on normalized objectives at
M∞=1.5 (Kb=Kd=Ke=0.1).

and Larc also begin to become competitive with each other as shown in Fig. 4.14(b)

. As with Fig. 4.9, increasing Ka beyond 0.58 does not provide additional gain in

ṁa, rather it serves to reduce the value of Kc so that φ competes mainly with Larc.

The exception to this is at Ka=0.7 in Fig. 4.14 (Point 12a© in Table 4.6), where
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the mass flow increases to 2180.2 ks/s or 1.74% higher than the value at Ka=0.58

(Point 7a© in Table 4.6). This however comes at a significant increase in the turn

angle from φ = 35.2◦ at Ka=0.58 to φ = 66.6◦ at Ka=0.7, or an 89% increase. This

represents a poor trade-off (at Ka=0.7) between ṁa and φ, as excessively large turn

angles can lead to excessive circumferential expansion and shock waves in the rocket

path as discussed in subsection 2.3.2.1. The selection of the most fit individual for

M∞=1.5, therefore, is selected to be at the weight setting of Ka=0.58 as it provides

a relatively large value of ṁa, while not excessively compromising the turn angle φ.

This individual is shown in Fig. 4.15.

(a) Front view (b) Isometric view

Figure 4.15: External geometry at Point 7a© Ka=0.58, Kc=0.12 at M∞=1.5
(Kb=Kd=Ke=0.1).

The optimal individual (geometry) at M∞=1.5 in Fig. 4.15 shows a much wider

fairing profile than the optimal individual atM∞=2.5. This results in a much stronger

fairing shock in the M∞=1.5 optimal individual as indicated in Table 4.7.

The average local Mach number M1 after the fairing shock is subsonic, indicating

the fairing shock has a large region where the bow shock is more normal to the

flow, refer to Fig. 1.8. The subsonic flow then does not generate a cowl shock

and subsequently no further decrease in the total pressure. The flow through this

individual geometry is also choked, meaning the flow at A2 (refer to Fig. 4.6) is sonic
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Table 4.7: Avg. total pressure and local Mach number of fk
best at Ka=0.58 for

M∞=1.5 (Kb=Kd=Ke=0.1)

After center After fairing After cowl

body shock shock (Po1, M1) (Po, M2)

Total pressure (kPa) 69.90 66.02 66.02

Local (M) 1.47 0.92 0.92

(M=1) and, therefore, calculated by Eq. (4.3) using Po which is the same as Po1.

Since there is no cowl shock, there is no further decrease in total pressure after the

fairing as isentropic flow is assumed between shocks. Thus, at this freestream Mach

number (M∞=1.5) having a strong fairing shock appears to be beneficial as it causes

subsonic flow into the cowl and a maximum flow which is choked.

With an optimal individual selected for M∞=1.5 (Fig. 4.15) and at M∞=2.5

(Fig. 4.11), the same proceedure is repeated at M∞=3.5. The weights Ka and Kc are

varied, while the remaining weights stay at Kb=Kd=Ke=0.1. The results of varying

the weights Ka and Kc at M∞=3.5 are shown in Table 4.8 and Fig. 4.16.

As Table 4.8 and Fig. 4.16 show, there are two jumps in air mass flow and the

corresponding turn angle. The first occurs between Point 5b© (Ka=0.5) and Points

6b©/ 7b© (Ka=0.52/0.55). Between these points, the air mass flow increases from 1138.5

kg/s to 1272.5 kg/s, while the turn angle increases from φ = 6.2◦ to φ = 36.61◦. The

total pressure recovery also sees a corresponding jump from 68.46 kPa to 82.2 kPa.

The turn angle φ = 36.61◦ is also in a similar range to the geometries selected at the

other two Mach numbers. This jump in the objective values can also be seen in Fig.

4.17.

