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Abstract

The ejector mode of rocket-based combined cycles is a concept that has the ability to gain
thrust from atmospheric air and reduce fuel consumption andthus reduce the cost of rocket
launches. This thesis develops a three-dimensional rocketnozzle design that includes the
potential for incorporating the ejector effect. The nozzleis designed such that the diverging
portion of the nozzle geometry must pass through a gate that is placed on the outer perime-
ter whose shape does not have to remain axisymmetric, thus creating a void for air intake
into the centre of an annular rocket exhaust stream. Viscouseffects are included via Eden-
field’s displacement thicknessδ ∗ correlation for turbulent boundary layers. Comparison of
computational fluid dynamics to a predefined Mach number distribution is within 1.6% of
an inviscid solution and 6.8% for a viscous simulation usingthek-ε turbulence model.
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Chapter 1

Introduction

THE rocket engine was conceived over 100 years ago with major contributions into

the early development by the rocketry pioneers Tsiolkovsky, Goddard, Oberth, and

von Braun. Konstantin E. Tsiolkovsky was a Russian visionary that proposed concepts

with sound mathematical fundamentals of space flight and rocket engines from 1895–1903.

Some of Tsiolkovsky’s accomplishments include identification of exhaust velocity as an

important performance factor, that liquid oxygen and liquid hydrogen give higher exhaust

velocity due to higher temperature and lower molar mass, andthe concept of multistaging

[1–4].

Robert H. Goddard was an American scientist and inventor that designed and tested

numerous rocket concepts and obtained 214 patents for his efforts (35 posthumously and

131 later filed by his wife). Goddard’s accomplishments wereastounding, and to name

a few: he was the first to successfully launch a sounding rocket with a liquid-propellant

rocket engine in 1926; he realized the benefits of turbo-pumps and thrust chamber cooling;

he proved that thrust could be created in a vacuum; and he designed the gimballed thrust

chamber that acted as a movable tail fin [1–4]. Although he wasthe first in many aspects,

Goddard’s reclusiveness and unfortunately early death in 1945 prevented the sharing of

his knowledge and so many of his achievements were independently re-realized by others

1



CHAPTER 1. INTRODUCTION 2

working in the field. As a result, it was not until the publishing of his papers in 1970 that

many in the rocket business realized his brilliance [3].

Hermann Oberth worked in Germany and was very influential in gaining public interest

through publishing his rejected thesis “The Rocket to the Planets” and directed the movie

“Woman in the Moon.” Oberth was a conceptualist that achieved many of his accomplish-

ments during the 1920s and 1930s. To list several: Oberth formulated the equations for

isentropic flow through nozzles; he realized the flight velocity, vehicle and propellant mass

relationship; and he introduced the parachute as a means of introducing aerodynamic drag

to slow down a re-entering spacecraft [1–4].

Lastly, Wernher von Braun was Oberth’s assistant early on inhis career. von Braun

contributed to the A-4 rocket—the first practical and reproducible liquid-fuelled rocket

that also served as a medium-range missile. After World War II, von Braun and most of

his team immigrated to the United States where they were responsible for sending the first

men to the moon on a Saturn V rocket in 1969. von Braun was also avisionary in some

regard as he helped realize the concept of a reusable space launch vehicle [1,2,4].

These four pioneers by no means generate the entire foundation of rocketry, but their

contributions to the aerospace field were significant. Others include General Arturo Crocco

and his son Luigi Crocco from Italy, Robert C. Truax of the U.S. Naval Academy, Austrian

Eugen Sänger, and Robert Esnault-Pelterie of France [3]. Again, this list could go on and

so the reader is directed to Sutton [3] and Kraemer [4] for further information.

1.1 Rocket Performance Assessment

Since propellants can account for upwards of 90% of the vehicle’s initial mass [2, 5] and

the high costs required for launch [6, 7], extensive effortshave gone into the improvement

of rocket systems. Major work since the inception of rocketshas gone into several fields:
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(1) propellant choice; (2) feed system design; (3) increasing thrust chamber performance;

(4) maximizing area expansion ratio through improved nozzle design; and (5) multistaging.

Concepts still in development include (6) rocket-based combined cycles and (7) liquid-air

cycle engines. The motivation behind these seven concepts is to increase the performance

qualifiers—thrustFT or specific impulseIsp—or reduce initial rocket mass.

(1) Propellant Choice

Propellant choice is instrumental in the amount of kinetic energy gained through combus-

tion. Since the early 1920s, more than 1800 liquid propellants have been tested including

toxic energetic and exotic chemicals. The results of these evaluations have dramatically

reduced the selection to several options identified in theirappropriate propellant classes:

cryogenic, hypergolic, petroleum, and solid [3].

(2) Feed System Cycles

Feed systems have progressed from the heavy pressurized gastanks of the 1920s to simple

gas generator cycles and then on to expander-engine and staged-combustion cycles. The

expander-engine cycle is usually applied to cryogenic fuels and gasifies the fuel in the thrust

chamber cooling jacket. This concept eliminates the need for gas generators or preburners

and additionally has the benefit of reducing the pressure drop across the turbine since the

propellant in now heated and evaporated. Although the staged-combustion cycle requires

a preburner, it offers roughly the same performance as an expander cycle and has been

implemented on the RD-170 and Space Shuttle main engine [1,3]

The advent of computational modelling has provided the means of optimizing feed sys-

tems and improving performance through increased efficiency and reduced mass, in part

due to improved construction materials. The capability nowexists to examine hydraulic
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flow through impellers, optimize turbine blade contours through flow simulations, and gen-

erate stress and thermal analyses. Development of health monitors allows for automated

control and real time response for adjustment of turbine andpump speeds to maintain per-

formance. Risk of failure from cavitation or flow rate fluctuation is also reduced through

the monitoring of pressures and temperatures in the system [3].

(3) Thrust Chamber Design

Increasing chamber pressurePc allows for higher kinetic energy and smaller chambers.

Since heat transfer increases almost linearly with chamberpressure, an upper pressure

limit is dictated by thrust chamber material choice [3]. Thrust chamber material selec-

tion is critical in preventing burnout and ultimately failure. This does not imply that the

thrust chamber is reusable since excessive temperatures and rocket launching practice dic-

tate a one-time use; however, for safety consideration, cooling concepts are available to

prevent temperatures in excess of the thrust chamber material’s melting temperature. Two

popular cooling methods are film cooling and regenerative cooling. Film cooling injects

fluid (usually fuel in the U.S. and oxidizer by the Soviets) along the walls, absorbing heat

from the walls and combustion exhaust, and acts as a protective boundary layer of relatively

cool gas. Subsequently, heat transfer and wall temperatureare reduced [1,3,8].

