
Urban Wake Field Generation Using LES for
Application to Quadrotor Flight

by

Mark Sutherland

A Thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Applied Science

in

Aerospace Engineering

Department of Mechanical and Aerospace Engineering

Carleton University

Ottawa, Ontario, Canada

April 2015

Copyright ©

2015 - Mark Sutherland

Abstract

A method is presented for using LES to generate urban wake velocity fields for

use in studying wake effects on autonomous quadrotor’s flight performance. The

wake velocities are stored in a database and accessed by a MATLAB/Simulink flight

simulator based on a custom quadrotor platform. This simulator and database is

used to study the difference in flight performance between wake fields generated by

RANS methods and LES with five flight missions. Results of holding position in a

constant freestream show both CFD methods produce similar results and can hold

position in all three directions within approximately ±1.5 body lengths. When the

quadrotor is in or on the boundary of the building wake the maximum deviation

volumes, as calculated when using a RANS or LES background wind, can differ by

3 orders of magnitude. This is a result of the resolved turbulent fluctuations in the

LES wake field causing a greater degree of non-isotropic flow in comparison to RANS.

Furthermore, the LES wake field can cause skewed deviations by as much as 5 to

1 in a given direction for both holding position and moving along a desired flight

path. Since the LES wake database more accurately reflects the wake fields present

behind real world structures, using a wake field replicated by a RANS simulation will

significantly over estimate the performance for position hold or slow moving flight

paths for multirotor UAVs on the order of 0.5m in size and 2kg in mass.

ii

Acknowledgments

Without question I would like to thank my supervisor Professor Jason Etele of

Carleton University for providing such a unique opportunity and unparalleled

guidance. Little did I know your patience, trust, feedback, and humor would make

this endeavor incredibly pleasant, dare I say, fun.

Similarly, thank you to Dr. Giovanni Fusina of Defense Research and Development

Canada for the chance to work on such a project and the consequent large amount

of leeway and freedom on it.

Certainly a resounding thank you to friends and family for your wonderful support

leading up to and during this enterprise. Considering your the capital investment

and committed review time you are almost as qualified and deserving as I am.

Finally to new and old friends alike in Ottawa, you have made my time here, and

overall experience, just that much more enjoyable.

Thank you to everyone.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Tables vii

List of Figures viii

List of Acronyms xii

List of Symbols xiv

1 Introduction 1

2 Methodology 15

2.1 OpenFOAM . 15

2.2 Urban Wake Field CFD Modeling . 20

2.3 Reynolds-Averaged Navier-Stokes Method 21

2.4 Large-Eddy Simulation Method . 26

iv

3 Grid Refinement Study 36

3.1 Computational Domain . 36

3.2 LES Verification and Validation Study 39

3.2.1 Q-Criterion Turbulence Visualization 41

3.2.2 Time Averaged Velocity Profile 43

3.2.3 LES Index Quality . 47

3.2.4 Experimental Comparison . 50

3.3 RANS Wake Field . 53

4 Simulation Methodology 55

4.1 Urban Wake Database . 55

4.1.1 Temporal Resolution Study 56

4.1.2 Database Loop Interval . 58

4.2 Flight Controller . 61

5 Results 76

5.1 Mission 1 - Freestream Wind Position Hold 80

5.2 Mission 2 - Building Wake Position Hold 84

5.3 Mission 3 - Top Wake Boundary Position Hold 88

5.4 Mission 4 - Ascent Though Wake . 91

5.5 Mission 5 - Crosswind Wake Translation 94

6 Conclusions and Recommendations 98

6.1 Conclusions . 98

6.2 Recommendations . 99

v

List of References 101

Appendix A LES Standard Working Directory 109

Appendix B Using OpenFOAM on Kumomotojo 118

B.1 Using OpenFOAM . 118

B.2 Using ParaView . 121

B.2.1 Configure Linux Client . 122

B.2.2 Configure Windows Client . 123

B.2.3 Results Viewing . 129

Appendix C Urban Wake Database 132

Appendix D Database-Simulator Integration 139

D.1 MySQL Database Structure . 140

D.2 SSH Tunnel . 141

D.2.1 Configure Linux Client . 141

D.2.2 Configure Windows Client . 141

D.3 Driver Installation . 143

D.4 Database Access and MATLAB Connection 144

vi

List of Tables

3 Refined area grid details . 39

4 Urban wind database query time . 58

5 Quadrotor flight simulator parameters 72

6 Position controller PD gains . 74

7 Attitude controller PID gains . 74

vii

List of Figures

1 Sample fixed-wing unmanned aircraft 2

2 Sample rotor-craft unmanned aircraft 3

3 Sample small unmanned aircraft . 4

4 Evolution of multirotor aircraft . 5

5 Typical multirotor configurations . 6

6 Standard flat surface boundary layer definition 8

7 Ideal atmospheric boundary layer due an urban area 10

8 Primary building block parameters 12

9 Sample of used OpenFOAM solver and utilities libraries. 16

10 Two corrector step PISO algorithm 17

11 Outline of the standard LES working directory 19

12 Reynolds decomposition of Φ over time 21

13 Turbulent kinetic energy spectrum with LES cutoff width 27

14 LES decomposition and filter properties 29

15 Common LES filter function . 30

16 Box filter example using DNS velocity field 31

17 Computational domain . 37

viii

18 Wake region Cartesian hex mesh . 38

19 Data sample and plotting locations 40

20 Q-criterion vortex visualization . 42

21 Time averaged streamwise velocity profiles, x/R‖ = 0.75 44

22 Time averaged streamwise velocity profiles, x/R‖ = 1.25 45

23 Time averaged streamwise velocity profiles, x/R‖ = 2.00 47

24 LES_IQk, x/R‖ = 0.75 . 49

25 LES_IQk, x/R‖ = 1.25 . 49

26 LES_IQk, x/R‖ = 2.00 . 50

27 Experimental vs. numerical comparison, x/R‖ = 0.75 51

28 Experimental vs. numerical comparison, x/R‖ = 1.25 52

29 Experimental vs. numerical comparison, x/R‖ = 2.00 52

30 RANS and LES streamwise velocity profiles, x/R‖ = 1.25 54

31 LES wake database timestep resolution study 57

32 Total velocity contours for database loop interval estimation 59

33 Database loop crosswind force coefficient and probed velocity 60

34 Quadrotor attitude and position control 62

35 Inertial and body fixed reference frames 63

36 Quadrotor free body diagram and notation convention 64

37 Quadrotor cascade attitude and position control method 72

38 Quadrotor cascade PD-PID control block diagram 75

39 Flight mission locations and velocity field samples 77

40 Flight mission locations and velocity field samples 78

41 Mission 1 - wind velocity components 81

ix

42 Mission 1 - quadrotor position . 82

43 Mission 1 - maximum path deviation bounding boxes 83

44 Mission 2 - wind velocity components 85

45 Mission 2 - quadrotor position . 86

46 Mission 2 - maximum path deviation bounding boxes 87

47 Mission 3 - wind velocity components 88

48 Mission 3 - quadrotor position . 89

49 Mission 3 - maximum path deviation bounding boxes 90

50 Mission 4 - LES deviations and building 91

51 Mission 4 - wind velocity components 93

52 Mission 4 - quadrotor position . 94

53 Mission 5 - LES deviations and building 95

54 Mission 5 - wind velocity components 96

55 Mission 5 - quadrotor position . 97

56 OpenFOAM LES user workflow . 109

57 Outline of the standard OpenFOAM working directory 110

58 icoFoam usage output with OpenFOAM version 119

59 icoFoam function not found message 119

60 SSH tunnel Putty setup . 123

61 Putty connection setup . 124

62 Connect to server selection . 127

63 Add new server . 127

64 Enter the server details . 128

65 Select Manual and Save . 128

x

66 Connect to server selection . 129

67 Server selection . 130

68 Server connection and open a case . 131

69 Remote ParaView workflow, dashed: client actions, solid: server actions131

70 Load run.foam file, adjust timestep and select desired variables 133

71 Save data and set file prefix . 133

72 Save the data from the points and for all timesteps 134

73 Single building characteristics . 140

74 SSH tunnel Putty setup . 142

75 Putty connection setup . 143

76 List of all the databases stored on the MySQL server 145

77 List of tables in windDB . 146

78 Query from the select and limit command (t = 4.4s) 147

xi

List of Acronyms

Acronyms Definition

ABL Atmospheric Boundary Layer

AIJ Agriculture Institute of Japan

CFD Computation fluid dynamics

CG Center of gravity

CLF Courant-Friedrichs-Lewy

ESC Electronic Speed Controller

FAA Federal Aviation Authority

GCS Ground Control Station

GPS Global Positioning System

GUI Graphical User Interface

LES Large-Eddy Simulation

LiDAR Light Direction And Ranging

MUA Micro Unmanned Aircraft

NED North-East-Down

xii

OEE One-Equation Eddy

PID Proportional-Integral-Derivative

PISO Pressure Implicit with Splitting of Operators

PWM Pulse Width Modulation

RANS Reynolds-Averaged Navier-Stokes

RPA Remotely Piloted Aircraft

RSM Reynolds Stress Model

SGS Sub-grid scale

SGMV Systematic Grid and Model Verification

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SMA Smagorinky

SST Shear Stress Transport

SUA Small Unmanned Aircraft

TKE Turbulent Kinetic Energy

UA Unmanned Aircraft

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UCA Unmanned Combat Aircraft

UWD Urban wind database

VTOL Vertical Take off and Landing

xiii

List of Symbols

Symbols Definition Units

Re Reynolds number

F Force kg/(m · s2)

G LES filter kernel

h Characteristic grid quality m

H Building height m

I Inertia matrix

k Specific kinetic energy m2/s2

K Control gain

L Rotation matrix

m Mass kg

M Quadrotor motor

M Moment vector

p Pressure (density nominalized) m2/s2

r Cell centered local reference frame

R Building side dimension m

xiv

S Surface area

S Strain-rate tensor

t Time s

T Time average window s

T Thrust kg/(m · s2)

u Velocity component m/s

U Total uncertainty

U Control output

V Total velocity m/s

W Wind velocity m/s

x Streamwise co-ordinate direction

y Cross wind co-ordinate direction

z Vertical co-ordinate direction

X x co-ordinate position m

Y y co-ordinate position m

Z z co-ordinate position m

δ Kronecker delta

∆ LES filter width m

κ Von Karman constant

µ Dynamic viscosity kg/(m · s)

ν Kinematic viscosity m2/s

ε Error

ε Specific kinetic energy dissipation rate m2/s3

xv

φ Roll angle

Φ Flow variable

ψ Yaw angle

τ Stress tensor m2/s2

θ Pitch angle

ω Angular velocity 1/s

ζ Incidence angle ◦

Accents

˙ Rate

Mean

˜ Filtered

−→ Vector

Superscript
′ Fluctuating/SGS component

res Resolved

tot Total

p Numerical accuracy order

Subscript

‖ Wind parallel

⊥ Wind perpendicular

0 Effective surface roughness

∗ Friction velocity

B Body frame

xvi

c Filter cutoff width

d Drag

D Characteristic building length

E Earth frame

f Force

g Gravity

i Co-ordinate direction

j Co-ordinate direction

k Richardson constant

m Mean

SGS Sub-grid scale

t Turbulent

W Wind

∞ Freestream

x Streamwise co-ordinate direction

y Cross wind co-ordinate direction

z Vertical co-ordinate direction

xvii

Chapter 1

Introduction

The development, utilization, and attention of unmanned aerial vehicles (UAVs) has

dramatically increased over the last decade as a result of various global conflicts and

ease of public access. A quick distinction is made here between an aerial munition

such a cruise missile and a UAV, as the former is a one-time use weapon while

the latter is designed to be reused and perform various types of missions. As the

complexity grew the term UAV became outdated and enhanced with the concept of

an unmanned aerial system (UAS) designed to incorporate the unmanned aircraft

(UA), ground control station (GCS), command and communication data links,

and any additional required system elements [1]. Further classification of UAs is

made with subcategories for remotely piloted aircraft (RPA) and fully autonomous

navigation and control systems.

The usefulness of any UAS becomes apparent when considering the additional possi-

ble mission types otherwise too mundane or dangerous for piloted aircraft. Therefore,

similar to their ‘full size’ counterparts both fixed-wing and rotor-craft UA platforms

1

2

have been developed to make use of the different advantages for various mission

profiles. One of the most iconic fixed-wing unmanned combat aircraft (UCA), an

armed subclass as a UA, is General Atomics MQ-1 Predator as shown in Figure 1a.

In addition to removing valuable pilots from combat situations, the UAS excels in

information gathering and relaying for reconnaissance mission profiles. The realiza-

tion for such a platform came at height of the Cold War when prior to spy satellites

the U-2 spy plane was primary means of reconnaissance. After the Soviets shot

down the U-2s of Francis Gary Powers in 1960 and Rudolf Anderson, Jr. in 1962, it

became clear an unmanned intelligence gathering vehicle could be beneficial. This

ultimately culminated in the development of the recent generation platforms such of

the Northrop Grumman MQ-4C Triton surveillance UA pictured in Figure 1b.

(a) MQ-1 Predator [2] (b) MQ-4C Triton [3]

Figure 1: Sample fixed-wing unmanned aircraft

While not as common as the fix-wing platforms, various rotor-craft UAs have been

developed to take advantage of the rotor-crafts vertical take off and landing (VTOL)

capabilities. This allows for simpler vehicle deployment off smaller navel vessels

and highly localized reconnaissance or engagement of a desired area. The Northrop

3

Grumman MQ-8 Fire Scout and Schiebel Camcopter S-100, shown in Figures 2a and

2b respectively, are examples of rotor-craft UAs developed to fit such mission types.

(a) MQ-8 Fire Scout [4] (b) S-100 Camcopter [5]

Figure 2: Sample rotor-craft unmanned aircraft

The continued success and development of the various UAS platforms, coupled

with advances in computational hardware, lead to the miniaturization and the

small unmanned aircraft (SUA). This wide general classification includes a range

of vehicles from human portable miniature UAs to insect sized micro unmanned

aircraft (MUA). Lower development and production costs, an overall simpler

systems requirements, and ease of hardware access has lead to an incredible increase

in the research, advancement and implementation of SUAs. This boom of interest

has occurred in a multitude of different sectors such as the military, academics,

industry, and hobbyists. Two examples of the numerous available SUAs are the

fixed-wing EMT Aladin and quadrotor Aeryon Scout illustrated in Figures 3a and

3b respectively.

4

(a) EMT Aladin [6] (b) Aeryon Scout [7]

Figure 3: Sample small unmanned aircraft

With comparably less flight time in regards to their ‘full size’ equivalents, the size

and cost of the small UASs still open opportunities not previously available leading

to their use in numerous industrial and civilian applications such as, precision

agriculture, geological or mine site surveying, forest fire examination or, remote

search and rescue operations.

Mutlirotor aircraft designs have have existed since the Breguet-Richet Gryoplane in

1907 and the de Bothezat helicopter in 1922, pictured in Figure 4a, as a solution

to the counter torque problems experienced with traditional helicopters. The

multirotor platform has recently grown in popularity for several reasons resulting in

vehicles such as the Parrot AR Drone in Figure 4b.

The reasons for this increased popularity are due to multirotor vehicles expanding

on the usefulness and benefits of standard rotor-craft helicopter platforms with

the additional gains of design simplicity, lower costs and smaller frame size.

Furthermore, the rise of small and powerful computational hardware has solved

5

(a) de Bothezat Helicopter [8] (b) Parrot AR Drone [9]

Figure 4: Evolution of multirotor aircraft

previous problems of high pilot workload when dealing with the multirotor’s

complex dynamics, outlined in Chapter 5. This has lead to the multirotor becoming

extremely popular, most notably for aerial photography applications, and the focus

of much research to further expand its applications. In general a multirotor can

be simplified to a flying vehicle with a rotating constant pitch propeller propulsion

system at the end of a set of symmetric arms. Therefore, the lift of the quadrotor

required for flight is produced solely by the combined thrust of the propellers. While

this is less efficient than a comparable helicopter with an actuated blade system, the

simplicity of only using a constant pitch results in an economical propulsion system

and easier maintenance.

While multirotors can have any number of motors, typical configurations have three,

four, six, or eight arms as shown in Figure 5. The thrust of each individual motor

is then used to control the attitude and position of the vehicle. The details of how

different motors are used to control the vehicles attitude and position are presented

in Section 4.2.

Similar to any aircraft design, the frame selection is a function of the intended

6

Figure 5: Typical multirotor frames, tri, quad-plus, quad-cross, hex, and octa

mission profile and desired flight characteristics such as speed, agility, endurance

or reliability. The quadrotor is a popular configuration for both hobbyists and

researches, while it lacks the power and redundancy of the larger multirotors,

it offers manufacturing simplicity and lower frame cost leaving budget for other

components and systems.

However, the size and weight benefits of SUA’s and MUA’s, such as a quadrotor,

results in a greater susceptibility to external environmental effects such as wind. Var-

ious studies have been conducted to analyze this effect such as; thermal updrafts [10]

and ridge soaring [11] with constant winds, or flocking [12], trajectory planning [13],

and estimation and rejection [14] with wind gusts. Consequently, generating wind

is accomplished with methods ranging from simplistic 2D approximations [15],

prescribed constant (or linearly varying) [13, 16, 17], wind gust models [11, 14], and

computational fluid dynamics (CFD) [18,19].

The growth in wind modeling complexity is driven by necessity as research and

development of various UASs continue and the boundaries of both the current and

desired system capabilities are expanded. With an estimated 53% of the worlds

population living in an urban environment, and increasing 2% annually [20], there is

7

little surprise in the growing interest in using SUA’s and MUA’s in urban environ-

ments. While both fixed-wing and rotor-craft platforms are versatile and capable for

use in an urban environment, focus in this work is placed on a quadrotor SUA for

various missions profiles such as; law enforcement [21], general reconnaissance and

surveillance [22], aerial photography for building inspection [23], urban mapping,

first responses tool [24], forensic analysis [25], traffic camera, chemical sensors,

parcel delivery [26,27], and catering services [28, 29].

It has been found operating a SUA or MUA such as a quadrotor within an urban

environment produces additional challenges due to the vehicle’s small size, light

weight, and the winds interaction with urban structures [30]. The resulting random

transient wind forces generated in a building’s wake can cause significant trajectory

and pathing deviations for both RPA or fully autonomous unmanned systems. To

overcome this environmental influence two main branches of study have formed;

design a controller to estimate the wind’s external influence and counteract it [14] or

design a robust intelligent controller to dynamically adapt to the external fores [31].

This work is performed to complement the design and testing of robust autonomous

control algorithms by generating appropriate and representative urban wake fields.

However, to do this, a step-back is taken to introduce the required basics of fluid

dynamics in the form of boundary layers and bluff body aerodynamics. The concept

of the boundary layer, the viscous interaction bridging a solid surface and inviscid

outer layer, was first described by Ludwig Prandetl in 1904 [32]. The fluid viscosity

coupled with a no-slip condition at the solid boundary results in a characteristic

8

boundary layer shape and velocity profile with a flat surface as illustrated in Figure

6. From this it is seen the velocity is spatially varying within the boundary layer up

to the uniform inviscid freestream.

y

x

V(x)

Boundary

Freestream

Layer

Figure 6: Standard flat surface boundary layer definition

As the lowest part of the Earth’s atmosphere moves over the planet’s surface a

planetary scaled boundary layer is formed, often referred to as the atmospheric

boundary layer (ABL) [33]. Similar to the previous ideal boundary layer, the ABL

is comprised of two sections, the outer and surface layers, where the latter is further

subdivided based on the resulting flow-surface interactions. The flow in the outer

freestream is ideally generalized as geostrophic, which is a balance of the pressure

and Coriolis forces from Earth’s rotation [34]. The inner surface layers and the

velocity profile within are highly dependent on the surface roughness and is the layer

through which urban environment SUA and MUA flight is most likely to occur.

There are four length scales used in classifying flow in urban environments, regional

(100-200 km), city (10-20 km), neighborhood (1-2 km) and street level (100-200 m)

[35]. At the regional and city scales the flow around individual buildings is averaged

out and the structure’s drag results in flow similar to that over a rough surface

9

resulting in the ABL shape. This scale produces the large scale turbulence and urban

heat island effects important for dictating the wind flow models in large pollutant

cloud transportation [35]. The surface shear stress produces a friction velocity u∗,

a scaling factor for the Monin-Obukhov similarity theory, and in combination with

a displacement height d, produces a logarithmic profile for the wind velocity in the

surface layer.

V (z) = u∗

κ
ln
[
z − d

z0

]
(1)

Where κ is the Von Karman constant and z0 is the effective surface roughness

factor. The factor can take values such as 0.0005 m for "smooth" terrain with

vegetation like beaches or open country, or 2.0 m for "chaotic" terrain like city centers

with a mix of low and high-rise buildings [36]. However, this velocity formation

is only applicable for altitudes greater than 2Hm wereHm is the mean building height.

The altitude of Hm for typical urban environment is approximately 100 to 200

m, falling into the street level scale. At the street level scale the bottom most

portion of the roughness sublayer contains the urban canopy layer where the

flow is directly affected by the size and orientation of local objects such as build-

ings [35]. Since the flow and dispersion at street level scale is the result of the

interaction of one or two streets, buildings, or intersections, it is important for

studies such as; scalar concentration dispersion in the form of pollutant dissemina-

tion [37–40], application of wind loading on buildings [41] and pedestrian comfort

level in urban environments [42]. Figure 7 summarizes the logarithmic ABL veloc-

ity profile and the reduced velocity the structures produce in the urban canopy layer.

10

ABL logarithmic
velocity profile

surface layer roughness
sublayer

outer layer

inertial

sublayer

z

V

urban

canopy layer

Hm
∼ 200 m

∼ 1000 m

Figure 7: Spatially averaged mean atmospheric boundary layer velocity profile near
an urban area. Adapted from Britter [35] and Bottema [43].

For aircraft or UAVs flying outside of the urban effects the ABL velocity profile

can be used in conjunction with continuous gust models to represent atmospheric

turbulence [44]. Two most common are the Dryden and von Karman models,

which describe the velocity components using power spectral density functions [44]

while assuming a stationary Gaussian process. Both models are functions of

a turbulent length scale and turbulence intensity scale dependent on altitude

due to varying global effects such as wind shear and temperature gradients.