Both Table 4.8 and Fig. 4.17 also show there is a second jump in ṁa and φ,

however, from Points 6b©/ 7b© (Ka=0.52/0.55) to Point 8b© (Ka=0.58). This second

jump shows an increase in ṁa to 1354.6 kg/s or 6.5%, while the turn angle jumps
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Table 4.8: Weights Ka & Kc and objectives of fk
best for M∞=3.5 (Kb=Kd=Ke=0.1)

ṁa Po φ Larc

Point Ka Kc (kg/s) (kPa) (◦) (m) d2r̃
dz̃2

1b 0.15 0.55 1054.9 67.19 1.45 13.10 0.01458

2b 0.25 0.45 961.84 64.32 1.18 14.11 0.01542

3b 0.35 0.35 961.84 64.32 1.18 14.11 0.01542

4b 0.45 0.25 1069.0 68.68 2.48 13.44 0.01462

5b 0.5 0.2 1138.5 68.46 6.20 12.73 0.01468

6b 0.52 0.18 1272.5 82.20 36.61 18.73 0.01657

7b 0.55 0.15 1272.5 82.20 36.61 18.73 0.01657

8b 0.58 0.12 1354.6 79.06 66.65 19.46 0.04539

9b 0.65 0.05 1354.6 79.06 66.65 19.46 0.04539

10b 0.7 0 1347.0 78.94 66.65 19.46 0.04539
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Figure 4.16: Pareto front for Ka and Kc objectives at M∞=3.5 (Kb=Kd=Ke=0.1).
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(a) Air mass flow and total pressure recovery objectives.
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(b) Turn angle and arc length objectives.

Figure 4.17: Effect of varying weights (Ka & Kc) on normalized objectives at
M∞=3.5 (Kb=Kd=Ke=0.1).

to φ = 66.65◦ or an 82% increase. As with the M∞=1.5 case, this represents a poor

trade-off as the turn angle is significantly increased for a minimal increase in air mass

flow. In addition, the total pressure between Points 6b©/ 7b© (Ka=0.52/0.55) and Point

8b© (Ka=0.58) actually shows a slight decrease from 82.2 kPa to 79.06 kPa. Therefore,
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the individual at Points 6b©/ 7b© (Ka=0.52/0.55) is selected as the most optimal. This

individual is shown in Fig. 4.18.

(a) Front view (b) Isometric view

Figure 4.18: External geometry at Point 7b© Ka=0.55, Kc=0.15 at M∞=3.5
(Kb=Kd=Ke=0.1).

Figure 4.18 shows that the optimal individual at M∞=3.5 again shows a wider

fairing profile than the optimal individual at M∞=2.5. Unlike the individual at

M∞=1.5, however, this individual at M∞=3.5 is not in a choked condition and the

flow after the fairing remains supersonic at M1=1.52.

In order to accurately compare all three geometries, they will need to be investi-

gated at similar Mach numbers in their off-design conditions. In addition, each one

of these optimal geometries (M=1.5, 2.5 & 3.5) is a fixed geometry, however, by ex-

amining their off-design performance the benefit of using a variable geometry can be

examined. This is the focus of the next section.

4.3 Variable Geometry and Off-Design Perfor-

mance Comparison

A side profile wire frame cross section of each of the three optimal selected geometries

from Fig. 4.11(M∞=2.5), 4.15 (M∞=1.5) & 4.18 (M∞=3.5) is shown in Fig. 4.19.



102

(a) M∞ = 1.5 (Ka = 0.58) (b) M∞ = 2.5 (Ka = 0.52)

(c) M∞ = 3.5 (Ka = 0.55)

Figure 4.19: Cross sections of optimized designs for M∞ = 1.5, 2.5 & 3.5.

Each of the cross sections in Fig. 4.19 show a general trend of increasing center

body (and cowl) thickness. The question of which design is best, however, will vary

with freestream Mach number since each one is only optimized at a single flight Mach

number. Therefore, the overall flight performance of each design must be viewed over

the supersonic flight range. This is illustrated for both the air mass flow and total

pressure recovery objectives in Fig. 4.20 and Fig. 4.21 respectively.