Since film cooling wastes propellant, regenerative coolingis more common. The walls

of the thrust chamber act as a heat exchanger for heat to be transferred from the exhaust

gases to fuel flowing along the walls. The heat exchanger (commonly called a cooling

jacket) implements a double-wall design such that exhaust gases flow between the inner

wall and liquid fuel passes between the inner hot wall and cooler outer wall in a spiral

pattern starting from the nozzle outlet [1,3,8].

Typical materials that are used for the thrust chamber include aluminum alloys, stain-

less steels, copper, titanium, nickel, and niobium. Trace materials added to alloys include
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metals such as silver and zirconium. Alternatively, ablative materials including glass, sil-

ica, and carbon fibre have found successful application in thrust chambers [3]. Although

composites such as carbon fibre have much lower densities than traditional metals, appli-

cation of composites is limited since corrosive propellants such as oxygen cause buckling

and collapse [1].

Increasing chamber pressure has provided a 4–8% increase inspecific impulse [3];

however, given today’s knowledge of suitable metals and ablative materials along with

cooling practice, chamber pressure cannot influence further improvement [1].

(4) Nozzle Design

Converging-diverging nozzles were pioneered by Carl de Laval in 1882 and have been

demonstrated to produce the highest exhaust velocities [9]. Maximizing area expansion

ratio is desirable to generate the most thrust for a given mass flow. Early designs consisted

of either axisymmetic conical or bell shapes—bell nozzles are still common today. After a

circular arc defining the throat region, the wall contour on conical nozzles expands linearly

outward whereas the diverging section of a bell nozzle afterthe circular arc is often ex-

pressed by a cubic polynomial such that expanding gases are deflected inward at the nozzle

outlet [9]. For conical nozzles, the ideal exit half angle should be between 4 and 5◦ to

minimize flow divergence losses; however, this makes for a very long nozzle. Bell nozzles

can be upwards of 60% shorter than 15◦ conical nozzles of the same area ratio [4] but still

require gradual expansion at high altitude [3,10].

Due to the fixed outlet area ratio, conical and bell nozzles must select a set outlet pres-

surePe [3, 10]. Consideration of outlet pressure takes into account potential underexpan-

sion and particularly overexpansion, both of which generate performance losses of up to

15% [10]. Underexpansion occurs whenPe is greater than atmospheric pressureP∞ and

causes the formation of expansion fans at the nozzle outlet whereas overexpansion is when
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Pe < P∞ and has the possibility of separated flow and shocks propagating into the noz-

zle [3,10,11]. As a result, atmospheric pressure places an upper limit on exhaust expansion

to ensurePe > P∞.

Dual-bell nozzle designs accommodate several outlet pressures and provide a signifi-

cant net impulse gain over the entire trajectory as comparedto conventional bell nozzles.

The concept proposes a typical inner base nozzle accompanied by an outer nozzle addition.

The connecting point between radial contours is a wall inflection point. Figure 1.1(a) shows

that the exhaust flow for lower altitude operation separatesat the inflection point whereas

Fig. 1.1(b) shows that higher altitude flow remains attacheduntil the exit plane of the outer

nozzle extension [10]. Alternatively, Figs. 1.2(a) and 1.2(b) show that an extendible bell

design is composed of several annular segments corresponding to different area ratios that

are stored one inside the other. The segments of an extendible nozzle are extended as re-

quired to provide best performance with respect to atmospheric pressure. The extendible

extension has the advantage of reducing the package volume of upper stage nozzles but has

the disadvantage of movable parts [3,10].

inflection point

inflection point

ṁe

recirculation zone

recirculation zone

shear layer

shear layer

(a) low altitude

outer nozzle extension

inflection point

inflection point

ṁe

(b) high altitude

Figure 1.1: Dual-bell nozzle

Manipulating rocket nozzle geometry from the common bell shape has been demon-

strated to achieve higher performance as is evident by the plug, aerospike (truncated plug),

and expansion-deflection nozzles. The physics behind the plug and aerospike nozzles are
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extendible extension

ṁe

(a) low altitude

extendible extension

ṁe

(b) high altitude

Figure 1.2: Extendible bell nozzle

very similar in that Fig. 1.3 shows that the plume size increases as atmosphere gets thinner

thus providing near maximum performance independent of altitude [1–3, 12, 13] and ex-

hibit similar performance ability [3]. Thrust from the plugnozzle is developed on the outer

surface of a conical plug that terminates as a cusp whereas the aerospike nozzle achieves

thrust by creating a recirculating flow with an outer boundary approximating the plug noz-

zle shape (see Fig. 1.3). The expansion-deflection nozzle works based on the same pressure

independence principle but has not been pursued since 1966 because the aerospike nozzle

demonstrated better performance [3].

Sea Level
P∞ ≫ Pdesign

Design Altitude
P∞ = Pdesign

High Altitude
P∞ ≪ Pdesign

exhaust
flow

recirculation
zone

combustion
chamber

Figure 1.3: Influence of altitude on pressure for an aerospike nozzle
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The problem with these altitude-independent nozzle designs lie in the requirement of

an annular combustion chamber rather than a normal cylindrical chamber. Aside from the

brief revival of the aerospike nozzle on NASA’s X-33 that ended in 2001, no application

has been developed to include inside-out nozzles [1–3,13].

Another nozzle performance qualifier is nozzle efficiency. Nozzle efficiency is the prod-

uct of kinetic efficiency (losses caused by kinetic effects), divergence efficiency (losses

caused by shocks), and friction efficiency (friction and heat flux induced losses). Since

these efficiencies are dependent on chamber pressure, engine size, and nozzle exit area ra-

tio for a given outlet pressure [14], further improvement isdifficult for single-stage orbital

launches.