While the models assume many unrealistic simplifications, they are computation-

ally simple to implement and produce satisfactory turbulent results for general

flight dynamics study. For this reason the Dryden model has become a FAA

standard when designing aircraft and has been used in the pursuit of develop-

ing UAV control schemes to incorporate general external turbulent disturbances [14].

11

However, the simplifications of the continuous gust models become inappropriate for

finding the wind velocity components inside the urban canopy layer due to the depen-

dence on specific geometry. The majority of North American cities are a collection

of rectangular prisms and act as a bluff body in the presence of wind. Knowledge

of the flow structures, specifically the turbulent wake region, is a result of research

in general bluff body aerodynamics [45–48]. Therefore, to resolve the geometri-

cally dependent urban wake fields, computational fluid dynamics (CFD) can be used.

It can be advantageous and simpler to simulate an entire urban domain on the city

or neighborhood scales, and some studies have used CFD at this scale for pollutant

dispersion [49, 50] or large fixed wing UAVs [18], but this would be computationally

expensive to resolve flow scales on the quadrotor size. Since the desired fixed-wing

and quadrotor platforms have scales two orders of magnitude lower than the street

level, the previous work of Galway et al. [19, 51, 52] is used to reduce the size and

computational cost of resolving the wind velocities in a typical North American city.

This consists of breaking the urban environment into simplified geometric building

blocks for the CFD simulation and then combining different combinations of these

blocks to replicate a desired urban environment. The two most basic building blocks

are a single building in isolation and an urban canyon, illustrated in Figures 8a and

8b respectively.

Each building block is parametrized with a set of defining characteristics. A single

building is parametrized with the ratio of the building length to width (R⊥/R‖), the

12

R‖

R⊥

H

Side View

Top View

zE

xE

xE

yE

D
−→
W

θW

(a) Single building

R‖1

R⊥1

H1

Side View

Top View

zE

xE

xE

yE

R‖2

R⊥2

H2

S

∆H

Canyon
Axis

D1 D2−→
W

θW

(b) Urban canyon

Figure 8: Primary building block parameters

Reynolds number (ReD), and the wind incidence angle (θW). The Reynolds number is

based on the freestream wind velocity V∞, the characteristic length D =
√
R⊥ +R‖,

and the kinematic viscosity ν such that,

ReD = V∞ D

ν
(2)

The wind vector −→
W can be offset at a wind incidence angle θW representing the

buildings orientation with respect to the freestream wind. An urban canyon geom-

etry is formed when single buildings are close enough to generate flow interactions

not otherwise found with a single building in isolation. One such interaction is

the generation of a turbulent canyon vortex contained within the canyon street

length. The urban canyon is parametrized with a set of characteristic lengths for

each building with the addition of the street separation distance S, and a height

differential ∆H. The ∆H shown in Figure 8b is negative by convention and

13

classified as a step up notch.

Therefore by varying the non-dimensional parameters and performing multiple

CFD simulations, a database of urban flow fields can be generated and combined

to buildup a suitable urban flight environment. This environment can then be used

with a flight simulator to design control algorithms and to test autonomous flight

performance.

The previous work of Galway et al. [19, 51, 52] generated a database of wake fields

using Reynolds-Averaged Navier-Stokes (RANS) CFD methods for testing a fixed

wing Aerosonde UAV [52] and Yamaha R-50 rotor-craft [51]. This study builds on

the previous work by generating a subset of the database for the application of

testing a quadrotor in urban wake fields. For this a single building geometry, with

parameters of Re = 7.30 × 106, θW = 0 and (R⊥/R‖)ww = 1, are used to generate

the urban wake field using a large-eddy simulation (LES) CFD method.

As outlined in Sections 2.3 and 2.4 LES is computationally more expensive than

RANS due to the additional resolved turbulent motions, however, it is believed

resolving these motions are important in the pursuit of designing and testing

quadrotor control algorithms for urban flight. With the ever increasing availability

of large computation power, compared to even a decade ago, the use of LES methods

for urban wind problems has also increased for applications such pollution dispersion

problems [37–40], wind loading on buildings [41], and pedestrian comfort [42]. Since

LES resolves additional transient turbulent motions, in comparison to constant

14

prescribed wind, gust models, or RANS based CFD methods, it produces a more

complete approximation of a true urban wake field. Therefore this work compares

the autonomous flight performance of a quadrotor with various background wind

conditions such as constant wind, RANS generated wind and LES generated wind to

determine if the additional computational cost of LES is required in the development

of appropriate autonomous flight control methods.

Chapter 2

Methodology

2.1 OpenFOAM

The urban wake fields are generated using the Open Source Field Operation and

Manipulation (OpenFOAM) CFD package [53]. While the workflow is similar to

a commercial product, OpenFOAM is a collection of C++ libraries which provide

various solver and utility applications [53]. As illustrated in Figure 9, the solvers

of OpenFOAM are able to address many different continuum problems; from

incompressible fluid flow to modeling an electric field. Similarly OpenFOAM comes

with many useful utilities for problem setup and post-processing data manipulation.

The specific utilities employed to generate the wake fields are outlined on the far

right of Figure 9 such as the snappyHexMesh meshing utility or the PISO solving

algorithm. Version 2.2.x of OpenFOAM is used in combination with the open source

3D visualization application Paraview version 3.12. Both applications run on a

workstation with a 64-bit OpenSUSE 12.4 Linux OS, dual Intel Xenon E5-2687W

octo-core CPUs and 64 GB of RAM.

15

16

OpenFOAM

Utilities

Parallel Processing decomposePar

Field Calculations
forceCoeffs

fieldAverage

Data Converters

Mesh Conversion

Mesh Generation
snappyHexMesh

blockMesh

Pre-processing

Solvers

Financial

Stress Analysis

Electromagnetics

Particle-tracking

Heat Transfer

DNS

Multiphase

Compressible

Incompressible
pisoFoam

simpleFoam

Basic

Figure 9: Sample of used OpenFOAM solver and utilities libraries.

OpenFOAM is used to regenerate a subset of the wake fields based on previous work

using RANS modeling as well as performing the proposed LES methods. Open-

FOAM utilizes the finite volume approach for spatial discretization of the governing

equations. These equations are solved using one of two solving algorithms, the Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) or the Pressure Implicit

with Splitting of Operators (PISO) method [54]. The PISO algorithm iteratively

calculates the pressure-velocity coupling using a predictor and corrector approach

as illustrated in Figure 10. The PISO algorithm is an extension of the SIMPLE

method where no under-relaxation is applied and two momentum corrector steps are

performed.

17

Start

Solve discretized momentum equations

Solve pressure correction equation

Corrector step 1 using u∗, v∗, w∗, p′

Solve pressure correction equation

Corrector step 2 using
u∗, u∗∗, v∗, v∗∗, w∗, w∗∗, p′, p′′

p = p∗∗∗

u = u∗∗∗

v = v∗∗∗

w = w∗∗∗

Solve all other transport equations

Converged?

p∗ = p

u∗ = u

v∗ = v

w∗ = w

Next time step

Initial p∗, u∗, v∗, w∗, Φ∗

u∗, v∗, w∗

p′

p∗∗, u∗∗, v∗∗, w∗∗

p′′

p∗∗∗, u∗∗∗, v∗∗∗, w∗∗∗

p, u, v, w, Φ∗

Φ

Yes

No

Figure 10: Two corrector step PISO algorithm

18

The SIMPLE algorithm is used when generating a turbulent velocity field with

a steady RANS simulation in advance of the LES to decrease the start up time

between the initial uniform conditions and the generation of turbulent structures.

The RANS simulation uses the PISO algorithm to transiently solve the governing

equations outlined in subsection 2.3 and the timestep is specified such that the

Courant-Friedrichs-Lewy (CFL) number is 1.0 in the smallest grid cells. The LES is

also solved with the transient PISO algorithm but the timestep is specified such that

the CFL number is maintained within a range of 0.4-0.6 in the smallest grid cells.

This range of CFL is used to ensure stability as well as allowing for the appropriate

turbulent timescales to be resolved [55].

Since OpenFOAM is just a collection of libraries and utilities there are several ways

to interact with them. While there are options for graphical user interfaces (GUIs),

such as HELYXOS, OpenFOAM has the ability to run under Linux bash shell script

control or through Python scripts with pyFoam. To aid the setup, execution and

proceeding of additional simulations to generate a LES based wind database the

standardized file structure used is shown in Figure 57. After setting the simulation

specific details in the various Setup files, such as the freestream wind velocity, geom-

etry names, meshing densities, and parallel processors, the Allrun script is called to

perform the steady RANS simulation, map the results and run the LES. The addi-

tional collection of scrips in the PostProcessing sub-folder allow for LES wake data

extraction, trimming and uploading. The details of the post processing scripts and

the file structure are outlined in Appendix A.

19

Standard Working Directory/

Allrun.sh
RANS_run/

constant/
RASProperties

polyMesh.org/

blockMeshDict
system/

fvSchemes
fvSolution

RANSrun.sh
LES_run/

constant/
LESProperties

polyMesh.org/

blockMeshDict
system/

fvSchemes
fvSolution

PostProcessing/

LESrun.sh
Setup/

0.org_LES/
0.org_RANS/
caseSetup
controlDict_LES
controlDict_RANS
mapFieldsDict
snappyHexMeshDict
geometry.stl

Figure 11: Outline of the standard LES working directory

20

2.2 Urban Wake Field CFD Modeling

The idea and complication of turbulence in fluid flow has existed since the classic

pipe experiment by Osborne Reynolds in 1883 [56]. Reynolds also proposed and

popularized a single dimensionless parameter, the Reynolds Number, which describes

the flow behavior as a ratio of inertial to viscous forces. While previously introduced

for application to the urban environment the general definition takes the form,

Re = V L

ν
(3)

Over the ensuing decades, the importance of understanding and subsequently the

desire to model turbulent flows forced much advancement in the subject area. The

notion of turbulent transition was expanded with the concepts such as turbulent

length and time scales and the energy cascade. For the sake of brevity the devel-

opment history of simulating turbulent flow in terms of CFD is not presented [57],

rather only the resulting methods and models.

The difficulty arises when the nonlinear differential equations of fluid motion, the

Navier-Stokes equations, are further complicated by the addition of terms from the

viscous-turbulence relationship. The methods used to numerically solve turbulent

flow fall into one of three categories; Reynolds-averaged Navier-Stokes (RANS),

large-eddy simulation (LES) and direct numerical simulation (DNS). As previously

mentioned this work expands on previous RANS based methods with LES and for

this reason the following sections will only outline their characteristics and equations.

21

2.3 Reynolds-Averaged Navier-Stokes Method

One method to reduce the extensive computational requirements to resolve all of the

spatial and temporal scales in turbulent flow is to apply Reynolds decomposition.

The basis of the decomposition is time averaging of the flow properties defined as,

Φ̄(xi) ≡ 1
T

∫ T

0
Φ(xi, t)dt (4)

where the domain flow quantities Φ(xi, t), are broken into mean Φ(xi) and a fluctu-

ation components Φ′(xi, t) such that,

Φ(xi, t) = Φ(xi) + Φ′(xi, t) (5)

and illustrated by,

Φ̄

ΦΦ′

Φ′

t

Φ

Figure 12: Reynolds decomposition of Φ over time

The time averaging and decomposition gives rise to Reynolds operators, linear alge-

braic operators on the governing functions. From the definitions of the time averaging

in Equation (4) and the fluctuation component in Figure 12, the two most important

Reynolds decomposition properties arise such that,

22

Φ = Φ (6a)

Φ′ = 0 (6b)

Combining these with the incompressible continuity and momentum equations,

∂Ui
∂xi

= 0 (7)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

(8)

where U is the total velocity, P is the pressure, and ν is the kinematic viscosity. Sub-

stituting the Reynolds decomposition and simplifying results in the incompressible

RANS continuity equation for the mean flow,

0 = ∂Ui
∂xi

(9a)

0 = ∂ (ui + u′
i)

∂xi
(9b)

0 = ∂ui
∂xi

+ ∂u′
i

∂xi
(9c)

0 = ∂ui
∂xi

+ ∂u′
i

∂xi
(9d)

0 = ∂ui
∂xi

(9e)

To derive the RANS momentum equations, the Reynolds decomposition is applied

to both the velocity and pressure quantities in Equation (8),

∂ (ui + u′
i)

∂t︸ ︷︷ ︸
I

+ (uj + u′
j)
∂(ui + u′

i)
∂xj︸ ︷︷ ︸

II

= −1
ρ

(p+ p′)
∂xi︸ ︷︷ ︸

III

+ ν
∂2(ui + u′

i)
∂xj∂xj︸ ︷︷ ︸
IV

(10)

23

The linearity of the temporal discretization I, pressure III and viscous stress terms

IV allow simple application of the Reynolds operators and time averaging following

the same procedure as the continuity equation. However, application of the RANS

averaging on the convection acceleration term, II, requires additional work due to

the products arising from the multiplication,

(uj + u′
j)
∂(ui + u′

i)
∂xj

(11a)

uj
∂ui
∂xj

+ uj
∂u′

i

∂xj
+ u′

j

∂ui
∂xj

+ u′
j

∂u′
i

∂xj
(11b)

uj
∂ui
∂xj︸ ︷︷ ︸
I′

+uj
∂u′

i

∂xj︸ ︷︷ ︸
II′

+u′
j

∂ui
∂xj︸ ︷︷ ︸
III′

+u′
j

∂u′
i

∂xj︸ ︷︷ ︸
IV ′

(11c)

Applying the definition of time averaging, Equation (4), to the second and third

terms, II ′ and III ′, reduces them to zero following,

uj
∂u′

i

∂xj
= 1
T

∫ T

0

(
uj
∂u′

i

∂xj

)
dt (12a)

= uj
∂

∂xj

(
1
T

∫ T

0
(u′

i)dt
)

(12b)

= uj
∂u′

i

∂xj
(12c)

= 0 (12d)

Therefore collecting the averaged terms and simplifying Equation (10),

∂ui
∂t

+ uj
∂ui
∂xi︸ ︷︷ ︸
I′′

+u′
j

∂u′
i

∂xi︸ ︷︷ ︸
II′′

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(13)

24

A substitution is made for the remaining nonlinear terms, I ′′ and II ′′, culminating

in the time-averaged momentum equations,

∂ui
∂t

+ ∂uiuj
∂xj

+
∂u′

iu
′
j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(14a)

∂ui
∂t

+ ∂uiuj
∂xj

+
∂u′

iu
′
j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(14b)

∂ui
∂t

+ ∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂

∂xj
u′
iu

′
j (14c)

The u′
iu

′
j term is a product of the non-linear convection term and represents the

convective momentum transfer from turbulent eddies [54]. This quantity is called

the Reynolds stress tensor which cannot be related to the unknown mean velocity

and pressure fields and therefore results in the ‘turbulent closure problem’ [57].

Therefore to predict the Reynolds stresses based on the mean flow and close the

system of equations, turbulence models are employed.

All current models use one of two methods to ascertain the unknown Reynolds

stresses, the eddy viscosity relation or the Reynolds stress model (RSM). The most

common models use eddy viscosity which is loosely based on Newton’s law of viscosity

where the shear stress is proportional to the strain rate,

τ = µ
∂u

∂x
(15)

Where µ is the fluid’s dynamic viscosity. The Boussinesq hypothesis expands this

expression for a turbulent flow case to relate Reynolds stresses to the mean rates of

viscous deformation,

25

− u′
iu

′
j = νt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3kδij (16)

Where νt is the turbulent eddy viscosity, k is the specific turbulent kinetic energy

and δij is the Kronecker delta. The contribution of this additional term ensures

a correct relation for the normal Reynolds stress components [54]. While this

approximation aids in the closure problem, it introduces an additional unknown

and complex variable νt. Therefore the principal goal of any turbulence model is to

calculate νt either with simple relationships, such as Prandtl’s mixing length model

or through additional transport equations, such as the k − ε or k − ω SST models.

The two equation k − ε model is briefly outlined as it is used to generate an urban

wake field based on previous urban wind generation work of Galway et al. [19,51,52].

The k − ε model introduces a transport equation for the turbulent kinetic energy k

and the specific turbulent kinetic energy dissipation rate ε to provide velocity and

length scales to find the unknown turbulent eddy viscosity. The specific turbulent

kinetic energy is defined as,

k = 1
2uiui = 1

2(u′2 + v′2 + w′2) (17)

and the specific turbulent kinetic energy dissipation rate is defined as,

ε = 2νs′
ijs

′
ij (18)

where s′
ij is the fluctuating strain-rate tensor,

s′
ij = 1

2

(
∂u′

i

∂xj
+
∂u′

j

∂xi

)
(19)

Using these definitions, the RANS momentum Equation (14c), and considerable

manipulation, produces the additional transport equations shown from Tennekes

26

and Lumley [58] or Launder and Spalding [59],

k

∂t
+ uj

∂k

∂xj
= −u′

iu
′
j

∂ui
∂xj

− ε+ ∂

∂xj

[
(ν + νt/σk)

∂k

∂xj

]
(20a)

ε

∂t
+ uj

∂ε

∂xj
= −C1

ε

k
u′
iu

′
j

∂ui
∂xj

− C2
ε2

k
+ ∂

∂xj

[
(ν + νt/σε)

∂ε

∂xj

]
(20b)

Finally the system of equations are closed by relating these transport equations to

the eddy viscosity using dimensional analysis resulting in,

νt = Cν
k2

ε
(21)

The final requirement in closing the model is addressing the five unknown constants.

The standard k − ε constants are used, as shown below, and are the result of com-

prehensive data fittings from experimental results,

Cν = 0.09 C1 = 1.44 C2 = 1.92 σε = 1.30 σk = 1.00

2.4 Large-Eddy Simulation Method

While RANS based methods are the most common in the engineering industry,

the available turbulent models presume universal behavior of the various turbulent

scales. However, only the small turbulent eddies are more universal and isotropic in

nature in comparison to the large energy containing eddies. While the influence of

the small eddies on the flow is required, resolving down to the Kolmogorov length

scale is computationally expensive in terms of spacial and temporal resolution. LES

was created to directly resolve the transient and geometry dependent motions while

the energy draining effects of the small eddies on the resolved flow is modeled to

27

save computational cost [60]. Because the large-scale unsteady motions are directly

resolved with LES, it can be expected to be more accurate than RANS methods

when modeling flow with large scale unsteadiness, such as flow over bluff bodies like

urban structures [60].

At its core LES is a low-pass filter, applied to attenuate high frequency turbulent

motions while leaving the low frequency motions unaltered. This is performed by

applying a spacial filter with a cutoff width to define the resolved and modeled

length scales. Figure 13 illustrates the turbulent kinetic energy spectrum as a

function of wavenumber and how the filter cutoff width (kc) separates the resolved

and sub-grid-scale (SGS) length scales.

log(k)

E
(k
)

kc

SubgridDirectly Resolved

Dissipation
scale

Integral

Large Inertial
scale

scale

scale

Figure 13: Turbulent kinetic energy spectrum with LES cutoff width

28

The definition of the spatial filtering process, as introduced by Leonard [61], takes

the form of,

Φ̃(x, t) =
∫
V
G(r, x,∆)Φ(x− r, t)dr (22)

or,

Φ̃ = G · Φ (23)

where G is a filter function, ∆ is the filter width, Φ is the original unfiltered flow

variable, Φ̃ is the filtered flow variable, x is a global coordinate frame, and r is a cell

local axis. The residual field is defined such that,

Φ(x, t)′ ≡ Φ(x, t) − Φ̃(x, t) (24)

or,
Φ′ = (1 −G) · Φ (25)

where the total flow variables (Φ) are separated into filtered (Φ̃) and subgrid-scale

components (Φ′). While visually similar to the Reynolds decomposition of Equation

(5), the filtering does not generally follow the rules of a Reynolds operator, most

notably,

˜̃Φ 6= Φ̃ (26a)

Φ̃′ 6= 0 (26b)

since,

˜̃Φ = G ·G · Φ = G2 · Φ 6= Φ̃ = G · Φ (27a)

Φ̃′ = G · (1 −G) · Φ 6= 0 (27b)

29

The decomposition of Equation (24) and filter properties of Equations (26a) and

(26b) are artistically illustrated in Figure 14. From this it is very clear that; a double

filter is not equal to a single filter application (˜̃Φ 6= Φ̃) and the filtered residual is

not zero (Φ̃′ 6= 0).

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

x

u ũ ˜̃u u′ ũ′

Figure 14: LES decomposition and filter properties. Adapted from Pope [60].

30

The common most forms of the filter function (G) for LES include the box, Gaussian,

and sharp spectral respectively defined in one dimension as,

G(x,∆) =

1/∆ : |x− r| ≤ ∆/2

0 : otherwise
(28a)

G(x,∆) =
√

6
π∆2 exp

(
−6(x− r)2

∆2

)
(28b)

G(x,∆) = sin[π(x− r)/∆]
π(x− r) (28c)

These filters are shown in Figure 15, illustrating both the active interval, normalized

by ∆, and the filters function’s value.

−4 −3 −2 −1 0 1 2 3 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

r/∆

G
(r

)

Box Gaussian Sharp Spectral
Figure 15: Common LES filter functions. Adapted from Pope [60].

31

The box filter is applied in finite volume implementations of LES, where the Gaussian

and spectral cutoff filters are preferred in the research literature [54]. The Gaussian

filter has the advantage of being smooth and differentiable [60], while the sharp

spectral eliminates all wave numbers above a chosen frequency [54]. However, since

the box filter is just an average over the filter interval, and the flow variables are

piecewise linear functions of x for finite volume methods, if the filter width is equal

to the grid-spacing, a box filter is simply a local cell spatial average. [55]. In other

words, the filter width is indicative of the size of eddies retained (see Figure 13),

and can be chosen to be any size. Since finite volume methods only retain a single

node value for each cell there is no resolution benefit to specifying a filter width

smaller than the grid size [54]. This is classified as implicit LES as the filter width is

implicitly determined from the cell size, and the most accepted method of defining

the filter width is to use the cube root of the cell volume,

∆ = 3
√

∆x∆y∆z (29)

An example of a box filter application is shown in Figure 16 using the velocity

field resolved from a DNS [62]. A box filter is applied with an increasing filter

width between Figures 16b and 16c and illustrates how the smaller higher frequency

turbulent eddies are averaged and smoothed out (lower values of kc in Fiugre 13).