The results of Fig. 4.20 and Fig. 4.21 show that even though the M∞=1.5 and

M∞ = 3.5 optimal geometry designs have better values of ṁa

ṁmax
near their respec-

tive Mach numbers, those improvements rapidly diminish over the flight range. The

optimal design at M∞=1.5 shows higher peak ṁa (11% @ M∞=1.9 ) and Po (14%

@ M∞=1.9) objectives vs the M∞=2.5 optimal design at freestream Mach numbers

M∞ ≤ 2.0. The optimal design at M∞=3.5 shows higher peak ṁa (12% @ M∞=3.7

) and Po (19% @ M∞=3.7) objectives vs the M∞=2.5 optimal design at freestream

Mach number ranges of 3.2 ≤ M∞ ≤ 4 and 3.5 ≤ M∞ ≤ 4 respectively.

Both the M∞=1.5 optimal design and M∞=2.5 optimal design experience choked

flow at M∞ ≤ 2.0 (the M∞=3.5 could not be evaluated below M∞=2.3 due the
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ṁmax

Figure 4.20: Performance of different geometries over flight range for ṁa .
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Figure 4.21: Performance of different geometries over flight range for Po.

assumed shock structure of the estimation code). However, the M∞=2.5 optimal

design has a weaker fairing shock and therefore a cowl shock at the off-design condition

M∞=1.5 vs the M∞=1.5 optimal design. As a result, the flow in the M∞=2.5 optimal

design passes through two bow shocks (fairing & cowl), whereas in the M∞=1.5
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optimal design the flow only passes through the fairing shock as the cowl shock does

not exist. This results in lower total pressure objective for the M∞=2.5 optimal

design of Po=63.81 kPa at the off-design condition M∞=1.5, vs the M∞=1.5 optimal

design from Table 4.7 Po=66.02 kPa (recall that for choked flow Eq.(4.3) is used to

calculate ṁa using the total pressure after the cowl Po). Therefore, the M∞=2.5

optimal design also has a lower ṁa than the M∞=1.5 optimal design at this off-

design condition (M∞=1.5). After a freestream Mach number of M∞=2, however,

the flow is no longer choked and the fairing shock in the M∞=1.5 optimal design can

no longer reduce the flow to subsonic speeds. Therefore, a cowl shock forms as the

freestream Mach number increases, resulting in a rapid drop off in both ṁa and Po

for the M∞=1.5 optimal design, as seen in both Fig. 4.20 and Fig. 4.21.

At the freestream Mach number of M∞=3.5, neither the M∞=3.5 optimal design

or the M∞=2.5 optimal design is in a choked condition (the M∞=1.5 optimal design

could not be evaluated above M∞=2.5 due the cowl shock passing beyond the exit

Plane 3). A comparison of their Mach numbers and total pressure at the freestream

Mach number of M∞=3.5 is shown in Table 4.9.

Table 4.9: Avg. total pressure and local Mach number of M∞=2.5 (off-design) and
M∞=3.5 optimal designs at freestream M∞=3.5

After center After fairing After cowl

body shock shock (Po1, M1) (Po, M2)

Total pressure (kPa)

M∞=2.5 opt 265 220.3 78.69

M∞=3.5 opt 265 152.1 82.20

Local (M)

M∞=2.5 opt 3.22 2.82 1.00

M∞=3.5 opt 3.21 2.51 1.18
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As shown in Table 4.9 the fairing shock for the M∞=3.5 optimal design is much

stronger than for the M∞=2.5 optimal design (off-design condition) at the freestream

M∞=3.5. This is indicated by the differences in the total pressure and Mach number

after the fairings and would be expected given the wider fairing profile of the M∞=3.5

optimal design. The relative change in Mach number across the fairing and cowl

shocks for the M∞=3.5 optimal design are -22% and -53% respectively, whereas for

the M∞=2.5 optimal design they are -12% and -65% respectively. The weaker fairing

shock of the M∞=2.5 optimal design, however, results in a much stronger cowl shock

as indicated by the local average Mach number drop of 2.82 after the fairing to 1.0

after the cowl. The result is a lower Po objective of 78.69 kPa for theM∞=2.5 optimal

design vs 82.2 kPa for the M∞=3.5 optimal design. It would appear that at higher

Mach numbers, having a more even deceleration of the flow through the fairing and

cowl shocks is advantageous, rather than weakening one shock and strengthening

another.

