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Abstract

A theoretical analysis of a variable area ejector is presented. The flowfield is solved

using a steady quasi-one-dimensional, inviscid control volume formulation for cases

of both complete and incomplete mixing while combustion effects are included with

an equilibrium calculation. An assumed three parameter analytical wall pressure

distribution is used in all cases. Under fully mixed-conditions, the model estimated

compression ratios that were 40% higher than the computational values due to ne-

glecting turbulence and viscosity. This cause was later confirmed with a partially

mixed calculation which also predicted a mixing length of 9 diameters. Under SMC

conditions, improved compression was achieved at an equivalence ratio of 2.5, while

a decrease in performance occurred at Stoichiometric conditions. The oxidation of

carbon monoxide occurred for the entire equivalence ratio range and was responsible

for the majority of the heat release in the ejector. Thrust augmentation was found

to increase with area constriction up to a limit, with the Stoichiometric case yielding

values as high as 12%.
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Chapter 1

Introduction

1.1 Background

Currently the only available means of orbital insertion is by using chemical rocket

engines. Although rocket propulsion offers a high thrust-to-weight ratio, it suffers

from a relatively low specific impulse (on the order of 300s), as well as the burden of

having to carry a large quantity of on-board oxidizer. These shortcomings collectively

make launching payloads into space a very expensive endeavour with costs on the

order of $22000/kg of payload. The desire to bring down these costs served as the

impetus behind the Highly Reusable Space Transportation Study released by NASA in

1997. The goal of the study was to identify technologies which would reduce the costs

of space access by a significant amount. Among the candidates which showed promise

of achieving the cost reduction goal were various types of air-breathing Combined-

Cycle Propulsion (CCP) systems. A combined cycle engine essentially integrates

different propulsive cycles into a single engine/flowpath architecture. One of the

variants of such a system is the Rocket-Based Combined-Cycle Engine (RBCC) which

has at its core a chemical rocket, required for space flight and static thrust. An

example of a generic RBCC engine is shown in Figure 1.1.
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Figure 1.1: Typical RBCC Engine

An RBCC engine typically operates in four flight modes, namely the rocket ejector

mode, the ramjet mode, the scramjet mode and finally a pure rocket mode. The low

speed rocket ejector mode operates from static conditions up into the low supersonic

Mach number range (M = 3). In this mode, the pumping action of the rocket

(primary) stream entrains and compresses atmospheric air through a turbulent mixing

process. The increased total pressure of the entrained air coupled with a higher mass

flow rate through the engine acts to increase the thrust and specific impulse of the

engine at these speeds. Further thrust augmentation in the ejector mode is achieved

by combusting additional fuel. Around M = 3 the RBCC engine transitions into

ramjet mode. In this case, additional compression is achieved through the inlet shock

structure, while the combustion of the incoming atmospheric air occurs subsonically.

When the flight Mach number becomes too high to sustain subsonic combustion, the

engine transitions into scramjet mode (around M = 6), in which case the rocket is

usually shut off. Finally, when the altitude is high enough, at which point the flight

Mach number is around M = 12 − 15, the air inlet of the RBCC engine is usually

closed and the engine transitions to pure rocket operation. This mode is then used

for the remainder of the vehicles ascent into orbit.

There are several reasons why an RBCC engine outperforms rockets. First, the

amount of on-board oxidizer is significantly reduced due to the entrainment of atmo-

2
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Figure 1.2: Specific Impulse of Various Propulsive Cycles [17]

spheric air, which could potentially decrease the vehicle’s propellant mass fraction by

20% [17]. In their respective operating regimes, each of the engine’s modes has a much

higher specific impulse than the rocket (see Figure 1.2) and thus the specific impulse

of the RBCC engine over the entire trajectory is increased substantially. Further ben-

efits are attained from the high level of integration between the engine’s operating

cycles. Examples of these include using the rocket to entrain air in the ejector mode

as well as a fuel injector in the ramjet mode. Furthermore, the RBCC engine duct

can be used as a high expansion nozzle during rocket only operation [17]. All of these

benefits make the RBCC engine an attractive alternative to rocket propulsion, as well

as the focus of a considerable amount of research and development work.

3



Chapter 1. Introduction

1.2 Literature Review

To date, this research has spawned numerous RBCC engine concepts all at different

stages of development. Most of these emerged from an industry-based NASA funded

study in the mid 1960’s, which evaluated 36 potential engine designs to replace the

multistage rocket propulsion system used in the space shuttle [26]. Twelve concepts,

including the RBCC engine were identified as the most promising and were thus

funded for further research [17]. The most promising ones were variants of an Ejector

Scramjet (ESJ) with different subsystems installed to further improve performance.

One of the configurations is Marquardt’s Supercharged Ejector Scramjet (SESJ) [25].

The SESJ was designed to be used for future high speed space transportation sys-

tems and has been studied by Marquardt both conceptually and experimentally. The

engine uses a dual concentric annular nozzle embedded inside an axisymmetric flow-

path. The engine also houses an integrated fan stage which boosts the performance of

the low-speed airbreathing modes (hence the term “supercharged”). Another relative

of the ESJ is Aerojet’s Strutjet engine [11]. This particular engine has a three-

dimensional asymmetric flowpath with embedded streamwise struts. The struts not

only enhance mixing and compression within the engine but are also used to efficiently

house various engine components such as the primary rockets and fuel injectors.

At low speeds (M < 1), the performance of the RBCC engine depends on the

operation of the rocket ejector, which tends to produce the lowest levels of thrust

augmentation as compared to the high speed modes. At these speeds, the perfor-

mance of the ejector depends on three fundamental processes, namely the entrain-

ment of atmospheric air, mixing of the two streams and finally the combustion of

the rocket/air mixture within the engine duct. The entrainment of atmospheric air,

for example, is required not only to increase the mass flow rate through the engine,

but also to supply the fresh oxygen required for combustion. The entrained air must

4
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then fully mix with the rocket exhaust to achieve high compression as well as a uni-

form fuel/oxidizer distribution. Since longer ducts may be required to achieve a fully

mixed flow, poor mixing can increase engine weight, reduce ejector compression and

combustion efficiency thereby offsetting any performance gains.

The mixing kinetics inside an ejector can be studied in isolation by implementing

so called cold flow experiments, where the primary rocket stream is replaced with

either air or nitrogen at room temperature. This approach has the advantage of

decoupling the mixing from the combustion, in an experimental sense, but lacks the

realistic temperatures that are generally encountered in real ejectors. Despite this,

there have been many studies, with the earliest dating back to the mid 1950’s with

the experimental/theoretical work of Fabri & Paulon [30]. The purpose of their

experiments was to characterize the operation of an ejector over a wide range of

operating conditions. They were also among the first to identify the various operating

regimes of the ejector, such as the supersonic regime (sometimes called a “Fabri

Choke” [67]). In this regime, the high-pressure primary stream interacts with the

entrained air flow and creates an aerodynamic throat which can choke the air stream.

More recent experimental studies have been aimed at reducing ejector mixing

lengths through various means. For example, Kitamura et al. [44, 45] focused on the

geometry of the ejector, and studied the performance of various mixing tube cross-

sections. In their work, pressure recovery lengths were used to quantify the mixing

performance of axisymmetric, as well as straight and diverging rectangular geometries.

The studies showed that the pressure recovery lengths of axisymmetric ducts were

50% shorter than the rectangular ones, and that the divergent mixing tubes suffered

higher total pressure losses. Lineberry & Landrum [49], went a different route and

used a Strutjet-type experimental set-up to assess the use of multiple rocket nozzles

in an ejector. Their results showed that higher rocket chamber pressures tended to

increase the ejector mixing length, which was strongly dependent on the mass flow

5
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rate of the primary stream.

To study ejectors under more realistic operating conditions, cold flow experiments

can be modified by heating the primary stream. This is done to experimentally

quantify the effects that high temperatures have on ejector performance. Although

basic thermodynamics can show that high temperatures increase impact losses in fully

mixed ejectors, its effects on the turbulent mixing process require detailed experimen-

tal studies. One such study was carried out by Quinn [61], who demonstrated that the

effect of high temperatures varied depending on the extent of mixing in the ejector.

His data showed that a hot primary stream has a slightly favourable effect in short,

partially mixed ejectors (L/D ≤ 6) due to the higher viscosity. In longer ejectors, on

the other hand, where the flows are fully mixed, higher temperatures were shown to

decrease air entrainment.

There have also been attempts to improve the mixing in the ejector by modifying

the primary flow nozzle. Several concepts have been suggested, such as the use of

so-called hypermixing nozzles [8] or forced mixer lobes [59]. Both methods derive

from the concept of inducing large scale axial vorticity within the ejector to aid

in mixing. This type of “convective” mixing is more efficient than shear mixing

according to Presz et. al. [59], and can result in nearly complete mixing. The use of

such mixing augmentation was originally intended to increase the thrust of ejectors

used on VSTOL aircraft, while forced mixer lobes have been used in gas turbine

engines. Subsonic studies were carried out by various researchers [8,31,60] to evaluate

different hypermixing nozzle arrangements. It was shown that the nozzles significantly

enhanced mixing of the two streams, and high levels of thrust augmentation (≈ 2)

can be achieved [60]. It was later shown by Tilllman et al. [66] that the same types of

mixer lobes used by Presz et al. [59] in their subsonic experiments, work equally well

for supersonic primary streams. In fact, his results showed that improved pumping

and near ideal mixing can be achieved without flow separation.

6
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To boost the thrust of ejectors, extra fuel is generally injected into the engine

to take advantage of the fresh oxygen that is being entrained. The extra fuel can

be added by either running the rocket fuel rich and operating the ejector in the

simultaneous mixing and combustion (SMC) scheme, or by allowing both streams

to mix first and injecting extra fuel further downstream and thereby operating in

diffusion and afterburning (DAB) mode. Thermodynamically, DAB tends to tends

to have a higher specific impulse than SMC since the heat addition occurs at a

much higher pressure [16]. The SMC mode, on the other hand is attractive because it

requires a shorter duct and thus a potentially lighter engine. The choice of which mode

to use in an ejector is clearly not an easy one, since either mode has its own advantages

and the performance of each is strongly dependent on how its implemented.

The performance of a choked ejector running under SMC conditions was inves-

tigated by Masuya et al. [51]. In their work, wall pressure measurements combined

with a one-dimensional theoretical analysis were used to deduce the axial distribu-

tion of flow properties. Their results showed that better mixing was achieved for high

O/F ratios as well as for longer combustors. Other studies in the area have been

carried out with an emphasis on better understanding the parameters which have

the greatest influence on the performance of the SMC mode [41, 48]. For example,

Li & Liu [48] showed that the combustor geometry and the rocket chamber pressure

(po
r) both affect ejector thrust augmentation, with geometric effects being the most

important. The authors also noted that the overall ejector equivalence ratio (taking

into account all of the O2 in the ejector) should not exceed unity, otherwise the thrust

augmentation would actually decrease.

Many ejector related studies, including those studying the effects of combustion

(both DAB & SMC) have come from Pennsylvania State University (PSU). In the

work of Lehman et al. [46, 47], Raman Spectroscopy, along with other measurement

techniques were used to investigate the mixing characteristics of an ejector in both the

7
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SMC and DAB modes. Their measurements showed that in the SMC mode, mixing

was finished earlier in the fuel rich case as compared to stoichiometric [46] and that

the DAB mode tended to mix faster [47]. The same test apparatus was later used by

Cramer et al. [14] to examine the effect of rocket thruster configuration in SMC mode.

The dual thruster case was found to outperform the single thruster arrangement and

was shown to entrain more air, mix faster and produce a higher pressure rise.

Given the increasing computational power of modern computers, many CFD-based

ejector studies have been published to date. Work in this area generally involves

the solution of the averaged (Reynolds or Favre), 2-D, Multi-Species Navier-Stokes

Equations coupled with eddy viscosity-based turbulence models. Although combus-

tion effects are usually considered, several studies investigated the effects of mixing

without the inclusion of combustion kinetics. One of these is the work of Etele [26]

which explored the effects of rocket placement and mixing duct area constriction on

the performance of an ejector. His simulations showed that rockets placed around the

annulus of the mixing duct promote the fastest mixing and that area constriction can

improve ejector compression up to 30% [27]. In contrast, Daines & Bulman [15] used

the unsteady oscillation of the primary jet flow direction to promote better mixing.

Their results showed that using square wave switching increased the time-averaged

thrust by 24% due mainly to the cyclic expulsion of high pressure, high velocity

pockets of gas.

Several CFD-based studies including the effects of combustion have also been

carried out. Simulations of this nature generally employ fairly simple combustion

models (9 species finite rate O2/H2 models are common) to reduce computational

costs. Daines & Russel [16], for instance, used a single step global H2-O2 mechanism

to qualitatively evaluate the performance of an ejector in both SMC and DAB. They

found that the performance in SMC was generally poor and caused by combustion

occurring too early in the mixing duct which tended to decrease the mixing rate. To

8
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improve performance, modifications to the SMC mode have been suggested, such as

Shielded Primary Injection (SPI) [63]. In this method, fuel is injected into the primary

stream in a manner that allows the rocket exhaust to shield it from the incoming air

until significant mixing has occurred. Computational results have shown that SPI

can outperform SMC by as much as 50% (based on mixing duct pressures) [63] while

maintaining a relatively short mixing duct (similar to SMC).

Due to the inherent complexity of such flowfields, most CFD codes used require

extensive validation [26] and are rarely presented without supporting experimental

data [50]. The reasons have to do with the predictive capability of modern CFD

software, which is still not at a point where the results they produce can be fully

trusted on their own. Despite the inherent uncertainties, CFD tools are still widely

used, and have in fact been utilized to help explain experimental findings [69] by

supplementing the available data. In addition, the flexibility of current computational

tools make them perfect candidates for use in neural-network based optimization

codes, where the CFD simulation results can be used to generate the required response

surface [40].

The 2-D Navier-Stokes codes that are used to generate the detailed flowfields seen

in most of the published literature are very time consuming to compute and may

suffer from convergence problems. To reduce computing time while still retaining

the essential physics of the flow field, a number of quasi-one-dimensional differential

models have been proposed for ejectors. An interesting approach was taken by Han

et al. [38] who used a differential control volume for the secondary stream, while

modeling the effects of the primary stream as source terms. The formulation is

quite elegant but can only simulate a fully mixed ejector. This is because in the

solution procedure the primary flow source terms are equally divided between all of

the streamwise control volumes. Thus even though good agreement with experimental

results was obtained [38], the model cannot actually compute a mixing length.