(a) DNS velocity field [63] (b) Box filter, ∆ = L/32 [63] (c) Box filter, ∆ = L/16 [63]

Figure 16: Box filter example using DNS velocity field, domain size is L3.

32

Derivation of the LES governing equations begins with the incompressible continu-

ity and momentum equations, Equations (7) and (8), and application of the filter

function,
∂̃ui
∂xi

= 0 (30)

An important simplification can be made if the filter function is able to commute

with temporal and spatial differentiation. It is for this reason the box filter shown

in Equation (28a) is only a spatial filter (independent of time) and made locally

independent in space through |x − r| (cell based). While this does not hold for all

possible filter functions, application of the box filter results in filtered continuity

equation,
∂ũi
∂xi

= 0 (31)

To derive the LES momentum equations, the LES filtering is applied and the linear

terms are simplified in a similar manner to their RANS counterparts,

∂ũi
∂t

+ ∂

∂xj
(ũiuj) = −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

(32)

Once again the non-linear convection term ũiuj is troublesome to express in terms

of known flow variables as the filtered products is different than the product of

filtered velocities (ũiuj 6= ũiũj). Therefore a modelling approximation is introduced

to account for the residual-stress, called the SGS stress tensor,

τij = ũiuj − ũiũj (33)

which is not dissimilar to the Reynolds stress tensor in Equation (14c),

u′
iu

′
j = uiuj − uiuj (34)

33

The tensor has the property such that |τij| → 0, as ∆ → 0, ultimately resulting in a

DNS solution in the limit of a small mesh spacing [55]. Substituting Equation (33)

into Equation (32) results in the filtered or LES momentum equations,

∂ũi
∂t

+ ∂

∂xj
(ũiũj) = −1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xj∂xj

− τij
∂xj

(35)

Similar to RANS Equation (14c) for ui, the governing LES equations are unclosed and

require modelling of the SGS stress tensor τij.The type and size of filter is indirectly

introduced onto the velocity field though this SGS stress tensor [60]. Applying the

decomposition of Equations (24) to the first term on the right side of Equation 33 it

can be separated into terms with some physical significance,

τij =
︷ ︸
(ũi + u′

i)(ũi + u′
i) −ũiũj (36a)

τij = ˜̃uiũj + ˜̃uiu′
j + ˜̃uju′

i + ũ′
iu

′
j − ũiũj (36b)

τij = ˜̃uiũj − ũiũj︸ ︷︷ ︸
Lij

+ ˜̃uiu′
j + ˜̃uju′

i︸ ︷︷ ︸
Cij

+ ũ′
iu

′
j︸ ︷︷ ︸

Rij

(36c)

where Lij is the Leonard stress tensor, Cij is the cross-stress tensor component,

and Rij is the Reynolds subgrid tensor. The Leonard term can be computed from

the filtered velocity field and represents the interaction between the resolved and

SGS scales. The cross-stress relates the (typical) energy transfer from the large

filtered and smaller modeled eddies. The Reynolds stress term is analogous to

the components of the stress tensor in the RANS formulation, and represents the

effect of the small eddy interaction with one another. In comparison to the RANS

method, the Leonard and cross stress terms arise from the difference in the double

time averaging and double filtering as ˜̃Φ 6= Φ̃. Further discussion on the significance

of the stresses is found in Section 13.5.2 of Pope [60].

34

While there were early attempts to model each subgrid stress component in-

dependently, all of the stresses are grouped into a single subgrid stress tensor

and modeled as a whole. This is mainly due to the preservation of the Galilean

invariant (independent of inertial frame) properties of the continuity and momentum

equations, since the filtering of individual terms such as the cross and Leonard

stresses are not Galilean invariant but the total sum is [55,57,64].

Similar to the problem faced with the RANS momentum equations a model is appled

to close Equations (31) and (35) and relate the SGS stress tensor to known flow

quantities. The Boussinesq eddy viscosity assumption is once again applied where

the SGS stress tensor is proportional to the local filtered rate of strain tensor and

SGS viscosity,

τij = −νSGS
(
∂ũi
∂xj

+ ∂ũj
∂xi

)
+ 1

3τiiδij (37)

while the term τii is included to ensure the sum of the modeled normal SGS stresses

are equal to the kinetic energy of the SGS eddies [54] (it is grouped in with the

filtered pressure term and therefore does not require additional modeling). However,

a sub-grid scale model is required for the new unknown sub-grid scale eddy-viscosity

νSGS. Similar to the requirements of a RANS turbulence model, a SGS model is

used to close the system of equations and imitate the energy cascade energy drain

on the resolved flow.

In this work the one-equation eddy viscosity model, with one variant given by

35

Yoshizawa and Horiniti [65] is used to relate a characteristic length scale and a

velocity scale of SGS eddy size. This model improves the equilibrium assumption

of the original Smagorinsky model which becomes less accurate for flow conditions

such as free shear layers, separating and reattaching flows, boundary layers and wall

dominated domains like pipes and channels [55]. In addition to, this the one-equation

model possesses the ability to predict backscatter and has higher numerical stability

making it computationally easier than the Smagorinsky model [66]. By using the

definition of the velocity scale the one-equation eddy model has shown to perform

better to model transitional or large scale unsteadiness flows in comparison to an

algebraic relation [55]. The length scale is taken to be the filter width, or grid spac-

ing, while the velocity scale is taken as the square root of the specific SGS turbulent

kinetic energy
√
kSGS such that,

νSGS = Ck∆
√
kSGS (38)

Analogous to RANS like turbulent modeling, a transport equation is introduced to

account for the effects of convection, diffusion, production and destruction of this

energy,

ksgs
∂t

+ ũj
∂ksgs
∂xj

= ∂

∂xj

[
(νsgs + ν) ∂ksgs

∂xj

]
− τij

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
− Cε(k3/2

sgs/∆) (39a)

where the specific SGS kinetic energy dissipation rate are defined as,

εSGS = Cε(k3/2
SGS/∆) (40)

Lastly the equations are closed with the standard one-equation eddy constants,

Ck = 0.094 Cε = 1.048

Chapter 3

Grid Refinement Study

3.1 Computational Domain

A computational grid is generated with OpenFOAM’s native meshing utility

snappyHexMesh which produces a 3-dimensional mesh consisting of hexahedra and

split-hexahedra elements. The utility operates by edge splitting local cells of the

block background mesh and snapping them to the edges of the surface geometry

in Stereolithography (.stl) format [53]. The cells located inside the geometry are

then removed to produce the Cartesian hex mesh. The size of the domain is

generated following the standards outlined in the COST Action 732 [67] and the

Agriculture Institute of Japan (AIJ) guidelines [68] for using CFD to simulate flows

in urban environments. The domain sizing of the single square building and the

boundary conditions are shown in Figure 17, where R‖ is the wind parallel side length.

A mapped inlet boundary condition is used to generate synthetic transient inlet

turbulence. The velocity components are sampled at a plane 12 building widths

36

37

x

x

z

y

58R‖
2.5R‖

Sample Plane

2.5R‖

Refinement Zone

H/R‖=6

30R‖

117R‖

Mapped
Inlet

Constant Pressure Outlet

Free Slip

Free Slip

No Slip Building

Free Slip

Free Slip

12R‖ 21.5R‖ 10R‖ 70R‖

26R‖

2.5R‖

R‖

Figure 17: Computational domain, boundary conditions and wake refinement zone

downstream from the inlet, scaled to ensure the bulk flow rate is constant, and applied

to the inlet plane [55]. A free slip boundary condition is applied to the ground, side

walls and top. Local grid refinement is used to reduce the computational cost and

limit the most refined region to the wake as shown in Figure 18. This introduces

a commutation error which can produce errors on the order of the SGS stress [55]

due to the changing filter width which violates the commutation with differentiation

assumption (which requires a constant filter size). To minimize the influence of this

error, gradual levels of successive refinement are used to reduce sudden changes in

the filter width (shown in Figures 18a and 18b). The refinement boundaries are also

38

placed away from the regions of direct interest (near the building and within the

wake) as the error will be greatest at the refinement boundaries and will reduce as

the distance from these refinement boundaries increases [55].

(a) Side view, X-Z plane

(b) Top view, Y-Z plane
Figure 18: Cartesian hex mesh with gradual cell refinement

39

3.2 LES Verification and Validation Study

In this work the errors associated with spatial discretization are assessed by

comparing time averaged velocity profiles across the wake and by calculating the

LES Index Quality [69] (LES_IQ) between successive levels of grid refinement. A

grid independent solution with LES is more difficult to determine than for RANS

simulations in that the degree of model approximation applied, in addition to the

numerical accuracy of that model, depends directly on the grid size [70] through the

filter width. Therefore, the LES_IQ uses results from two different grid densities

to perform a Richardson extrapolation for establishing how the results compare to

a theoretical solution in which the filter width is so small as to eliminate the use of

the sub-grid scale approximation. It is then possible to establish what percentage

of the turbulence is modelled directly in the LES simulations for each grid (and

conversely how much of the turbulence is represented by the SGS model).

Table 3: Refined area grid details
Name # building cells Total # cells CPU Hours
Coarse 10x10x60 1.13 × 106 0.838

Medium 15x15x90 2.43 × 106 3.383
Fine 22x22x132 7.67 × 106 17.696

Three grids of increasing density are used for verification purposes. Each successive

refinement increases the node count on the building surface by 50% in each direction

as summarized in Table 3. The coarsest grid has 10 nodes along the building side par-

allel to the freestream wind (R‖) while in the finest grid this value is increased to 22.

The computational time shown is that required to generate 30 seconds of LES results.

40

The first 6 seconds are used to allow the mapped flow field from a steady RANS

simulation to transition into the domain and produce coherent vortical structures,

while the flow is then time averaged over the remaining 24 seconds. All verification

and validation comparisons are performed across three vertical and three horizontal

lines downstream of the building as shown in Figure 19. These locations are a subset

of measurement locations used in the wind tunnel experiments of Meng and Hibi [71].

y symmetry line

zE/H = 0.625

0.75R‖
1.25R‖

2.0R‖

1.25R‖

2.0R‖

~W

xE

yE

zE

Measurement Lines

Vertical Measurement Lines

Crosswind

Probe Location

0.75R‖

R‖

Figure 19: Data sample and plotting locations

41

3.2.1 Q-Criterion Turbulence Visualization

The concept of a vortex is intuitive however a formal definition, and visualization

methods, are not as straightforward. A study by Jeong and Hussain [72] show the

downfall of using either a local pressure minimum, streamlines, or vorticity mag-

nitude as measure for a vortex (also see de Villers [55]). The result of the study

concluded the vortex core can be defined with complex eigenvalues of ∇V , and sat-

isfy the characteristic equation,

λ3 + Pλ2 + Qλ− R = 0 (41)

For incompressible flow the first invariant P is zero (∇·V = 0) and the third invariant

R is equal to the determinant of ∇V . The second invariant Q is defined as,

Q = 1
2 (ΩijΩij − SijSij) (42)

where Sij is rate-of-strain tensor and Ωij is the rate-of-rotation tensor (vorticity

tensor), which are the symmetric and antisymmetric parts of ∇V respectively and

defined as,

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(43a)

Ωij = 1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
(43b)

This Q-criterion, proposed by Hunt et al [73], defines a vortex as a connected fluid

region with a positive second invariant of the velocity gradient tensor ∇V [74]. Since

when Q is positive it represents locations in the flow were the rotation dominates the

strain and shear [73–75]. While not a measure of grid quality the Q-criterion provides

42

the ability to visualize vortical structures as isosurfaces as shown in Figure 20. As the

grid spacing is successively reduced, finer and smaller vortical structures are captured

resulting in an increase in the amount of directly resolved vortical structures. This

visualization provides an initial estimate that the coarse grid has inadequate density

resolving the desired level of turbulent motions.

(a) Coarse mesh, top view (b) Coarse mesh, side view

(c) Medium mesh, top view (d) Medium mesh, side view

(e) Fine mesh, top view (f) Fine mesh, side view

Figure 20: Q-criterion vortex visualization with Q = 200 isosurfaces, t=30 s.

43

3.2.2 Time Averaged Velocity Profile

The traditional single-grid estimator of comparing the time averaged velocity profiles

is first used to study the change in numerical results across the changing grid size.

The velocity profiles are compared for each grid density along the six measurement

lines outlined in Figure 19.

The velocities along the vertical measurement lines at x/R‖ = 0.75 downstream of

the building, the results shown in Figure 21a, illustrate a slightly larger average

difference between the coarse and medium grids (an average difference of 4.51%)

than between the medium and fine grids (an average difference of 3.81%). While all

three grid densities resolve similar velocity magnitudes in the wake of the building,

z/H < 1, the fine grid predicts a change in velocity across the upper edge of the

wake (between approximately z/H = 0.9 and z/H = 1.0 as highlighted by the insert

in Figure 21a) of 17.3 (m/s)/m while the same slope is 22.2 (m/s)/m and 29.4

(m/s)/m when using the medium and coarse grids respectively.

In the direction parallel to the ground passing through the wake at a height of 62.5%

of the building height (i.e. z/H = 0.625) the results from all three grids are in

close agreement (Figure 27b). The percent difference in peak velocity at the center

of the wake between the coarse and medium grid is 34% and 15.7% between the

medium and fine mesh. The gradients at the edge of the wake, highlighted by the

insert in Figure 21b, are also in close agreement between the medium and fine grids

where a value of 28.6 (m/s)/m is predicted using the medium grid and 30.0 (m/s)/m

is predicted using the fine grid, a difference of 4.9%. In this case, the coarse grid

44

again shows more of a discrepancy in that the velocity gradient at the wake edge is

predicted to be 26.6 (m/s)/m a difference of 7.5% from the medium mesh.

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine(a) Vertical measurement line

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

Coarse
Medium

Fine

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖
Coarse

Medium
Fine(b) Crosswind measurement line

Figure 21: Time averaged streamwise velocity profiles at a distance x/R‖ = 0.75
downstream of the building

Along the vertical measurement line x/R‖ = 1.25 downstream of the building, similar

trends are found, as Figure 22a illustrates a larger difference between the coarse and

medium grids (an average difference of 13.3%) than between the medium and fine

grids (an average difference of 3.5%). Studying the wake, beneath approximately

z/H = 0.6, it can be noted that the course grid does not predict any re-circulation

except near the building rooftop, whereas both the medium and fine grids predict

a re-circulation zone behind the entire height of the building as evidenced by the

negative value of u/V∞. This recirculation zone in the wake is expected from the

experimental results shown in Figure 28a of Section 3.2.4. The fine grid predicts

a change in velocity across the upper edge of the wake (between approximately

45

z/H = 0.9 and z/H = 1.0 as highlighted by the insert in Figure 22a) of 11.6

(m/s)/m while the same slope is 15.0 (m/s)/m and 20.7 (m/s)/m when using the

medium and coarse grids respectively. The upper edge of the wake (as defined as the

point where u/V∞ = 1) is calculated to be z/H = 1.03, z/H = 1.08, and z/H = 1.07

for the coarse, medium, and fine grids respectively. This is illustrated in Figure 22a

with the vertical dotted line. Additionally, the coarse grid has a slight oscillation in

this region unseen in both the medium and fine grids.

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine(a) Vertical measurement line

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

Coarse
Medium

Fine

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

Coarse
Medium

Fine(b) Crosswind measurement line

Figure 22: Time averaged streamwise velocity profiles at a distance x/R‖ = 1.25
downstream of the building

For the horizontal measurement line passing through the wake at a height of 62.5%

of the building height (i.e., z/H = 0.625) the results from all three grids are in close

agreement. The minimum velocity at the center of the wake using the medium grid

is within 13.4% of that obtained using the fine grid, while the coarse grid yields a

minimum that is 32.9% away from the fine grid. The gradients at the edge of the

46

wake, highlighted by the insert in Figure 22b, are also in close agreement between

the medium and fine grids where a value of 20.7 (m/s)/m is predicted using the

medium grid and 22.1 (m/s)/m is predicted using the fine grid, a difference of 6.8%.

In this case, the coarse grid again shows more of a discrepancy in that the velocity

gradient at the wake edge is predicted to be 15.8 (m/s)/m which is 23.7% below the

medium grid result.

When the same comparison is applied to the vertical measurement line x/R‖ = 2.00

downstream it is seen from Figure 23a that the course grid greatly under predicts

the velocity and has a large oscillations around z/H = 0.6 and small oscillation

around z/H = 1, both unseen in the medium and fine grids. Overall the average

difference between the coarse and medium meshing is 15.6%, while between the

medium and fine is 6.6%. The slops found as highlighted by the insert in Figure

23a, are 7.6 (m/s)/m, 6.8 (m/s)/m, and 6.4 (m/s)/m for the coarse, medium, and

fine meshes respectively. This corresponds to a 10.5% increase from the coarse to

medium grids with only 5.9% change from medium to fine.

Along the horizontal measurement line at x/R‖ = 2.00, the fine mesh resolves a much

lower peak velocity with a 41% difference between the course and medium mesh in

contrast to a 22% difference between the medium and fine meshes. The wake edge

velocity gradients are found to be 9.3 (m/s)/m, 13.1 (m/s)/m, and 16.0 (m/s)/m for

the coarse, medium, and fine grids respectively.

47

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Coarse
Medium

Fine(a) Vertical measurement line

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

Coarse
Medium

Fine

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

Coarse
Medium

Fine(b) Crosswind measurement line

Figure 23: Time averaged streamwise velocity profiles at a distance x/R‖ = 2.00
downstream of the building

3.2.3 LES Index Quality

A second grid independence technique is performed in the form of a multi-grid esti-

mator based on the resolved turbulent kinetic energy (TKE). A multi-grid estimator

uses the results from at least two different grid densities and a Richardson extrapo-

lation to study how the results compare to the theoretical exact solution. The LES

Index Quality (LES_IQ) is a ratio of the resolved TKE to the total [69],

LES_IQk = kres

ktot
= 1 − |ktot − kres|

ktot
(44)

where kres is the LES resolved TKE and ktot is the theoretical maximum TKE. This

maximum is defined as the sum of the resolved scale and the sub-grid scale turbulence

48

which can be represented as,

ktot = kres + akh
p (45)

where ak is determined using a Richardson extrapolation, h is a characteristic of the

grid quality, and p is the order of accuracy of the numerical scheme. For a finite

volume method the characteristic grid quality h can be taken as the cube root of the

cell volume. In this work the order of accuracy of the LES numerical simulations is

two. The extrapolation constant between two different grid densities can be expressed

as,

ak = 1
hp2

[
kres2 − kres1

(h1/h2)p − 1

]
(46)

where the subscript corresponds to a grid of given density (the higher number rep-

resents a more dense grid). The index quality for each grid is then defined as,

LES_IQ1
k = 1 − |akhp1|

kres1 + akh
p
1

(47a)

LES_IQ2
k = 1 − |akhp2|

kres2 + akh
p
2

(47b)

The LES Index Quality is unity (1) when all turbulent motion scales are resolved

directly. However, since LES filters out the TKE at high wavenumbers this ratio

is less than unity for a finite filter width. In general, when less than 20% of the

TKE is approximated using the SGS model, a LES simulation is judged to be of

sufficient quality [60,69] (under these circumstances the LES_IQ would be ≥ 0.80).

The calculated LES_IQ along the same horizontal and vertical measurement lines

in Figure 19 are shown in Figures 24, 25, 26. From these it is seen the coarsest grid

49

is far too sparse to capture even 40% at most and produces unphysical extrapolation

results. With a doubling of grid density the medium mesh resolves a range from

55-80%, and the fine mesh is almost always above 80% in all locations.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

LES_IQ

z/
H

Coarse
Medium

Fine

(a) Vertical measurement line

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

LES_IQ

y
/R

‖ Coarse
Medium

Fine

(b) Crosswind measurement line
Figure 24: LES_IQ at x/R‖ = 0.75 downstream of the building

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

LES_IQ

z/
H

Coarse
Medium

Fine

(a) Vertical measurement line

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

LES_IQ

y
/R

‖ Coarse
Medium

Fine

(b) Crosswind measurement line
Figure 25: LES_IQ at x/R‖ = 1.25 downstream of the building

50

0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

LES_IQ

z/
H

Coarse
Medium

Fine

(a) Vertical measurement line

0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

LES_IQ

y
/R

‖

Coarse
Medium

Fine

(b) Crosswind measurement line

Figure 26: LES_IQ at x/R‖ = 2.00 downstream of the building

3.2.4 Experimental Comparison

Based on the above results of the time averaged velocity profiles and LES_IQ, the

fine grid density is chosen to validate the LES simulations against the experimental

results of Meng and Hibi [71]. The simulated flow conditions are modified slightly

in that the building now has dimensions of 0.04 m by 0.04 m by 0.08 m (the height

to characteristic length is reduced to 1.41 from the grid convergence study value of

4.24) and the Reynolds number is reduced to 1.69 × 104 based on the characteristic

length D (This value corresponds to the height based Reynolds number of 2.4 × 104

used in Meng and Hibi [71]). The same time averaging process used for the grid

verification study is applied to these experimental results and the extracted velocity

profiles from the LES simulations at x/R‖ = 0.75 are shown in Figures 27a and 27b.

The average error is found through the mean of the errors between each experimental

51

0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Meng and Hibi [71]
Fine

(a) Vertical measurement line

0 0.5 1
−2

−1

0

1

2

u/V∞

y
/R

‖ Meng and Hibi [71]
Fine

(b) Crosswind measurement line

Figure 27: Experimental vs. numerical time averaged streamwise velocity
comparison at a distance of x/R‖ = 0.75 downstream of the building.

point and the numerical value at the same spatial location. For the vertical and

horizontal measurement lines at x/R‖ = 0.75 the average differences are 9.7% and

17.1%. Similarly the results of the measurement lines at x/R‖ = 1.25 and x/R‖ =

2.00 are shown in Figures 28, and 29. The average error between the experimental

and numerical results for each respective position are 12.9%, 17.6%, 9.7%, and 17.4%.