(5) Multistaging

Area ratio altitude problems contributed to the advent of multistaging. Figure 1.4 shows

that a typical rocket launch vehicle can consist of several stages. For example, the Space

Shuttle, Saturn V, and Ariane 5 use two stages along with strap-on boosters. When a

stage runs out of propellant, it can be jettisoned with an explosive charge away from the

rocket. There are several reasons for staging: stages are independent of each other meaning

that they can have different propellants and operating characteristics; propellant tanks are

smaller and so sloshing is reduced; and by jettisoning emptystages, energy is not expended

to accelerate empty tanks. The first stage is at the bottom of the rocket and fired first and is

generally designed to have high thrust to overcome gravity forces. Second and subsequent

upper stages are stacked on top of the first stage and are designed to have high specific

impulse to provide maximum velocity. Additionally, zero-stage strap-on boosters operate

in parallel to propel the entire rocket upwards [1,3,8].
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first stage second stage

booster

Figure 1.4: Rocket multistaging

(6) Combined Cycles

Rocket-Based Combined Cycles (RBCC), also known as air-augmented rockets, are con-

cepts first introduced in the 1960s that present the notion ofincreasing thrust through the

addition of mass flow, reducing propellant mass fraction to 70%, and augmenting specific

impulse by 10–20% at static conditions [5], leading to reduced launch costs for transat-

mospheric flight [1, 15]. RBCC is classified as a hybrid rocket/ramjet engine that operates

better than either the rocket or ramjet separately. RBCC canbe achieved through the addi-

tion of an ejector (has been referred to as a diffuser) downstream of the thrust chamber [3].

Figure 1.5 shows that traditional RBCC consist of three components: thrust chamber,

air intake, and ejector (also referred to as an ejector duct or a mixer). The thrust chamber is

responsible for converting propellant internal energy into kinetic energy and accelerating

the exhaust gases. The air intake entrains air into the ejector. Inside the ejector, the two

flows mix and achieve the ejector effect: momentum from the high rocket exhaust velocity

is transferred to entrained air; this transfer of momentum causes some reduction to the

effective rocket exhaust velocity; however, the increase in mass flow from the entrained air

results in a greater specific impulse and causes thrust augmentation [5, 16]. In addition to

thrust augmentation, ejectors are capable of creating a vacuum-like outlet, which reduces

the risk of plume overexpansion [3].

Numerous numerical and experimental investigations in thepast five years have focused
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ṁa
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Pe j

ṁe j

ejector∞

∞
air intake

ṁe

thrust chamber

Figure 1.5: Ejector schematic for RBCC application

on the mixing capability of the ejector [17–24]. The investigations include influence of

variable length ducts, square ducts, cylindrical ducts, conical constriction ducts, annular

rocket exhaust streams, and total pressure and area ratio effects between the rocket flow

and air flow. Additionally, Presz and Werle [19] demonstrated the potential of a multi-

staged ejector providing a back pressure benefit, noise and infra-red suppression, thrust

augmentation, higher diffusion rates, and more efficient wall cooling.

During subsonic flight, air is entrained into the ejector duct by a rocket exhaust pump-

ing action (ejector mode), acting like the compression stage for a jet engine [2, 5, 21–23].

Once flight reaches supersonic velocity, the rocket is in ramrocket mode and the air inflow

is determined by external conditions including the flight Mach number and inlet shock

structure [5,21–23]. Subsequently, several studies [15,24] have been conducted to identify

the influence of intake aerodynamics on air suction performance.

To assist in the quantification of the ejector abilities,α, the ratio by mass of air flow to

rocket exhaust flow

α =
ṁa

ṁe
(1.1)

should exceed some minimum value. Additionally, thrust augmented ejector operation is
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limited to low-altitude environments where there is enoughatmosphere to maintainα. On

Earth, ejector operation is restricted to altitudes below 100 [km], or only during the initial

stage of a rocket launch. One-hundred kilometres is identified as the von Kármán line such

that 99.99997% of the atmosphere by mass is below this altitude and is commonly used

to define the boundary between the Earth’s atmosphere (field of aeronautics) and outer

space (astronautics). This may be an optimistic upper limitfor air augmented systems

since atmosphere decreases on an exponential scale with respect to height. For example,

the common cruising altitude for commercial airliners is about 10 [km] because 90% of

the atmosphere by mass is below an altitude of 16[km] [25,26]. In comparison, low-Earth

orbit starts at 300–400[km] [3].

Regardless of atmospheric issues, a flight plan has been developed—such as that of

NASA’s GTX single-stage-to-orbit concept design [27]—consisting of rocket-ejector op-

eration at takeoff, acceleration from Mach 3–6 during ram rocket mode, a scramjet mode

if velocity exceeds Mach 6 in atmosphere, and rocket-only mode for insertion into or-

bit [5,16,20,27].

(7) Liquid-Air Cycle Engines

The Liquid-Air Cycle Engine (LACE) entrains air for operation and collects and com-

presses air to liquid for later stages of flight. Air collection allows for smaller oxidant

tanks; however, more time is spent in lower atmosphere to collect sufficient oxygen caus-

ing increased vehicle heating and drag [28]. The SABRE—a hybrid air-breathing/rocket

engine concept—has the capability of reaching low-Earth orbit after closing the air inlet at

Mach 5.5, 26[km] altitude and operating solely on the rocket engines and collected air for

the remainder of the mission [29].

Two additional engines requiring air entrainment for operation include the ramjet and

scramjet. These engines only operate in an air-augmented mode and are subsequently not
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candidates for transatmospheric flight [5]. Ramjets and scramjets have the benefits of few

moving parts in the engine, can operate at stoichiometric air-to-fuel ratios, and are self-

sustaining once operational but have the consequence of requiring forward motion such that

air can be compressed sufficiently. Ramjets compress supersonic inlet velocities of Mach

1–2 due to aerodynamic diffusion for subsonic combustion and then a nozzle accelerates

the exhaust to a supersonic Mach 2–6 range [28]. Ramjets wereexperimented with mainly

in the 1950-60s and have been successfully implemented on the Hiller Hornet helicopter,

Lockheed D-21 reconnaissance drone, interceptor RepublicXF-103 aircraft, and the SM-

64 Navaho and Bomarc missiles to name a few.

Scramjets, as depicted in Fig 1.6, are similar to ramjets except the intake velocity

must be at least Mach 5, combustion is supersonic, and scramjets are predicted to gen-

erate Mach 12–24 hypersonic flow; however, only Mach 5–10 hasbeen achieved in ex-

periment. Scramjets have the benefit of reducing shock wavesat the intake, thus reducing

total pressure loss [28]. Scramjet programs have included NASA’s Hyper X and Australia’s

HyShot; however, the only current program is HyCAUSE—the Hypersonic Collaborative

Australian/United States Experiment—that launches a scramjet on a rocket into space and

during re-entry, the scramjet is activated [30].