9
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Another such model has been proposed by Yungster & Trefny [70] specifically for

NASA’s Independent Ramjet Stream (IRS) Cycle. In the IRS cycle, the secondary

(air) stream is pre-fueled far upstream of the rocket resulting in a pre-mixed fuel/air

mixture. The rocket is then used only as a source of ignition for the secondary stream,

and thus mixing between the flows is not required for thrust augmentation. This par-

ticular cycle has actually been the subject of several computational studies [9,65], such

as tailoring the fuel injection scheme to alter the location of the thermal throat [65],

(which was shown to be feasible for a standard ejector [31]). The differential model

of Yungster & Trefny [70] uses separate control volumes for the primary and sec-

ondary streams, while neglecting the shear layer since no mixing is assumed to occur.

The streamline which divides the two control volumes is calculated with an empirical

pressure-based equation (i.e., Astream ∝ (pp−ps)). In addition, chemical reactions are

modeled using a heat release function specified between two assumed points which

signify the start and end of the heat release. This model agreed very well with ana-

lytical benchmark tests [70] carried out by the authors (i.e., Rayleigh flow), but it has

not yet been compared to Navier-Stokes based simulations or experimental results.

Analyses of a more fundamental nature, in the form of the basic integral conser-

vation laws have also been applied to ejectors. The goal in this case is to establish

fundamental operating trends as well as to identify the dimensionless parameters

which govern ejector performance (α, ζ, θ, etc.). Such treatments generally employ

the Inviscid, quasi-one-dimensional conservation laws (mass, momentum, energy) ap-

plied to a straight wall mixing duct, subject to specific assumptions about how the

two streams initially interact. The majority of the theoretical treatments on ejec-

tors further assume that the two streams fully mix, which essentially represents the

ideal case, or the maximum performance that a given ejector configuration can ob-

tain. Analysis under non-ideal, partially-mixed conditions are limited to the work of

Papamoschou [57]. In his analysis, conservation laws are applied separately to each

10



Chapter 1. Introduction

stream (primary & secondary) while the boundary between them is calculated assum-

ing pressure continuity (pp = ps). Effects of mixing were included in the equations

as a shear stress calculated by using empirical relations. Although the approach is

unique it is only valid for cases when the stream pressures are matched (which may

not be the case initially).

For fully mixed theories, an approach taken by many authors [6, 22–24, 28, 30] is

to assume that the secondary stream chokes in the aerodynamic throat formed by

the high pressure, expanding primary flow. The main advantage of this approach

is that it removes the need for specifying conditions at the ejector exit (such as

static pressure). Another technique is to assume that the pressures of the primary

and secondary streams are matched [2, 36] which results in a quadratic equation

for the exit Mach number. One can also remove the need for assuming any kind of

specific interaction between the two streams by simply specifying a static pressure

at the ejector exit [27]. This methodology is the most general, and encompasses the

entire operating range of the ejector. In fact, simply by choosing a specific mixed-

flow pressure, one can encompass the operating ranges of the previously mentioned

theories.

There have also been attempts to include the effects of viscosity and incomplete

mixing, which can become important especially if the secondary mass flow rates are

small [12]. For example, Dutton & Carrol [22] introduce an empirical pressure recov-

ery coefficient which accounts for losses as well as incomplete mixing. Although this

was a simple addition to their fully mixed integral theory, the value of this parameter

was dependent on the availability of experimental results. A more rigorous exten-

sion of the quasi-one-dimensional integral technique has been proposed by Chow &

Addy [12]. In their work, the authors applied a constant pressure turbulent jet mixing

methodology to an ejector. The method is fairly complex, and involves applying the

integral conservation laws with an assumed velocity profile, which is a function of

11



Chapter 1. Introduction

various empirical parameters related to the mixing of the two jets.

The effects of combustion have also been incorporated in several of the integral-

based theories in open literature. In a paper by Han et al. [36], combustion kinetics

were treated very simply by adding a source term to the energy equation. A similar

approach was adopted by Dobrowolski [20], who used the analysis to theoretically

establish that DAB operation is more efficient than SMC. What sets his work apart

from the rest, is that his analysis included the effects of a variable area mixing duct

by integrating the Crocco Pressure-Area Relation [20] and using it in the momentum

equation. The relation has a power law form, and was originally used for single stream

devices, such as ramjets. A more detailed treatment of the mixing and combustion

processes in an ejector was presented by Peters et al. [58]. Their work was more

focused on modeling the mixing process using a modification of the model of Chow &

Addy [12]. However, in contrast to the previously mentioned approaches, the authors

invoked chemical equilibrium relations to include the effects of combustion.

1.3 Objectives

The goal of the current work will be to present an analysis methodology for an

ejector that is simple enough to rapidly examine a large number of configurations

and accurate enough for use during the initial design stage. The theory will assume

complete mixing and will therefore be used to provide idealized performance estimates

for the subsonic flight speed range. What sets the present work apart from the rest

is its ability to analyze ejector configurations not covered by the approaches available

in open literature and to do so in a more complete manner, while maintaining an

equation set which can be solved very quickly. Specifically, the theory that will be

presented will focus on an annular rocket configuration since it has been shown to

promote better mixing [29] and is thus more likely to be used in an ejector design.

12



Chapter 1. Introduction

The performance of an ejector can be improved further by constricting its mixing

duct which has been shown to improve the compression ratio [27]. For this reason

the formulation will also enable analysis of converging mixing ducts and although one

such theory was found in literature it was only applicable for ejectors with a central

rocket configuration [20]. The combustion in the ejector under SMC conditions will

be treated in detail by using an equilibrium calculation which can account for a large

number of species. Finally, a method will be provided to estimate a mixing length as

well as any performance losses due to incomplete mixing by modifying the equations

for the fully mixed-case.
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Chapter 2

Non-Reacting Ejector Theory

The theory that will be presented herein is an extension of that provided by Etele et

al. [27] for constant area mixing ducts. The ejector will be analyzed by applying a

steady, quasi-one-dimensional, integral-based approach to the control volume depicted

in Figure 2.1. Complete mixing at the mixed-flow plane (plane m) will be assumed

and although turbulent and viscous effects can occur inside the control volume, there

will be no terms accounting for their effects in the governing equations.

ṁr

ṁr

ṁa ṁm∞

i m

c.v.

pw(x)

r

x

Figure 2.1: Ejector Control Volume
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Chapter 2. Non-Reacting Ejector Theory

Considering the mass flow rates shown in Figure 2.1 the conservation of mass can

be expressed as,

ṁa + ṁr = ṁm (2.1)

The mass flow rates in Eq. (2.1) can be more conveniently written in terms of total

conditions, to give,

ṁ

A
= po

√
γ

RT o

M

(
1 + γ−1

2
M2

)1/2

(
1 + γ−1

2
M2

) γ
γ−1

which then simplifies to

ṁ

A
=
( po

√
RT o

)
µ (2.2)

with the functional µ defined as,

µ(γ,M) =
√
γM

(
1 +

γ − 1

2
M2

)−(γ+1)
2(γ−1)

(2.3)

Substituting Eq. (2.2) into Eq. (2.1) and re-arranging gives the first equation for the

mixed-flow Mach number, Mm,

ṁr

pmAm

√
RmT o

m

γm

(α+ 1) = Mm

(
1 +

γm − 1

2
M2

m

)1/2

(2.4)

where α is the entrainment ratio and is defined as,

α = ṁa/ṁr (2.5)

Neglecting viscous forces, the momentum equation for the ejector control volume

can be written as follows:

(ṁaua + paAa) + (ṁrur + prAr) − (ṁmum + pmAm) −
∫∫ L

0

pw(x) · d~Sx = 0 (2.6)

15



Chapter 2. Non-Reacting Ejector Theory

The air and rocket momentum terms can be re-expressed using the ideal-gas law and

the definition of the speed of sound,

(ṁu+ pA) = ṁa
(
M +

p

ρua

)
A = ṁa

(
M +

1

γM

)
(2.7)

The speed of sound can then be related to sonic conditions in the following manner:

a

a∗
=

√
T

T ∗

=

√
1 + γ−1

2

1 + γ−1

2
M2

=
1√

2

γ+1
+
(

γ−1

γ+1

)
M2

(2.8)

Using Eq. (2.8) to replace the speed of sound in Eq. (2.7) yields,

ṁa
(
M +

1

γM

)
= ṁa∗χ (2.9)

where χ is defined as,

χ(γ,M) =

[
M + 1

γM√
2

γ+1
+
(

γ−1

γ+1

)
M2

]
(2.10)

Substituting equations (2.7) & (2.9) into Eq. (2.6) and manipulating the exit mo-

mentum flux so as to explicitly maintain the mixed-flow pressure, one obtains,

ṁaa
∗χa + ṁra

∗

rχr − pmAm

(
γM2

m + 1
)
−
∫∫ L

0

pw(x) · d~Sx = 0 (2.11)

At sonic conditions, the speed of sound can be expressed as,

a∗2 = 2Cp
γ − 1

γ + 1
T o (2.12)
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thereby allowing one to write the ratio of the air/rocket sonic sound speeds as,

a∗a
a∗r

=
√
θΓ (2.13)

where θ and Γ have the following definitions:

θ =
Cp,aT

o
a

Cp,rT o
r

(2.14)

Γ =

√
(γa − 1)(γr + 1)

(γa + 1)(γr − 1)
(2.15)

One can then invoke the definition of α along with Eq. (2.13) to simplify Eq. (2.11)

and yield a second equation for Mm,

M2
m =

1

γm

[
ṁra

∗

r

pmAm

(α
√
θΓχa + χr) − Fp,x − 1

]
(2.16)

where the term Fp,x defines the dimensionless wall pressure force,

Fp,x =
1

pmAm

∫∫ L

0

pw(x) · d~Sx (2.17)

At this point it is convenient to relate the entrainment ratio to other ejector

variables by substituting Eq. (2.2) into (2.5) to give,

α =
1

ζ

(1 − σ

σ

) 1√
θ

[
γa(γr − 1)

γr(γa − 1)

]1/2
µa

µr

with the following additional definitions:

σ =
Ar

Ai

(2.18)
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ζ =
po

r

po
a

(2.19)

Since only the µ functionals depend on the solution variables, α can be more conve-

niently re-expressed as,

α = ψ
µa

µr

(2.20)

where

ψ =
1

ζ

(1 − σ

σ

) 1√
θ

(
γa(γr − 1)

γr(γa − 1)

)1/2

(2.21)

With no heat losses or chemical reactions, the conservation of energy for the ejector

simply becomes a conservation of total enthalpy,

ṁaCp,aT
o
a + ṁrCp,rT

o
r = ṁmCp,mT

o
m (2.22)

Invoking mass conservation and re-arranging gives,

ṁr

(
ṁa

ṁr

Cp,aT
o
a

Cp,rT o
r

+ 1

)
= ṁr

(
ṁa

ṁr

+ 1

)
Cp,mT

o
m

Cp,rT o
r

The definitions of α and θ can then be used to simplify the energy equation and give

the following result,

T o
m =

Cp,r

Cp,m

(
αθ + 1

α+ 1

)
T o

r (2.23)

Assuming complete mixing at the exit, mass averaging can be used to relate the

gas properties to the entrainment ratio,

Wm =
1

α+ 1
(αWa +Wr) (2.24)

γm =
1

α+ 1
(αγa + γr) (2.25)

Ideal gas relations can then be used to solve for the gas constant and the specific heat
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of the mixture,

Rm =
Ru

Wm

(2.26)

Cp,m =
γmRm

γm − 1
(2.27)

Equations (2.4), (2.16) & (2.23) represent a system of three equations in the five

unknowns, namely µa, χa,Mm, T
o
m and Fp,x. However, from equations (2.10) & (2.3) it

is clear that both χa and µa depend on the air inflow Mach number, Ma. Thus if one

can relate Fp,x to other ejector variables, the system will only have three unknowns

(Ma,Mm,T o
m) and can therefore be solved. To implement the solution one needs to

know the total inlet conditions (T o
a , T

o
r , p

o
r, p

o
a ), the ejector geometry (σ,A(x)), the

rocket exhaust Mach number Mr, the inlet gas composition (Ra, Rr, γa, γr) and the

exit pressure pm.

2.1 Wall Pressure Distribution

To relate the dimensionless wall pressure force to other ejector variables, a wall pres-

sure distribution is required. Since in general, such information will not be known a

priori, one has to assume a functional form for pw(x). One can consider two repre-

sentative cases. The first is the simplest, the case where no additional information

about the ejector flowfield is known. This is a linear pressure distribution given by

Eq. (2.28) which depends only on the pressure at each end of the ejector. Since the

present theory will focus on a configuration with an annular rocket, then the pressure

at the ejector inlet will simply be pr while the pressure at the outlet is the mixed-flow

pressure pm.

pw(x) = pr + (pm − pr)
x

L
(2.28)
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The second is slightly more complex and is designed to qualitatively model the

expansion-recompression process that occurs inside the ejector. This pressure dis-

tribution is given by Eq. (2.29) and depends on the minimum pressure to which the

rocket plume expands in addition to the pressure boundary conditions.

pw(x) = pmin + c1

[
c2 − (

x

L
− 1)2

]2
(2.29)

The constants c1 and c2 can be found by applying the pressure boundary conditions

(i.e., pw(0) = pr, pw(L) = pm) to give,

c2 =
(
1 +

√
β
)
−1

(2.30)

c1 =
pm − pmin

c22
(2.31)

where

β =
pr − pmin

pm − pmin

(2.32)

The parameter pmin represents the minimum pressure to which the rocket exhaust

expands and requires additional equations for its quantification.

2.2 Solution for Minimum Rocket Pressure

It is clear at this point that if one wishes to use Eq. (2.29) a way of solving for

the parameter pmin is required. Two different methods are presented to solve for the

minimum rocket pressure, the first is a Control Volume calculation, while the second

one makes use of a Riemann solver. Both methods assume that the air and rocket

streams are isentropic and that no mixing takes place before the expansion point.
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2.2.1 Control Volume Solution

The Control Volume (CV) approach for pmin treats all inflow conditions as known

and is thus solved in conjunction with equations (2.4), (2.16) & (2.23). The method

also assumes quasi-one-dimensional and isentropic flow in both streamtubes. Control

volumes for both streams are depicted in Figure 2.2 and extend from the ejector inlet

to plane 2, which represents the plane at which the rocket stream fully expands and

reaches its minimum pressure.