From these figures an acceptable level of agreement between the experimental and

numerical results is observed where the numerical results always under predict the

vertical velocity profile and over predict the horizontal profiles.

52

0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Meng and Hibi [71]
Fine

(a) Vertical measurement line

0 0.5 1
−2

−1

0

1

2

u/V∞

y
/R

‖ Meng and Hibi [71]
Fine

(b) Crosswind measurement line

Figure 28: Experimental vs. numerical time averaged streamwise velocity
comparison at a distance of x/R‖ = 1.25 downstream of the building.

−0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

Meng and Hibi [71]
Fine

(a) Vertical measurement line

0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

u/V∞

y
/R

‖ Meng and Hibi [71]
Fine

(b) Crosswind measurement line

Figure 29: Experimental vs. numerical time averaged streamwise velocity
comparison at a distance of x/R‖ = 2.00 downstream of the building.

53

From the vortex visualization of the Q-Criterion, the time averaged velocity profiles,

and the experimental comparison, the fine grid density (with 22 cells per building

width) is selected for use with the flight simulator and all future database entry

CFD simulations. The coarse grid shows the largest variance between the three

densities and the expected experimental results. Furthermore, from the LES_IQ it

is clear the coarse grid is unacceptable in terms of LES quality. While the required

computational time if five times more for the fine in comparison to the medium

density, and they both exhibit similar gradients and minima velocities, the LES_IQ

recommends using the fine mesh to resolve at least 80% of the TKE.

3.3 RANS Wake Field

A RANS simulation is performed to reproduce the CFX based CFD simulations of

Galway et al. [19] in OpenFOAM, using the suggested gird density and turbulence

model. The geometry, domain size and boundary conditions are the same as the

proposed LES, as shown in Figure 17, with the k − ε turbulence closure model.

Comparison of the RANS and time averaged LES velocity profiles at x/R‖ = 1.25

downstream of the building, shown in Figure 30, illustrate the close agreement be-

tween the simulation methods. The wake field velocities from this RANS simulation

is used to evaluate the effects of a RANS versus a LES simulated wake velocities on

simulated quadrotor flight, as contained in Chapter 5.

54

−0.5 0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

u/V∞

z/
H

RANS
LES (Fine)

(a) Vertical measurement line

−0.5 0 0.5 1 1.5
−2

−1

0

1

2

u/V∞

y
/R

‖

RANS
LES (Fine)

(b) Crosswind measurement line

Figure 30: RANS and time averaged LES streamwise velocity profiles at a
distance x/R‖ = 1.25 downstream of the building

Chapter 4

Simulation Methodology

4.1 Urban Wake Database

As proposed by the previous work of Galway [19] the use of an urban wake database

is two fold. Primarily it separates the dependence on running a CFD simulation in

parallel with the flight simulator for the wake velocities. This separation is required

due to the different time requirements to run either simulation, to generate the 30

seconds of wake velocities with RANS and LES methods takes approximately 0.97

and 17.7 CPU hours respectively. Furthermore, the database allows for multiple

simulated urban building block configurations with only one CFD simulation

through matching of the non-dimensional parameters such as the Reynolds number.

Before the simulated wake velocities are uploaded to the database, the results of the

CFD simulation are processed through a series of spatial and temporal trimming

scripts. The first temporal filtering is achieved through the write interval specified

at run time for the CFD simulator, the resolution of this saving interval is detailed

55

56

in Section 4.1.1 below. Next the pressure and velocity components for the entire

numerical domain are clipped to a specified region, taken as half a meter inward

of each wake refinement boundary to minimize the effect of the refinements on the

results. The final step before uploading is an additional temporal trimming in the

form of finding an appropriate loop interval for the transient velocity fields given

the finite length of simulated CFD time. Finding this loop interval is an iterative

process and studies multiple flow results as outlined in the Section 4.1.2. A sample

work flow and some database processing scripts are contained in Appendix C

4.1.1 Temporal Resolution Study

The grid refinement study in Chapter 3 resulted in the selection of the fine mesh

for spatial resolution for the CFD simulations. While the time step for the LES

results has been specified such that all spatial and temporal motions are resolved,

a resolution study is performed to ascertain an appropriate save interval for the

wake fields. Each table in the database represents a time step and each line in a

table contains a location in 3D space and three wake velocity components. For

the presented single building case, the CFD simulation is run for over 37,000 time

steps and the wake area contains over one and a half million nodes. Therefore, the

temporal resolution study is used to find a simulation time step save interval which

is fine enough for the flight simulator but minimies the required database storage

disk space and database querying time.

57

To find an acceptable time interval the results of a LES saved initially every 0.005

seconds and uploaded to the database. The database is then queried for the stream-

wise velocity component at the probe location shown in Figure 19 for time steps

of 0.005s, 0.01s, 0.05s, 0.1s, and 0.5s (by skipping over the appropriate number of

tables in the database). Figure 31 illustrates the returned streamwise velocities for

a 1 second sample window.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

Time (s)

W
x

(m
/s

)

0.005s 0.01s 0.05s 0.1s 0.5s

Figure 31: LES wake database timestep resolution study

From Figure 31 it is clear the 0.5s resolution is far too coarse to capture an appropri-

ate level of velocity change. Conversely, 0.005s and 0.01s are nearly indistinguishable

making the former unnecessary. To select between the remaining three resolutions

the total querying times for the 1 second sampling window is considered, as collected

in Table 4.

58

Table 4: Urban wind database query time

0.005s 0.01s 0.05s 0.1s 0.5s

Query Time (s) 79.6 17.6 3.8 2.8 0.6

Since the increase in query time for 0.05s is only 36% more in comparison to 0.1s and

offers double the resolution, it becomes a choice between 0.01s and 0.05s second save

intervals. While 0.01 captures all of the velocity changes (peaks and troughs) it comes

at the cost of a 360% increase the query time. Considering this substantial increase

and the order of the missing resolution with respect to the 1 second sample window

(i.e. 1 second of flight simulation), the 0.05s resolution is selected for the database

save interval. selected and used for all future database generation simulations.

4.1.2 Database Loop Interval

As previously mentioned the finite end to the CFD results requires a portion of the

transient wake field to be sectioned off, saved to the database, and looped over for

flight simulations longer than the loop time. The database loop time for both the

RANS and LES simulations are determined so that the start and end times reflect a

consistent pattern within the flow field. An observation of the entire wake field ve-

locity contours (as shown in Figure 32) is used to establish coarse start and end times.

These times are further refined by examining the side force generated on the

building (Figures 33a and 33b) and the crosswind velocity component at a sample

point within the wake (Figures 33c and 33d) during the time period identified

by the velocity contours in Figure 32. The final start and end times of the

59

(a) RANS loop start (b) RANS loop end

(c) LES loop start (d) LES loop end

Figure 32: Total velocity contours for visual database loop interval estimation.
The small black square illustrates the probe location (Figure 33).

database loop are modified so that crosswind velocity at the wake sample point are

approximately equal at the beginning and end of the loop data (thereby minimizing

any discontinuous jumps in the wind data).

The oscillations in both crosswind and building side force resulting from a periodic

shedding of vortices within the building wake are clearly visible in the RANS wind

data (see Figure 33a). The LES results in Figure 33b do not show the same clarity

60

30 32 34 36 38

−0.1

0

0.1

Time (s)

C
f

(a) RANS crosswind force coefficient

20 22 24 26
−1

−0.5

0

0.5

1

Time (s)

C
f

(b) LES crosswind force coefficient

30 32 34 36 38

−0.1

0

0.1

Time (s)

v
/V

∞

(c) RANS crosswind velocity probed at
x/R‖ = 2.00, z/H = 0.625.

20 22 24 26
−1

−0.5

0

0.5

1

Time (s)

v
/V

∞

Moving average filter

(d) LES crosswind velocity probed at
x/R‖ = 2.00, z/H = 0.625.

Figure 33: Database loop crosswind force coefficient and probed velocity

of a repeated pattern due to the greater resolution of turbulent structures which

are inherently chaotic. However, applying a smoothing moving average filter to the

velocity in Figure 33d produces a cleaner pattern with similar frequency to that of

the RANS velocity oscillation in Figure 33c. A segment of approximately 9 seconds

and 7 seconds of wind data is stored for the RANS and LES loops respectively.

61

4.2 Flight Controller

There are several configurations for a multi-rotor vehicle in regards to the number

of motors used. As the name implies a quadrotor is a multi-rotor with four motors

arranged in a plus or cross configuration. There is little difference in the performance

between the two frame styles. The plus configuration is used in the flight sim-

ulator and it allows a more conceptional and clear derivation of a quadrotor’s motion.

One of the benefits of a quadrotor is the simplicity of the propulsion system when

compared to that of a helicopter, however this propulsion method introduces chal-

lenges for vehicle control. A quadrotor has six degrees of freedom, three positions

[x, y, z] and three rotations in space [ψ, θ, φ]. The control challenge arises since

a quadrotor can only vary the angular velocity of the four motors and therefore

results in an underactuated system. This produces a coupling between two of the

six degrees of freedom. For the quadrotor the x and y translations are coupled with

the pitch θ and roll φ angles. Figure 34 illustrates how the pair of motors on a

common axis rotate in the same direction and how changing their rotation velocities

is used to control the attitude and position of the quadrotor.

If all four motor rotations, and thereby thrusts, are equal and assuming no

external disturbances, the quadrotor’s symmetry will produce a force and moment

balance resulting in a hover. To translate only along the z-axis the rotation of

all four motors is either uniformly increased or decreased to ascend or descend

respectively. To pitch or roll the quadrotor, thereby inducing a x-axis or y-axis

62

(a) Hover, Ascent, Decent (b) Pitch,Roll (c) Yaw

Figure 34: Quadrotor, plus configuration, attitude and position control

translation, the pair of off-axis motors are unchanged while one on-axis motor

is increased and the other is decreased. The example in Figure 34b shows the

forward motor spinning faster while the back motor being reduced which results

in the quadrotor pitching up and translating along the negative x-axis. The

quadrotor’s yaw authority is achieved by taking advantage of the motor pair’s

induced torque on the airframe. By increasing the angular velocity of one pair

and decreasing the other, the total thrust force is unchanged thereby preventing

translation along the z-axis however there is a net torque differential about the

z-axis which induces a yaw. The example in Figure 34c shows the counter-clockwise

rotating motors are increased while the clockwise motors are decreased. This

will cause a positive yaw angle, the quadrotor will rotate in the clockwise direc-

tion, as the torque on the body acts in the opposite direction to the motor’s rotation.

To develop the equations of motion for the position and attitude of the quadrotor

two coordinate systems are used, an inertial Earth fixed frame Fi, and a body frame

Fb. The Earth frame uses a North-East-Down (NED) convention with axis notation

63

of Fi = {xE, yE, zE}, where the body frame is fixed at the quadrotor’s center of

gravity and follows the convention of Etkin [76] such that FB = {xB, yB, zB} are

aligned out the front, right and down respectively. Figure 35 illustrates a simplified

quadrotor and the two coordinate frames.

xB

yBzB

CG

zE
yE

xE

M1

M2

M3

M4

rcg

Fi

Figure 35: Inertial Earth fixed frame and body quadrotor fixed frame definitions

A series of three consecutive rotations, Euler angles [76], are used transform from

one frame to the other. The order of these rotations about each axis are important

and the yaw, pitch, roll or 3-2-1 order is used here to go from the Earth to the body

frame,
LBE = L1(φ)L2(θ)L3(ψ) (48)

Where the sequence of the angles is opposite to that of the rotations due to matrix

premultiplication [76]. Conversely, to find the body to Earth rotation matrix the

reverse rotation sequence is performed,

LEB = L3(−ψ)L2(−θ)L1(−φ) (49)

64

Resulting in the body to Earth rotation matrix,

LEB =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

(50)

Where the angles are limited such that,

−π ≤ φ < π or 0 ≤ ψ ≤ 2π

−π

2 ≤θ ≤ π

2
−π ≤ φ < π or 0 ≤ φ ≤ 2π

This limiting is due to one of the constraints of Euler angles where the possibility

of singularities at certain sets of angles can occur. Focusing on the quadrotor body

frame the free body diagram of Figure 36 is generated.

zB

yB

xB

M1

M2

M3

M4

T1

T2

T3

T4

Fg

VB

FD

φ

θ
ψ

τ1

τ3

τ2

τ4 `

Figure 36: Quadrotor free body diagram and notation convention

65

Where Mi represents the ith motor and Ti and τi are the thrust and torque of that

motor respectively. The formal illustration of the already introduced yaw, pitch

and roll angles (ψ, θ, φ) are shown in their positive convention. External forces

on the quadrotor such as gravity Fg and drag FD are shown where the latter acts

in the opposite direction to the body frame velocity or airspeed vector VB. From

this freebody diagram the governing equations of motion are derived starting with

the quadrotor as a single rigid body with six degrees of freedom. The force and

momentum equations relative to the inertial Earth frame are,

FE = mV̇E (51a)

ME = ḣE = d

dt
(IE · ω) (51b)

where FE is the sum of external forces acting on the quadrotor, m is the quadrotor’s

mass and V̇E is the quadrotor’s acceleration such that V̇E = r̈c = [ẌE ŸE Z̈E]T .

ME is the external moment vector about the quadrotor center of gravity, ḣE is the

angular momentum, IE is the inertia tensor and ω is the angular velocity vector.

The components of the angular velocity vector are the angular rates of the quadrotor

such that,

ω = [p q r]T (52)

and the inertia matrix is defined as,

IE =

Ixx −Ixy −Ixz

−Iyz Iyy −Iyz

−Izx −Izy Izz

(53)

66

While an inertial frame is required for valid application of Equation (51a), it results

in a time derivative for the angular momentum where both IE and ω change with

motion and become variables. Therefore the forces and moments are expressed in

the body frame by applying the Euler angle rotation matrix LEB defined in Equation

(50). Starting with the force equation, extra care is required when using the body

frame due to the body fixed velocity vector VB. Since this vector by definition rotates

about FB, and the origin of FB can rotate about FE, the relative motion between

VB and FE causes the direction cosines in the rotation matrix to change with time.

LEBFB = m
d

dt
(LEBVB) = m

(
LEBV̇B + L̇EBVB

)
(54)

Where VB = [u, v, w]T . The last term L̇EBVB is the effect of the relative rota-

tion. From the definition of this derivative of a transformation matrix, outlined in

Appendix A.6 of Etkin [76],

L̇EB = LEBω̃B (55)

Where ω̃B is the skew-symmetric matrix of ωB from the definition of vector multi-

plication,

ω̃B =

0 −r q

r 0 −p

−q p 0

 (56)

After substitution the body frame force equation becomes,

FB = mV̇B + ω̃BmVB (57)

From free body diagram of Figure 36, the external forces on the quadrotor are the

motor’s thrust, gravity, and airframe drag such that FB = FTB +FgB +FDB . Where

67

FTB is the total thrust force from a summation of each motor’s individual thrust. It

is assumed the motor and propeller plane remains orthogonal to the body frame, i.e.

there is no blade flapping or elastic effects, and therefore the motor thrust always

acts in the negative z-axis.

FTB =

0

0

−
4∑
i=1

Ti

(58)

The gravitational acceleration always acts in the positive z-axis of the inertial Earth

frame therefore force is transformed from the Earth to body frame using the rotation

matrix of Equation (50) such that FgB = LBEFgE ,

FgB = mg

− sin θ

cos θ sinφ

cos θ cosφ

(59)

Where m is the quadrotor mass and g gravitational acceleration. To find the body

frame drag force due to the to airframe, the body frame velocity vector is resolved

into its components and the drag force is calculated for each axis,

68

FDB = −ρ

2

CDxV
2
BSx

CDyV
2
BSy

CDzV
2
BSz

(60)

Where ρ is the density of the air, Cd is the airframe drag coefficient, equal to that of

a cube, and Si is the normal airframe surface area. Therefore collecting Equations

(57), (58), (59), and (60), results in the system of equations for linear acceleration

of the quadrotor in the body frame,

ẍB = u̇ = rv − qw − g sin θ − FDx
m

(61a)

ÿB = v̇ = pw − ru+ g cos θ sinφ−
FDy
m

(61b)

z̈B = ẇ = qu− pv − 1
m

4∑
i=1

Ti + g cos θ cosφ− FDz
m

(61c)

The next task is to study the moment balance of the quadrotor. Starting with the

derived Earth frame moment in Equation (51b), the Earth to body rotation matrix

is applied. The moment of inertia matrix is now in the body frame and becomes

independent of time as the frame is assumed to be rigid resulting in,

LEBMB = IB
d

dt

(
LEBω̇ + L̇EBω

)
(62)

Applying the definition of Equation (55) and simplifying the body frame moment

equation becomes,

MB = IBω̇B + ω̃BIBωB (63)

Where IB is the moment of inertia matrix for the rigid body quadrotor. The off

69

diagonal terms of the inertia tensor due to imbalances in the mass distribution are

negligible,

IB =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (64)

The sum of the moments on the quadrotor are a function of the angular velocity

from the motor’s thrust and the gyroscopic torque induced on the airframe from

the rotating blades such that MB = MTB + MGB . However, the moment induced

by the gyroscopic effect is negligible as it is an order of magnitude lower then the

moment induced by the motor thrust. The moment generated by the ith motor is

proportional to the thrust force and arm length between the motor and the center

of gravity. It is illustrated in Figures 34 and 36 how each pair of motors contributes

to a pitching, rolling or yawing moment. Formally this takes the form of,

MTB =

` (T1 − T3)

` (T4 − T2)

T1 + T3 − T2 − T4

 (65)

Collecting Equations (63), (64), and (65), results in the system of equations for

angular acceleration of the ideal plus configuration quadrotor in the body frame,

ṗ = 1
Ixx

[` (T1 − T3) + qr (Iyy − Izz)] (66a)

q̇ = 1
Iyy

[` (T4 − T2) + pr (Izz − Ixx)] (66b)

ṙ = 1
Izz

[T1 + T3 − T2 − T4 + pq (Ixx − Iyy)] (66c)

With the quadrotor’s dynamic equations defined the kinematics are considered

70

and their equations outlined. By definition kinematics is used to describe the

geometrically possible motion of a body without considering the forces and moments

causing the motion. In the classic sense, kinematics provides the body velocity, both

linear and angular, through the time derivative of the positions.

From the previous force and moment equations and for position control, it is evident

a relation to calculate the inertial position and velocity from known body frame

variables is required. For angular velocity this is achieved since Euler angles are not

constant with time and therefore a relationship between the Euler angle rates and

the body frame rates is formed. Using the definition of unit vectors a rotation matrix

for the angular velocity is found,

T =

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 (67)

Which produces the angular velocity kinematic equations,

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (68a)

θ̇ = q cosφ− r sinφ (68b)

ψ̇ = q sinφ sec θ + r cosφ sec θ (68c)

The final set of equations required are the linear velocity of the quadrotor in the

inertial frame and this is where the effect of the urban wind is incorporated on the

quadrotor’s flight. The wind velocity vector is rotated into the body frame and it’s

71

components are summed with the current body frame velocities to a create a new

velocity vector such that,

u = u+WxB = ẊB (69a)

v = w +WyB = ẎB (69b)

w = w +WzB = ŻB (69c)

where a positive value of wind results in an increase in the vehicle airspeed (hence

the wind velocity is taken positive when it acts along the negative direction of the

body frame axes). This updated velocity is then also used to find the quadrotor’s

linear velocity in the inertial frame by applying the body to Earth rotation matrix

Equation (50),

ẊE = ẊB cos θ cosψ + ẎB(sinφ sin θ cosψ − cosφ sinψ) + ŻB(cosφ sin θ cosψ + sinφ sinψ) (70a)

ẎE = ẊB cos θ sinψ + ẎB(sinφ sin θ sinψ + cosφ cosψ) + ŻB(cosφ sin θ sinψ − sinφ cosψ) (70b)

ŻE = −ẊB sin θ + ẎB sinφ cos θ + ŻB cosφ cos θ (70c)

To close the system of twelve equations quadrotor specific constants and experimen-

tally found values are used, shown below in Table 5. The quadrotor has dimensions

of approximately 430 mm by 430 mm by 125 mm and a mass of 2.2 kg. The central

structure of the body/fuselage is cubic prism for a simple drag coefficient estimation

and convenient construction techniques.

72

Table 5: Quadrotor flight simulator parameters

Mass (m) 2.2 kg

Arm Length (`) 0.215 m

Gravity (g) 9.81 m/s2

Air Density (ρ) 1.225 kg/m3

Moment of Inertia
(Ixx) 1.3894 × 10−2 kg ·m2

(Iyy) 1.2621 × 10−2 kg ·m2

(Izz) 2.0518 × 10−2 kg ·m2

Drag Coefficient
(CDx) 1.05

(CDy) 1.05

(CDz) 1.05

Body Area
(Sx) 0.0136 m2

(Sy) 0.0136 m2

(Sz) 0.0256 m2

To achieve autonomous attitude and position control a cascaded control scheme

using a PID controller for the attitude and PD controller for the position is

implemented as illustrated in Figure 37,

Attitude Control

Sensors Motors

Quadrotor
Dynamic Equations

Quadrotor

Position Control

Figure 37: Quadrotor cascade attitude and position control method

73

Due to the varied number of methods available for a quadrotor to determine its

position (GPS, sonar, LIDAR, etc.) no particular sensor error is modelled in that

the controller accepts its position directly from the quadrotor dynamics as its true

position in space. Based on this position information and the desired location, a

commanded attitude is determined using a PD controller,

θdes = KPX (Xdes −X) +KDX (Ẋdes − Ẋ) (71a)

φdes = KPY (Ydes − Y) +KDY (Ẏdes − Ẏ) (71b)

This desired attitude is then compared to the current attitude as determined from the

data fusion of a magnetometer and a 6-axis inertial measurement unit (with modelled

sensor error) from the Simulink Aerospace Blockset. A PID controller is then used

to minimize the error between the desired angles from the position controller and

the estimated orientation,

Uθ = KPθ(θdes − θ) +KDθ(θ̇des − θ̇) +KIθ

∫ t

0
(θdes − θ) (72a)

Uφ = KPφ(φdes − Z) +KDφ(φ̇des − φ̇) +KIψ

∫ t

0
(ψdes − ψ) (72b)

Uψ = KPψ(ψdes − ψ) +KDψ(ψ̇des − ψ̇) +KIψ

∫ t

0
(ψdes − ψ) (72c)

The pitch, roll, and yaw control actions (Uθ, Uφ, Uφ) are then split among the

appropriate motors according to,

PWM1 = Uθ − Uψ (73a)

PWM2 = −Uφ + Uψ (73b)

PWM3 = −Uθ − Uψ (73c)

PWM4 = Uφ + Uψ (73d)

74
This results in a motor specific pulse width modulation (PWM) signal which is

converted into a Ti value using an experimentally determined relationship between

the PWM signal and force generated by an APC 10x4.7 SF propeller and Great

Planes Rimfire 400 28-30-950 out-runner motor. The gains for each of the constants

shown in the two control schemes are listed in Tables 6 and 7 and remain constant

for all the simulation results presented.