For a fixed geometry, the optimal design at M∞ = 2.5 shows a more consistent

performance over the range considered. It has superior performance at 2.0 ≤ M∞ ≤

3.2 flight speeds and only under performs in ṁa by 11-12% and 14-19% in Po over

a small range of both high and low Mach numbers (these values are larger than the

simulation errors presented in Table 2.2). A variable geometry would have a ṁa

ṁmax

and Po

Po∞
curve that follows the highest curves in Fig. 4.20 and Fig. 4.21, however,

the added complexity of achieving such a design would not be worth the relatively

small gains over a small flight range.

Based on the off design conditions of Fig. 4.20 and Fig. 4.21, the optimal design

at M∞ = 2.5 would appear to be a better choice for a fixed geometry inlet. These

results are based on a particular design choice to maximize air mass flow ṁa and total

pressure recovery Po, while not selecting designs with excessively large turn angles

φ. The final design choice for a fixed geometry is the optimal design at M∞=2.5
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(Ka=0.52), shown in Fig. 4.22.

(a) Front view (b) Isometric view

(c) Side view (d) Wire frame section

Figure 4.22: Optimal individual for fixed geometry design (selected from M∞=2.5
design W=[0.52,0.18,0.1,0.1,0.1]).



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

The focus of this work is the optimization of a novel rocket based combined cycle

(RBCC) inlet over the supersonic flight regime. To facilitate the selection of an

optimal design geometry, differential evolution (DE) is used to optimize the design by

treating each geometry as an individual in a population. The DE algorithm requires

three input parameters of population size (m), differential weight (F ) and crossover

probability (Cr) to define the population size and determine how it evolves using

reproduction and selection. Therefore, using the rocket path as a test case, a method

of tuning DE based on how often it finds the best possible individual was established.

The result of tuning the parameters shows that larger population sizes improve

performance, as they allowed more individuals to be evaluated with each generation.

However, population size could not be arbitrarily increased as it would eventually

result in slower performance. The differential weight was shown to have little effect

over the range tested, thus, a value close to the recommended default is used. The

crossover probability shows improving performance with lower values, which results

in individuals crossing over fewer genes during the reproduction process. This leads

to a larger population peak diversity and a slower decline diversity as measured by

107
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the variance in the fitness values. This slows the rate of convergence of the algorithm,

thus, reducing the likelyhood of premature convergence. The tuning for the exchange

inlet also shows no distant local optima, thereby, eliminating the risk of an alternate

(local) optimum with a radically different geometry.

Since there are multiple objectives, the Pareto front for this work is multi-

dimensional. Therefore, only two weights are varied at time to view the Pareto

front in a two-dimension hyperplane. Using the Pareto front hyperplane, and the

relationship between weights and resulting objectives, an optimal individual can be

found for a given Mach number. This individual represents a fixed geometry, which

is only optimized at a single flight speed. To observe how this optimal geometry

changes as Mach number increases, three optimal fixed geometries are found using

flight speeds of M∞=1.5, M∞=2.5 and M∞=3.5. At most flight speeds, each of the

three exchange inlet components (center body, fairings & cowl) generate shock waves,

which affect the air mass flow and total pressure recovery objectives.

The results of the fixed geometries show that at lower Mach numbers (M∞ <2.3)

the air flow into the inlet becomes choked. In addition, the optimal geometry at

M∞=1.5 shows having a wider fairing profile results in a strong (normal) fairing shock,

which eliminates the cowl shock. This results in 11% and 14% higher performance

in the ṁa and Po objectives respectively vs the M∞=2.5 optimal design at the same

flight speed (M∞=1.5). The M∞=2.5 optimal design shows a weaker fairing shock

and, therefore, results in a cowl shock at the same flight speed (M∞=1.5) in its

off-design condition. The additional cowl shock, thereby, reduces its performance.