ṁa

ṁr

c.v. (air)

i

2

c.v. (rocket)

x2

Figure 2.2: Air & Rocket Control Volumes for Estimating pmin

One can then apply momentum conservation to each control volume to give the

following set of equations:

−(ṁaua + paAa)i + (ṁaua + paAa)2 −
∫∫

sl

psl(x) · d~Sx = 0 (2.33)

−(ṁrur+prAr)i+(ṁrur+pminAr)2−
∫∫

sl

psl(x) · d~Sx−
∫∫ x2

0

pw(x) · d~Sx = 0 (2.34)

Adding the two momentum equations to eliminate the shear layer integral (sl) while
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using equations (2.7) & (2.9) to simplify the momentum fluxes yields,

ṁa(χa,2a
∗

a,2 − χa,ia
∗

a,i) + ṁr(χr,2a
∗

r,2 − χr,ia
∗

r,i) −
∫∫ x2

0

pw(x) · d~Sx = 0 (2.35)

Since both streams do not mix and are adiabatic, then by Eq. (2.12):

a∗a,i = a∗a,2 = a∗a

a∗r,i = a∗r,2 = a∗r

which allows the definitions of α, θ & Γ to be used to simplify Eq. (2.35),

(χr,i − χr,2) + α
√
θΓ(χa,i − χa,2) − Fp,x2 = 0 (2.36)

where

Fp,x2 =
1

ṁra∗r

∫∫ x2

0

pw(x) · d~Sx (2.37)

The term Fp,x2 has the same form as Eq. (2.17) but is integrated only up to the point

where the rocket stream reaches its minimum pressure. The axial location of this

point can be obtained directly from Eq. (2.29) by minimizing the expression to give,

x2

L
= 1 −√

c2 (2.38)

Equations (2.29) & (2.38) can be substituted into the expression for Fp,x2 and inte-

grated to obtain a closed-form expression (Eq. (2.85)) in terms of the constants c1

& c2. Since both of these constants are functions of pmin (see Eq’s (2.31), (2.30),

(2.32)), the dimensionless pressure integral (Fp,x2) becomes a function of the solution

variable, pmin.
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Next, the conservation of mass is applied to the air control volume in conjunction

with Eq. (2.2) to obtain,

Aa,i

po
a,i√
RaT o

a,i

µa,i = Aa,2

po
a,2√
RaT o

a,2

µa,2 (2.39)

Since the flow is both isentropic and adiabatic, the above equation reduces to,

Aa,iµa,i = Aa,2µa,2 (2.40)

Applying the same approach to the rocket stream gives,

Ar,iµr,i = Ar,2µr,2 (2.41)

Given the fact that the flow areas at station 2 are constrained,

Ar,2 + Aa,2 = A(x2) (2.42)

allows equations (2.40), (2.41) and (2.42) to be combined into an expression in terms

of the air/rocket Mach numbers only,

Aa,i
µa,i

µa,2

+ Ar,i
µr,i

µr,2

= A(x2) (2.43)

Since both streams were assumed isentropic, pmin can be related to Mr,2 with the

isentropic expression for total pressure which can be written as,

pmin = po
r

(
1 +

γr − 1

2
M2

r,2

) −γr
γr−1

(2.44)

The derivation thus yields two equations, (2.36) & (2.43) in the unknowns µa,2, χa,2,

µr,2, χr,2 and pmin. If one invokes the definitions of µ and χ as well as Eq. (2.44), the

23



Chapter 2. Non-Reacting Ejector Theory

unknowns are reduced to the air and rocket Mach numbers, Ma,2 and Mr,2. It should

be noted that since the solution for pmin requires knowledge of the ejector inflow

conditions (Ma), it must be repeated at each iteration of the solution of equations

(2.4), (2.16) & (2.23).

2.2.2 Riemann Solution

The Riemann approach is quite different from the one presented above with the basic

features shown in Figure 2.3. In the case of the ejector, an analogy can be drawn

between the expansion of the rocket plume and a classic shock tube problem. The

problem consists of a one-dimensional flow where two different gases at different states

are initially separated by a diaphragm which is then burst. When this happens, a

shock travels into the driven (lower pressure) gas and an expansion wave travels into

the driver gas. The Riemann problem essentially involves solving for the various flow

variables at the moving gas interface which forms between the two gases. A more

detailed discussion of shock tubes and the Riemann problem is outlined by Gottlieb

& Groth [35].

V i+1
cs

i i+ 1

ṁr

ṁa

A(x)
ri
a

ri+1
a

∆x

Dividing Streamline

vi+1
r

ui+1
r

ui
r

V i
cs

vi
r

δi

δi+1

Figure 2.3: Riemann Problem Set-Up Adapted to Ejector
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Referring to Fig. 2.3, the method is set up such that the radial motion of the

rocket plume expanding against the air stream at some location x is treated as a

shock tube. For the case when the rocket pressure exceeds the static pressure of the

air, the rocket plume becomes the driver gas. Since the streams are assumed not to

mix, one can define a contact surface, or more generally a dividing streamline which

separates the two streams. In the present case, a Riemann solver is used to solve for

the velocity of the contact surface which along with the streamwise velocity can be

used to trace out the dividing streamline. The streamline would then define the area

distribution of the streamtubes which surround each stream at which point isentropic

relations can be used to find the remaining flow variables. The present formulation

uses a Riemann solver proposed by Gottlieb & Groth [35] to solve for Vcs.

First, from the Mach numbers of the rocket and air streams the sonic reference

areas can be found using the Area-Mach Number Relation [3].

f

(
A

A∗

)
=

1

M2

(
2

γ + 1
+
γ − 1

γ + 1
M2

) γ+1
γ−1

=

(
A

A∗

)2

(2.45)

Next the Riemann solver is applied to find the velocity of the contact surface at node

i.

V i
cs = f(pi

r, p
i
a, ρ

i
r, ρ

i
a, Rr, Ra, γr, γa) (2.46)

To define the streamline at the next node, the radial velocity component at node i+1

is required which can be written as,

vi+1
r = vi

r + ∆vr (2.47)

Referring to the velocity polygon shown in Fig. 2.4 one can express ∆vr as,

∆vr = V i
cscos(δi) =

V i
csu

i
r√

[ui
r]

2 + [vi
r]

2
(2.48)
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ui
r

vi
r

V i
cs

δi

δi

∆vr

Figure 2.4: Velocity Polygon at Node i

One can then substitute Eq. (2.48) into Eq. (2.47) to obtain,

vi+1
r = vi

r +
V i

cs√
1 +

(
vi

r

ui
r

)2 (2.49)

To define the dividing streamline the following relationship is used,

dr

dx
=
vr

ur

(2.50)

which simply states that the velocity vector is tangent to the streamline. To apply

the above equation, forward differencing is used for discretization to yield,

ri+1
a = ri

a − ∆x
vi+1

r

ui
r

(2.51)

while the flow areas can be found using,

Ai+1
a = π(ri+1

a )2 (2.52)

Ai+1
r = A(x+ ∆x) − Ai+1

a (2.53)
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With the flow areas known, the Area-Mach Number Relation can be used to solve for

the Mach number,

M i+1

j = f
(Ai+1

j

A∗

j

)
j = a, r (2.54)

after which isentropic relations along with the ideal gas law are used to solve for the

state of each stream at i+ 1,

T i+1

j = T o
j

[
1 +

γj − 1

2
(M i+1

j )2

]
−1

j = a, r (2.55)

pi+1

j = po
j

[
1 +

γj − 1

2
(M i+1

j )2

] −γj
γj−1

j = a, r (2.56)

ρi+1

j =
pi+1

j

RjT
i+1

j

j = a, r (2.57)

Lastly, mass conservation can be used to solve for the axial velocity,

ui+1

j =
ṁj

ρi+1

j Ai+1

j

j = a, r (2.58)

The procedure is then marched in the x-direction until vr ≤ 0 (the expansion

stops). One thing to note regarding the above procedure, is that the air stream can

choke while vr > 0. This type of situation would not happen in reality, since the

mass flow rate of the air at the inlet would adjust to accommodate a smaller A∗

a.

However, because pmin is solved at each iteration of the ejector solution, equations

(2.4), (2.16) & (2.23) govern the mass flow rate of the air, and not the Riemann

solver. Essentially, the type of feedback required to allow the air flow to adjust is

not possible to implement in the present formulation. Thus to be able to solve for

pmin when the air flow chokes, a slight modification to the solution process is made.

If critical conditions are encountered in the air stream during a given run while the

streamline is still expanding, the Riemann procedure is stopped. At the point where

the solver stops, it is then assumed that Aa = A∗

a. This fixes the area of the rocket
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stream (by Eq. (2.42)), and allows one to use Eq. (2.45) to find the Mach number at

that station, from which pmin can be found using Eq. (2.56).

2.3 Wall Pressure Integral

The integral in Eq. (2.17) is a surface integral and needs to be simplified before it

can be used in the solution procedure. One can actually convert the surface integral

to a double integral by considering the three-dimensional shape of the ejector control

volume shown in Figure 2.5.

~nx

~ny

~nz

d~S

d~S

dx
rdθ

θ

r(x)

x

y

z

Figure 2.5: Ejector Control Volume showing surface element d~S

The equation for the surface depicted in the figure can be expressed as,

fcv = z2 + y2 − [r(x)]2 = 0 (2.59)

By definition, a vector normal to any surface can be found by taking the gradient

of the equation which defines that surface. Doing so for the control volume surface
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yields the normal vector ~n as,

~n = ∇f = −2r(x)
dr

dx
î+ 2yĵ + 2zk̂ (2.60)

At this point it is convenient to decompose the elemental surface d~S in the fol-

lowing manner:

d~Sx =
~nx

‖~nx‖
rdθdx (2.61)

where only the axial component is considered, since that is the component of the wall

pressure force that is included in the momentum balance. One can now make use of

Eq. (2.60) to obtain the x-component of the unit normal vector,

n̂x =

(
∇f
‖∇f‖

)
· î =

−2r(x)dr/dx

2
√

[r(x)]2(dr/dx)2 + y2 + z2
· î

Using Equation (2.59) to simplify the above expression gives the unit vector as,

n̂x = − dr/dx√
1 + (dr/dx)2

(2.62)

Substituting Eqs. (2.62) & (2.61) into Eq. (2.17), transforms the surface integral into

a double integral,

Fp,x = − 1

pmAm

∫ L

0

∫ 2π

0

pw(x)r(x)dr/dx√
1 + (dr/dx)2

dθdx

Since all of the terms inside the integral do not vary in the circumferential direction,

the above expression can be reduced further to give the final result,

Fp,x = − 2π

pmAm

∫ L

0

pw(x)r(x)dr/dx√
1 + (dr/dx)2

dx (2.63)
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2.4 Numerical Solution

The numerical solution for the constricted ejector is significantly more involved than

the unconstricted case due to the fact that a separate solution procedure is required

to quantify the pressure distribution (CV or Riemann) which then needs to be inte-

grated. The equations which govern the ejector consist of a linear equation for T o
m

(Eq. (2.23)) as well as a pair of non-linear equations for Ma & Mm (Eq.s (2.4) and

(2.16) respectively). The first step is to convert the non-linear equations into a form

better suited to the solution process by substituting Eq. (2.20) into Eqs. (2.4) &

(2.16) to give,

f1 = −γmM
2
m +

[
ψṁra

∗

r

µrpmAm

√
θΓ

]
µaχa +

[
ṁra

∗

r

pmAm

χr − Fp,x − 1

]
= 0 (2.64)

f2 =
ṁr

pmAm

√
RmT o

m

γm

(
ψ
µa

µr

+ 1

)
−Mm

(
1 +

γm − 1

2
M2

m

)1/2

= 0 (2.65)

To solve the non-linear system one can make use of the Newton-Raphson method.

The method essentially linearizes the equations, which then allows the system to be

iterated toward the final solution starting from an initial guess. Applying the method

to equations (2.64) and (2.65) and writing the linearized system in matrix form yields,




∂f1

∂Ma

∂f1

∂Mm

∂f2

∂Ma

∂f2

∂Mm




k 


∆Ma

∆Mm




k+1

= −



f1

f2




k

(2.66)

where k is the current iteration level. The matrix on the left hand side is the system

Jacobian and contains the derivatives of the functions f1 and f2 with respect to the

solution variables. To solve Eq. (2.66) one needs to define all of the system derivatives.

Differentiating the first functional with respect to the solution variables Ma and Mm
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gives,

∂f1

∂Ma

=
ψ
√
θΓṁra

∗

r

µrpmAm

[
µa

∂χa

∂Ma

+ χa
∂µa

∂Ma

]
(2.67)

∂f1

∂Mm

= −2γmMm (2.68)

In a similar manner one can also obtain derivatives of the second functional to yield,

∂f2

∂Mm

= −
(

1 +
γm − 1

2
M2

m

)1/2[
(γm − 1)M2

m

2(1 + γm−1

2
M2

m)
+ 1

]
(2.69)

Keeping in mind that T o
m depends on Ma (through α) the derivative of Eq. (2.65)

with respect to Ma can be obtained as,

∂f2

∂Ma

=
ṁr

pmAm

√
RmT o

m

γm

[
ψ

µr

∂µa

∂Ma

+
(α+ 1)

2T o
m

∂T o
m

∂Ma

]
(2.70)

while the derivative of T o
m can be acquired from the energy equation, giving,

∂T o
m

∂Ma

=
Cp,r

Cp,m

T o
r

∂µa

∂Ma

[
(θ − 1)

(α+ 1)2

]
ψ

µr

(2.71)

Lastly, the derivatives of the µ and χ functionals are required since they appear

several times. To obtain these one can simply differentiate Eqs. (2.3) and (2.10) to

give the following relations:

∂χ

∂M
=

(
2

γ + 1
+
γ − 1

γ + 1
M2

)
−1/2[(

1 − 1

γM2

)

−
(
M2 +

1

γ

)(
γ − 1

γ + 1

)(
2

γ + 1
+
γ − 1

γ + 1
M2

)3]
(2.72)

∂µ

∂M
=

√
γ

[(
1 +

γ − 1

2
M2

)−(γ+1)
2(γ−1)

− M2

2
(γ + 1)

(
1 +

γ − 1

2
M2

) (1−3γ)
2(γ−1)

]
(2.73)
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When Eq. (2.66) is solved at a given iteration level one can then update the values

of the solution variables in the following manner:

Mk+1
a = Mk

a + (∆Ma)
k (2.74)

Mk+1
m = Mk

m + (∆Mm)k (2.75)

The solution is considered converged when the right hand side of Eqs. (2.64) and

(2.65) are sufficiently close to zero. For the present computations the tolerance is set

to,

|f1, f2| ≤ 1 × 10−7

A flowchart representation of the solution process is shown in Figure 2.6. When the

initial guesses for Ma and Mm are set to 0.2 and 0.8 respectively, a converged solution

can be obtained in less than 15 iterations.

Several options exist for computing Fp,x with the choice coming down to what

pressure distribution is used. In either case, the same linear nozzle contour function

will be used whose profile can be expressed as,

r(x) = ri +

(
dr

dx

)
x (2.76)

When the pressure distribution is defined by Eq. (2.29), one needs to solve for pmin

before Fp,x can be computed. This means that either the CV or Riemann solution

is implemented first using the value of Ma at the given iteration level. Once pmin is

known, one can integrate Equation (2.63) to obtain a closed form expression for Fp,x.