Table 6: Position controller PD gains
Gains: KPX KDX KPY KDY KPZ KDZ

Value: 0.2 4.0 0.2 4.0 0.4 1.0

Table 7: Attitude controller PID gains
Gains: KPφ KDφ KIφ KPθ KDθ KIθ KPψ KDψ KIψ

Value: 11.0 -20 0.02 11.0 -20 0.02 11.0 15 0.5

A simplified visual of the preceding control loops is shown in Figure 38. On the left

side are the quadrotor’s state in inertial space and the desired inertial space location

(and yaw angle). After the control signal is cascaded through the controllers the

resulting control actions are split and summed for the four motors. On a quadrotor

an electronic speed controller (ESC) converts this signal to a desired motor RPM,

producing a certain amount of thrust. The simulator directly uses an experimen-

tally found relationship between the PWM signal and the amount of thrust force,

thereby closing the loop between the governing equations of motion and simulating

autonomous position control.

75

PDz

PDx

PDy

Zi

Zd,i

Xi

Yi

Xd,i

Yd,i

ψi

ψd,i

-

-

-

-
+

+

+

+

θi

φi

Altitude
Error

X
Error

Y
Error

PIDθ

PIDφ

PIDψ

Yaw
Error

-
+

-
+

Front

Back

Right

Left

−ψ

−ψ

+ψ

+ψ

+θ

−θ

+φ

−φ

+Z

+Z

+Z

+Z

Motor PWM

Motor PWM

Motor PWM

Motor PWM

Attitude

Positon

Limit
250

500

Limit
250

500

Limit
250

500

Limit
250

500

θd,i

φd,i

Figure 38: Quadrotor cascade PD-PID control block diagram

Chapter 5

Results

To evaluate the effects of a RANS versus a LES simulated wake field five flight mis-

sions are performed. Three of the missions are to hold position at specified locations.

Mission 1 is in the undisturbed freestream ahead of the building to establish a vehicle

reference performance. Mission 2 is fully within the building wake and represents a

location that contains significant regions of re-circulating flow. Mission 3 is located

along the wake boundary near the building rooftop, where deviations from this posi-

tion will cause the vehicle to experience significantly varying wind patterns as a mix

of the freestream and wake flow conditions. Mission 4 is a vertical ascent through

the building wake with a commanded velocity of approximately 1 m/s, starting five

meters off the ground in the building wake and ending in the accelerated velocity

region above the roof. Finally the last mission is a horizontal translation along the yE

from freestream conditions, through the building wake, and back out to freestream

flow. All these missions are shown in the xE-yE plane (Figure 39) and xE-zE plane

(Figure 40) superimposed on the RANS and LES velocity field vectors.

76

77

−40 −20 0 20 40 60 800

20

40

60

80

100

120

140
Mission 1Mission 1

Mission 2Mission 2

Mission 3Mission 3

Mission 4Mission 4

xE (m)

z E
(m

)

(a) RANS wake field at t=38.20s

−40 −20 0 20 40 60 800

20

40

60

80

100

120

140
Mission 1Mission 1

Mission 2Mission 2

Mission 3Mission 3

Mission 4Mission 4

xE (m)

z E
(m

)

(b) LES wake field at t=26.85s

Figure 39: Flight mission locations and velocity field samples. The RANS vectors
are scaled 2.2 times larger than the LES vectors for illustration.

78

−40 −20 0 20 40 60

−40

−20

0

20

40

Mission 1Mission 1
Mission 2Mission 2

Mission 5Mission 5

xE (m)

y E
(m

)

(a) RANS wake field at t=38.20s

−40 −20 0 20 40 60

−40

−20

0

20

40

Mission 1Mission 1
Mission 2Mission 2

Mission 5Mission 5

xE (m)

y E
(m

)

(b) LES wake field at t=26.85s

Figure 40: Flight mission locations and velocity field samples. The RANS vectors
are scaled 2.2 times larger than the LES vectors for illustration.

79

From the vectors in Figures 39 and 40, not only does LES produce velocities, on

average, 2 times higher than RANS, but the resulting wake field is mored random.

It is evident Mission 2 should have to handle not only the turbulent motions in the

wake but the movement of the bulk flow coming back down over the building roof

and horseshoe vortices around the side. The crosswind motions are not as prevalent

in Mission 3 at roof height, however as shown by the velocity vectors Mission 3

should experience streamwise velocities higher than freestream values as the flow

accelerates over the building roof.

Mission 4 should experience a range of changing velocity components as the

quadrotor ascends from the wake with all three components changing rapidly

(with small magnitudes compared to the freestream) to very directional flow

in the accelerated and freestream areas. Mission 5 should experience a similar

change as Mission 4 but in the streamwise and crosswind directions as the quadrotor

goes from the freestream, through the oscillating wake, and back into the freestream.

80

5.1 Mission 1 - Freestream Wind Position Hold

Mission 1 is in the freestream wind, outside of any wake affects, to compare the

flight performance between: (i) a constant specified value, (ii) RANS wake field,

(iii) LES wake field background wind conditions. The velocity components for the

three background wind conditions are shown in Figure 41, where it is seen both

RANS and LES produces a wind parallel velocity appropriately 6% less than the 4

m/s freestream due to the missions proximity to the building and energy draining

effects the turbulence modeling introduces. The sharp increase in velocity from 0

m/s to 4 m/s between 5 seconds and 10 seconds is a wind ramp unintentionally

simulating a large wind gust. This is done to give the controller a 5 second window

to initialize and stabilize the quadrotor without any wind influence. The wind is

then quickly ramped up to its full value over the next 5 seconds, which from various

tests seemed to provide more realistic results in comparison to longer, shallower

ramps. Furthermore, there very small oscillations in the crosswind direction and

a small positive normal velocity component due to the wind starting to accelerate

over the building roof.

The quadrotor’s position over a 125 second hover at the desired location for Mission

1 is shown in Figure 42, separated into the three axis components. The small

drop in altitude at the start of the simulation is due to the controller and motor’s

initializing to place the quadrotor in a hover. The sharp increase in the streamwise

direction XE is due to the wind ramp blowing the quadrotor downstream towards

the building. As expected all three background wake fields produce similar position

deviations of ±0.5m from the setpoint.

81

0 10 20 30 40 50 60 70 80 90 100 110 120
0

1

2

3

4

W
x

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120

−2 · 10−2

−1 · 10−2

0

1 · 10−2

2 · 10−2

3 · 10−2

W
y

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.1

0.2

0.3

Time (s)

W
z

(m
/s

)

Constant RANS LES

Figure 41: Mission 1 - wind velocity components

To further illustrate and quantify the position hold flight performance, deviation

cuboids are formed representing the maximum quadrotor deviations from the set-

point. Figure 43 shows the bounds within which the quadrotor is able to hold its

position for the 125 second flight duration, where the length of the shown coordinate

vectors represents a quadrotor body length along that axis. As can be seen, all three

82

0 10 20 30 40 50 60 70 80 90 100 110 120

−40.5

−40

−39.5

−39

x
E

(m
)

0 10 20 30 40 50 60 70 80 90 100 110 120

−1

−0.5

0

0.5

1

y E
(m

)

0 10 20 30 40 50 60 70 80 90 100 110 120
131.6

131.8

132

132.2

Time (s)

z E
(m

)

Setpoint Constant RANS LES

Figure 42: Mission 1 - quadrotor position

boxes are of comparable size illustrating the expected result that when flying in a

freestream wind condition the simplification of a constant background is reasonably

accurate.

83

xE

yE
zE

Setpoint Constant RANS LES

Figure 43: Mission 1 - maximum path deviation bounding boxes. The length of
the shown coordinate axis represents a quadrotor body length along that axis.

The use of a RANS simulation increases the deviation volume by approximately 37%

from the deviation volume observed when only a constant wind velocity is assumed,

while the LES wind database increases this volume by approximately 42%. The

larger increase in the LES bounding box volume is expected in that even though the

position of mission one is upstream of the building wake, by virtue of the manner

in which the LES upstream boundary conditions are applied, a greater degree of

freestream turbulence is present. With a constant background wind the controller

is able to hold the quadrotor to within +2/−1, ±1.25, and ±0.5 body lengths in

the xE, yE, and zE directions receptively of the desired location. This illustrates the

best position hold scenario with a constant but significant wind force in combination

with the simulated IMU noise.

84

5.2 Mission 2 - Building Wake Position Hold

Given that Mission 2 is located fully within the wake region, the temporal and

spatial turbulent motions continually demand corrections from the quadrotor’s

controller. Fluctuations are generated by multiple vortices which begin along the

sides and the roof of the building, get shed downstream, and meet within the wake.

However, only the LES wake field resolves these large scale vortices while the RANS

wind database averages the fluctuations as shown by the wake velocity components

in Figure 44. The RANS components are smoothed from the averaging and have an

overall smaller magnitude than the LES wake field velocities.

This variation in wake velocities results in a significant difference in the ability of

the quadrotor to hold its position as can be seen in Figure 45. The application of

the LES wake velocities generates a substantial decrease in the controllers ability to

hold the quadrotor’s position. At this location there is a 0.8 m/s and 1.0 m/s bias

in the average velocity acting in the negative xE and zE directions respectively (see

Figure 44) which causes the large position deviations seen in Figure 45.

From the position plots of Figure 45 it can be seen how the quadrotor is initially

pushed upstream towards the building and slowly returns to a location downstream

of the setpoint. Since there is a local wind bias in the negative xE direction (towards

the building) this steady state offset is produced to the lack of an integral term in

PD position controller (similarity seen in Figures 42 and 48).

Generating the maximum bounding cubiods from the position components clearly

85

0 10 20 30 40 50 60 70 80 90 100 110 120

−2

−1

0

1

2

W
x

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120

−2

0

2

W
y

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120
−4

−2

0

2

Time (s)

W
z

(m
/s

)

LES RANS

Figure 44: Mission 2 - wind velocity components

shows the resulting increase in setpoint deviation from the LES background wind,

shown in Figure 46. The RANS results show a relatively small region within which

the same controller is able to hold the quadrotor. Due to the small time averaged

86

0 10 20 30 40 50 60 70 80 90 100 110 120

23.5

24

24.5

25

x
E

(m
)

0 10 20 30 40 50 60 70 80 90 100 110 120
−0.5

0

0.5

1

1.5

2

y E
(m

)

0 10 20 30 40 50 60 70 80 90 100 110 120
79

79.5

80

80.5

81

Time (s)

z E
(m

)

Setpoint RANS LES

Figure 45: Mission 2 - quadrotor position

velocity in this region the controller is able to hold the quadrotor within a bounding

box with a volume of approximately 0.03 m3. This compares to a volume of 7.2

m3 (over a two hundred fold increase) for the same vehicle/controller configuration

87

but with the wake field velocities now being supplied from the LES database. If the

wake field field is calculated using a RANS simulation the predicted performance

is that the quadrotor can be held to within ± 0.5 body lengths in all directions at

this location. This is in contrast to when the wake field field is obtained from the

LES database where then the simulations predict both a loss in isotropy (in that the

deviations are not evenly distributed about the setpoint as shown with the relative

setpoint locations on the edges of the bounding boxes) and that the absolute value

of the deviations are larger. The LES simulations predict a variation of +2/−1,

+1.5/−0.5, and ±2 body lengths in the xE, yE and zE directions respectively.

xE

yE
zE

Setpoint RANS LES Relative Setpoint

Figure 46: Mission 2 - maximum path deviation bounding boxes. The length of
the shown coordinate axis represents a quadrotor body length along that axis.

88

5.3 Mission 3 - Top Wake Boundary Position Hold

Mission 3 is located near the top wake boundary, in the gradient area studied in

Figure 22a. The RANS wake field has velocities of approximately 1 m/s, small

oscillations about 0 m/s, and approximately -1 m/s in the xE, yE, and zE directions

respectively (Figure 47). The LES wake field velocities have double the average

magnitude of the RANS wake field and have average fluctuations of ±1 m/s on all

three components, also shown in Figure 47.

0 10 20 30 40 50 60 70 80 90 100 110 120

0

1

2

3

W
x

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120

−2

−1

0

1

2

3

W
y

(m
/s

)

0 10 20 30 40 50 60 70 80 90 100 110 120
−4

−3

−2

−1

0

Time (s)

W
z

(m
/s

)

LES RANS

Figure 47: Mission 3 - wind velocity components

89

Similar to Mission 2 in the wake, the LES wake field produces much larger position

deviations as illustrated in Figure 48. Additionally, the strong wind in the xE di-

rection results in a steady state offset upstream of the setpoint previously seen in

Figures 42 and 45. While the altitude controller is able to maintain ±0.5m about the

setpoint it comes at the cost of reduced yE axis performace due to the quadrotor’s

dynamics coupling.

0 10 20 30 40 50 60 70 80 90 100 110 120

23

24

25

26

x
E

(m
)

0 10 20 30 40 50 60 70 80 90 100 110 120

−0.5

0

0.5

1

y E
(m

)

0 10 20 30 40 50 60 70 80 90 100 110 120
117.2

117.4

117.6

117.8

118

Time (s)

z E
(m

)

Setpoint RANS LES

Figure 48: Mission 3 - quadrotor position

90

The constant offset wind in the xE and zE directions, coupled with the small oscil-

lations in the yE direction of the RANS database produces variations of only ±0.25

body length in the xE and yE directions, and ±0.1 body lengths in the zE direction,

illustrated in Figure 49. With the higher velocity magnitudes and larger turbu-

lent fluctuations the LES database wind results in position deviations of +2/−5,

+0.5/−0.5, and ±0.5 body lengths in the xE, yE, and zE directions respectively.

The large steady state error in the xE direction is clearly visible here and is the main

contributor to the LES deviation volume being over 100 times larger than the RANS

volume.

xE

yE
zE

Setpoint RANS LES Relative Setpoint

Figure 49: Mission 3 - maximum path deviation bounding boxes. The length of
the shown coordinate axis represents a quadrotor body length along that axis.

91

5.4 Mission 4 - Ascent Though Wake

The ascent flight of Mission 4 is designed to test the controller’s ability to hold

its lateral position while increasing the altitude, simulating a desired situation such

as building inspection. The quadrotor is initialized at a height of 5 meters and

holds position for 5 seconds without background wind influence. The wind is then

quickly ramped up over the next 5 seconds as the quadrotor increases altitude at

approximately 1 m/s up to 135 meters in the freestream. The results for the fourth

mission are shown in Figure 50 with the predicted RANS and LES flight paths shown

in scale to the building size and location.

−→
W

D
ir

ec
ti

on
of

Tr
av

el

Setpoint RANS LES

Figure 50: Mission 4 - LES deviations and building

92

The wake velocity components the quadrotor experiences over the flight are shown

in Figure 51. The winds are now a function of both time and location as the

quadrotor’s position changes as the mission is flown. In the wake the RANS and

LES have the same oscillations observed in the loop interval probe plots (Figures

33c and 33d). As the quadrotor ascends these crosswind component oscillations

reduce to almost zero (Wy in Figure 51) while the streamwise velocity component

increases close to freestream value. The vertical wind component slowly decreases

as the quadrotor flies through the roof down wash as shown in Figure 39 until it

returns to near zero in the freestream.

The two flight paths are also shown separated into two planes, wind parallel

(xE-zE) and crosswind parallel (yE-zE) in Figures 52a and 52b to allow for a

clearer visualization of the quadrotor’s performance. The wind velocities deep in

the building wake coupled with the constantly increasing altitude setpoint produce

maximum variations of ±1 and +0.25/−1 body length in the xE and yE directions

respectively when the quadrotor is subjected to the RANS database velocities.

Along the same section of flight time the LES wake velocities generate variations of

+12/−4 and +8/−4.5 body lengths in the xE and yE directions respectively.

While the velocity is large in the streamwise direction at the end of the mission

flight path, the turbulent fluctuations in all three directions reduce to near zero

values. Since it is these large scale changes in velocity which have the largest impact

on the quadrotor’s position, comparable position performance is achieved for both

RANS and LES database wind at the end of mission 4. After reaching the desired

93

0 20 40 60 80 100 120 140 160

−2

0

2

4

W
x

(m
/s

)

0 20 40 60 80 100 120 140 160
−4

−2

0

2

4

W
y

(m
/s

)

0 20 40 60 80 100 120 140 160
−4

−2

0

2

Time (s)

W
z

(m
/s

)

LES RANS

Figure 51: Mission 4 - wind velocity components

135 m altitude the quadrotor attempts to maintain it’s position for 20 seconds. It is

found that the positions for both the RANS and LES background wind conditions

converge to produce deviation performance similar to mission 1 of ±1 body length

in both the xE and yE directions, and ±0.25 body lengths in both the zE.

94

48 50 52 54 560

50

100

150

Roof Height

xE (m)

z E
(m

)

Setpoint RANS LES

(a) Freestream parallel plane

−4 −2 0 2 40

50

100

150

Roof Height

yE (m)

z E
(m

)
Setpoint RANS LES

(b) Crosswind parallel plane

Figure 52: Mission 4 - quadrotor position

5.5 Mission 5 - Crosswind Wake Translation

The cross wake flight of Mission 5 is designed to test the controller’s ability to

hold its streamwise position and altitude while traveling in the corsswind direction.

This situation is an initial step to move towards the previous work of Galway

et al. [19, 51, 52] which ultimately consisted of flying through multiple building

wakes for realistic flight testing of missions in an urban environment. To study

how traveling in and out of the wake impacts the quadrotor’s autonomous flight

performance, the single building geometry is used as illustrated in Figure 53.

The wake velocity components the quadrotor experiences over the flight are shown

in Figure 54. From the streamwise component is is clear when the quadrotor

95

−→
W

Dire
ct

ion
of

Tr
av

el

Setpoint RANS LES

Figure 53: Mission 5 - LES deviations and building

leaves the freestream (with u=4 m/s), at the center of the lower velocity wake

(u≈1 m/s), and back to the freesteam. As experienced in Mission 2, the crosswind

component exhibits high frequency oscillations and there is a negative ground

normal component of w≈1.5 m/s near the center of the building.

The two flight paths are again separated into two planes, wind parallel (xE-yE)

and crosswind parallel (yE-zE) in Figures 55a and 55b to allow for a clearer

visualization of the quadrotor’s performance. As the quadrotor enters the wake,

the freestream velocity causes the controller to over compensate as it decreases

causing a large streamwise deviation upwind of the setpoint. As expected this

divergence coupled with the demand of a moving setpoint in the crosswind direction

results in deviations in the quadrotor’s altitude. The RANS wake field produces

96

0 20 40 60 80 100 120 140 160

0

2

4

6

W
x

(m
/s

)

0 20 40 60 80 100 120 140 160

−2

0

2

W
y

(m
/s

)

0 20 40 60 80 100 120 140 160
−4

−2

0

2

Time (s)

W
z

(m
/s

)

LES RANS

Figure 54: Mission 5 - wind velocity components

deviations of approximately −2 and ±0.25 body lengths in the xE and zE direc-

tions respectively. When using the LES wake field the quadrotor reaches up to ±8

body lengths in the xE as it enters the wake and ±2 body lengths in the zE direction.

All three wake velocity components have smaller magnitudes in the wake (see t=90s

97

in Figure 54), and with a smaller position deviation upon entering the wake the

RANS wake field produces a deviation of approximately +0.5 body lengths in the

xE direction and on average almost 0 in the zE direction. When using the LES

wake field velocities, the quadrotor does not have time to recover from the extreme

position deviation before going through the wake. As the controller fights to reach

the setpoint it overshoots, producing in zE deviations of ± 2 body lengths as it begins

to experience the increasing streamwise velocity. As the quadrotor leaves the wake

this increasing velocity results in an xE deviation of +6 body lengths for the LES

wake field. A similar trend is seen with the RANS results but has a lower magnitude

with an xE deviation of +4 body lengths downstream of the setpoint.

40 45 50 55 60

−40

−20

0

20

40

Building Edge

Direction of Travel

−→
W

xE (m)

y E
(m

)

Setpoint RANS LES

(a) Freestream parallel plane

−40 −20 0 20 4073.5

74

74.5

75

75.5

76

76.5

Building

Direction of Travel

−→
W �

yE (m)

z E
(m

)

Setpoint RANS LES

(b) Crosswind parallel plane

Figure 55: Mission 5 - quadrotor position

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Motived by the many uses, increasing popularity, and growing urban populations a

method is presented for using LES to generate urban wake velocity fields for use in

studying wake effects on autonomous quadrotor’s flight performance. The flow field

is generated around a single building in isolation, representing the simplest building

block geometry to build up a full urban environment. The wake velocities are

stored in a database and accessed by a MATLAB/Simulink flight simulator based

on a custom quadrotor platform. This simulator and database is used to study the

difference in flight performance between wake fields generated by RANS methods

and LES with five flight missions. The mission types and their locations are chosen

to study a specific performance ability such as position holding in a turbulent wake

or vertical ascent in the wake.