Fuel injection

Supersonic compression
Combustion

Inlet bodyṁa

Nozzle

Supersonic exhaust

Figure 1.6: Scramjet operation
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1.1.1 Problem Statement

Five of the seven fields for improving rocket design—propellant choice, feed system de-

sign, thrust chamber performance, nozzle improvements, and multistaging—have been

well examined and implemented to the extent that there is very little room for additional

improvement. Furthermore, liquid-air cycle engines are only seen as applicable for atmo-

spheric flight. Based on the seven fields examined, rocket-based combined cycles have the

most potential of substantial improved performance for transatmospheric flight.

The focus of this research is based on the expectation that entraining air into the centre

of an annular rocket exhaust stream as shown in Fig. 1.7 causes the ejector effect necessary

for the ejector mode of RBCC operation. Anticipated benefitsto pursuing this concept

include higher thrust due to increased mixing ability between the higher annular rocket

exhaust velocity and entrained air along the central axis ascompared to entraining air on the

annulus with the rocket located along the central axis (see Fig. 1.5) and a more convenient

mounting configuration for an axisymmetric ejector duct since it can be attached directly

to the outer wall of the rocket nozzle.

ṁa
ṁe j

nozzle outlet

ejector∞

∞

air intake

air intake

ṁe

ṁethrust chamber

throat

Figure 1.7: Proposed rocket nozzle/ejector schematic for RBCC application
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Since existing bell nozzle designs are axisymmetric, a new nozzle design must be devel-

oped to accommodate the ability for air entrainment. Although an annular exhaust stream is

required at the nozzle outlet, the proposed nozzle concept is based on a different operating

principle than that of the plug and aerospike nozzles. Constraints placed on the developed

nozzle concept include the requirement for a normal cylindrical combustion chamber such

that Fig. 1.7 shows that the converging portion of the nozzleremains unchanged from exist-

ing manufactured converging-diverging nozzle designs, the launch vehicle must be capable

of taking off from the ground, and that the inlet and outlet conditions of the nozzle must be

similar to existing nozzle performance characteristics.

This thesis addresses several objectives: describe the theory for a computer program

that is capable of generating three-dimensional nozzle designs (including viscous consid-

erations) based on provided input variables; assess the abilities and limitations of the input

variables; and conduct a computational fluid dynamics studyto assess the accuracy of a

selected nozzle configuration against its expected performance.



Chapter 2

Model Formulation

The developed program solves the isentropic equations assuming a compressible, steady-

state, one-dimensional, frozen flow through a series of finite cross sections that consider

boundary layer effects. Development of a three-dimensional geometry with viscous con-

sideration for the diverging portion of a converging-diverging rocket nozzle first generates

an inviscid geometry profile and then adds a displacement thickness to create the viscous

design.

2.1 Inviscid Geometry Design

Input variables are divided into two categories: geometricvariables necessary for geometry

creation and fluid property variables necessary to define a constant specific heat fluid and

inlet properties. Additionally, a predefined Mach number distributionM(z) is necessary to

define the nozzle’s inviscid area expansionA(z) from the throat depthz= 0 (corresponds

to sonic flow whereMth = 1) to the nozzle outlet depthz= ze using the isentropic relation

15
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as found in White [11];

A(z)
Ath

=
1

M(z)

[

1+ 1
2(γ −1)M(z)2

1
2(γ +1)

]
γ+1
2γ−2

(2.1)

Equation 2.1 is non-dimensionalized with respect to the throat areaAth.

Rather than interpolate to generate intermediate cross sections, theA(z) data calculated

from Eq. (2.1) using the predefinedM(z) is represented by a continuous function developed

from the Agnesi family of curves:

A(z)
Ath

= F



1+cos

( √
π

tan−1 zeG
rthD

tan−1
z

rth
− ze

rth
G

D

)2


+1 (2.2)

The depthz in Eq. (2.2) is non-dimensionalized with respect to a user defined throat radius

rth. The constantF in Eq. (2.2) is evaluated such that the outlet depthze and areaAe lie on

the curve

F =

Ae
Ath

−1

1+cos

( √
π

tan−1 zeG
rthD

tan−1
ze
rth

(1−G)

D

)2 (2.3)

Equation (2.2) is rearranged to iteratively solve forD using Newton-Raphson’s method and

is determined based on gate depthzg and areaAg,

D =

zg
rth

− ze
rth

G

− tan

(
√

1
π cos−1

Ag
Ath

−(F+1)

F tan−1
(

zeG
rthD

)

)
(2.4)

In order to obtain a value forAg
Ath

, Mg is interpolated from the predefinedM(z) data based

on a user definedzg input with the restriction that 0< zg < ze. Equation (2.1) then solves

for Ag from the interpolated value ofMg.

Lastly, theG constant in Eq. (2.2) is selected such that the area function(Eq. (2.2))
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shows best agreement to the predefined data. In general, the rate of area expansion at the

nozzle outlet is minimal and soG should be defined as one or slightly higher. For example,

Fig. 2.1 shows that forG = 1.05, Eq. (2.2) matches a predefined data set representative of

Me = 2.75 performance characteristics of an Atlas E/F rocket nozzle to within 5.9% over

the range 0< z
rth

< 16.9 with the maximum variation occurring atzrth
= 3.7.

0 5 10 15
0

1

2

3

4

5

Area based on predefinedM(z)
Eq. (2.2)

z
rth

A
Ath

Figure 2.1: A(z) function matching the predefined isentropic expansion

Figure 2.2 identifies the necessary input variables required for inviscid geometry gener-

ation. Cartesian coordinates are implemented where the origin is placed at the throat centre

and the geometry is designed in the positivex-y quadrant such that streamlines proceed in

the positivez-direction. The geometry being modelled as shown in Fig. 2.2represents half

a clover due to symmetry about theχ-plane (the dotted line in Fig. 2.2). A clover is one

of the branches on the diverging nozzle through which the rocket exhaust must pass. To

better appreciate the flow path of the rocket exhaust, Fig. 2.3 shows orthographic views for

a four-clover nozzle configuration. The corresponding four-clover isometric view is shown

in Fig. 2.4(b).

The throat, gate, and outlet shown in Fig. 2.2 are three fullyconstrained cross sections.

The throat must maintain an axisymmetric shape such that it can be matched to existing

converging nozzle designs. The required inputs for the throat are its radiusrth and angle of

symmetryχ . Throat radius is critical for the dimensionalizing of the design as all lengths
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Figure 2.2: Initial cross sections
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Figure 2.3: Orthographic nozzle views
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are non-dimensionalized byrth and all cross sectional areas by

Ath =
χ
2

r2
th (2.5)

The clover half-angleχ can accommodate the possibility of using multiple clovers as

shown in Figs. 2.4(a)–2.4(c). Since the number of clovers must span the entire circum-

ference at the throat, 180◦ divided by the clover half-angleχ must yield a whole number.