Accordingly, Eqs. (2.29) & (2.76) are substituted into Eq. (2.63) and integrated,
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Calculate p
min 

 using:

 Riemann solution 

or CV method 

Solve Eq. (2.66)

Update Ma & Mm

[Eqs. (2.74) & (2.75)]

Convergence 
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Output 

solution
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Calculate  Tm̊

using Eq. (2.23)

Calculate  Fp,x 
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Calculate system 
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Figure 2.6: Ejector Solution Process (Non-Reacting)
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giving,

Fp,x =
−2πL dr

dx

pmAm

√
1 +

(
dr
dx

)2

[
pm

2
(2ri + rm) − c1c2

6
(4ri + rm) +

c1
30

(6ri + rm)

]
(2.77)

which is specific to the polynomial-based pressure distribution. If one wishes to use

an arbitrary pw(x) the most convenient method of solution is numerical integration.

The second-order accurate trapezoidal rule will be used in the present case which can

be expressed for an arbitrary function as,

∫ b

a

f(x)dx ≈ ∆x

[
f(b) − f(a)

2
+

n∑

i=1

f(xi)

]
(2.78)

Applying the above method to equation (2.63) gives the following numerical formula:

Fp,x ≈ −2π∆x

pmAm

[
K(L) −K(0)

2
+

n∑

i=1

K(xi)

]
(2.79)

where

K(x) =
pw(x)√

1 + (dr/dx)2
r(x)

dr

dx

while centered differencing can be used to evaluate the derivative dr/dx,

dr

dx
≈ ri+1 − ri−1

2∆x
(2.80)

2.4.1 CV Method - Numerical Solution

The solution of the equations which govern pmin is carried out using the Newton-

Raphson method. The procedure itself is analogous to the method used for Eqs.

(2.4) and (2.16) since both equation sets contain a wall pressure integral. In this

case, Eq. (2.20) can once again be used to rewrite Eqs. (2.36) and (2.43) in the

34



Chapter 2. Non-Reacting Ejector Theory

following form:

f1,CV = (χr,i − χr,2) + ψ
√
θΓ

(
µa,i

µr,i

)
(χa,i − χa,2) − Fp,x2 = 0 (2.81)

f2,CV = Aa,i
µa,i

µa,2

+ Ar,i
µr,i

µr,2

− A(x2) = 0 (2.82)

where the term A(x2) is calculated from the radial contour of the nozzle defined by

equation (2.76). To define the Jacobian, one can differentiate equations (2.81) and

(2.82) with respect to the solution variables (Mr2,Ma2) to obtain,

∂f1,CV

∂Mr,2

= − ∂χr,2

∂Mr,2

∂f1,CV

∂Ma,2

= −α
√
θΓ

∂χa,2

∂Ma,2

(2.83)

∂f2,CV

∂Mr,2

= −Ar,i
µr,i

µ2
r,2

∂µr,2

∂Mr,2

∂f2,CV

∂Ma,2

= −Aa,i
µa,i

µ2
a,2

∂µa,2

∂Ma,2

(2.84)

Solution of the above system also requires that Fp,x2 be related to the solution vari-

ables. Since pmin is found only for the polynomial pressure distribution (Eq. (2.29)),

it is worthwhile to obtain a closed form expression for Fp,x2 as well. Carrying out the

integration gives,

Fp,x2 =
−2π dr

dx

ṁra∗r

√
1 +

(
dr
dx

)2

[
pminx2

(
ri +

x2

2

dr

dx

)
+ ric1L

(
c22 −

2

3
c2

− 8

15
c
5/2

2 +
1

5

)
+

dr

dx
c1L

2

(
c22
2
− c2

6
+

1

30
− 8

15
c
5/2

2 +
c32
6

)]
(2.85)

where x2 is defined by Eq. (2.38). To ensure that the solution process remains stable,

one can introduce a damping factor, ΥCV as,

Mk+1
a,2 = Mk

a,2 + ΥCV [∆Ma,2]
k (2.86)

Mk+1
r,2 = Mk

r,2 + ΥCV [∆Mr,2]
k (2.87)
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Although more rigorous methods are available for choosing a value for ΥCV , a value

of 0.1 was found to work well. The damping is conditional and is applied only if the

following condition is met:

||(f1,CV , f2,CV )||k+1 ≥ ||(f1,CV , f2,CV )||k (2.88)

which is simply a mathematical condition that represents the solution diverging. The

convergence tolerance in this case is set to,

|f1,CV , f2,CV | ≤ 1 × 10−7

The solution process for pmin is summarized in Figure 2.7 and is invoked at each

iteration level of the solution for the entire ejector (see Fig. 2.6). This means that

a converged solution for pmin is obtained at every iteration of the overall solution

process. The initial guesses for Ma,2 and Mr,2 are set to Ma and 1.2×Mr respectively

and yield a converged solution in less than 220 iterations.
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2.4.2 Area-Mach Number Relation

Solving for pmin using the Riemann solver, although already described, requires the

solution of the Area-Mach Number Relation. Since a single non-linear equation is now

being dealt with, application of the Newton-Raphson method is fairly straightforward.

If one rewrites the Area-Mach Number Relation as,

fAM =
1

M2

[
2

γ + 1
+
γ − 1

γ + 1
M2

] γ+1
γ−1

−
(
A

A∗

)2

(2.89)

then linearizing it with the Newton-Raphson method would yield,

Mk+1 = Mk −
[
fAM

∂fAM

∂M

]k

(2.90)

where ∂fAM

∂M
is given as,

∂fAM

∂M
= 2

(
A

A∗

)2[
M

(
2

γ + 1
+
γ − 1

γ + 1
M2

)
−1

− 1

M

]
(2.91)

The initial guess for M is passed from the Riemann solver and is simply the Mach

number at the previous node (within the Riemann solution). The convergence toler-

ance is set to,

|fAM | ≤ 1 × 10−7

and yields a converged solution in less than 10 iterations. The process is shown

schematically in Figure 2.8 and is invoked at each solution point within the Riemann

solver.
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Theory for SMC Ejector

If one assumes that the pressure distribution used for the unreacting case remains

valid under SMC conditions then the equations for the conservation of mass (Eq.

(2.4)) and momentum (Eq. (2.16)) remain unchanged. Thus the only thing required

is that the energy equation be modified to account for the heat release caused by the

secondary combustion inside the ejector. Keeping this in mind one can derive a more

general form of the energy equation as,

ns∑

k=1

Nkhk +Wm
u2

m

2

ns∑

k=1

Nk = ṁa

(
ha +

u2
a

2

)
+ ṁr

(
hr +

u2
r

2

)
(3.1)

where ns is the number of atomic species being considered. Since chemical reactions

are now present in the system, all enthalpy terms must be expressed relative to a

reference state. Doing so allows the energy fluxes to be written on a mass-basis as

follows:

h+
u2

2
=

ns∑

k=1

Yk

Wk

h
o

f,k + Cp(T
o − Tref ) (3.2)
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In addition, the ideal gas law and the speed of sound can be used to simplify the

kinetic energy term on the left hand side of Eq (3.1) to give,

Wm
u2

m

2

ns∑

k=1

Nk =
1

2
NmγmRuTmM

2
m (3.3)

It should be noted at this point, that the kinetic energy term (Eq. (3.3)) does not

usually show up in a combustion analysis since the post-combustion velocity is usually

small. The present application, however, necessitates that this term be included in the

equation since the velocity at the mixed-flow plane of the ejector cannot be considered

small. Substituting Eqs. (3.2) & (3.3) into Eq. (3.1) while invoking the definitions

of α and θ yields the simplified energy equation,

ns∑

k=1

Nkhk +
1

2
NmγmRuTmM

2
m = H (3.4)

where H represents the total energy flowing into the ejector, and is given as,

H = ṁrCp,rT
o
r

[
(αθ + 1) − Tref

T o
r

(
α
(Cp,a

Cp,r

)
+ 1

)
+

1

Cp,rT o
r

nr∑

k=1

Yr,k

MWk

h
o

f,k

]
(3.5)

The thermal properties of the reacted mixture can be found on a mass weighted

basis, averaging this time over all of the product species to yield,

Cp,m =
ns∑

k=1

YkCp,k (3.6)

Wm =
ns∑

k=1

Yk

Wk

(3.7)

Rm =
Ru

Wm

(3.8)

γm =

(
1 − Rm

Cp,m

)
−1

(3.9)
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Unlike the unreacting case, it is clear at this point that Eq. (3.4) is not sufficient

to close the system of equations by itself. The inclusion of chemical reactions has

essentially added ns unknowns (Nk’s) for which additional relationships are required.

3.1 Gibbs Minimization

Since equation (3.4) is stated very generally, many different methods can be used.

For the present case, the Gibbs Minimization technique [26] will be applied to solve

for the chemical composition at the exit plane (m) of the ejector. The full derivation

of this method is quite involved, and thus only a brief overview will be presented.

Fundamentally, the Gibbs Minimization technique involves minimizing the Gibbs free

energy of all the atomic species considered while being constrained by the need for

of all the atoms involved in the reactions to be conserved. For this reason it goes

beyond the simple assumption of complete combustion, since the species which can

form under those conditions, such as unburned hydrocarbons and radicals can be

accounted for.

To derive the necessary equations, one first needs to consider the Gibbs free energy

of a single species which can be written as,

gk = go
f,k +RuTm

[
ln

(
Nk

Nm

)
+ ln

(
pm

pref

)]
(3.10)

while the Gibbs energy of the entire mixture per unit time can be expressed on a

molar basis to give,

G =
ns∑

k=1

Nkgk =
ns∑

k=1

Nk

{
go

f,k +RuTm

[
ln

(
Nk

Nm

)
+ ln

(
pm

pref

)]}
(3.11)

One can then differentiate the above expression with respect to Nk to obtain the
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following simplified result,

dG =
ns∑

k=1

gkdNk (3.12)

The conservation of distinct atoms can be expressed in the following form:

ns∑

k=1

ηikNk = bi, i = 1 → na (3.13)

where ηik is the amount of atomic particle i per kmol of species k while bi is the total

inflow rate of atomic particle i. If one further assumes the usual composition for the

entrained air (21% O2 79% N2), then bi can be expressed as,

bi = ṁr

[
nr∑

k=1

ηikYr,k

Wk

+
α

Wa

(0.79ηi,N2 + 0.21ηi,O2)

]
, i = 1 → na (3.14)

where nr is the number of species present in the rocket plume. At this point one can

minimize Eq. (3.11) subject to the constraint of atom conservation (Eq. (3.13)). The

method of Lagrange Multipliers is a perfect candidate for this task since it can be

used to maximize/minimize a function f(x, y) subject to a constraint function q(x, y).

For multiple constraints, the method generalizes to,

∇f(xo, yo) =
∑

k

λk∇qk(xo, yo) (3.15)

where λk is a Lagrange multiplier. Taking the derivative of Eq. (3.13) with respect

to Nk and substituting it along with Eq. (3.12) into the Lagrange formula gives,

gk −
na∑

i=1

λiηik = 0, k = 1 → ns (3.16)

where na is the number of distinct atomic species. It is also convenient at this point
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to non-dimensionalize the above equation by dividing it by RuTm to give,

g̃k −
na∑

i=1

λ̃iηik = 0, k = 1 → ns (3.17)

where

g̃k =
gk

RuTm

λ̃i =
λi

RuTm

(3.18)

Solution of the ejector under SMC conditions can be done in a manner similar to the

unreacting case except that Eq. (2.23) has now been replaced with Eqs. (3.4), (3.13)

and (3.17). Unlike the unreacting case, however, there are now additional (na + ns)

unknowns which are required to solve for the equilibrium composition.

3.2 Numerical Solution

To solve for the post-combustion ejector composition in an efficient manner requires

a slightly unintuitive approach since the solution depends on the number of product

species. For example, if one tried to solve the system using the Newton-Raphson

method with the unknowns being the molar flow rates of the product species (Nk’s),

one would be required to derive and evaluate an ns × ns Jacobian, which would

quickly become cumbersome and inefficient for large numbers of species. In addi-

tion, one would also loose some flexibility since the numerical scheme would need

major modifications for different numbers of product species. In the present case, the

Newton-Raphson method can still be applied, but in a slightly different manner. The

solution methodology that will be shown is adapted from reference [26]. The starting

point for this method is to apply the Newton-Raphson linearization to a generic func-

tional, fs while using the natural logarithm of Nm, Tm and the Nk’s as the solution
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variables,

ns∑

k=1

[
∂fs

∂ ln(Nk)

]
+

∂fs

∂ ln(Nm)
∆ ln(Nm) +

∂fs

∂ ln(Tm)
∆ ln(Tm) = −fs (3.19)

Using the following mathematical definition

∂y

∂ lnx
= x

∂y

∂x

along with Eq. (3.17) as the fs in equation (3.19), one obtains,

∆ ln(Nk) = ∆ ln(Nm) + h̃k∆ ln(Tm) − g̃k +
na∑

i=1

λ̃iηik, k = 1 → ns (3.20)

with

h̃k =
hk

RuTm

(3.21)

In a similar manner, one can also substitute the atomic constraint equation (Eq.

(3.13)) into Eq. (3.19) to give,

ns∑

k=1

[Nkηik∆ ln(Nk)] = −
ns∑

k=1

ηikNk + bi, i = 1 → na (3.22)

At this point the ∆ lnNk term can be eliminated from equation (3.20) by using Eq.

(3.22), resulting in the following expression:

na∑

j=1

{
ns∑

k=1

ηikNkηjk

}
λ̃j +

{
ns∑

k=1

ηikNk

}
∆ ln(Nm), i = 1 → na

+

{
ns∑

k=1

ηikNkh̃k

}
∆ ln(Tm) = bi −

ns∑

k=1

ηikNk +
ns∑

k=1

ηikNkg̃k (3.23)

Equation (3.23) is an important result since it effectively eliminates the Nk’s from

the numerical procedure and thus significantly improves the computational efficiency
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of the method.

For the present solution it is convenient to consider the total molar flow rate, Nm,

as an independent variable for which one can write,

ns∑

k=1

Nk −Nm = 0 (3.24)

The above equation is then used as the next functional (fs) while applying the same

procedure as above to give,

na∑

i=1

{
ns∑

k=1

ηikNk

}
λ̃i +

{
ns∑

k=1

Nk −Nm

}
∆ ln(Nm)

+

{
ns∑

k=1

Nkh̃k

}
∆ ln(Tm) = Nm +

ns∑

k=1

Nk(g̃k − 1) (3.25)

Using the energy equation (Eq. (3.4)) as the last functional, one obtains the final

equation required to solve the system as,

na∑

i=1

{
ns∑

k=1

ηikNkh̃k

}
λ̃i +

{
ns∑

k=1

Nkh̃k + EK

}
∆ ln(Nm)

+

{
ns∑

k=1

Nk

[
Cp,k

Ru

+ h̃2
k

]
+ EK

}
∆ ln(Tm)

= H̃ − EK +
ns∑

k=1

Nkh̃k(g̃k − 1) (3.26)

where

EK =
1

2
NmγmM

2
m (3.27)

H̃ =
H

RuTm

(3.28)

Equations (3.23), (3.25) and (3.26) can be expressed in the familiar matrix form
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Gx = R, with the system matrices defined as,

G =
ns∑

k=1




η1kη1kNk · · · η1kηnakNk η1kNk η1kNkh̃k

...
. . .