98

99

Results of holding position in a constant freestream show both CFD methods produce

similar results and can hold position in all three directions within approximately ±1.5

body lengths. When the quadrotor is in or on the boundary of the building wake the

maximum deviation volumes, as calculated when using a RANS or LES background

wind, can differ by 2 orders of magnitude. This is a result of the resolved turbulent

fluctuations in the LES wake field causing a greater degree of non-isotropic flow in

comparison to RANS. Additionally the LES wake field causes skewed deviations by

as much as 5 to 1 in a given direction for both holding position and moving along a

desired flight path. Since the LES wake database more accurately reflects the wake

fields present behind real world structures, using a wake field replicated by a RANS

simulation will significantly over estimate the performance for position hold or slow

moving flight paths for multirotor UAVs on the order of 0.5m in size and 2kg in mass.

6.2 Recommendations

The first step in future development is to continue the replication of Galway et

al. [19, 51, 52] methods for application to the SUA platform, like a quadrotor,

by expanding the urban wake database with buildings at different freestream

orientations and more complex geometries such as urban canyons. This can then

be expanded further by applying the selection algorithm of Galway to build up an

urban environment using the CFD building blocks to simulate flight with multiple

buildings. In parallel, the physical quadrotor can be finalized and a mission planned

with the goal of collecting experimental data of the quadrotor’s autonomous

performance with a single building geometry.

100

The capabilities of the flight simulator can be expanded in the form of testing the

effects of 3D interpolation between the known database points (mesh spacing). Initial

testing indicates interpolating between the current mesh density does not produce a

discernible difference in the either the wake velocity components or the quadrotor’s

position. And while interpolating cannot produce eddy motion, as this is limited

implicitly by the mesh spacing, it may provide useful information for implementing

and testing a multi-point quadrotor model. Currently the wind forces are applied

to the center of gravity. A multi-point model would allow for the study of flight

performance with aerodynamic moments induced by the wind effects acting on other

parts of the quadrotor, such as the arms/propellers. Finally the flight simulator can

be further developed to include multiple quadrotors for the design and testing of

vehicle swarming in urban environments.

List of References

[1] International Civil Aviation Organization. Unmanned aircraft systems (UAS).
International Civil Aviation Organization, Montréal. ISBN 9789292317515
9292317512 (2011).

[2] Pratt. “-1 Predator unmanned aircraft.” Http://commons.wikimedia.org/wik-
i/File:MQ-1_Predator_unmanned_aircraft.jpg
(2008).

[3] C. Slattery. “Northrop Grumman MQ-4c Triton.”
Http://en.wikipedia.org/w/index.php?title=Northrop_Grum-
man_MQ-4C_Triton&oldid=642760198
(2015).

[4] Jrfreeland. “Northrop Grumman MQ-8 Fire Scout.”
Http://en.wikipedia.org/w/index.php?title=Northrop_Grum-
man_MQ-8_Fire_Scout&oldid=640305274
(2015).

[5] MilborneOne. “Schiebel Camcopter S-100.” Http://en.wikipedia.org/w/in-
dex.php?title=Schiebel_Camcopter_S-100&oldid=643663322
(2015).

[6] KrisfromGermany. “ Aladin.”
Http://en.wikipedia.org/w/index.php?title=EMT_Aladin&oldid=542404626
(2015).

101

102

[7] Dkroetsch. “Miniature UAV.” Http://en.wikipedia.org/w/index.php?ti-
tle=Miniature_UAV&oldid=644858733
(2015).

[8] TFCforever. “de Bothezat helicopter.” Http://en.wikipedia.org/w/in-
dex.php?title=De_Bothezat_helicopter&oldid=609142829
(2015).

[9] Halftermeyer. “.Drone.”
Http://pl.wikipedia.org/w/index.php?title=AR.Drone&oldid=41440599
(2015).

[10] M. J. Allen. “Autonomous soaring for improved endurance of a small
uninhabited air vehicle.” In “Proceedings of the 43rd aerospace sciences
meeting, AIAA,” (2005).

[11] J. W. Langelaan. “Long distance/duration trajectory optimization for small
uavs.” In “ Guidance, Navigation and Control Conference and Exhibit, Hilton
Head, SC,” (2007).

[12] A. Chapman and M. Mesbahi. “ flocking with wind gusts: Adaptive topology
and model reduction.” In “American Control Conference (ACC), 2011,” pages
1045–1050 (2011).

[13] J. Guerrero, J. Escareno, and Y. Bestaoui. “Quad-rotor MAV trajectory
planning in wind fields.” In “2013 IEEE International Conference on Robotics
and Automation (ICRA),” pages 778–783 (2013).

[14] S. Waslander and C. Wang. “Wind Disturbance Estimation and Rejection for
Quadrotor Position Control.” American Institute of Aeronautics and
Astronautics. ISBN 978-1-60086-979-2 (2009).

[15] J. Escareno, S. Salazar, H. Romero, and R. Lozano. “Trajectory Control of a
Quadrotor Subject to 2d Wind Disturbances.” Journal of Intelligent & Robotic
Systems 70(1-4), 51–63. ISSN 0921-0296, 1573-0409 (2012).

[16] Y. Chen, Y. He, and M. Zhou. “Modeling and Control of a Quadrotor
Helicopter System under Impact of Wind Field.” (2013).

103

[17] M. Kothari, I. Postlethwaite, and D.-W. Gu. “ Path Following in Windy
Urban Environments.” Journal of Intelligent & Robotic Systems ISSN
0921-0296, 1573-0409 (2013).

[18] M. Orr, S. Rasmussen, E. Karni, and W. Blake. “Framework for developing
and evaluating MAV control algorithms in a realistic urban setting.” In
“American Control Conference, 2005. Proceedings of the 2005,” pages
4096–4101 vol. 6 (2005).

[19] D. Galway, J. Etele, and G. Fusina. Urban Wind Modeling with Application to
Autonomous Flight. Masters Thesis, Carleton University (2009).

[20] “Urban Development.” Http://data.worldbank.org/topic/urban-development
(2014).

[21] D. Murphy and J. Cycon. Applications for mini VTOL UAV for law
enforcement.

[22] T. Hegazy, B. Ludington, and G. Vachtsevanos. “Reconnaissance and
surveillance in urban terrain with unmanned aerial vehicles.” In “Proceedings
of 16 th IFAC World Congress,” pages 4–8 (2005).

[23] R. L. Mota, L. F. Felizardo, E. H. Shiguemori, A. C. Ramos, and
F. Mora-Camino. “Expanding Small UAV Capabilities with ANN: A Case
Study for Urban Areas Inspection.” British Journal of Applied Science &
Technology 4(2), 387–398 (2014).

[24] AeroVironment. “Qube Public Safety UAS - AeroVironment, Inc.”
Http://www.avinc.com/public-safety/qube (2015).

[25] T. Coyle and . a. p. S. M. V. Blog. “Comparing traditional CSI procedures
with UAV Mapping.” Http://diydrones.com/profiles/blogs/comparing-
traditional-csi-procedures-with-uav-mapping
(2014).

[26] “Amazon Prime Air.” Http://www.amazon.com/b?node=8037720011 (2014).

[27] T. A. Press. “ begins drone delivery in Germany.”
Http://www.cbc.ca/1.2777647 (2014).

104

[28] L. Kelion. “Alibaba begins drone delivery trials.”
Http://www.bbc.com/news/technology-31129804 (2015).

[29] F. P. Staff. “Pizza-delivering drones? Domino’s shows off unmanned aircraft
that delivers customer orders.” Financial Post
Http://business.financialpost.com/2013/06/06/dominos-drone-pizza-delivery/
(2013).

[30] J. Etele. “Overview of Wind Gust Modelling with Application to Autonomous
Low-Level UAV Control.” Contract Report (2006).

[31] S. A. Raza and J. Etele. “Simulation tool for testing and validating uav
autopilots in wind gust environments.” AIAA Atmospheric Flight Mechanics
Conference and Exhibit (2012).

[32] F. White. Fluid Mechanics. McGraw-Hill, 7 edition edition. ISBN
9780077422417 (2010).

[33] R. B. Stull. An Introduction to Boundary Layer Meteorology. Springer, New
York, softcover reprint of the original 1st ed. 1988 edition edition. ISBN
9789027727695 (1988).

[34] X. Tapia. Modeling wind flow over complex terrain using OpenFoam. Masters
Thesis, University of Gavle (2009).

[35] R. E. Britter and S. R. Hanna. “Flow and Dispersion in Urban Areas.” Annual
Review of Fluid Mechanics 35(1), 469–496 (2003).

[36] J. Wieringa, A. Davenport, S. S. Grimmond, and T. Oke. “New revision of
Davenport Roughness Classification.” Proc., 3EACWE, Eindhoven, The
Netherlands (2001).

[37] P. Gousseau, B. Blocken, and G. van Heijst. “ simulation of pollutant
dispersion around isolated buildings: On the role of convective and turbulent
mass fluxes in the prediction accuracy.” Journal of Hazardous Materials 194,
422–434. ISSN 03043894 (2011).

105

[38] A. Walton and A. Y. S. Cheng. “Large-eddy simulation of pollution dispersion
in an urban street canyonPart II: idealised canyon simulation.” Atmospheric
Environment 36(22), 3615–3627. ISSN 1352-2310 (2002).

[39] S. M. Salim, R. Buccolieri, A. Chan, and S. Di Sabatino. “Numerical
simulation of atmospheric pollutant dispersion in an urban street canyon:
Comparison between RANS and LES.” Journal of Wind Engineering and
Industrial Aerodynamics 99(2-3), 103–113. ISSN 01676105 (2011).

[40] Y.-H. Tseng, C. Meneveau, and M. B. Parlange. “Modeling flow around bluff
bodies and predicting urban dispersion using large eddy simulation.”
Environmental science & technology 40(8), 2653–2662. ISSN 0013-936X
(2006).

[41] T. Tamura. “Large eddy simulation on building aerodynamics.” In
“Proceedings of the seventh Asia-Pacific Conference on Wind Engineering,
pp131-157,” (2009).

[42] J. He and C. C. S. Song. “Evaluation of pedestrian winds in urban area by
numerical approach.” Journal of Wind Engineering and Industrial
Aerodynamics 81(1-3), 295–309. ISSN 0167-6105 (1999).

[43] M. Bottema. “Urban roughness modelling in relation to pollutant dispersion.”
Atmospheric Environment 31(18), 3059–3075. ISSN 1352-2310 (1997).

[44] F. M. Hoblit. Gust Loads on Aircraft: Concepts and Applications. Education
Series. American Institute of Aeronautics and Astronautics, Washington, D.C.
ISBN 0-930403-45-2 (1988).

[45] R. Martinuzzi and C. Tropea. “The flow around surface-mounted, prismatic
obstacles placed in a fully developed channel flow (Data Bank Contribution).”
Journal of Fluids Engineering 115(1), 85–92 (1993).

[46] W. Rodi. “Comparison of LES and RANS calculations of the flow around bluff
bodies.” Journal of Wind Engineering and Industrial Aerodynamics 69-71,
55–75. ISSN 0167-6105 (1997).

106

[47] S. Dutta, P. K. Panigrahi, and K. Muralidhar. “Experimental investigation of
flow past a square cylinder at an angle of incidence.” Journal of engineering
mechanics 134(9), 788–803 (2008).

[48] K. Elshorbagy, E. Wahba, and R. Afify. “Visualization versus CFD Simulation
of Laminar Flow past Bluff Body.” (2010).

[49] S. Houda, N. Zemmouri, A. Hasseine, R. Athmani, and R. Belarbi. “A CFD
Model for Simulating Ubran Flow in Complex Morphological Street Network.”
The Online Journal of Science and Technology 2(1), 1–10 (2012).

[50] J. Labovský and u. Jelemenský. “-based atmospheric dispersion modeling in
real urban environments.” Chemical Papers 67(12), 1495–1503. ISSN
0366-6352, 1336-9075 (2013).

[51] D. Galway, J. Etele, and G. Fusina. “Modeling of Urban Wind Field Effects on
Unmanned Rotorcraft Flight.” Journal of Aircraft 48(5), 1613–1620. ISSN
0021-8669, 1533-3868 (2011).

[52] D. Galway, J. Etele, and G. Fusina. “Development and implementation of an
urban wind field database for aircraft flight simulation.” Journal of Wind
Engineering and Industrial Aerodynamics 103, 73–85. ISSN 0167-6105 (2012).

[53] O. Foundation. “ User Guide.” (2014).

[54] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Prentice Hall, Harlow, England ; New
York, 2 edition edition. ISBN 9780131274983 (2007).

[55] E. de Villers. The Potential of Large Eddy Simulation for the Modeling of Wall
Bounded Flows. Ph.D. thesis, Imperial College of Science, Technology and
Medicine (2006).

[56] O. Reynolds. “An Experimental Investigation of the Circumstances Which
Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of
the Law of Resistance in Parallel Channels.” Philosophical Transactions of the
Royal Society of London 174, 935–982. ISSN 0261-0523 (1883).

107

[57] J. M. Mcdonough. LECTURES on TURBULENCE Physics, Mathematics
and Modeling (2004).

[58] H. Tennekes and J. L. Lumley. A First Course in Turbulence. MIT Press.
ISBN 9780262200196 (1972).

[59] B. E. Launder and D. B. Spalding. “The numerical computation of turbulent
flows.” Computer Methods in Applied Mechanics and Engineering 3(2),
269–289. ISSN 0045-7825 (1974).

[60] S. B. Pope. Turbulent Flows. Cambridge University Press. ISBN
9780521598866 (2000).

[61] A. Leonard. Energy cascade in large-eddy simulations of turbulent fluid flows
(1974).

[62] H. Lu, C. J. Rutland, and L. M. Smith. “A priori tests of one-equation LES
modeling of rotating turbulence.” Journal of Turbulence page N37 (2007).

[63] Charlesreid1. “Filter (large eddy simulation).”
Http://en.wikipedia.org/wiki/Filter_%28large_eddy_simulation%29 (2010).

[64] P. Sagaut. Large Eddy Simulation for Incompressible Flows - An Introduction.
Scientific Computation. Springer, 3rd edition. ISBN 978-3-540-26344-9 (2006).

[65] A. Yoshizawa and K. Horiuti. “A statistically-derived subgrid-scale kinetic
energy model for the large-eddy simulation of turbulent flows.” Journal of the
Physical Society of Japan 54(8), 2834–2839 (1985).

[66] S. Krajnovic and L. Davidson. “Large-Eddy Simulation of the Flow Around a
Bluff Body.” AIAA Journal 40(5), 927–936. ISSN 0001-1452 (2002).

[67] J. Franke, A. Hellsten, H. Schlunzen, and B. Carissimo, editors. Proceedings /
International Workshop on Quality Assurance of Microscale Meteorological
Models Cost action 732 in combination with the European Science Foundation
at Hamburg, Germany, July 28/29, 2005. Univ., Meteorological Inst., Centre
for Marine and Atmospheric Sciences, Hamburg. ISBN 3000183124
9783000183126 (2005).

108

[68] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa,
and T. Shirasawa. “ guidelines for practical applications of CFD to pedestrian
wind environment around buildings.” Journal of Wind Engineering and
Industrial Aerodynamics 96(10-11), 1749–1761. ISSN 01676105 (2008).

[69] I. B. Celik, Z. N. Cehreli, and I. Yavuz. “Index of Resolution Quality for Large
Eddy Simulations.” Journal of Fluids Engineering 127(5), 949–958. ISSN
0098-2202 (2005).

[70] P. Gousseau, B. Blocken, and G. van Heijst. “Quality assessment of
Large-Eddy Simulation of wind flow around a high-rise building: Validation
and solution verification.” Computers & Fluids 79, 120–133. ISSN 00457930
(2013).

[71] T. Meng and K. Hibi. “Turbulent measurements of the flow field around a
high-rise building.” Journal of Wind Engineering Japan (76), 55–64. (in
Japanese) (1998).

[72] J. Jeong and F. Hussain. “On the identification of a vortex.” Journal of Fluid
Mechanics 285, 69–94. ISSN 1469-7645 (1995).

[73] J. C. R. Hunt, A. A. Wray, and P. Moin. “Eddies, streams, and convergence
zones in turbulent flows.” (1988).

[74] V. Kolar. “Vortex identification: New requirements and limitations.”
International Journal of Heat and Fluid Flow 28(4), 638–652. ISSN 0142727X
(2007).

[75] G. R. Meneely and N. L. Kaltreider. “The volume of the lung determined by
helium dilution. Description of the method and comparison with other
procedures.” Journal of Clinical Investigation 28(1), 129 (1949).

[76] B. Etkin and L. D. Reid. Dynamics of Flight: Stability and Control. Wiley,
New York, 3 edition edition. ISBN 9780471034186 (1995).

Appendix A

LES Standard Working Directory

This appendix details the setup and required file structure to perform a LES with

OpenFOAM as outlined in Chapter 2. A standard working directory (SWD) con-

sisting of files and scripts is used to simplify the user work flow for running future

simulations to expand the urban wind database. Figure 56 illustrates the simplicity

and few steps required by the user to run the LES and Figure 57 shows the full

required SWD.

Start

Generate .stl Building Geometry

Edit caseSetup File

Edit Allrun File

End

Run Allrun File

Post-Processes Results with WindDB Scripts

Figure 56: OpenFOAM LES user workflow

109

110
SWD/

Allrun.sh
RANS_run/

constant/
RASProperties
transportProperties

polyMesh.org/

blockMeshDict
system/

fvSchemes
fvSolution

RANSrun.sh
Residuals
Residuals_logs

run.foam
LES_run/

constant/
LESProperties
transportProperties
turbulenceProperties

polyMesh.org/

blockMeshDict
system/

fvSchemes
fvSolution

PostProcessing/
csvFiles/
extractData.py
csvImport.sh

LESrun.sh
Residuals
Residuals_logs

run.foam
Setup/

caseSetup

commonPatches
controlDict_LES
controlDict_RANS
0.org_RANS/

k
nut
omega
p

U
0.org_LES/

k
nuSgs

nuTilda
p

U
decomposeParDict.ptscotch
decomposeParDict.scotch

surfaceFeatureExtractDict
mapFieldsDict
snappyHexMeshDict
geometry.stl

Figure 57: Outline of the standard OpenFOAM working directory

111

A zip and tar containing the latest version of the SWD can be downloaded with

the following URL: https://github.com/sutherlandm/tara_les-swd/releases.

The Allrun script is used to control which parts of the RANS and LES cases are

performed, shown in Listing A.1.

Listing A.1: Allrun.sh
1 #! / b i n / sh

2 cd ${0%/∗} | | e x i t 1

3

4 ###

5 # A l l r u n . sh

6 #

7 # Mark S u t h e r l a n d

8 # December 18 , 2014

9 #

10 # O v e r a r c h i n g s c r i p t t o run a s t a n d a r d OpenFOAM LES . W i l l run a p a r a l l e l

11 # s t e a d y k−w SST RANS CFD s i m u l a t i o n , map t h e f i n a l r e s u l t s , and run a p a r a l l e l

12 # l a r g e −eddy CFD s i m u l a t i o n .

13

14 #Ensure v a r i a b l e s b e l o w are s e t , t h e s t a n d a r d w o r k i n g d i r e c t o r y f i l e s are p r e s e n t , such

15 #as t h e geometry . s t l f i l e , and a l l v a r i a b l e s i n Setup / c a s e S e t u p are s e t .

16

17 CORENUM=16 #Number o f p a r a l l e l c o r e s (must be l o c a l , non−network)

18 DORANS_MESH=1 #Do t h e RANS c a s e meshing

19 DORANS=1 #Run t h e p o t e n t i a l and k−e sims a f t e r meshing

20 DOMAP=1 #R e c o n s t r u c t t h e RANS r e s u l t s and map a f t e r LES meshing

21 DOLES_MESH=1 #Do t h e LES c a s e meshing

22 DOLES=1 #Run t h e LES sim a f t e r meshing and mapping

23 RECON=0 #R e c o n s t r u c t LES r e s u l t s (not r e q u i r e d f o r . c s v g e n e r a t i o n)

24 ###

25

26 #Export t h e v a r i a b l e s so t h e RANS and LES run s c r i p t s can use them

27 export CORENUM DORANS_MESH DORANS DOMAP DOLES_MESH DOLES RECON

28

29 #Do t h e RANS s t e a d y −s t a t e c a s e

30 cd RANS_run

31 chmod +x RANSrun

32 . / RANSrun

33 cd . .

34

35 #Do t h e LES c a s e

36 cd LES_run

37 chmod +x LESrun

38 . / LESrun

39 cd . .

https://github.com/sutherlandm/tara_les-swd/releases

112

From the Allrun script and the SWD it is seen a RANSrun script is first called to

control the RANS simulation based on the flags set in the Allrun, such as meshing

and mapping. The RANSrun script is shown below in Listing A.2 with detailed

comments explaining the clean up, setup, meshing, running, and reconstruction of

the steady RANS case.