Figures 2.4(a)–2.4(c) show that through reducing the number of clovers, the intake area

Aintake proportional toAe increases. The intake areaAintake can be represented by the void

between the dashed line passing through theP1 points (the swept wall–outer wall corner

points) and the positivex-axis shown in Fig. 2.2 and is generated because the exhaust flow

is restricted to flowing through a clover. This results in an annular rocket exhaust stream at

the nozzle outlet (see Fig. 2.3).

z
x

y

(a) 5 cloversχ = 36◦

z
x

y

(b) 4 cloversχ = 45◦

z
x

y

(c) 3 cloversχ = 60◦

Figure 2.4: Varying clover nozzle configurations

The gate section exists on the outer perimeter of the nozzle through which the nozzle

geometry must pass; however, the shape is given freedom so that it does not have to remain

axisymmetric. The two inputs for the gate shown in Fig. 2.2, radiusrg and arc angleψg,

influence the line connecting theP1 points as shown in Figs. 2.5(a) and 2.5(b) and directly
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influence the air intake size. For increasingrg, Fig. 2.5(a) shows thatAintake increases when

ψg remains constant asP1g moves farther away from thex-axis. Figure 2.5(b) shows that

an increase inψg for a givenrg forces the gate to cover more of the circumference and

causes a reduction inAintake.
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Figure 2.5: Influence of gate parameters onP1 line

Creation of the air intake shape requires a function to describe the line passing through

the P1 points. The goal is to develop a smooth swept wall defining the nozzle/air intake

interface where the outer edge passes through the threeP1 points shown in Fig. 2.2. Sub-

sequently, a fillet radiusr f is introduced to assist in generation of a piecewise function to

define the line passing through theP1 points. The line shown in Fig. 2.6 is drawn from a

topview perspective such that it exists on thex-y plane.

Figure 2.6 shows that in addition to the three user-definedP1 points at the throat, gate,

and outlet, the slopedy
dx of the fillet circle at the gate is set to zero resulting in the placement
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Figure 2.6: Swept side development

of the fillet circle centre at

(xf ,yf ) =
(

xg, [yg− r f ]
)

(2.6)

wherexg andyg are found from the position ofP1g:

P1g ≡ (xg,yg,zg) =

(

[rgcos(χ −ψg)], [rgsin(χ −ψg)],zg

)

(2.7)

Upon drawing the fillet circle, Fig. 2.6 shows that inclusionof the throat and outlet

P1 points on the curve occurs by projecting linear tangents off the fillet circle through the

prescribed points labelled as before-gate tangent(xb,yb) and after-gate tangent(xa,ya).

Determination of the(xb,yb) location requires drawing a right-angled triangle usingP1th

and(xf ,yf ) as the other two vertices. Since(xb,yb) is on ther f circle, the distance between

(xb,yb) and the fillet circle centre isr f ; however, the other two lengths defining the triangle

are

lth. f =
√

(xf − rth)2+y2
f (2.8)
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and

lth.b = lth. f cosαn (2.9)

where the angleαn is found as

sinαn =
r f

lth. f
(2.10)

The lengthlth.b is now known and so the angle it creates with respect to thex-axis is

αsum= α f +αn (2.11)

where

tanα f =
yf

xf − rth
(2.12)

As a result, the location of the before-gate tangent point isat

(xb,yb) =
(

[rth+ lth.bcosαsum], [lth.bsinαsum]
)

(2.13)

Similarly, the after-gate tangent is found by first drawing aright-angled triangle using

(xa,ya), (xf ,yf ), andP1e as its vertices where

P1e≡ (xe,ye,ze) =

(

[recos(χ −ψe)], [resin(χ −ψe)],ze

)

(2.14)

The length between the fillet centre and the after-gate tangent point(xa,ya) is r f , whereas

l f .e =
√

(xe−xf )2+(yf −ye)2 (2.15)

and

la.e = l f .ecosβn (2.16)
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whereβn is the angle betweenl f .e andla.e and is determined from

sinβn =
r f

l f .e
(2.17)

Lengthla.e is now known such that the angle it creates with respect to a line parallel to the

x-axis is

βsum= β f +βn (2.18)

where

tanβ f =
yf −ye

xe−xf
(2.19)

As a result, the after-gate tangent point is placed at

(xa,ya) =
(

[xe− la.ecosβsum], [ye+ la.esinβsum]
)

(2.20)

Figure 2.7 shows the influence ofr f on the curve passing through theP1 points. As the

value ofr f increases,Aintake increases. Maximizingr f generates a larger air intake area;

however, care must be taken since very larger f may be unable to generate a curve passing

through the necessary points at the throat and/or the outlet.

The variation in the nozzle’s outer radiusr with respect to streamwise depthz used to

define the outer wall is referred to as a radial contourr(z). Figure 2.8 shows that the radial

contour is represented by a function that is axisymmetric about thez-axis. In order to avoid

requiring piecewiser(z) functions to define the higher radial expansion rate at the throat

and a more gradual radial slope for the remainder of the contour that are typical for bell

nozzles, a continuousr(z) function is also developed from the Agnesi family of curves:

r(z)
rth

= F



1+cos

( √
π

tan−1 zeG
rthD

tan−1
z

rth
− ze

rth
G

D

)2


+1 (2.21)
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Figure 2.8: Nozzle radial contour

The expression forF is found based on the outlet depthze from the predefinedM(z)

data and a user defined outlet radiusre

F =

re
rth

−1

1+cos

( √
π

tan−1 zeG
rthD

tan−1
ze
rth

(1−G)

D

)2 (2.22)

Evaluation ofD in Eq. (2.21) uses the gate(zg, rg) input values to obtain an expression

D =

zg
rth

− ze
rth

G

− tan

(
√

1
π cos−1

rg
rth

−(F+1)

F tan−1
(

zeG
rthD

)

) (2.23)

Figures 2.9(a) and 2.9(b) show the direct influence ofrg andzg on r(z). For increasing

rg, Fig. 2.9(a) shows that the radial contour slope at the gatedrg
dz decreases. Additionally,

increasingrg pushes the radial contour point of inflection nearer to the throat resulting in

a shorter region with convex curvature and longer concave region along the outer wall.