...
...

...

ηnakη1kNk · · · ηnakηnakNk ηnakNk ηnakNkh̃k

η1kNk · · · ηnakNk Nk −Nm Nkh̃k

η1kNkh̃k · · · ηnakNkh̃k Nkh̃k + EK Nk[
Cp,k

Ru
+ h̃2

k] + EK




(3.29)

and

x =




λ̃1

...

λ̃na

∆ ln(Nm)

∆ ln(Tm)




R =




b1 +
∑ns

k=1
η1kNk(g̃k − 1)

...

bna
+
∑ns

k=1
ηnakNk(h̃k − 1)

Nm +
∑ns

k=1
Nk(g̃k − 1)

H̃ +
∑ns

k=1
Nkh̃k(g̃k − 1) − EK




(3.30)

The result of using Eq. (3.23) can now be seen very clearly as the system matrix has

been scaled down to (na +2)× (na +2). Accordingly, the size of the matrix no longer

depends on the number of product species but instead on the number of distinct atoms

(na) involved in the reactions. Since most combustion reactions can be adequately

described by various interactions of four atoms (C, O, H, N), the system matrix size

would thus be fixed to 6×6, independent of the number of product species considered.

The entire solution process for the reacting ejector is shown in Figure 3.1. While

the steps for solving the mass and momentum (Eqs. (2.4) & (2.16)) conservation
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equations remain the same, solving for the composition involves the inversion of the

G matrix starting from an initial guess at the equilibrium composition (Nm, Nk’s)

and the post-combustion temperature (Tm). The initial guesses used for the present

case are,

Tm = 2500K, Nk = 0.1/ns, k = 1 → ns

The updated values for the solution variables (λ̃k, Nm, Tm) are then used to solve for

all of the Nk’s by applying Eq. (3.20) in a sequential manner. Once a solution for

the composition and Tm is obtained the rest of the ejector solution process continues

in the same manner as for the unreacting case (Fig. 3.1). The entire ejector solution

under SMC conditions is considered converged when the following conditions are met:

|f1, f2| ≤ 1 × 10−7,
ns∑

k=1

Nk −Nm ≤ 1 × 10−7

In most cases, a converged solution can be obtained in approximately 20 iterations.

To ensure that the numerical procedure remains stable, a damping function is

applied to the equilibrium solution at each iteration. For the major species whose

∆ ln(Nk) is positive, one can calculate the damping factor, Υ1, as,

Υ1 =
2

max[|∆ ln(Tm)|, |∆ ln(Nm)|, |∆ lnNk|]
(3.31)

While for the minor species (Yk ≤ 1 × 10−8 [26]) with positive ∆ ln(Nk)’s one can

calculate another damping factor,

Υ2 =
ln(1 × 10−4) − ln(Nk) + ln(Nm)

∆ ln(Nk) − ∆ ln(Nm)
(3.32)
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From Υ1 and Υ2 one can then calculate the overall damping factor,

Υ = min[1,Υ1,Υ2] (3.33)

The damping factor can then be used to update the solution variables,

[ln(Tm)]k+1 = [ln(Tm)]k + Υ[∆ ln(Tm)]k (3.34)

[ln(Nm)]k+1 = [ln(Nm)]k + Υ[∆ ln(Nm)]k (3.35)

[ln(Nk)]
k+1 = [ln(Nk)]

k + Υ[∆ ln(Nk)]
k k = 1 → ns (3.36)

49



Chapter 3. Theory for SMC Ejector

Calculate p
min 

 using:

 Riemann solution 

or CV method 

Solve Eq. (2.66)

Update Ma & Mm

[Eqs. (2.74) & (2.75)]

Convergence 

check

|N
m
- ΣN

k 
| ≤ 1x10

-7

|f
1
 , f

2
| ≤ 1x10

-7

Output 

solution

yes

no

Guess solution variables 

Ma, Mm, Tm, Nk (k=1→ns)  

Calculate α using 

Eqs. (2.20) & (2.21)

Calculate mixed-flow 

gas properties

 [Eqs. (3.6)-(3.9)]

Calculate  Fp,x 

using Eq. (2.77)

Calculate system 

Jacobian using

 Eqs. (2.67)-(2.73)

Calculate f
1
 & f

2
 using 

Eqs. (2.64) & (2.65)

Calculate Δln(T
m
), 

Δln(N
m
),

 
 λ

i  
(i=1→na)

using  Eqs. (3.29) & (3.30) 

Update  T
m
, N

m
,

 
N

k  
(k=1→ns) 

using Eqs. (3.34)-(3.36)

Calculate damping 

parameter using 

Eqs. (3.31)-(3.33)

Figure 3.1: Ejector Solution Process (Reacting)
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Partially Mixed Ejector Theory

The theory for the partially mixed ejector is essentially an extension of the fully-mixed

theory presented earlier. The scope of the problem is quite broad since all of the flow

variables at a given plane will not be uniform for a flow that is not fully mixed.

To simplify the analysis, the variation of T, ρ, p and R in the radial direction will

therefore be neglected. The only variable that will be allowed to vary is the velocity

u. With this notion, the conservation of mass is applied to the ejector control volume

shown in Fig. 2.1 to yield,

ṁr + ṁa = 2π

∫ rm

0

ρurdr (4.1)

Since the density at the mixed flow plane was assumed to be uniform, it can be taken

out of the integral. One can then simplify the equation by using the definition of α

to give,

ṁr

Am

(α+ 1) = ρmum (4.2)

where um is the area-averaged velocity, defined as,

um =
2

r2
m

∫ rm

0

urdr (4.3)
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Before the mass conservation equation can be simplified further, one needs to derive

the energy equation, which can be written as follows:

ṁaCp,aT
o
a + ṁrCp,rT

o
r = 2π

∫ rm

0

ρu(Cp,mT + u2/2)rdr (4.4)

The left hand side of the above equation can be simplified in the same manner as for

the fully mixed case, by invoking the definitions of α and θ. Furthermore, the integral

on the right hand side can be split since the temperature does not vary with r. The

result can then be divided by Am to give,

ṁrCp,rT
o
r (αθ + 1) = ρmAm

[
Cp,mTm

2

r2
m

∫ rm

0

urdr

︸ ︷︷ ︸
um

+
1

r2
m

∫ rm

0

u3rdr

]

If one then multiplies and divides the equation by u3
m, one obtains,

ṁrCp,rT
o
r (αθ + 1) = ρmAmumCp,m

[
Tm + βe

u3
m

Cp,m

]

where βe is the energy mixing factor, given as,

βe =
1

u3
mr

2
m

∫ rm

0

u3rdr (4.5)

At this point it is convenient to define the area-averaged total temperature,

T
o

m = Tm + βe
u2

m

Cp,m

(4.6)

If one further defines the area-averaged Mach number as,

Mm =
um

γmRmTm

(4.7)
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then Eq. (4.6) can be written in the following form:

T
o

m = Tm(1 + (γm − 1)βeM
2

m) (4.8)

Equations (4.2) and (4.8) can now be substituted into the energy equation, to give

the final result,

T
o

m =
Cp,r

Cp,m

(αθ + 1)

(α+ 1)
T o

r (4.9)

To finish deriving the mass conservation equation, one needs to restate it in terms

of Mm by multiplying and dividing Eq. (4.10) by the speed of sound and using the

ideal gas law to give,

ṁr

Am

(α+ 1) = pm

√
γm

RmTm

Mm

One can then substitute Eq. (4.8) into the above expression to obtain the final result,

ṁr

pmAm

√
RmT

o

m

γm

(α+ 1) = Mm

(
1 + (γm − 1)βeM

2

m

)1/2

(4.10)

To complete the equation set, one can now apply the momentum equation, which can

be written as,

(ṁaua+paAa)+(ṁrur+prAr)−pmAm−
∫∫ L

0

pw(x) · d~Sx =

[
2π

∫ rm

0

ρu2rdr

]
(4.11)

The left hand side of the equation above can be simplified in the same manner as

Eq. (2.6) while using the ideal gas law on the right hand side to give the following

expression:

ṁra
∗

r

pmAm

(α
√
θΓχa + χr) − Fp,x − 1 =

1

RmTm

[
2

r2
m

∫ rm

0

u2rdr

]
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The above result can then be divided and multiplied by u2
m while using Eq. (4.7) to

get,

M
2

m =
1

γmβm

[
ṁra

∗

r

pmAm

(α
√
θΓχa + χr) − Fp,x − 1

]
(4.12)

where βm is the momentum mixing factor, defined as,

βm =
2

u2
mr

2
m

∫ rm

0

u2rdr (4.13)

Finally, Eqs. (2.24)-(2.27) will be used to solve for the gas properties at the mixed-

flow plane of the ejector.

To summarize, the foregoing analysis has yielded three equations which govern

the partially mixed ejector. Upon inspection of Eqs. (4.9), (4.10) & (4.12) it is easy

to see that they are nearly identical in form to the equations for the fully-mixed

case ((2.4), (2.16) & (2.23)). Since the major departure from the fully-mixed theory

was the treatment of the mixed-flow plane (Mm → Mm, etc), all previously defined

equations for the µ and χ functionals (Eqs. (2.3) (2.10)) apply in this case as well.

Consequently, if one can obtain expressions for the two mixing factors, βm and βe

then Eqs. (4.9), (4.10) & (4.12) can be solved in exactly the same manner as the

equations for the fully mixed ejector.

4.1 Mixed-Flow Velocity Profile

To properly quantify the two mixing factors, one needs to assume an appropriate

velocity profile at the mixed-flow plane of the ejector. In the current treatment,

the boundary layer at the mixed-flow plane will be neglected since the intent is to

only model the mixing. In addition, since the model is specific to the annular rocket

configuration, it can be further assumed that the upper boundary of the shear layer

will quickly spread out toward the upper wall. Use of this assumption allows one to
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split the velocity profile into two regions, a shear layer region, which extends from

the top wall down, as well as a uniform flow region which extends from the centerline

up to the lower boundary of the shear layer.

0
0

1

1
u/u1

r/rm

ǫ

u2/u1 Uniform Flow Region

u/u1 = f(ξ)

Shear Layer Region

Figure 4.1: Assumed Velocity Profile at Mixed-Flow Plane

A schematic of the composite profile is presented in Figure 4.1, where ǫ is a relative

shear layer thickness defined as,

ǫ =
δm
rm

(4.14)

To facilitate the use of specific empirical correlations, it is convenient to express

this profile as a function of u2 which is the velocity at the lower boundary of the

shear layer. One can then make use of the fact that a similarity profile exists for

a compressible turbulent shear layer, provided that proper scaling is used for non-

dimensionalization. The velocity scale is generally taken as the velocity at either

one of the shear layer boundaries, while the shear layer thickness, δm is used as the

length scale. Curve fits for the profile typically involve the well-known Gaussian error

function [34]. Although very good agreement between experimental data is obtained

when this function is used, it cannot be readily integrated. For this reason, the
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similarity profile will be approximated by using a cubic polynomial of the form:

u(r) = co + c1r + c2r
2 + c3r

3 (4.15)

If one applies the following boundary conditions:

u(rm) = u1,
du

dr
(rm) = 0, u(rm − δm) = u2,

du

dr
(rm − δm) = 0

to Eq. (4.15), then the velocity profile can obtained as,

u

u1

= u∗ + (1 − u∗)(3 − 2ξ)ξ2 (4.16)

where u∗ is defined as,

u∗ =
u2

u1

(4.17)

and

ξ =
r − (rm − δm)

δm
(4.18)

Equation (4.16) can then be integrated to yield the expressions required to solve

for the integrals appearing in equations (4.3), (4.5) & (4.13).

∫ rm

0

urdr =
u1r

2
m

2

{
(1 − ǫ)2u∗ +

ǫ

10
(u∗(10 − 7ǫ) + (10 − 3ǫ))

}
(4.19)

∫ rm

0

u2rdr =
u2

1r
2
m

2

{
(1 − ǫ)2u∗2 +

ǫ

35
[2u∗2(13 − 10ǫ)

+9u∗(2 − ǫ) + 2(13 − 3ǫ)]

}
(4.20)
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∫ rm

0

u3rdr =
u3

1r
2
m

4

{
(1 − ǫ)2u∗3 +

ǫ

3080
[u∗3(946 − 763ǫ)

+u∗2(594 − 351ǫ) + u∗(594 − 243ǫ) + (946 − 183ǫ)]

}
(4.21)

4.2 Mixing Correlations

To be able to use Eqs (4.19)-(4.21), additional relations are needed to define u∗ and ǫ

at the mixed-flow plane of the ejector. Accurately modeling a compressible turbulent

shear layer is a difficult task, even with modern computational tools. In addition,

the shear layer is also axisymmetric and thus fundamentally different [64] from a

simpler, planar case for which most experimental data is available. Since the present

model is fairly simple, it lends itself to the use of empirical correlations for plane

mixing layers. Although some deviation will be expected, the essential physics of

compressible, turbulent mixing will be retained.

The first quantity that is required is the width of the shear layer. One can estimate

δm by using a correlation for its growth rate. For a planar, compressible, turbulent

shear layer, Papamoschou [57] gives the correlation as,

dδ

dx
=

0.085(1 + ν)(1 − τ)

1 + ντ
f(Mc) (4.22)

where

ν =
ρr

ρa

(4.23)

and

τ =
ur

ua

(4.24)

The function f(Mc) accounts for the effects of compressibility and is estimated by
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the following empirical relation,

f(Mc) = 0.25 + 0.75e−3M2
c (4.25)

where Mc is the convective Mach number,

Mc =
ur − ua

ar + aa

(4.26)

Since a turbulent shear layer grows linearly [64] (Eq. (4.22)), one can estimate the

shear layer thickness at the mixed-flow plane using,

δm ≈ L
dδ

dx
(4.27)

10

0 u/ur

r

raua

ri

ur

Figure 4.2: Velocity Profile at Ejector Inlet

The last parameter required to quantify the velocity profile is the dimensionless

velocity, u∗. An equation for this quantity can be obtained from Alber and Lees [1],

and is written as,

x

sθθo

=
19.7u∗3

2 − u∗ − 4u∗2
(4.28)
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where sθ is a spreading parameter based on the momentum thickness. It is related to

the usual turbulent spreading parameter s by the following equation:

sθ

s
= [1 + [(γm − 1)/2]M

2

m]2 (4.29)

In the present work the generally accepted value of s = 9.42 [1] is used. Although

Eq. (4.28) can give u∗ at any x-location, only the value at the mixed-flow plane is

required for the solution.