Listing A.2: RANSrun.sh
1 #! / b i n / sh

2 cd ${0%/∗} | | e x i t 1

3

4 ###

5 # RANSrun . sh

6 #

7 # Mark S u t h e r l a n d

8 # December 18 , 2014

9 #

10 # S c r i p t t o run t h e c l e a n i n g , meshing and running o f t h e RANS c a s e

11 ###

12

13 #Run t h e RANS meshing s e c t i o n which i n c l u d e s d i r e c t o r y c l e a n up

14 i f [$DORANS_MESH −eq 1] ; then

15 #Clean up t h e l o g s from l a s t run i f you need t o do a f u l l r e s t a r t

16 rm −r f l o g s

17 rm −r f c o n s t a n t / polyMesh

18 rm −r f c o n s t a n t / t r i S u r f a c e

19 rm −r 0

20 rm −r 0 . org

21 rm −r f p r o c e s s o r ∗

22 rm −r f c o n s t a n t / extendedFeatureEdgeMesh

23 echo "−−−−−−−−−−Cleaned Last Run−−−−−−−−−−\n "

24 s l e e p 1

25

26 #Copy f i l e s from Setup f o l d e r

27 mkdir l o g s

28 mkdir 0

29 mkdir . / c o n s t a n t / t r i S u r f a c e

30 cp −r polyMesh . org c o n s t a n t / polyMesh

31 cp . . / Setup / ∗ . s t l . / c o n s t a n t / t r i S u r f a c e

32 cp . . / Setup / s u r f a c e F e a t u r e E x t r a c t D i c t . / system

33 cp . . / Setup / snappyHexMeshDict . / system

34 cp −r . . / Setup / 0 . org_RANS . / 0 . org

35 cp . . / Setup / controlDict_RANS . / system / c o n t r o l D i c t

36 cp . . / Setup / decomposeParDict . p t s c o t c h . / system / decomposeParDict . p t s c o t c h

37 cp . . / Setup / decomposeParDict . s c o t c h . / system / decomposeParDict . s c o t c h

113

38

39 #Run blockMesh t o make g e n e r a l b a c k g r o u n d mesh

40 blockMesh | t e e log_blockMesh

41 mv − i log_blockMesh l o g s

42 echo "−−−−−−−−−−blockMesh Done−−−−−−−−−−\n "

43 s l e e p 1

44

45 #Move t h e b lockMesh around t o c e n t e r i t a b o u t t h e . s t l body i f needed

46 t r a n s f o r m P o i n t s −t r a n s l a t e ’ (0 0 0) ’ | t e e l o g _ t r a n s f o r m P o i n t s

47 mv − i l o g _ t r a n s f o r m P o i n t s l o g s

48 s l e e p 1

49

50 #This i s v e r y important , i t e x t r a c t s t h e e d g e s o f t h e s t l f i l e t o a l l o w sHM t o snap t o them

51 s u r f a c e F e a t u r e E x t r a c t | t e e l o g _ s u r f a c e F e a t u r e E x t r a c t

52 mv − i l o g _ s u r f a c e F e a t u r e E x t r a c t l o g s

53 s l e e p 1

54

55 #We need t o copy o v e r some f i l e s t o a l l o w f o r auto p r o c e s s o r s p l i t t i n g

56 cp system / decomposeParDict . s c o t c h system / decomposeParDict

57

58 #L e t s b r e a k u p t h e domain t o a l l o w f o r p a r a l l e l p r o c e s s i n g

59 decomposePar | t e e log_decomposePar

60 mv − i log_decomposePar l o g s

61 echo "−−−−−−−−−−decomposePar Done−−−−−−−−−−\n "

62 s l e e p 1

63

64 #Again copy come f i l e s over , d i f f e r e n c e b e t t w e n s c o t c h and p t s c o t c h

65 cp system / decomposeParDict . p t s c o t c h system / decomposeParDict

66

67 #Now t h e a c t u a l fun part , l e t s run sHM t o c a r v e o u t our s t l from t h e b lockMesh

68 mpirun −np $CORENUM snappyHexMesh −p a r a l l e l −o v e r w r i t e | t e e log_snappyHexMesh

69 mv − i log_snappyHexMesh l o g s

70 echo "−−−−−−−−−−snappyHexMesh Done−−−−−−−−−−\n "

71 s l e e p 2

72

73 #For p a r a l l e l running

74 l s −d p r o c e s s o r ∗ | xargs − i rm −r f ./{}/0 $1

75 l s −d p r o c e s s o r ∗ | xargs − i cp −r 0 . org / ./{}/0/ $1

76

77 #Run renumberMesh t o c l e a n a few t h i n g s up

78 mpirun −np $CORENUM renumberMesh −p a r a l l e l −o v e r w r i t e −l a t e s t T i m e | t e e log_renumberMesh

79 mv − i log_renumberMesh l o g s

80 echo "−−−−−−−−−−renumberMesh Done−−−−−−−−−−\n "

81

82 #Run checkMesh t o e n s u r e a c c e t a b l e q u a l i t y mesh

83 mpirun −np $CORENUM checkMesh −p a r a l l e l −l a t e s t T i m e | t e e log_checkMesh

84 mv − i log_checkMesh l o g s

85 echo "−−−−−−−−−−checkMesh Done−−−−−−−−−−\n "

86 s l e e p 1

114

87

88 #Run patchSummary t o c h e c k a l l boundary p a t c h e s are c o r r e c t

89 mpirun −np $CORENUM patchSummary −p a r a l l e l −l a t e s t T i m e | t e e log_patchSummary

90 mv − i log_patchSummary l o g s

91 echo "−−−−−−−−−−patchSummary Done−−−−−−−−−−\n "

92 s l e e p 1

93 f i

94

95 #Run t h e p o t e n t i a l and RANS c a s e s i f t r u e f l a g . Both are run i n p a r a l l e l . The p o t e n t i a l l o g i s

96 #o u t p u t e d t o b o t h t h e t e r m i a l s c r e e n and a l o g f i l e w i t h t h e t e e command . Only a l o g f i l e i s

97 #g e n e r a t e d f o r t h e simpleFoam c a s e . F o l l o w t h e s i m u l a t i o n w i t h t a i l −f log_simpleFoam and

98 #c t l +C t o s t o p f o l l o w i n g

99 i f [$DORANS −eq 1] ; then

100 mpirun −np $CORENUM potentialFoam −p a r a l l e l −i n i t i a l i s e U B C s −noFunctionObjects | t e e

log_potentialFoam

101 PID4=$! #Save t h e p r o c e s s PID number

102 wait $PID4 #Wait f o r t h i s PID t o f i n i s h

103 mv − i log_potentialFoam l o g s

104

105 mpirun −np $CORENUM simpleFoam −p a r a l l e l > log_simpleFoam &

106 PID1=$!

107 wait $PID1

108 mv − i log_simpleFoam l o g s

109 f i

110

111 #R e c o n s t r u c t t h e mesh and f i n i a l s i m u l a t i o n v a r a i b l e s f o r mapping l a t e r . C u r r e n t l y t h e s o u r c e

112 #must not be p a r a l l e l b u t t h e d e s i n t i a t i o n can be p a r a l l e l

113 i f [$DOMAP −eq 1] ; then

114 reconstructParMesh −mergeTol 1e−06 −c o n s t a n t | t e e log_reconstructParMesh #>

l o g _ r e c o n s t r u c t P a r M e s h &

115 PID2=$!

116 wait $PID2

117 mv − i log_reconstructParMesh l o g s

118

119 r e c o n s t r u c t P a r −l a t e s t T i m e | t e e l o g _ r e c o n s t r u c t P a r

120 mv − i l o g _ r e c o n s t r u c t P a r l o g s

121 echo "−−−−−−−−−−r e c o n s t r u c t P a r Done−−−−−−−−−−\n "

122 f i

A similar script is then called for the LES case, as detailed in Listings A.3. Again

the file is commented to outline the various steps used to ultimately generate the

urban wake velocity fields.

115

Listing A.3: LESrun.sh
1 #! / b i n / sh

2 cd ${0%/∗} | | e x i t 1

3

4 ###

5 # LESrun . sh

6 #

7 # Mark S u t h e r l a n d

8 # December 18 , 2014

9 #

10 # S c r i p t t o run t h e c l e a n i n g , meshing , mapping , and running o f t h e LES c a s e

11 ###

12

13 #Run t h e LES meshing s e c t i o n which i n c l u d e s d i r e c t o r y c l e a n up

14 i f [$DOLES_MESH −eq 1] ; then

15 #Clean up t h e l o g s from l a s t run i f you need t o do a f u l l r e s t a r t

16 rm −r f l o g s

17 rm −r f c o n s t a n t / polyMesh

18 rm −r f c o n s t a n t / t r i S u r f a c e

19 rm −r 0

20 rm −r 0 . org

21 rm −r f p r o c e s s o r ∗

22 rm −r f c o n s t a n t / extendedFeatureEdgeMesh

23 rm −r f system / mapFieldsDict

24 rm −r f p o s t P r o c e s s i n g / f o r c e C o e f f s

25 rm −r f p o s t P r o c e s s i n g / f o r c e s

26 echo "−−−−−−−−−−Cleaned Last Run−−−−−−−−−−\n "

27 s l e e p 1

28

29 #Copy f i l e s from Setup f o l d e r

30 mkdir l o g s

31 mkdir 0

32 mkdir . / c o n s t a n t / t r i S u r f a c e

33 cp −r polyMesh . org c o n s t a n t / polyMesh

34 cp . . / Setup / ∗ . s t l . / c o n s t a n t / t r i S u r f a c e

35 cp . . / Setup / s u r f a c e F e a t u r e E x t r a c t D i c t . / system

36 cp . . / Setup / snappyHexMeshDict . / system

37 cp −r . . / Setup / 0 . org_LES . / 0 . org

38 cp −r polyMesh . org c o n s t a n t / polyMesh

39 cp . . / Setup / mapFieldsDict . / system

40 cp . . / Setup / controlDict_LES . / system / c o n t r o l D i c t

41 cp . . / Setup / decomposeParDict . p t s c o t c h . / system / decomposeParDict . p t s c o t c h

42 cp . . / Setup / decomposeParDict . s c o t c h . / system / decomposeParDict . s c o t c h

43

44 #Run blockMesh t o make g e n e r a l b a c k g r o u n d mesh

45 blockMesh | t e e log_blockMesh

46 mv − i log_blockMesh l o g s

47 echo "−−−−−−−−−−blockMesh Done−−−−−−−−−−\n "

116

48 s l e e p 1

49

50 #Move t h e b lockMesh around t o c e n t e r i t a b o u t t h e . s t l body i f needed

51 t r a n s f o r m P o i n t s −t r a n s l a t e ’ (0 0 0) ’ | t e e l o g _ t r a n s f o r m P o i n t s

52 mv − i l o g _ t r a n s f o r m P o i n t s l o g s

53 s l e e p 1

54

55 #This i s v e r y important , i t e x t r a c t s t h e e d g e s o f t h e s t l f i l e t o a l l o w sHM t o snap t o them

56 s u r f a c e F e a t u r e E x t r a c t | t e e l o g _ s u r f a c e F e a t u r e E x t r a c t

57 mv − i l o g _ s u r f a c e F e a t u r e E x t r a c t l o g s

58 s l e e p 1

59

60 #We need t o copy o v e r some f i l e s t o a l l o w f o r auto p r o c e s s o r s p l i t t i n g

61 cp system / decomposeParDict . s c o t c h system / decomposeParDict

62

63 #L e t s b r e a k u p t h e domain t o a l l o w f o r p a r a l l e l p r o c e s s i n g

64 decomposePar | t e e log_decomposePar

65 mv − i log_decomposePar l o g s

66 echo "−−−−−−−−−−decomposePar Done−−−−−−−−−−\n "

67 s l e e p 1

68

69 #Again copy come f i l e s over , d i f f e r e n c e b e t t w e n s c o t c h and p t s c o t c h

70 cp system / decomposeParDict . p t s c o t c h system / decomposeParDict

71

72 #Now t h e a c t u a l fun part , l e t s run sHM t o c a r v e o u t our s t l from t h e b lockMesh

73 mpirun −np $CORENUM snappyHexMesh −o v e r w r i t e −p a r a l l e l | t e e log_snappyHexMesh

74 mv − i log_snappyHexMesh l o g s

75 echo "−−−−−−−−−−snappyHexMesh Done−−−−−−−−−−\n "

76 s l e e p 2

77

78 # For p a r a l l e l running

79 l s −d p r o c e s s o r ∗ | xargs − i rm −r f ./{}/0 $1

80 l s −d p r o c e s s o r ∗ | xargs − i cp −r 0 . org / ./{}/0/ $1

81

82 #Run renumberMesh t o c l e a n a few t h i n g s up

83 mpirun −np $CORENUM renumberMesh −p a r a l l e l −o v e r w r i t e −l a t e s t T i m e | t e e log_renumberMesh

84 mv − i log_renumberMesh l o g s

85 echo "−−−−−−−−−−renumberMesh Done−−−−−−−−−−\n "

86

87 #Run checkMesh t o e n s u r e a c c e t a b l e q u a l i t y mesh

88 mpirun −np $CORENUM checkMesh −p a r a l l e l −l a t e s t T i m e | t e e log_checkMesh

89 mv − i log_checkMesh l o g s

90 echo "−−−−−−−−−−checkMesh Done−−−−−−−−−−\n "

91 s l e e p 1

92

93 #Run patchSummary t o c h e c k a l l boundary p a t c h e s are c o r r e c t

94 mpirun −np $CORENUM patchSummary −p a r a l l e l −l a t e s t T i m e | t e e log_patchSummary

95 mv − i log_patchSummary l o g s

96 echo "−−−−−−−−−−patchSummary Done−−−−−−−−−−\n "

117

97 s l e e p 1

98 f i

99

100 #Map t h e f i n a l RANS r e s u l t s as t h e i n t i a l c o n d i t i o n s and run t h e LES s o l v e r . Only a l o g f i l e i s

101 #g e n e r a t e d f o r t h e pisoFoam c a s e . F o l l o w t h e s i m u l a t i o n w i t h t a i l −f log_simpleFoam and

102 #c t l +C t o s t o p f o l l o w i n g

103 i f [$DOLES −eq 1] ; then

104 mapFields . . / RANS_run −c o n s i s t e n t −sourceTime ’ latestTime ’ −p a r a l l e l T a r g e t > log_mapFields &

105 PID4=$!

106 wait $PID4

107 mv − i log_mapFields l o g s

108

109 #Run LES !

110 mpirun −np $CORENUM pisoFoam −p a r a l l e l > log_pisoFoam &

111 PID1=$! #Save t h e p r o c e s s PID number

112 wait $PID1 #Wait f o r t h i s PID t o f i n i s h

113 mv − i log_pisoFoam l o g s

114 f i

115

116 #R e c o n s t r u c t t h e mesh and any new p a r a l l e l s i m u l a t i o n r e s u l t s i f f l a g i s t r u e .

117 i f [$RECON −eq 1] ; then

118 reconstructParMesh −mergeTol 1e−06 −c o n s t a n t | t e e log_reconstructParMesh

119 PID2=$!

120 wait $PID2

121 mv − i log_reconstructParMesh l o g s

122

123 r e c o n s t r u c t P a r −newTimes | t e e l o g _ r e c o n s t r u c t P a r

124 PID3=$!

125 wait $PID3

126 mv − i l o g _ r e c o n s t r u c t P a r l o g s

127 echo "−−−−−−−−−−r e c o n s t r u c t P a r Done−−−−−−−−−−\n "

128 f i

Appendix B

Using OpenFOAM on Kumomotojo

This appendix details how to use the outlined standard working directory (SWD) and

remotely interface with the OpenFOAM/Paraview installation on the Kumomotojo

workstation.

B.1 Using OpenFOAM

As outlined in Chapter 2 version 2.2.x of OpenFOAM is currently used to generate

the urban wake fields, however Kumomotojo has both version 2.2.x and 2.3.x installed

if the added features are required in the future1. To select a version, you must enter

one of the following two alias commands whenever you open a new terminal.

of22x of23x

This allows multiple versions of OpenFOAM to work along side one another and

provide backwards compatibility for users with existing scripts. To test which version

of OpenFOAM is active, if any, call for the help output of the transient laminar
1See http://www.openfoam.com/ for the change logs and details.

118

http://www.openfoam.com/

119

incompressible flow solver with the following command,

icoFoam -help

If everything works as planned, the icoFoam usage output shown in Figure 58 should

print to the terminal.

Figure 58: icoFoam usage output with OpenFOAM version

If an OpenFOAM function, such as icoFoam, is called or tab completion does not

work a version has not been selected and the messages in Figure 59 will appear. This

usually occurs in the haste of opening a new or second terminal window without

entering a version selection command as previously outlined.

Figure 59: icoFoam function not found message

120

The SWD should be downloaded, placed, renamed, and setup in the OpenFOAM run

directory. This subfolder is in the OpenFOAM folder in the user’s home directory,

along with the OpenFOAM tutorials, and can easily be accessed with the following

change directory alias,

run

Therefore when the SWD is prepared and ready, the simulation process is started

with the following sequence of commands from a new terminal screen,

of22x

run

cd renamedSWD

chmod +x Allrun

./Allrun &

disown

The & and disown commands are important as they place the simulation in the

background and then detach it from the current terminal respectively. After the

./Allrun & command is entered, text will start to flow as the initial outputs of the

scripts are teed to both a log file and the terminal screen. Simply typing disown and

pressing enter ‘in the text’ will disown and detached the current processes allowing

the user to close the terminal and/or logout. The top command can then be used

to see what application is currently running and the log can be viewed in real time

using the following command (in the directory of the log file),

121

tail -f log_applicationName

This will produce a self scrolling output of the log file which can be exited at anytime

pressing ctl+c. Similarly each case contain Residuals and Residuals_logs files

which can be used to monitor the simulation residuals with gnuplot. The four files

have been created to take into account the two solving algorithms, simpleFoam and

pisoFoam, as well as the log file location, currently being written to or saved in the

logs/ folder. Therefore a desired command would take the form of and requires X

forwarding to view the resulting plot,

gnuplot Residuals

B.2 Using ParaView

ParaView is an open-source, multi-platform data analysis and visualization applica-

tion based on the Visualization Took Kit (VTK) devopled by Kitware Inc, and the

Los Alamos and Sandia National Laboratories2. ParaView is used in conjunction

with OpenFOAM to view the 3D simulation results. A strength of ParaView is its

ability to not only process very large data sets and decomposed simulations, but do

so in a distributed server-client model to take advantage of remote computational

rendering power. Kumomotojo has been setup with a server ability and the following

section will detail how to install ParaView on a personal client and connect to the

server.

2http://www.paraview.org/

http://www.paraview.org/

122

Currently ParaView 3.12 (for OpenFOAM-2.2.x) and ParaView 4.1.0 (for

OpenFOAM-2.3.x) are installed on the server and for remote viewing the

ParaView version on both the server and client must be the same. The var-

ious release builds of ParaView for all operating systems can be found here,

http://www.paraview.org/download/, and should be downloaded and installed

on the client computer. Linux users can look into their repository versions but it

could prove easier to download or build from source.

ParaView has been designed to connect a client instance to a host server, rather

than simply X-forwarding the servers display. While X-forwarding is far simpler to

implement, the resulting performance is quite low and unstable. Therefore a SSH

tunnel is used to forward the data from the server to the client via port forwarding.

B.2.1 Configure Linux Client
For a Linux based client the following alias can be added to the .bashrc file to simplify

the tunnel startup,

alias pfTunnel=“ssh usr@XXX.XXX.XX.XX -L 11150:localhost:11115 -g -C”

Where usr is replaced with your Kumomotojo login user name, and

XXX.XXX.XX.XX with Kumomotojo’s IP address. Port 11115 is the address the

ParaView server will be publishing data to, based on the setup described below.

Port 11150 represents the mapped client port which is ‘connected’ to the server

point. Either port numbers can be changed, and should be for multi-connections

http://www.paraview.org/download/

123

and multi-users3, depending on the users existing port maps.

B.2.2 Configure Windows Client

For Windows based clients, Putty can be used to setup the SSH tunnel and port for-

ward, found at http://www.chiark.greenend.org.uk/~sgtatham/putty/. Open

an instance of Putty, and click Tunnels under the SSH category, shown in Figure 60.

Enter the source port, the IP address with ParaView server port, and click Add.

Figure 60: SSH tunnel Putty setup

Select the Session category, enter Kumomotojo’s IP address, a desired name such as

Kumo, and Save shown in Figure 61. This will save the IP address and SSH tunnel

information for future connections by selecting the session name and selecting Load.

Start the SSH session by clicking the Open button.

3Multi-connections and multi-users are untested and tests are recommended for future work

http://www.chiark.greenend.org.uk/~sgtatham/putty/

124

Figure 61: Putty connection setup

With the SSH tunnel setup between the server and client, the next step is to start

the ParaViw Server. To facilitate easy startup times, the following aliases should be

added to your users .bashrc file on the server,

alias pfServer=“pvserver –server-port=11115"

alias pfServer_OS=“pvserver –server-port=11115 –use-offscreen-rendering"

alias pfServer_M2=“mpirun -np 2 pvserver –server-port=11115"

alias pfServer_M4=“mpirun -np 4 pvserver –server-port=11115"

These sets of commands are used to start an instance of a ParaView server with

different settings. There are 3 main options for the server:

125

• pfServer

– Runs a ‘standard’ pvserver such that is uses the GPU to render into an X

window before showing it in the GUI. This window will pop open on the

client’s desktop automatically when the system needs to render something,

such as a coloured contour plane. This is a single serial server meaning the

size of mesh/simulation is limited. The upper limit is not clearly defined

but a rough estimate would be my course LES grid with 1.13×106 cells. If

the server connection drops or takes an excessively long time to load, the

server needs more power by running in one of the parallel modes outlined

below.

• pfServer_OS

– If the server does not have GPU rendering capabilities with OpenGL,

the ParaView server uses CPU based rendering though off screen Messa

(MessaOS) libraries. This option can also be used if there is an issue

with the client opening X windows on the desktop. Since the rendering is

being performed by the CPU’s, which are typically already busy running

simulations, the simulation size is even more limited than the pfServer

option. While the response time is slightly quicker than rendering with

an X window, only simple simulations of no more than 500, 000 cells should

be opened with the server in this mode.

• pfServer_M2 and pfServer_M4

– For large simulations, such as the Medium and Fine LES simulations

(2.43 × 106 and 7.67 × 106 cells) the server should be run in a parallel

126

mode to distribute the load. The parallelism of the ParaView server is

only limited by the hardware of the server therefore these two commands

serve only as shortcuts. Even 4 processors should be more than enough

to run a server any simulations run on Kumo, however is the number of

processes can easily be changed by entering the raw terminal command.

While it does employ GPU rendering, running the server in parallel will

make a thread for each server section thereby taxing the ‘usually always

in use’ CPUs. pfServer_M4 should only be used for short periods of post

processing if all CPUs are busy to prevent automatic thermal shutdowns

of the server.

With the SSH tunnel and ParaView server setup, the last item is to configure Par-

aView on the client side. After the appropriate version has been downloaded and

installed, multiple ParaView versions can be installed on the client, open a new

instance of ParaView and select the connect to server button, circled in Figure 62.

127

Figure 62: Connect to server selection

In the pop-up window select Add Server, shown in Figure 63.

Figure 63: Add new server

128

Choose a name, leave localhost and enter local forwarded port.

Figure 64: Enter the server details

Select Manual, meaning we will start the server ourselves each time, and Save.

Figure 65: Select Manual and Save

129

B.2.3 Results Viewing

ParaView should now be setup and ready to post-process the OpenFOAM simulation

results. To start viewing data remotely either; open a new terminal and enter

pfTunnel, or open Putty and load the saved Kumo configuration, if the client is

Linux or Windows respectively. You should be prompted for your Kumomotojo user

name and/or password. Select the version of OpenFOAM you wish to use/used by

entering one of the alias commands, of22x or of23x.