For supersonic flow, a wall with convex curvature is suggestive of a curved expansion

corner, which causes a Mach number increase and diverging Mach waves [11]. In a similar
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Figure 2.9: Influence of gate parameters on radial contour

fashion, Fig. 2.9(b) notes that increasingzg causes an increase todrg
dz and places the point

of inflection nearer to the outlet. Since the expansion of theflow through the nozzle is

between an outer wall and an inner wall, the curvature trendsreverse for the inner wall

such that the contour region nearer to the throat is concave and the outlet region is convex.

Similarly to the inner and outer walls, the swept wall also has curvature. Figure 2.10

shows that the fillet radius is influential to the arclength(ψr) relationship with respect

to depth. From a top view perspective, these curves are shownin Fig. 2.7; however, the

curvature considered is based on viewing the line passing through theP1 points in the

direction of therg vector shown in Fig. 2.8. The three curves in Fig. 2.10 show that there is

a much more significant increase in the circumferential direction after the gate than before

the gate and hence Fig. 2.8 shows that the nozzle spans more ofthe circumference after the

gate.

The differences between the three curves shown in Fig. 2.10 is evident at the gatezg

location. Line (c) produces a discontinuity at the gate and the sudden transition to a concave

profile after the gate is suggestive of a sharp expansion corner. Similar to the existence

of a separation bubble downstream of a backward facing step,sudden expansion corners

could potentially produce boundary layer separation if theexpansion corner angle is great

enough. To reduce the likeliness of this from occurring, increasingr f as shown by line
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(b) results in a smoother transition at the gate and the concave curvature between the gate

and the outlet approaches linearity. A potential downside to the higherr f value is that

it also results in the swept wall having a greater arclength slope at the outletd(ψr)e
dz and

hence a higher outlet circumferential velocity component since streamlines are expected to

parallel the wall contours. This may cause the formation of strong oblique shocks or flow

recirculation issues after the nozzle outlet since the exhaust flow from a clover on the other

side of an air intake will have an equal but opposite circumferential velocity component.

The constantG in Eq. (2.21) is dependent on the specification of an outlet radial contour

slope, where in general the contour slope is defined as

tanΦ =
dr
dz

(2.24)

Taking the derivative of Eq. (2.21), solving forG based on the outlet depthze and slope

tanΦe = dre
dz gives

G = 1− rthD
ze

tan











−D
(

tan−1 zeG
rthD

)2
(

1+
(

ze(1−G)
rthD

)2
)

tanΦe

2πF sin

( √
π

tan−1 zeG
rthD

tan−1 ze(1−G)
rthD

)2











(2.25)
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Because Eqs. (2.23) and (2.25) are implicit and coupled, Newton-Raphson’s multivariable

method is implemented to find a unique solution. Choice of thegeometry inputszg, rg, re,

andΦe is critical in ensuring that Eqs. (2.23) and (2.25) are capable of finding real-value

solutions forD andG.

Figure 2.11 shows ther(z) curves that Eq. (2.21) can generate for varying outlet angles.

SinceΦe corresponds to the exhaust flow vector in the radial direction, maintainingΦe= 0◦

(line (c)) is preferable for maximum thrust; however, line (b) has the benefit of a smaller

gate radial contour slopedrg
dz . In addition to varyingΦe, lines (d) and (e) also varyzg to

show that Eq. (2.21) can generate nearly conical nozzles that maintain convex curvature

along most of the outer wall and nozzles with inverted exit angles respectively.
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Figure 2.11: Φe influence on radial contour

The outlet depthze is defined by the givenM(z) relation and through Eq. (2.1) this

defines a set value forAe; however,re andψe give flexibility to the outlet shape and assist

in defining the air intake size. Figure 2.12 shows the influence thatre has onr(z). Increasing

re causes the nozzle to become much wider at the outlet, increases the radial contour slope

at the gate, and places the inflection point nearer to the outlet.

Figures 2.13(a) and 2.13(b) show the influence thatre andψe have on the line passing

through theP1 points. For increasingre, Fig. 2.13(a) identifies thatAintake increases since it

is stretched out along thex-axis; whereas Fig. 2.13(b) shows that increasingψe causes the

outlet cross section to span more of the circumference and results in a reduction toAintake.
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Figure 2.12: Influence ofre on the radial contour
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Figure 2.13: Influence of outlet parameters onP1 line

Determination of the intermediate cross section locationsrequires the user to specify

the total number of cross sections to define the nozzle wherei = N corresponds to the

outlet cross section. To ensure that cross sections are placed at the fillet tangents as well

as the gate, the user must specify three additional values asshown in Fig. 2.14. Since

the throat is defined as the first cross sectioni = 1, the before-gate tangent cross section

is located ati = Nb such that there areNb − 1 intermediate cross sections between the

throat and the before-gate tangent point(xb,yb,zb). The location of the gate cross section is

located ati = Ng resulting in the placement ofNg−Nb intermediate cross sections between

(xb,yb,zb) and(xg,yg,zg). Similarly, the after-gate tangent cross section is located ati = Na

such that there areNa−Ng cross sections between(xg,yg,zg) and(xa,ya,za). The depths

of the before-gate tangent and after-gate tangent points asshown in Fig. 2.14 are found by
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Figure 2.15: Nozzle cross sections

solving Eqs. (2.13) and (2.20) forrb andra wherer2 = x2+y2 and then using Eq. (2.21) to

solve forzb andza.

Figure 2.15 shows the cross sections placed at the before-gate tangent, gate, and after-

gate tangent locations along with the remaining intermediate cross sections at various

depthszi. The equations implemented to solve forzi involve assigning uniform stepsizes

between four regions: throat to before-gate tangent, before-gate tangent to gate, gate to

after-gate tangent, and after-gate tangent to outlet.

if i ≤ Nb

zi =
zb

Nb−1
(i −1)

elseif i > Nb andi ≤ Ng

zi = zb +
zg−zb

Ng−Nb
(i −Nb) (2.26)

elseif i > Ng andi ≤ Na

zi = zg +
za−zg

Na−Ng
(i −Ng)

else

zi = za +
ze−za

N−Na
(i −Na)
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Once all thezi depths are known, Eq. (2.21) is used to determiner i for each of the

sections whereas the cross section areaAi is calculated using Eq. (2.2). After calculating

the radial contour radiusr i , theP1i point on each cross section can be located on the line

defining theP1 points as redrawn in Fig. 2.16 (see also Fig. 2.6). The procedure for de-

termining the(xi,yi) values at a particular cross section requires first finding the yi value

at the intersection between a circle of radiusr i whose origin is placed on thez-axis and

the previously defined line connecting all of theP1 points. Fori ≤ Nb, the intersection is

located along thelth.b line segment and soyi is found from

if i ≤ Nb
(

1+

(

yb

xb− rth

)2
)

y2
i +2

rthyb

xb− rth
yi (2.27)