To be able to use Eq. (4.28), some way of estimating the initial momentum thick-

ness is required. By definition, the compressible version of the momentum thickness

integral can be written as,

θo =

∫ ra

0

(
1 − u

ur

) ρu

ρrur

dr (4.30)

To simplify the integration, one can assume uniform velocity profiles at the inlet of

the ejector, as shown in Figure 4.2. Assuming that the density profiles have the same

form, the integral in Eq. (4.30) can be evaluated to yield,

θo =

(
τ − 1

ντ 2

)
ra (4.31)

4.3 Numerical Solution

As was mentioned earlier, the equations for the partially mixed ejector are nearly

identical to those of the fully mixed case. For this reason, the numerical solution

of those equations can be carried out in the same manner as shown in Figure 2.6

(T o
m → T

o

m,Mm → Mm). However, due to the addition of the mixing factors, some

modification of the equations as well as the Jacobian is required. Firstly, the mass
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and momentum conservation equations can be restated more conveniently as,

f1 = −γmβmM
2

m +

[
ψṁra

∗

r

µrpmAm

√
θΓ

]
µaχa +

[
ṁra

∗

r

pmAm

χr − Fp,x − 1

]
= 0 (4.32)

and

f2 =
ṁr

pmAm

√
RmT

o

m

γm

(
ψ
µa

µr

+ 1

)
−Mm(1 + (γm − 1)βeM

2

m)1/2 = 0 (4.33)

Since the partially-mixed formulation altered only the mixed-flow plane as compared

to the fully mixed case, all derivatives with respect to Ma remain unchanged. One

does, however, need to alter the derivatives with respect to the area-averaged Mach

number. Differentiating Eqs. (4.32) and (4.33) with respect to Mm one can write,

∂f1

∂Mm

= −2γmβmMm (4.34)

∂f2

∂Mm

= −
(
1 + (γm − 1)β2M

2

m

)1/2

[
(γm − 1)βeM

2

m

2(1 + (γm − 1)βeM
2

m)
+ 1

]
(4.35)

which can be substituted in place of Eqs (2.68) and (2.69) to implement the solution

procedure for the partially-mixed model.
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Results & Discussion

5.1 Pressure Distribution

Before using the one-dimensional model to study the performance of a constricted

ejector, one must first decide on how to quantify the pressure integral term since

the pressure distribution is not known a priori. Two analytical pressure distributions

as well as one obtained directly from the computational results of Etele et al. [27]

will be compared based on their ability to compute the compression and compression

augmentation of a given ejector configuration. The ejector configuration used for the

following analysis is the same as the one used to obtain the computational data, with

the pertinent parameters presented in Table 5.1.

Table 5.1: Test Conditions

Mr T o
r po

r γr σ

3.1 2316 K 58 atm 1.27 0.1

α T o
a po

a CR L/D

0.75 279 K 58.7 kPa 0.25 5
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A comparison of the three different pressure distributions for the case of 25% area

constriction is shown in Figure 5.1. The wall pressure distribution from CFD sim-

ulations (solid curve) has been included as well and shows a shock train structure

that is typical of supersonic internal flows [7]. For comparison purposes, this pressure

distribution is integrated numerically and input into the ejector equation solver. For

these cases, Fp,x is calculated independent of the ejector solution because for fixed

inlet conditions (po
a and α), the mixed-flow pressure could not be matched to the exit

pressure from the CFD results. Matching the pressures would increase the entrain-

ment ratio in the theoretical case and would thereby invalidate the contrast with the

CFD data.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

x [m]

p
[k

P
a]

CFD [27]
Eq (2.28)
Eq (2.29)

pmin

Figure 5.1: Wall Pressure Distributions

If the polynomial pressure distribution is used, a choice must be made as to

which method of calculating pmin to adopt for the present study. To assess the

relative accuracy of both techniques, the variation of the minimum rocket stream

pressure for various inlet conditions is calculated using both the Riemann and CV
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methods. The values of pmin predicted by the Riemann method are independent of

grid spacing provided that ∆x is sufficiently small (a value of 5 mm is used). Total air

pressure (po
a) is chosen for the ordinate since it captures the variation in both flight

altitude and Mach number (at constant α) without the need for a specific trajectory.

Computational data for this case is only available at one flight condition (po
a = 58.7

kPa) and is shown in Figure 5.2 along with the theoretical curves.

406080100
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p m
in

[k
P
a]

CV Solution for pmin

Riemann Solution for pmin

CFD Prediction

Figure 5.2: Minimum Rocket Stream Pressure at a Fixed Air Mass Flow
Rate

Both methods show a similar exponential trend, although the CV method tends to

have a steeper slope. The total pressure at which the air stream chokes differs between

the two methods as well. Comparing the minimum values in the figure shows that for

the given conditions, the Riemann solution chokes at a pressure of 40 kPa while the

CV solution chokes earlier, at 50 kPa. The CV solution curve also shows a minimum

at the point where the air stream chokes, after which pmin begins to increase. The

minimum occurs because the mass flow rate of the air is held constant to obtain the
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solutions presented in Figure 5.2. Furthermore, since the mass flow rate at sonic

conditions is directly proportional to the flow’s total pressure and sonic throat area,

when po
a is decreased A∗

a has to increase. When this occurs the area of the rocket

stream decreases (Ar), which yields a smaller Mr and thus a higher pressure (pmin).

This behaviour makes sense from a physical standpoint, since one would expect the

choking of the air stream to place a lower bound on pmin.

The Riemann solution, on the other hand, does not show the same type of limiting

behaviour, since the choking condition was used to stop the solver before the expan-

sion of the rocket plume was complete. The discrepancy in this case can come from

two sources. The first is the Riemann solver itself, which may be over-estimating the

extent to which the rocket stream can expand. The other option is that the entrain-

ment ratio, which is governed by Eqs. (2.4), (2.16) & (2.23) is being overestimated at

choked airflow conditions. In this case, the Riemann solver may be more representa-

tive of the true flow physics, and the inflow condition being imposed by the governing

equations is unrealistic. In either case it is clear that using the Riemann approach

with the overall ejector solution procedure is producing anomalies when the air flow

chokes, while the CV method seems to be better suited to the present approach.

Overall, both methods are in good agreement with each other due to the common

assumptions used by both techniques. From the figure, it is also clear that both

methods predict a value of pmin that is 60-70% higher than the CFD prediction. The

reason for the discrepancy is tied to the presence of the shear layer which entrains fluid

from both streams and facilitates the transfer of mechanical energy. This causes the

total pressure and the mass flow rate of the rocket stream to decrease as the mixing

progresses, which means that the flow is not isentropic. These facts are clearly evident

in Table 5.2, which shows that both the mass flow rate and the velocity of the rocket

stream in the CFD results are lower than the theoretical values. Another reason is

the fact that the flow in this expansion region is highly two-dimensional and would
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thus be able to expand to a lower pressure than an idealized, quasi-one-dimensional

flow.

Table 5.2: Comparison of Flow Variables at Point of Maximum Expansion
for po

a = 58.7 kPa

Variable Riemann CV CFD [27]

ṁr [kg/s] 2.5 2.5 2.2

ur [m/s] 1955 1974 1749

pmin [kPa] 32.5 26.84 18.77

Although the minimum rocket pressure differs from CFD predictions, one must

keep in mind that it is not the pressure distribution itself but rather Fp,x that is of

interest. Consequently the actual numerical value of pmin, provided it is at least in

the right range of values is not particularly important. Given that both methods

yield similar results, the choice will be made based on how realistically the physics of

the flow are represented. Since the CV method was shown to be the best suited to

the overall solution procedure, it will be used to quantify pmin when the polynomial

pressure distribution is used.

5.2 Ejector Performance

With a suitable method chosen for quantifying one of the pressure distributions, the

focus can shift to the ejector itself. Since a pressure distribution along the wall needs

to be assumed, there is some uncertainty in terms of which one should be used.

Theoretical results for the compression and compression augmentation factor using

each of the three pressure distributions are compared to the computational results

in Figures 5.3 & 5.4 respectively. Combustion inside the ejector is neglected and the

data is obtained for each value of CR by adjusting the mixed-flow pressure until an

entrainment ratio of approximately 0.75 is achieved.
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Figure 5.3: Ejector Compression Ratio πm, theoretical (dashed lines) and
CFD (solid line) results

Studying Figure 5.3, it is clear that the analytical solution gives an ejector com-

pression factor that is higher than the CFD prediction by 30-40% depending on the

contraction ratio. This type of discrepancy is not unexpected since the theoretical

model is a great simplification of the complex ejector flowfield. The two major effects,

which the theory does not consider, is that the flowfield is highly turbulent and may

also not be fully mixed. Both of these are essentially losses and would act to decrease

the compression factor. In the case of the present CFD results, the configuration

considered by Etele et al. [27] was about 93 % mixed based on an outflow mixing

parameter (similar to βm) which uses the curvature of the velocity profile to ascertain

the extent of mixing (i.e., more uniform velocity profile implies better mixing). The

flow was also fully turbulent since the width of the mixing zone encompassed the

entire exit plane of the ejector. Since turbulence and mixing are related they can

not be readily decoupled into separate effects. Nonetheless, because the flow in the
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computational case is close to being fully mixed, it is clear that turbulence plays a

much more important role.

To examine how well the analytical model predicts air entrainment, it is neces-

sary to match the ejector’s exit conditions (pm) so that the inflow conditions can be

compared. This type of comparison reveals that the theory also predicts a higher sec-

ondary (air) mass flow rate, and thus a higher value of CR at which the entire ejector

chokes. For example, when CR = 0.25, the analytical model predicts an entrainment

ratio that is approximately 52% higher than the CFD results would suggest. This

discrepancy is tied to viscous effects as well as the turbulent nature of the flowfield

which have a strong influence on the shape (or curvature) of the velocity profile and

thus limit the amount of mass that can be passed through a given cross section.

Despite the higher values of πm & α predicted by the analytical model, the trends

are well represented, especially when the wall pressure distribution is defined either

by Eq. (2.29) or obtained directly form the CFD simulations (top two curves). In

fact, in both of these cases, the rate of increase of πm with decreasing exit area

is well captured as shown in Figures 5.3 & 5.4. Comparing the top two curves in

Figure 5.3, it is evident that both give nearly identical results for πm, even though

the mixed-flow pressures for the two distributions (see Fig. 5.1) are quite different.

This is an interesting result, because using the wall pressures extracted from the CFD

simulations to quantify Fp,x represents the accuracy limit of the theoretical integral

analysis. This would seem to suggest that the discrepancy in πm is not caused by the

pressure distribution, but rather by neglecting the effects mentioned earlier. It also

means that within the framework of the theory presented herein, Eq. (2.29) is indeed

a reasonable approximation of the integral of the wall pressure (Fp,x).

If one assumes that the viscous and turbulent effects stay nearly constant with CR,

than they can be effectively eliminated by dividing the compression factors in Fig. 5.3

by [πm]CR=0. The result is the compression augmentation factor, πm, which provides
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a more convenient basis for comparison. Figure 5.4 shows that the analytical model

predicts πm much better than the compression factor itself. The linear distribution

(Eq. (2.28)) predicts a much lower value of πm and shows a much slower rise with

increasing area constriction compared to the computational results. The exponential

rise in πm seems to be reasonably represented by the polynomial up to about 25%

constriction, at which point the two curves begin to diverge. The divergence is due

to the discrepancy in the choking point, where for the given conditions (CR = 0.25,

α = 0.75) the theory predicts a Mach number of only 0.61 at the ejector exit, while

the CFD results suggest that the flow is choked on an area-averaged basis. When the

wall pressures extracted from the CFD simulations are used, the results are nearly

identical to those obtained from using Eq. (2.29), diverging only slightly for higher

values of constriction.

Based on the results presented so far it is clear that the polynomial p(x) does an
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adequate job of modeling the ejector’s performance within the accuracy limits of the

theoretical analysis. More importantly, the exponential trends in both πm and πm

are reproduced reasonably well up to the choking limit. Due to the convenience of a

closed-form expression, as well as its relative accuracy, Equation (2.29) will be used to

quantify Fp,x for the remainder of this study. It should be kept in mind, however, that

the fully-mixed theory lacks the performance loss mechanisms commonly encountered

in ejectors (viscosity, turbulence). Accordingly, the theoretical values of πm would be

different from a real ejector, and could be on the order of 40%, as is the case for the

present comparison.

5.3 Effects of Combustion

Although good agreement has been seen between theory and CFD, the results pre-

sented so far were obtained at operating conditions which are not representative of

an actual ejector. Specifically, the preceding data was obtained at an unrealistically

low equivalence ratio to avoid combustion and thus allow a comparison under a mix-

ing only basis. This does not occur in practice since rockets are generally operated

at equivalence ratios much higher than 0.2. To investigate the performance of the

ejector in this regime one must now account for the effects of combustion. Since the

SMC mode is of particular interest, one must look at the ejector under fuel rich as

well as fuel lean conditions. A wide operating range such as this necessitates the

need to account for dissociated species as well as products of incomplete combustion.

This makes the Gibbs Minimization technique particularly well suited for this task

as any number of various product species can be assumed to occur. Use of the equi-

librium assumption is warranted for these conditions since it has been validated for

the supersonic flowfield of the rocket using a CFD code which accounts for finite-rate

combustion kinetics [26]. The product species were chosen by consulting the same
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Kerosene/Oxygen combustion model [26] that was used to compute the chemically

reacting flow field of the rocket. For the present computations, a post-combustion

mixture composed of 17 species was assumed and is summarized in Table 5.3.

Table 5.3: Assumed Product Species

1. CO2 2. CO 3. CH3 4. CH4 5. C2H2 6. C2H4

7. O2 8. O 9. OH 10. N2 11. N 12. NO

13. H2O 14. H2 15. H 16. HO2 17. H2CO

In the following analysis the effect of the rocket equivalence ratio will be quantified.

Since φr alters the combustion inside the rocket, it affects the combustion inside the

ejector indirectly through the inflow conditions (temperature, composition). For this

reason, one must be careful to distinguish between the combustion inside the rocket

(primary) and the combustion inside the ejector (secondary) when interpreting the

results since both are present during SMC operation.