Navigate to the foam.run file in the desired simulation case, however this is optional

as you can browse to your case through the client GUI later. Start a ParaView server

by entering one of the server start aliases, pfServer, pfServer_OS, pfServer_M2 or

pfServer_M4, or a custom parallel server though the mpirun command. Open an

instance of ParaView on the client and select the connect to server button on the

top toolbar, Figure 66.

Figure 66: Connect to server selection

130

When the Choose Server dialog box pops up, click the name of the server from Figure

67 and select connect. You can check the connection status by looking at the SSH

tunnel terminal window which should say “Client connected".

Figure 67: Server selection
If everything is connected correctly you should see cs://localhost:11150 under the

Pipeline Browser (of a different number if you forward to a different port). To open

a case press the open button, left most on the top toolbar, shown in Figure 68. The

directory it opens to will be the directory where you started the server. Navigate to

your case’s run.foam file and open. Select either Reconstructed or Decomposed under

case type and press the green Apply button. It can take a minute or so to load the

data and open the rendering X windows if needed. The simulation results can now

be remotely viewed. A graphical illustration of this example workflow is shown in

Figure 69.

131

Figure 68: Server connection and open a case

Start

Server Login/Start SSH Tunnel

Select OpenFOAM Version

cd To Simulation Directory

End

Start ParaView Server

Start Client ParaView and Connect to Server

Open run.foam File and Load Results

Figure 69: Remote ParaView workflow, dashed: client actions, solid: server actions

Appendix C

Urban Wake Database

This appendix details how the results of the OpenFOAM LES are post-processed

into .csv files and how those files are further processed and uploaded to the urban

wind database. To first export the .csv files, open the desired LES run.foam file with

ParaView and ensure the internalMesh box is checked after the loading. Forward to

the last timestep by selecting the top circled button in Figure 70. This is required as

only the U and p fields should be saved to the .csv files and additional variables are

generated which are not present at the start of the simulation, such as U_Mean, or

Q. Therefore ensure only U and p are selected under Cell Arrays, circled in Figure

70, and make sure to click the green Apply button.

From the file menu select Save Data and the Save File dialog will open. Enter the

desired prefix, following the database convention, and ensure to leave an underscore

at end, as illustrated in Figure 71. Each timestep is saved a separate .csv file starting

from zero and the number is appended to the entered prefix. This format is required

for the renaming portion of the post-processing scripts introduced below.

132

133

Figure 70: Load run.foam file, adjust timestep and select desired variables

Figure 71: Save data and set file prefix

134

Configure the writer to save all the timesteps and ensure the field is association on

the points, shown in Figure 72. After clicking Ok it will take some time to generate

the .csv files, a function of the write interval and total simulation time. Similarly,

the files can take on the order of 40 GB of hard drive space prior to trimming so

ensure sufficient storage space is available.

Figure 72: Save the data from the points and for all timesteps

After all .csv files have been generated they are trimmed and processed using the

extractData.py and csvImport.sh scripts in the postProcessing sub folder. The

python extractData.py script is used to trim each .csv file in space and time, and

rename/renumber the remaining files. The commented script is shown in Listing

C.1 with details on what should be mortified before execution. After modifying the

script with; the fileName, start and end loop times, and desired wake region, the

trimming is performed by entering python extractData.py form the command line.

135

Listing C.1: extractData.py
1 import csv

2 import os

3 import n a t s o r t

4 from os import l i s t d i r

5 from os . path import i s f i l e , j o i n

6

7 ###

8 # e x t r a c t D a t a . py

9 #

10 # Mark S u t h e r l a n d

11 # December 18 , 2014

12 #

13 # Simple s c r i p t t o t a k e t h e u n p r o c e s s e d . c s v f i l e s from OpenFOAM/ Paraview and t r i m them

14 # b o t h i n s p a c e and t ime . The s p a t i a l tr imming i s per formed as a s i m p l e box by s p e c i f y i n g

15 # t h e l o w e r and upper bounds f o r x , y , and z . The t e m p o r a l trimming i s used f o r

16 # i m p l e m e n t i n g t h e d e s i r e d l o o p i n t e r v a l by s p e c i f y i n g t h e s t a r t and end t i m e s .

17

18 #Ensure t h e e x a c t s e l e c t e d t i m e s e x s i s t s , b a s e d on t i m e s t e p s a v e r e s o l u t i o n . Also e n s u r e

19 #t h e o n l y s a v e d v a r a i b l e s i n t h e . c s v f i l e s are p , Ux , Uy , Uz , x , y , z and i n t h a t e x a c t o r d e r .

20

21 f i leName = "−−−−−" #. c s v f i l e names e . g . "730_6_0_1_"

22 dirPath = " c s v F i l e s " #Enter t h e d i r e c t o r y where t h e c s v f i l e s are

23

24 LES_simWriteInterval =0.05 #Save i n t e r v a l o f CFD s i m u l a t i o n

25 newStartTime =20.2 #Loop i n t e r v a l s t a r t t ime

26 LES_EndTime=28.9 #Loop i n t e r v a l end t ime

27

28 lower_x_bound = −6 #D e f i n e t h e box t o keep t h e wind d a t a . U s u a l l y t a k e n 0 . 5m

29 upper_x_bound = 2 4 . 5 #inward o f t h e wake r e f i n m e n t t o e n s u r e good wind d a t a

30 lower_y_bound = −6

31 upper_y_bound = 6

32 lower_z_bound = 0

33 upper_z_bound = 2 1 . 5

34 ###

35

36 #Setup t h e h e a d e r o f t h e c s v f i l e / d a t a b a s e t a b l e s

37 newHeader = []

38 newHeader . append (’ p ’)

39 newHeader . append (’Ux ’)

40 newHeader . append (’Uy ’)

41 newHeader . append (’ Uz ’)

42 newHeader . append (’ x ’)

43 newHeader . append (’ y ’)

44 newHeader . append (’ z ’)

45

46 #Find t h e f i l e numbers f o r t h e s t a r t and end l o o p i n v e r v a l

47 timeStep=0

136

48 cutPoint =newStartTime / LES_simWriteInterval

49 lastTimeStep=LES_EndTime/ LES_simWriteInterval

50 f l o a t (cutPoint)

51 f l o a t (lastTimeStep)

52

53 #Count t h e number o f . c s v f i l e s i n t h e f o l d e r

54 o n l y F i l e s = [f f o r f i n l i s t d i r (dirPath) i f i s f i l e (j o i n (dirPath , f))]

55 o n l y F i l e s=n a t s o r t . n a t s o r t e d (o n l y F i l e s)

56

57 #Loop o v e r a l l c s v f i l e s f o r s p a t i a l and t e m p o r t a l tr imming

58 f o r c u r r e n t F i l e i n o n l y F i l e s :

59 #p r i n t " Working on "+ c u r r e n t F i l e #Debug message

60 timeStep = c u r r e n t F i l e . p a r t i t i o n (’ . ’) [− 1] . r p a r t i t i o n (’ . ’) [0]

61 i n F i l e P a t h=dirPath + " / " + c u r r e n t F i l e

62

63 #Keep t h e f i l e i f i n l o o p i n t e r v a l range and keep v e l o c i t y d a t a

64 #i f i n t h e d e f i n e d box r e g i o n

65 i f f l o a t (timeStep) >= cutPoint and f l o a t (timeStep) <= lastTimeStep :

66 i n F i l e = open (i nFi l ePath , " rb ")

67 r e a d e r = csv . r e a d e r (i n F i l e)

68 o u t F i l e = open (dirPath + " / " + fi leName + timeStep + " . csv " , "wb")

69 w r i t e r = csv . w r i t e r (o u t F i l e)

70 rownum = 0

71 f o r row i n r e a d e r :

72 i f rownum == 0 :

73 row = newHeader

74 w r i t e r . writerow (row)

75 #p r i n t ’ , ’ . j i o i n (row) #Debug message

76 e l s e :

77 i f (f l o a t (row [4]) >= lower_x_bound and f l o a t (row [4]) <= upper_x_bound) and \

78 (f l o a t (row [5]) >= lower_y_bound and f l o a t (row [5]) <= upper_y_bound) and \

79 (f l o a t (row [6]) >= lower_z_bound and f l o a t (row [6]) <= upper_z_bound) :

80 w r i t e r . writerow (row)

81 # p r i n t ’ , ’ . j o i n (row) #Debug message

82 rownum += 1

83 i n F i l e . c l o s e ()

84 o u t F i l e . c l o s e ()

85 os . system ("rm %s "%i n F i l e P a t h)

86

87 #Recount t h e number o f . c s v f i l e s a f t e r t e m p o r t a l tr imming

88 numFiles= [f f o r f i n l i s t d i r (dirPath) i f i s f i l e (j o i n (dirPath , f))]

89 numFiles=n a t s o r t . n a t s o r t e d (numFiles)

90

91 #Renumber t h e remaining . c s v f i l e s s t a r t i n g a t one

92 count=1

93 f o r c u r r e n t F i l e i n numFiles :

94 os . rename (dirPath + " / "+c u r r e n t F i l e , dirPath + " / "+fi leName+s t r (count)+" . csv ")

95 count=count+1

96

137

97 #S c r i p t end message

98 p r i n t " Exract ion F i n i s h e d "

Once the .csv files have been trimmed they can be uploaded to the MySQL based

Urban Wind Database using the csvImport.sh bash script, shown in Listing C.2.

After editing the file for the database name, user name, user password1, and base

filename the script is run from the command line using ./csvImport. If required, make

the file executable by entering chmod +x csvImport. The script will go through each

.csv file, make a new table for that timestep and load the data into the database. One

important note are the saved variables and subsequently the database headers. The

variables and their order are manual configured in both scripts. Ensure the number

and order and uniform across the exported .csv files, extractData.py script and

csvImport.sh script.

Listing C.2: csvImport.sh
1 #! / b i n / bash

2

3 ###

4 # c s v I m p o r t . sh

5 #

6 # Mark S u t h e r l a n d

7 # December 18 , 2014

8 #

9 # Simple s c r i p t t o t a k e t h e p r o c e s s e d . c s v f i l e s from t h e trimming s c r i p t and u p l o a d

10 # them t o a MySQL d a t a b a s e . The d a t a b a s e must e x i s t on t h e p r i o r t o u p l o a d and s c r i p t

11 # must be run l o c a l l y on t h e s e r v e r .

12

13 #Ensure t h e v a r i a b l e s b e l o w are f i l l e d .

14

15 #D e f i n e d a t a b a s e c o n n e c t i v i t y

16 _db="−−−−−" #Enter d a t a b a s e name

17 _db_user="−−−−−" #Enter u s e r name

18 _db_password="−−−−−" #Enter password

19

1The user names and passwords for the Kumomotojo database are removed due to the public
availability of the scripts.

138

20 #D e f i n e d i r e c t o r y c o n t a i n i n g CSV f i l e s

21 _csv_directory=" . / c s v F i l e s " #Enter t h e d i r e c t o r y where t h e c s v f i l e s are

22 _csv_BaseName="−−−−−" #Enter c s v b a s e name , e . g . _csv_BaseName="730_6_0_1_ ∗ . c s v "

23 ###

24

25 #Go i n t o d i r e c t o r y

26 cd $_csv_directory

27

28 #Get a l i s t o f CSV f i l e s i n d i r e c t o r y

29 _ c s v _ f i l e s =‘ l s −1 $_csv_BaseName ‘

30

31 #Loop t h r o u g h c s v f i l e s

32 f o r _ c s v _ f i l e i n ${ _ c s v _ f i l e s [@] }

33 do

34

35 #Remove f i l e e x t e n s i o n

36 _ c s v _ f i l e _ e x t e n s i o n l e s s =‘ echo $ _ c s v _ f i l e | sed ’ s / \ (. ∗ \) \ . . ∗ / \ 1 / ’ ‘

37

38 #D e f i n e t a b l e name

39 _table_name=" ${ _ c s v _ f i l e _ e x t e n s i o n l e s s } "

40

41 #Make new t a b l e i f i t does not e x i s t

42 #Note : Not t h e b e s t way t o do t h i s , t h e p r e v i o u s method t r i e d t o l o o p o v e r t h e a c t u a l

43 #h e a d i n g s i n t h e f i l e . Too much o f pain , j u s t change t h e v a r i a b l e and t y p e i f needed

44

45 mysql −u $_db_user −p$_db_password $_db << e o f

46 CREATE TABLE IF NOT EXISTS \ ‘ $_table_name \ ‘ (

47 p FLOAT, Ux FLOAT, Uy FLOAT, Uz FLOAT, x FLOAT, y FLOAT, z FLOAT

48) ENGINE=MyISAM DEFAULT CHARSET=l a t i n 1

49 e o f

50

51 #Import c s v i n t o mysq l

52 mysqlimport −−f i e l d s −e n c l o s e d −by=’ " ’ −−f i e l d s −terminated−by = ’ , ’ −−igno re −l i n e s =1 −− l o c a l −u

$_db_user −p$_db_password $_db $ _ c s v _ f i l e

53

54 done

55 e x i t

Appendix D

Database-Simulator Integration

This appendix details how to remotely connect to the MySQL urban wind database

for use with the Tara MATLAB flight simulator. Additionally, the naming convention

of storing the CFD results and basic MySQL commands to interact with the database

are provided. For the MATLAB/Simulink flight simulator to work the following

toolboxes must be installed

• Aerospace Blockset
• Aerospace Toolbox
• Database Toolbox
• Fuzzy Logic Toolbox
• Model Predictive Control Toolbox
• Neural Network Toolbox

To see a complete list of the installed toolboxes, open MATLAB and use the ver

command in the Command Window. Similar to the other Appendices, placeholders

are used for sensitive details such as IP addresses, user names, and passwords which

will be available as needed.

139

140

D.1 MySQL Database Structure

As outlined in Chapter 1, only a single building in isolation is used as an initial test of

the quadrotor’s performance with LES based wake fields. However, the urban wind

database (UWD) currently contains both the RANS and LES generated wake field

used in the results chapter. The database table naming follow a similar convention

laid out by Galway [19] and are based on the defining parameters of the building,

defined in Figure 8a and shown again in Figure 73.

−→
W

R‖

R⊥

R‖

R⊥

θw

−→
W

Figure 73: Single building characteristics

Therefore each database table takes the form of,

ReB_ReE_θw_R⊥/R‖_T
Where:

• ReB is the base of the Reynolds Number
• ReE is the exponent of the Reynolds Number
• θw is the wind angle
• R⊥/R‖ is the ratio of the building’s side lengths
• T is the CFD simulation timestep number

For example, the 42nd timestep from the results used in this thesis would be

730_6_0_1_42 for the LES case and 730_6_0_1_RANS_42 for the RANS.

141

D.2 SSH Tunnel

Similar to the remote ParaView, a SSH tunnel is used to bridge the local flight

simulator with the MySQL database1. This section will detail how to setup the SSH

tunnel on Linux and Windows based clients.

D.2.1 Configure Linux Client

For a Linux based client the following alias can be added to the .bashrc file to simplify

the tunnel startup,

alias uwdTunnel=“ssh -f usr@XXX.XXX.XX.XX -L 7800:XXX.XXX.XX.XX:3306 -N”

Where usr is replaced with the UWD user name for the Kumomotojo server, and

XXX.XXX.XX.XX os Kumomotojo’s IP address. Port 3306 is the normal MySQL

address and will be mapped to port 7800, the latter can be changed depending on

the users existing port maps2. The flags -f, -N, and -L are used for; running ssh in

the background, tells ssh to not enter any commands once the tunnel is open, and

sets up an ssh tunnel that connects port 7800 on the localhost to port 3306 (default

MySQL port) on the server respectively.

D.2.2 Configure Windows Client
For Windows based clients, Putty can be used to setup the SSH tunnel and port for-

ward, found at http://www.chiark.greenend.org.uk/~sgtatham/putty/. Open
1Remote running of the simulator is future work
2Multi-connections, multi-users, and different port numbers are for future work

http://www.chiark.greenend.org.uk/~sgtatham/putty/

142

an instance of Putty, and click Tunnels under the SSH category, shown in Figure 74.

Enter the source port, the IP address with MySQL server port, and click Add.

Figure 74: SSH tunnel Putty setup

Select the Session category, enter Kumomotojo’s IP address, a desired name such as

windDB, and Save shown in Figure 75. This will save the IP address and SSH tunnel

information for future connections by selecting the session name and selecting Load.

Start the SSH session by clicking the Open button3.

3Both tunnels for the remote ParaView and the database can be added to the same session/name

143

Figure 75: Putty connection setup
To start the tunnel either; open a new terminal and enter uwdTunnel, or open Putty

and load the saved windDB configuration, if the client is Linux or Windows re-

spectively. You should be prompted for a user name and/or password, enter your

Kumomotojo user details or the provided user specific credentials. Open the tunnel

before starting MATLAB and loading the Simulink model and leave the terminal

open for the duration of using the simulator.

D.3 Driver Installation
The connection between MATLAB and MySQL is performed though a collection of

java scripts bundled together into a java executable. Unfortunately this requires a

driver installation and slight modifications to the MATLAB running on the client

computer. The following steps outline downloading the java driver and how to install

it, using the platform independent method.

144

1. The compressed files are available for download along side this tutorial. Al-

ternatively the same compressed archive can be downloaded from https:

//dev.mysql.com/downloads/connector/j/ by selecting the Platform Inde-

pendent option.

2. After opening the zip file, the mysql-connector-java-5.1.30-bin.jar must be

moved to the java folder in root MATLAB directory. From the root MATLAB

installation folder, where MATLAB was installed to on the client computer,

the file path is ./java/jar/.

3. To tell MATLAB where to look for the drive, a small edit is made in the

Java class path. Open MATLAB and type edit classpath.txt in the Command

Window. Ignore any autogenterator warnings that may appear.

4. At the very bottom of the edit classpath.txt add the following line:

$matlabroot/java/jar/mysql-connector-java-5.1.30-bin.jar.

After a restart of MATLAB, the connector should allow the data in the MySQL

database to be remotely accessed and applied in the flight simulator. Instructions

on how to view the contents of the UWB and how to manually query it though

MATLAB for testing purposes, followed by the details linking the actual Simulink

simulator, are now presented.

D.4 Database Access and MATLAB Connection

The available database entries can be accessed by using the previously setup SSH

connection to the host server. Next log into MySQL using the following command,

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

145

mysql -u userName -p

Where userName is the provided MySQL login name, not your Kumomotojo user

name. After pressing Enter you’ll be promoted for the provided MySQL password.

You should get a welcome screen as shown in Figure 76 and a mysql> command

prompt. From here you can view all of the databases stored on the server by entering

show databases;, again illustrated in Figure 76. To actually access and view the

wind data, enter a command such as use windDB; to change into that database.

Figure 76: List of all the databases stored on the MySQL server

To list the tables in the windDB for example, use the show tables; command. This

will return a huge list of all the tables in the database, a subset is shown in Figure

77. As previously outlined when producing the .csv files, each table represents a

saved timestep of the CDF simulations. An appropriate save interval is found to be

0.05 seconds, Section 4.1.1, and loop intervals from the techniques in Section 4.1.2.

146

Figure 77: List of tables in windDB

To view the contents of a specific table enter a command such as,

select * from 20x20x120_a0_88 limit 10;

This command will select table 20x20x120_a0_88 and display all the columns and

the first 10 rows of the table. The limit should always be used due to the huge volume

of stored data in each table, this example has 1,322,025 rows. Figure 78 illustrates

the results of the select command along with the structure of the stored data. Each

147

point in the flight area (x,y,z) has corresponding velocity components and a pressure

value.

Figure 78: Query from the select and limit command (t = 4.4s)

To access this data in MATLAB as a test, start the SSH tunnel followed by MATLAB.

Normally the dbconnect.m file in the flight simulator handles the database connection

and will be setup to automatically connect when the simulator is started. The import

parts of the file are used here to manually test the connection. Create a database

connection object by entering the following command in the MATLAB Command

Window.

conn = database(‘dbName’, ‘userName’, ‘passWord’,

‘com.mysql.jdbc.Driver’, ‘jdbc:mysql://localhost:7800/dbName’)

Where dbName is the database name such as windDB, and userName and passWord

are the authorized MySQL login details. Note the name of the database is required

twice, at the beginning and end of the command. Then make an execution command

by entering,

148

curs = exec(conn, ‘select * from 20x20x120_a0_88 limit 10’);

Actually query the data from the database,

curs = fetch(curs);

To visually see the pulled data,

curs.Data

If there are no error messages at any point and a 10 by 7 matrix should be returned

and the SSH tunnel/MATLAB database integration is working. Similarly it should

now be possible for a remote client to access the MySQL server at run time to return

the urban wake velocities to the flight simulator.

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	List of Symbols
	 Introduction
	 Methodology
	OpenFOAM
	Urban Wake Field CFD Modeling
	Reynolds-Averaged Navier-Stokes Method
	Large-Eddy Simulation Method

	 Grid Refinement Study
	Computational Domain
	LES Verification and Validation Study
	Q-Criterion Turbulence Visualization
	Time Averaged Velocity Profile
	LES Index Quality
	Experimental Comparison

	RANS Wake Field

	 Simulation Methodology
	Urban Wake Database
	Temporal Resolution Study
	Database Loop Interval

	Flight Controller

	 Results
	Mission 1 - Freestream Wind Position Hold
	Mission 2 - Building Wake Position Hold
	Mission 3 - Top Wake Boundary Position Hold
	Mission 4 - Ascent Though Wake
	Mission 5 - Crosswind Wake Translation

	 Conclusions and Recommendations
	Conclusions
	Recommendations

	List of References
	Appendix LES Standard Working Directory
	Appendix Using OpenFOAM on Kumomotojo
	Using OpenFOAM
	Using ParaView
	Configure Linux Client
	Configure Windows Client
	Results Viewing

	Appendix Urban Wake Database
	Appendix Database-Simulator Integration
	MySQL Database Structure
	SSH Tunnel
	Configure Linux Client
	Configure Windows Client

	Driver Installation
	Database Access and MATLAB Connection