+

(

rthyb

xb− rth

)2

−
(

r i
yb

xb− rth

)2

= 0

For Nb < i ≤ Na, the expression changes because the(xi ,yi) point is at the intersection

χ lin
e

of
sy

m
m

et
ry

P1th

(xb,yb)

P1g

(xa,ya)

P1e

(xf ,yf )

r i

r i

r i

yi

yi

yi

r f

lth.b

la.e

x

y

Figure 2.16: Intersecting points between theP1 line andr i



CHAPTER 2. MODEL FORMULATION 31

between a circle of radiusr i and ther f circle

elseif i > Nb andi ≤ Na

4
(

x2
f +y2

f

)

y2
i −4yf

(

r2
i − r2

f +x2
f +y2

f

)

yi (2.28)

+
(

r2
i − r2

f +x2
f +y2

f

)2−4x2
f r

2
i = 0

Finally, for i > Na, (xi ,yi) occurs along thela.e line segment and can be found from

else i > Na
(

1+

(

ye−ya

xe−xa

)2
)

y2
i −2

(

ya−xa
ye−ya

xe−xa

)

yi (2.29)

+

(

ya−xa
ye−ya

xe−xa

)2

−
(

r i
ye−ya

xe−xa

)2

= 0

In each case, the correspondingxi is the result of

xi =
√

r2
i −y2

i (2.30)

The placement of theP1i points are now known to exist at

P1i =

(

xi ,yi ,zi

)

(2.31)

Since Fig. 2.2 shows that theP4i points (outer wall points on theχ-plane of symmetry)

have the same radiusr i as theP1i points, in Cartesian coordinates,

P4i =

(

[r i cosχ], [r i sinχ],zi

)

(2.32)

Subsequently, the arc angleψ shown in Fig. 2.2 to define the angle for both the inner and
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outer walls at each section is

ψi = χ − tan−1yi

xi
(2.33)

Figure 2.2 shows that cross sections are bounded by the corner pointsP2i andP3i in

addition to the known locations ofP1i andP4i. Since Eq. (2.1) is derived from the conserva-

tion of mass, the resultingAi are defined as being normal to the flow direction. Figure 2.17

shows that the radial contour tangential angleΦi can assist in properly orienting a cross

section of thicknessti where ther ′ andz′ axes define the normal and tangent directions

respectively to the outer wall radial contourr(z). Placement of the cross sections requires

that the depths of the inner wall pointsP2i andP3i are offset from the outer wall depthzi

found from Eq. (2.26) byti sinΦi . This means that all cross sections shown on thex-y plane

are actually projections and so the shape shown in Fig. 2.18 more accurately depicts a cross

section. This shape exists on az′-plane and is defined such that the outer wall arclength

(ψir i) occurs on the circumferentialΨ′-axis. In a similar fashion to the change in inner

wall depth, the inner wall radii areti cosΦi less than ther i values calculated by Eq. (2.21).

Since the cross section thicknessti is still unknown, Fig. 2.19 shows that a uniform

thicknessti is used such that the cross section area can be represented bya rectangular

shape (region�) and a triangular shape (region△). The area defining the� region is

A� = ψi (r i − ti cosΦi) ti (2.34)

and the area defining the△ region is

A△ =
1
2

ψit
2
i cosΦi (2.35)

Adding the rectangular and triangular areas together result in a cross section area of

Ai ≈ ψir iti −
1
2

ψit
2
i cosΦi (2.36)
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Everything is known in Eq. (2.36) at a given cross section except for its thickness so

Eq. (2.36) is rearranged into a quadratic expression that can solve forti

cos(Φi)t
2
i −2r iti +

2Ai

ψi
= 0 (2.37)

Since implementing the quadratic formula on Eq. (2.37) solves for two roots, the positive

real root is selected to defineti. With the cross section thickness known, the placement of

the inner wall corner points shown in Fig. 2.19 are

P3i =

(

[(r i − ti cosΦi)cosχ], [(r i − ti cosΦi)sinχ], [zi + ti sinΦi ]

)

(2.38)

and

P2i =

(

[(r i − ti cosΦi)cos(χ −ψi)], [(r i − ti cosΦi)sin(χ −ψi)], [zi + ti sinΦi ]

)

(2.39)

2.1.1 Inviscid Theory Summary

Table 2.1 summarizes the values provided to generate the solid reference lines (line (a)) in

the previous figures. These reference values are not suggestive of an ideal design but are

used to gain an appreciation for the required input variables. Ther-z figures identify the

variable influence on the radial contour whereas thex-y figures correspond to variables that

influence the line passing through theP1 points and henceAintake. Line (b) in the figures

indicates the maximum value for the varied variable whereasline (c) is the minimum. The

bounds are established either because the solution to Eq. (2.21) for D andG are not real

values beyond this range or that the thicknessti calculated from Eq. (2.37) exceeds the

distance in the normal direction between the radial contourand thez-axis. Table 2.1 also

shows how to individually vary a given input variable to increase the size of the air intake

area.
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Table 2.1: Geometry reference values for the sensitivity analysis

Input variable Value r-zFig. x-y Fig. ForAintake↑
χ 45◦ 2.4(a)–2.4(c) ↑
rg

rth
6.5 2.9(a) 2.5(a) ↑

ψg 20◦ 2.5(b) ↓
r f

rth
2.5 2.7 ↑

zg

rth
9.5 2.9(b) ↓

Φe 2◦ 2.11 ↓
re
rth

10 2.12 2.13(a) ↑
ψe 44◦ 2.13(b) ↓

2.2 Implementation of Viscous Effects

To ensure that the desired Mach number distributionM(z) is maintained, the isentropic

areaA(z) determined by Eq. (2.1) must be increased to account for the mass flow deficit

caused by wall shear forces that reduce velocity in the near-wall region. The viscous effects

present in the boundary layer can be compensated for throughthe addition of a displace-

ment thicknessδ ∗. Figure 2.20 offers a schematic of how addition ofδ ∗ to an inviscid

region of thicknesst with freestream velocityV can represent the mass flow of a real fluid

through a cross section of thicknesstvis that has a velocity profile corresponding to an inter-

nal flow with boundary layers of thicknessδ . Two δ ∗ methods under consideration include