The results for the ejector compression factor, πm at various rocket equivalence

ratios are presented in Figure 5.5, with the curve for the case when combustion is

absent shown as a reference. The points at which the curves terminate represent

the contraction ratios at which the ejector chokes. The foreshortening of the curves

for φr ≥ 1 relative to the reference case therefore indicates that the flow is being

thermally choked. Figure 5.5 shows that the extent of choking at φr = 2.5 is ap-

proximately the same as at Stoichiometric conditions, while the φr = 2 configuration

chokes at a slightly higher contraction ratio. Overall, the amount of possible area

constriction is reduced by no more than 14%. This represents a significant reduction

in the possible operating range, and is related to the secondary combustion which

increases the energy of the mixed flow. One can quantify this with a combustion

temperature rise, (∆Tc) which can be calculated by solving the same ejector configu-

ration with the secondary combustion suppressed and taking the difference in mixed
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flow temperatures. The relative combustion temperature rise is plotted in Figure 5.6

for a fixed constriction ratio.
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Figure 5.5: Ejector Compression Under SMC Conditions

The equivalence ratios at which the compression data in Figure 5.5 is obtained

have been highlighted in Figure 5.6 for clarity. Focusing on these points, it is evident

that the relative temperature rise at Stoichiometric conditions is approximately the

same as for an equivalence ratio of 2.5. Furthermore, ∆Tc is about 12% lower at

φr = 2 as compared to the other two conditions. If one then compares the choking

points of the ejector in Figure 5.5 to the the trends observed in Fig. 5.6 it becomes

clear that it is the drop in the heat release at φr = 2 which is responsible for extending

the possible constriction ratio range of that configuration.

In addition to thermal choking, secondary combustion also affects the compression

factor itself. Shown in Figure 5.7 is the compression augmentation factor which in

this case is normalized with [πm]φr=0.2 at a constriction ratio of 15%. It is evident

from the figure that the manner in which πm is affected, whether detrimental or ben-
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Figure 5.6: Relative Change in Combustion Heat Release (CR = 0.15)

eficial, depends largely on the regime in which the rocket is operating in. The lowest

performance occurs near Stoichiometric conditions (φr = 1.2), with a compression

factor that is approximately 8% lower than the reference case. During fuel rich op-

eration, the trend reverses and compression begins to increase with the equivalence

ratio. When the equivalence ratio reaches a value of two, πm reaches unity, implying

that compression has been fully recovered. Further increasing φr begins to have a

beneficial effect on compression, with a 4% increase in performance over the reference

case.

To get a better grasp on the fundamental reasons behind the behaviour of the

compression factor one needs to examine the flow variables at the mixed-flow plane.

For this comparison the mixed-flow pressure and Mach number are normalized relative

to their respective maximum values and plotted in Figure 5.8. In the fuel-lean regime

the pressure and Mach number display opposing trends and reach their respective

minimum and maximum values at φr = 1.2. At Stoichiometric conditions the Mach
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Figure 5.7: Compression Augmentation at SMC Operation (CR = 0.15)

number reaches 94% of its maximum value while the pressure drops to 87% of its

maximum. Although both variables change by approximately the same amount (≈

13%) as compared to the reference case, one must keep in mind that the total pressure

is directly proportional to the static pressure. The result of this relationship is that in

the fuel-lean regime, the increase in Mm is not enough to offset the drop in pm, which

is why the Stoichiometric case in Fig. 5.5 shows the lowest values of πm. In the fuel-

rich region, the pressure begins to increase, and reaches 98% of its maximum value

at φr = 2 and remains unchanged at higher equivalence ratios. At this condition,

the Mach number is 9% higher than at φr = 0.2, which is why the compression

ratio at φr = 2 is nearly equal to that of the reference case. When the equivalence

ratio increases beyond 2, the Mach number begins to increase once again. Since the

pressure at φr = 2.5 is nearly unchanged from the previous condition (φr = 2), it is

the larger Mach number in this case which causes the compression ratio to exceed the

reference value.
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The results presented so far demonstrate the effects of the rocket equivalence ratio

on ejector performance. While changing φr affects the combustion inside the ejector, it

also influences the combustion inside the rocket. From the point of view of the ejector,

changing the equivalence ratio alters the inflow conditions such as the temperature

and composition of the rocket stream. This means that even if combustion inside

the ejector did not occur, changing φr would affect performance by virtue of the

changing inlet conditions (T o
r , γr). With the present model one can isolate the effect of

combustion inside the rocket (primary combustion) by obtaining a solution under the

same conditions while suppressing the secondary combustion inside the ejector. This

result can then be compared to the case when both primary & secondary combustion

occur inside the rocket and the ejector respectively. Presented below in Figures 5.9

and 5.10 are the mixed flow temperature and compression factor for each case.

Studying Figure 5.9, very similar trends in the mixed-flow temperature are ob-

served for both cases. In each case, the temperature rises to a maximum value near
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a Stoichiometric equivalence ratio, after which it slowly decreases as φr is increased

further. When primary and secondary combustion are occurring, the maximum tem-

perature is 38% higher with a sharper peak, although the equivalence ratio at which

the maximum occurs differs by less than 10% in both instances. Furthermore, during

fuel rich operation, the temperatures for both cases decrease at almost the same rate.

Given the difference in Tm between the two curves, the effects of secondary combus-

tion inside the ejector are therefore important for all values of φr > 0.5. However,

from these results it is also clear that the primary combustion has a significant effect

on Tm since it responsible for about 60% of the temperature rise.

Moving on to the compression factor, one notes the similarities between Figures

5.9 & 5.10 in that the shape of the πm curves are very similar. There is however a

larger difference in the equivalence ratios at which the minimum values occur. When

considering only the primary combustion, the minimum occurs in the fuel-lean region,

at φr = 0.7, while the addition of secondary combustion inside the ejector shifts it to
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a fuel-rich value of 1.2. Unlike Fig. 5.10, secondary combustion seems to have a much

weaker effect on the value of πm since the shift between the two curves is significantly

smaller, especially in the fuel-rich regime. The maximum difference in compression

between the two cases is about 3% at Stoichiometric conditions, and decreases to less

than 2% for higher equivalence ratios. However, this is actually a notable difference

since the overall drop in compression at Stoichiometric conditions is only 8% for all

values of CR below choking (see Fig. 5.5). Thus despite the seemingly small difference

between the curves for values of φr > 0.5, secondary combustion is in fact significant

and should not be neglected.

The secondary combustion that occurs inside the ejector is distinctly different

from what happens inside the rocket, since the reactant mixture is now composed of

radicals and reacted species. In addition to this, the combustion inside the rocket has

consumed all of the Kerosene which means that an entirely different set of reactions
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will be the major drivers of the heat release inside the ejector. To fully understand

which reactions are important one needs to examine the product and the reactant

composition. For a proper comparison, the rocket composition needs to be calculated

relative to the total mass flow of the ejector. For a general species, which can occur

in both the rocket and the air stream (such as O2) one can calculate the mass fraction

of the kth species as,

Yk,i =
Yk,r + αYk,a

α+ 1
(5.1)

If the species exists only in the rocket stream (such as CO2), one can simply neglect the

last term in the numerator. The reactant mixture (ejector inlet) is shown in Figures

5.11a and 5.12a while the composition of the post-combustion mixture (mixed-flow

plane) is presented in Figures 5.11b and 5.12b. It should be mentioned that nitrogen

is not shown in Figures 5.11a and 5.11b since its mass fraction did not change as a

result of the secondary combustion. For the present conditions, the N2 mass fraction

is about 0.3.

Studying Figures 5.11b and 5.12b an inflection point is evident in the mass frac-

tions of nearly all of the product species which occurs at an equivalence ratio of 1.2.

This point signifies that there is a shift in the chemical reactions which are occurring

and divides the graphs into two distinct regions. The first region occurs for φr ≤ 1.2

and will be referred to as oxygen rich since left over O2 shows up in the outflow com-

position (Fig. 5.11b). The second region spans most of the fuel rich regime (φr > 1.2)

and will be referred to as oxygen depleted.

In the oxygen rich zone, Fig. 5.11b shows that more of the oxygen becomes

depleted as the equivalence ratio increases. From Figure 5.11a one can see that CO

appears in the reactant mixture, while the product mixture (Fig. 5.11b) shows no

traces of this species for φr ≤ 1.2. Comparing Figures 5.11b and 5.11a it is evident

that there is a significant production of CO2 that is occurring in this region. Since
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Figure 5.11: Ejector Composition - Major Species (CR = 0.15)
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all other carbon-containing species at the ejector inflow occur in negligible amounts,

the CO thus becomes the only source of carbon for the formation of carbon dioxide.

In addition to this, Figure 5.12a indicates that there are negligible amounts of H2

entering the ejector in the oxygen rich zone, which means that the incoming oxygen

is reacting with the CO to form CO2.

CO +
1

2
O2 → CO2 (exothermic)

Additionally, there is an appreciable amount (YO ≈ 0.014) of mono-atomic oxygen

present in the reactant mixture which is then consumed completely inside the ejector.

In light of this, it is reasonable to assume that the oxidation of CO can also occur in

the following manner,

CO +O → CO2 (exothermic)

There is also a noticeable increase in the mass fraction of H2O that is occurring

in the oxygen rich zone. However, since Figure 5.12a indicates that there is not

enough H2 available for the formation of H2O and that the O2 is reacting with

carbon monoxide means that the water is being formed through a different route.

In the same region, a comparison of Figures 5.12b and 5.12a indicates that there is

an order of magnitude reduction in the mass fraction of the hydroxyl radical (OH).

Although only a small amount of H is present in the reactant mixture, Fig. 5.12b

indicates that this species is being depleted completely. Accordingly, one can infer

that the water is being formed by a radical recombination of OH and H which can

be written as,

OH +H +M → H2O +M (exothermic)

In the oxygen depleted zone (φr > 1.2), the mass fraction of carbon dioxide reaches
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Figure 5.12: Ejector Composition - Minor Species (CR = 0.15)
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a value of Y ≈ 0.48 which stays fixed as the rocket equivalence ratio increases further.

On the inlet side, however, the amount of incoming CO2 decreases with φr indicating

that carbon dioxide production continues throughout the oxygen depleted zone as

well. In this region the amount of incoming CO continues to increase while the O2,

which now solely comes from the entrained air, stays constant near Y = 0.1. As

a direct consequence, unreacted carbon monoxide can be seen to appear in Figure

5.11b since there is no longer enough oxygen to oxidize all of the CO. The fraction

of CO that appears is quite small (Y ≈ 0.06) which means that other reactions may

be present which are consuming the excess. Comparing Figures 5.12b and 5.12a it is

evident that the H2 (mass fraction of H2 is approximately halved) which now appears

in appreciable amounts in the reactant mixture, is being consumed as well. In the

same equivalence ratio range, (φr > 1.2), the ejector’s product composition begins to

show trace amounts of formaldehyde (CH2O), a species which did not appear at all

in the inlet mixture (see Fig. 5.12a). The reaction which is occurring in this case is

therefore,

CO +H2 → CH2O (exothermic)

One final point which can be made about Figure 5.11b is that the mass fraction

of water in the oxygen depleted region tends to decrease as φr increases. Although

the equivalence ratio at which the peak mass fraction of H2O occurs differs between

the product and reactant mixtures, both show a decrease of ∆YH2O ≈ −0.09 between

1.2 < φr < 2.5. In Figure 5.13 one can in fact see that the curves for the inlet and

outlet mass fractions of water begin to converge toward one another in the oxygen

depleted zone, and overlap for values of φr ≥ 1.6, diverging only slightly near φr = 2.5.

This indicates that the water is not being consumed in a chemical reaction, and that

the decrease in the amount of water at the mixed-flow plane is simply caused by a

decrease in the amount coming into the ejector. This also means that the OH/H
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recombination is no longer occurring, since the mass fractions of H and OH at the

ejector inlet are decreasing with φr, and no excess water is being formed.
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Figure 5.13: Production of CO2 & H2O (CR = 0.15)

The chemical reactions that have been mentioned so far are ultimately responsible

for the way the combustion process responds to a changing equivalence ratio. It is

no accident that the peak combustion temperature (Fig. 5.9) occurs at the same

equivalence ratio where an inflection in the product composition was noted. The

heat release inside the ejector is caused by the formation of CO2 and H2O since

they were shown to be the most abundant in the product composition. Although the

heats of reaction for the formation of these species are in the same range of values,

the oxidation of CO is much more energetic (φr = 1), with ∆HR = −48, 187 kJ/kmol

as compared to ∆HR = −20, 202 kJ/kmol for the recombination of H and OH. The

35% drop in ∆Tc that occurs when the equivalence ratio exceeds a value of 1.2 can

therefore be attributed to the fact that H2O is no longer being formed in the oxygen

depleted region due to the decreasing amounts of OH andH required for its formation
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as per the reaction previously described. What this means is that 65% of the heat is

due to the oxidation of CO into carbon dioxide, a reaction which is clearly prevalent

(see Fig. 5.13) throughout the entire equivalence ratio range considered in the present

analysis.

5.4 Effects of Mixing

The mixing process inside the ejector is very important since it ultimately determines

the amount of air that can be entrained as well as the compressive performance. The

fully mixed-theory is adequate for predicting performance under idealized conditions,

since a real ejector would be designed to approach those theoretical limits. What the

fully mixed approach cannot predict is the duct length required to reach those condi-

tions. Although the CFD results presented earlier can be used as a guide for selecting

an appropriate L/D, they encompass a limited range of conditions. Consequently

an L/D = 5 may not be sufficiently long for a different ejector configuration. The

partially-mixed theory can thus be used to obtain an estimate of the L/D required to

achieve complete mixing as well as to quantify the performance loss due to incomplete

mixing.

On a physical basis there is a fundamental difference between the governing equa-

tions for a fully mixed and a partially mixed ejector. More specifically, one represents

an ideal case, which actual ejectors approach, while the partially mixed case is an

attempt to include some of the physics of a compressible turbulent mixing layer.

Mathematically, however, the only difference between the equation sets are the two

mixing parameters, βm and βe. In a sense, it is through these two parameters that

the essential physics of mixing enter into the one-dimensional form of the governing

equations. For this reason, it is worthwhile to first look at the functional behaviour

of the mixing parameters to gain insight into the solution space. Presented below in
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Figures 5.14 & 5.15 are the momentum and energy mixing factors respectively.
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Figure 5.14: Momentum Mixing Parameter

Examining the two figures, it is evident that the curves for both mixing factors

have similar shapes, and only differ in the limiting values which implies that either

one can be used to judge the extent of mixing in an ejector. One can also see that

the width of the shear layer has a strong effect on βm and βe, and tends to flatten

out the curves for successively higher values of ǫ. This occurs because increasing the

width of the shear layer stretches out the velocity profile in the radial direction which

has a strong effect on its curvature. The effect is highly pronounced when u∗ ≤ 0.6

and is less significant for higher values of u∗ when all of the curves collapse onto one

another.