The M∞=3.5 optimal design also shows a wider fairing profile was beneficial at

higher Mach numbers (M∞ >3.2). The M∞=2.5 optimal design is also compared

at an off-design condition (M∞=3.5) to the M∞=3.5 optimal design. The results

show that the M∞=3.5 optimal design has better performance (12% in ṁa and 19%

in Po), as the stronger fairing shock, stemming from its wider profile, reduces the
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subsequent cowl shock strength. The M∞=2.5 optimal design had the narrowest

fairing profile, which results in a weaker fairing shock at the off-design condition of

M∞=3.5, however, this results in a stronger cowl shock, which reduces its performance

vs the M∞=3.5 optimal design at Mach numbers > 3.2. A narrower fairing profile

may appear desirable, due to its resulting weaker shock wave; however, this only

serves to increase the strength of the cowl shock. This results in varying performance

based on the freestream Mach number. Therefore, this indicates that there is a careful

balance between the strength of the fairing and cowl shock waves (the center body

oblique shocks had only minimal effects).

The M∞=2.5 optimal design shows the best overall performance for a fixed

geometry over the supersonic range tested. It has superior performance between

2.0 ≤ M∞ ≤ 3.2 and although it did not perform as well as the other two fixed ge-

ometries at high and low Mach numbers, it did not show a rapid fall off in objectives

outside of its optimal range. This rapid fall off is seen for the high and low Mach

number optimal designs. A variable geometry could have maximum performance at

all Mach numbers, however, the additional complexity of moving parts and added

weight would not justify such minimal increase in performance over such a narrow

range of flight speeds. Therefore, a fixed geometry based on the M∞=2.5 optimal

design is selected as the optimal geometry for the supersonic range.

5.2 Recommendations

Recommendations for future work include the determination of constraints on the

objectives, particularly on the turn angle φ, and CFD validation of the optimal ge-

ometries presented. The selection of the optimal design for any flight speed is based

on a trade-off involving the design objectives, mainly ṁa and the turn angle φ. As

shown in the selection of the M∞=2.5 optimal design, the turn angle of φ = 39.64◦
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is selected as an acceptable trade-off. However, further work needs to be conducted

on the rocket path to determine constraints on the turn angle objective, to determine

if this angle is indeed acceptable. Similarly, minimum values for air mass flow ṁa,

total pressure recovery Po, and arc length Larc should to be determined. This will

eliminate designs that do not fall within the constraints. By having a narrower range

of designs, a higher resolution of genes and weights can be explored without adding

excessive computational time. In addition, each of the optimal designs presented in

this work should be validated using CFD analysis to ensure that the results from the

supersonic estimation method are still valid for these very distinct geometries.

Future recommendations also include comparing the selected supersonic optimal

design with the previous subsonic optimal designs to further evaluate their off-design

performance. If the off-design conditions show radical differences in the performance

objectives, then a future optimization should be conducted in the transonic range,

to evaluate if there is an optimal compromise between the two designs. The external

geometry creation results in a vertical leading edge for the fairing. This design is

based on a subsonic model, where analysis showed that a sloped leading edge could

result in air passing around the inlet rather than into it. However, future work should

be done to investigate alternate configurations on the leading edge of the fairing at

supersonic speeds. This may include sloping the leading edge of the fairing such that

it blends into the center body.

Small scale wind tunnel testing could be done on the external geometry using 3D

printed models. For full scale testing, a feasibility study should also be conducted into

potential methods of how this geometry could be created with an internal rocket path.

This study would need to address both manufacturing techniques, as well as materials

that are suitable for both the structural and thermal limits of the vehicle. These limits

were considered for the external geometry when selecting the flight trajectory using

a constant dynamic pressure of 30 kPa.
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