Both βm and βe also display asymptotic behaviour and approach their theoretical

limiting values of 1 and 0.5 respectively as u∗ approaches unity. The limits represent

a uniform velocity profile which would be attained if sufficient axial distance was

available. How close both mixing factors can approach to their limiting values is
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Figure 5.15: Energy Mixing Parameter

governed by the correlation of Alber & Lees [1]. In the limit, as the axial distance

becomes large, Eq. (4.28) approaches a value of u∗ ≈ 0.593. For the case when

ǫ = 1 this would give the imposed limiting values of 1.018 and 0.526 for βm and

βe respectively. This means that regardless of the ejector configuration used, the

partially mixed theory cannot actually yield a completely uniform velocity profile.

However, since the difference between the theoretical and imposed limiting values of

the mixing factors is on the order of 2%, it is expected that the errors associated

with calculating various ejector performance parameters such as πm or α would be

negligibly small and would only occur for configurations with long mixing ducts.

With a good grasp of the mathematical behaviour of the model, one can now pro-

ceed to analyze the ejector under conditions of incomplete mixing. The configuration

that is examined is the one outlined in Table 5.1 with the constriction ratio fixed at

15%. The compression augmentation factor (πm) is plotted as a function of the duct

length along with the mixing parameter in Figure 5.16. In this case, the compression
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Figure 5.16: Effect of Ejector Duct Length

of an equivalent fully-mixed configuration was used to calculate πm. The reference

configuration did not include the effects of secondary combustion since the equiva-

lence ratio was set to φr = 0.2. The data in Figure 5.16 suggests that the extent of

mixing varies very little for the L/D range considered. The momentum mixing factor

varies by no more than 5% while πm stays within an envelope of 2.5%. A difference of

this magnitude in the ejector’s compression at L/D = 5 further supports the notion

that the discrepancy noted in Figure 5.3 between the theoretical and computational

results was not caused by incomplete mixing.

As one might expect from the preceding discussion the compression augmentation

ratio never reaches unity, but comes within 0.5% of the fully mixed case. In light

of this discrepancy one must define the mixing length as the point where the extent

of mixing stops changing. This gives a mixing length of L/D = 9, which is in good

agreement with published experimental values [19]. It should also be noted that the

shape of the πm curve would differ in reality due to the effects of skin friction, which
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would manifest in two ways. The first, is that the compression ratio would be lower,

as was the case with the results of Papamoschou [57] were the inclusion of wall skin

friction tended to lower the thrust of the ejector. Secondly, the compression ratio

would decrease with L/D once the mixing length is exceeded due to the increase in

skin friction with duct length.

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1r
rm

r
rm

r
rm

r
rm

r
rm

u/u1u/u1u/u1u/u1u/u1

L/D = 3 L/D = 5 L/D = 7 L/D = 9 L/D = 12

Figure 5.17: Velocity Profiles at Mixed-Flow Plane for Various L/D’s

Velocity profiles at the mixed-flow plane are plotted in Figure 5.17 for various

lengths of ejector ducts. The velocity u1 represents the velocity at the upper boundary

of the shear layer, while the velocity at the lower boundary is simply u∗. Unlike the

data in Fig. 5.16, there is a significant difference in the shape of each of the profiles.

For the shortest ducts (L/D = 3, 5) it is evident that the shear layer has grown to

only a small fraction of the duct area and the velocity profiles are dominated by the

uniform flow region. For L/D ≥ 9 the shear layer is significantly thicker and occupies
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the entire mixed-flow plane. It is interesting to note that despite the large variation

in ǫ for all the velocity profiles, the value of u∗ changes by less than 10% between the

longest and shortest ducts. This is related to Eq. (4.28) which is plotted in Figure

5.18 to produce an s-shaped curve. The cases considered in the figure all fall onto the

upper part of the curve, which is why u∗ changes so little. Thus the main driver for

the change in the values of βm is the shear layer width, which can be seen to have a

strong influence on the curvature of the profiles shown in Figure 5.17.
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Figure 5.18: Velocity u∗ from Eq. (4.17)

Whether the mixing length prediction is accurate or not depends on the validity

of the assumptions on which the model is built. In the model it is assumed that the

density and temperature remain uniform at the outflow plane and that the effects of

the wall boundary layer are negligible. The validity of these assumptions depends

on the length of the duct being considered. For shorter ducts, the temperature and
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density profiles may no longer be uniform while the effects of the wall boundary layer

would become important for longer ducts. Since the temperature and density profiles

in the CFD results were uniform for L/D = 5, it is therefore reasonable to assume

that those effects would not alter the prediction of the model. The wall boundary

layer, on the other hand, may be fairly thick for L/D = 9 and although it would

increase the mixing factor, the extent of the mixing would remain unchanged. In

addition to these considerations, one must also keep in mind that the model uses a

correlation for a planar shear layer to estimate the mixing extent in an axisymmetric

case. Since axisymmetric shear layers tend to spread out faster [64], the mixing length

predicted by the model is most likely a conservative estimate.

5.5 Thrust Augmentation

The thrust of an ejector depends not only on how effectively it compresses the incom-

ing air but also on how much air it entrains. The results presented so far have only

dealt with the compression ratio, since α was held fixed. To quantify the effects of

CR and φr in a more complete manner, one needs to look at the how well the ejector

augments thrust. The analysis will therefore consider a fully-mixed ejector under

SMC conditions while using the case when combustion does not occur (φr = 0.2) as

a reference. The ejector configuration is modified to include a rocket that is repre-

sentative of an Atlas E/F first stage (Rocketdyne MA-3 engine), with the pertinent

parameters shown in Table 5.4.

The ejector configuration used for thrust calculations is shown in Figure 5.19 and

is fitted with a diverging propelling nozzle since the mixed-flow Mach number is fixed

at unity for all cases. The flow entering the nozzle at plane m is assumed to expand

isentropically to atmospheric pressure (p∞) by the time it reaches plane e. Given

that the pressures at either end of the nozzle are specified (pm, pe), and pm can vary
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Figure 5.19: Calculation of Ejector Thrust

implies that the area ratio of the nozzle can vary as well. The thrust of the ejector is

then calculated by taking the difference in the momentum fluxes and pressure forces

between planes i and e. The thrust of the rocket is calculated by considering the

rocket in isolation and subtracting the air ram drag (p∞Ar) from the pressure force

and momentum flux at the rocket’s exit plane. The thrust augmentation ratio Φ, is

calculated by dividing the thrust force of the ejector by that of the rocket.

Table 5.4: Ejector Configuration

Mm 1 T o
a [K] 279

Mr 3 σ 0.1

po
r [atm] 48 ri [m] 1

po
a [kPa] 100 L/D 5

The fully mixed configuration is depicted in Figure 5.20 at static sea-level con-

ditions. Examining Figure 5.20, one notes that the shapes of the curves display an

upper limit in constriction past which thrust augmentation begins to decrease. The

limit occurs roughly near CR ≈ 0.55, and varies by no more than 10% for different

equivalence ratios, with the Stoichiometric and reference cases (φr = 0.2) showing

the widest operating ranges. This maximum represents the theoretical performance
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limit for the present ejector configuration, and occurs because area constriction, while

improving compression, tends to limit the maximum amount of air that can be en-

trained.
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Figure 5.20: Ejector Performance Map

Figure 5.20 also shows that the rocket equivalence ratio has an effect on the thrust

augmentation of the ejector. To present this trend more clearly, Φ is plotted as a

function of φr in Figure 5.21, which shows that thrust augmentation is maximized at

Stoichiometric conditions. As more fuel is added, thrust augmentation drops fairly

rapidly, with the φr = 2.5 curve showing nearly a 4% drop from the Stoichiometric

case. The reason that the best performance occurs at Stoichiometric conditions and

not at φr = 2.5, as was the case with πm in Fig. 5.5 is tied to the entrainment

ratio, which is no longer fixed in this case. Since sonic conditions are maintained

at the mixed-flow plane for all configurations, the ejector is essentially operating at

maximum mass flow conditions at each value of CR. This means that in addition

to the compression factor, the combustion inside the ejector is free to adjust the
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entrainment ratio as well.
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Figure 5.21: Thrust Augmentation and Air Entrainment (CR = 0.3)

Figure 5.21 displays the entrainment ratio for the same conditions shown in Table

5.4. From the figure, it is clear that for the given conditions the combustion inside

the ejector is limiting the amount of air that is being entrained, with higher values

of φr yielding progressively lower values of α. Comparing the two curves in Fig. 5.21

it becomes clear that the rocket equivalence ratio affects α differently than Φ, which

means that it is not α alone that is causing the trends shown in Fig. 5.20. To explore

this idea further one needs to consider the thrust augmentation ratio itself, which can

be approximated as,

Φ =
(α+ 1)ue − αua

ur

if one neglects the effects of pressure forces. From the equation, it is clear that in

addition to α, the thrust augmentation is strongly dependent on the velocity at the

exit plane of the propelling nozzle, ue. The fact that the expansion in the nozzle is
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isentropic implies that ue is proportional to the mixed-flow velocity, um. Referring

back to Figure 5.8 one notes that the maximum mixed-flow Mach number occurred

near Stoichiometric conditions (φr = 1.2 to be precise). Combining this with the fact

that the maximum temperature occurred at the same value of φr yields a mixed-flow

velocity that is nearly double that of the reference case. On the other hand, Figure

5.21 shows that 26% more air is entrained at reference conditions as compared to the

Stoichiometric case. The net effect of the two is a higher thrust augmentation ratio,

since the nearly two-fold increase in um offsets the 26% drop in α. At higher equiva-

lence ratios, both the mixed-flow velocity and the entrainment ratio are diminished,

thus causing the lower levels of thrust present at those conditions.
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Conclusions

A theoretical treatment for a constricted ejector has been presented. The bulk of the

theory relied on the assumption of complete mixing and used an equilibrium calcula-

tion procedure to analyze the SMC operating regime. For a non-reacting case, modifi-

cations to the preceding theory were introduced to account for incomplete mixing and

its effects on overall performance. In either case, a wall pressure distribution needed

to be assumed to close the system of equations. Several options for this pressure

distribution were presented, namely two analytical functions (linear & polynomial)

as well as wall pressures extracted directly from CFD simulations.

Other than the inlet and exit pressures, the polynomial pressure distribution re-

quired that the minimum rocket pressure, pmin be specified. Two methods for calcu-

lating this quantity were presented, one which made use of a Riemann solver and an-

other which made use of a control volume (CV method) formulation. Both techniques

predicted very similar values of pmin because of the common assumptions (isentropic

flow, no mixing) on which the methods were based. In addition, the analytical so-

lutions for pmin were 60-70% larger than the CFD prediction due to non-isentropic

effects as well as the highly two-dimensional flow in the computational case.

To evaluate which pressure distribution was the most appropriate in terms of

94



Chapter 6. Conclusions

accuracy, solutions under non-reacting, fully mixed conditions were obtained for the

ejector’s compression (πm) and compression augmentation (πm) factors. Overall, the

trends for ejector compression that were obtained were very close to the CFD results,

although the analytical values of πm were about 30-40% higher, with turbulent and

viscous effects being identified as the major causes. Within the theoretical solutions,

it was found that the polynomial pressure distribution was the best approximation

for quantifying Fp,x since the results it gave for πm and πm were very close to those

obtained when the CFD wall pressures were used.

Further analysis of the fully mixed ejector was performed under SMC conditions

by varying the equivalence ratio of the rocket in the range 0.2 < φr < 2.5. Op-

eration in this mode caused significant thermal choking for φr ≥ 1 which reduced

the allowable range of CR by 14% in the worst case, and was directly related to the

combustion temperature rise inside the ejector. The combustion also affected the

ejector’s compression ratio in a manner which depended on the equivalence ratio at

which the rocket was operating. At Stoichiometric conditions, there was an 8% drop

in πm which was caused by a lower mixed-flow pressure, while the highest compres-

sion ratio occurred at an equivalence ratio of 2.5 due to an increased Mach number.

For all values of φr > 0.5 the effects of the secondary combustion were significant

and were responsible for about 40% of the changes noted in the ejector’s mixed-flow

temperature and compression ratio.

Examination of the ejector’s post-combustion mixture revealed the existence of

an inflection point in the mass fractions of nearly all of the product species which

occurred at φr = 1.2 and effectively split the equivalence ratio range into two zones.

The oxidation of CO and the recombination of H and OH where shown to be the

reactions primarily responsible for the heat release inside the ejector. While the

Carbon Monoxide reaction persisted throughout the entire equivalence ratio range,

the radical recombination was mainly active in the oxygen rich zone, and is in fact
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what caused the inflection point and the subsequent drop in the heat release at higher

equivalence ratios.

The partially mixed theory was used to estimate the mixing length required to

achieve fully mixed conditions as well as to quantify the drop in compression caused

by incomplete mixing. For long mixing ducts, it was shown that the model was not

able to produce a completely uniform velocity profile due to the correlation used to

define u∗. Although a mixing duct with an L/D = 5 yielded a flow that was 95%

mixed with a compression ratio that was only 2.5% lower than the fully mixed value,

a limit in the mixing extent was not reached until an L/D = 9. Furthermore, for

the L/D range considered, the drop in πm due to incomplete mixing never exceeded

2.5%, further proving that incomplete mixing was not the cause of the discrepancy

between the theoretical and the computational results.

The thrust augmenting performance of the ejector was investigated under fully

mixed conditions. The case when secondary combustion was absent at φr = 0.2 was

used as a reference throughout. The results showed an upper limit in thrust augmen-

tation near CR ≈ 0.55 past which Φ decreased. Maximum thrust augmentation was

achieved at φr = 1, while operation in the fuel rich regime caused a 4% drop in Φ at

an equivalence ratio of 2.5. This occurred because compared to the reference case,

there was a two-fold increase in the mixed-flow velocity at Stoichiometric conditions

while α decreased by only 26%.
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6.1 Future Work

In light of the results reported in this study there are several routes which any research

that follows can take. The fully-mixed theory that was outlined in this work is

complete and should not be developed further. The best course of action would be to

use the theory to obtain performance data under operating conditions not covered in

the present work. An example of this would be to look at the DAB mode of operation

as well as to find the optimum operating parameters for this mode. Alternatively one

can use the fully-mixed theory in an optimization routine of some sort to generate

one or more optimized ejector configurations.

The partially-mixed theory, on the other hand, should be extended to include the

effects of non-uniform temperature and density profiles for instance. Although not

crucial, a correlation for u∗ which is better suited to the present application should

be found to ensure that a fully mixed case can be reached under the right operating

conditions. One can also modify the theory slightly to account for the effect of

wall skin friction, which would provide a more realistic prediction of the ejector’s

performance.

The Riemann approach that was introduced also warrants further investigation,

to see if it alone can be used to predict the ejector’s performance. Since the Riemann

approach essentially solves the ejector flowfield in a piece-wise manner, it is therefore

well suited for use in a more complex, differential ejector model, similar to the one

suggested by Papamoschou [57]. The advantage of using the Riemann solver in this

manner would be that one would no longer have to consider an ejector where the

pressures of the two streams are matched.
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