Edenfield’s correlation [31] and a solution to the integral equation requiring expressions

derived by Barnhart [32] and Hunter [33].
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δ
δ ∗

ttvis ≡ VV

Figure 2.20: Boundary layer definition

Edenfield’s Displacement Thickness

Edenfield [31] developed an empirical formulation based on experimental data for a conical

nozzle in a hypersonic wind tunnel. To satisfy a boundary layer thickness calculated using

δ = 0.195L
M0.375

Re0.166
L

(2.40)

where

ReL =
ρiVi L

µi
(2.41)

the displacement thickness relation

δ ∗ =
21
50

L

Re0.2775
re f

(2.42)

is suggested whereL is the physical location downstream as measured from the nozzle

throat along the given inviscid nozzle wall fromi = 1 at the throat to cross sectionNi

L =
Ni

∑
i=2

√

(xi −xi−1)2+(yi −yi−1)2+(zi −zi−1)2 (2.43)

To obtain the displacement thickness correction for the inner wall δ ∗
in, Eq. (2.43) is evalu-

ated along pointsP3, the outer wallδ ∗
out evaluates Eq. (2.43) along pointsP4, and the swept
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wall δ ∗
sw definesL along pointsP1.

The reference Reynolds number in Eq. (2.42) is defined as

Rere f =
ρre fVi L

µre f
(2.44)

where the freestream velocityVi can be obtained from

Vi = Mi
√

γRTi (2.45)

Since cross section areas for the inviscid region are known from Eq. (2.36), the Mach

number for a given cross section can be obtained from Eq. (2.1). The user is required to

specify a constant specific heat ratioγ and molar massMW to define the fluid such that the

gas constant is found from

R=
Ru

MW
(2.46)

For the expected temperature range, secondary reactions and formation of additional

species occurs if the flow is a mixture of products from a combustion reaction; however,

this thesis is not concerned about developing a comprehensive combustion model. Assum-

ing zero reaction rates and defining constantMW andγ is acceptable since reactions have

effectively ceased once the flow reaches the nozzle and so thefluid can be treated as a

single species [9].

The cross section static temperatureTi in Eq. (2.45) can be obtained from the isentropic

relation

Ti =
T0

1+ γ−1
2 M2

i

(2.47)

where a user defined throat static temperatureTth and knowing that the velocity at the throat

is sonicMth = 1 gives the total temperatureT0 through the relation

T0 =
Tth(γ +1)

2
(2.48)
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Viscosity µ in Eq. (2.41) is evaluated at a freestream temperature obtained from

Eq. (2.47) whereas the reference viscosityµre f in Eq. (2.44) is evaluated at a reference

temperatureTre f , whereTre f is obtained from the enthalpy relation

hre f =
1
2
(hw+h0)−

151
1000

V2
i (2.49)

The wall enthalpyhw is evaluated using a user specified wall temperatureTw whereas the

total enthalpyh0 is determined from the total temperatureT0. For a single species fluid,

coefficients for a temperature dependent curvefit enthalpy equation,

h(T) = Ru

(

a1T +a2
T2

2
+a3

T3

3
+a4

T4

4
+a5

T5

5

)

(2.50)

are defined in McBride and Gordon and are valid over the range 300–5000[K] [34]. Once

Tre f is known, the reference viscosity is calculated from the curvefit equation

ln µ(T) = b1 lnT +
b2

T
+

b3

T2 +b4 (2.51)

using the viscosity coefficients provided in McBride and Gordon [34].

Density in Eq. (2.41) is calculated using the ideal gas law based on the freestream static

pressurePi and freestream temperatureTi

ρi =
Pi

RTi
(2.52)

Similarly, the ideal gas law defines the reference densityρre f in Eq. (2.44) as

ρre f =
Pi

RTre f
(2.53)

Owing to the fact that the flow is compressible, a validity check was completed on the
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applicability of the ideal gas law assumption using air. White [35] reports that the com-

pressibility factor does not need to be included for±10% accuracy so long as

1.8≤ T
Tcrit

≤ 15 and 0≤ P
Pcrit

≤ 10 (2.54)

where the critical properties for air areTcrit = 133 [K] andPcrit = 3952 [kPa] [35]. The

check is based upon setting the throat properties toTth = 3300 [K] andPth = 2724 [kPa]

corresponding toMe = 2.75 and results in the ranges of

15≤ T
Tcrit

≤ 25 and 0.05≤ P
Pcrit

≤ 0.74 (2.55)

Since the temperature range is outside the accepted limits,the Beattie-Bridgeman (B-B)

equation of state as presented in Çengel and Boles [36] is implemented to predict density

based on the provided temperature and pressure. Table 2.2 shows the equations of state

results evaluated at three locations. The comparisons at the throat and outlet locations give

confidence that the ideal gas law is applicable for the diverging nozzle region.

Table 2.2: Deviation from ideal gas law behaviour

Location T[K] P [kPa] Eq. (2.52)ρ
[

kg
m3

]

B-B ρ
[

kg
m3

]

Difference %

Throat 3300 2724 2.85 2.86 0.4

Outlet 1989 170 0.30 0.30 0.0

Combustion chamber 3668 4864 4.57 4.60 0.7

Since temperature is known at a given cross section from Eq. (2.47), the isentropic

simplification

Pi = P0

(

Ti

T0

)
γ

γ−1

(2.56)

can solve for pressure in Eq. (2.52) where total pressureP0 requires a user defined throat
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static pressurePth to solve the isentropic relation

P0 = Pth

(

T0

Tth

)
γ

γ−1

(2.57)

Integral Equation Displacement Thickness Derivation

Hunter [33] and Barnhart’s [32] contributions to the NozzlePerformance Analysis Code

(NPAC) provide an analytical solution for 2D converging-diverging nozzles to the com-

pressible flow displacement thickness integral

δ ∗ =
∫ δ

0
1− ρ̃ū

ρV
dr′ (2.58)

whereρ is the freestream density andρ̃ is the boundary layer density. The boundary layer

densityρ̃ is evaluated using a freestream pressureP and a boundary layer temperatureT̃.

Schlichting [37] shows that the energy equation assuming noheat transfer can be integrated

directly to give a boundary layer temperature expression

T̃
T

= 1+RF
γ −1

2
M2

[

1−
(

ū
V

)2
]

(2.59)

that can be used to define the thermal boundary layer since it varies with respect to the

boundary layer velocity ¯u. The boundary layer velocity ¯u increases in the normal direction

r ′ to the radial contourr(z) and is calculated from a fully developed turbulent boundary

layer 1/7th similarity velocity profile

ū
V

=

(

r ′

δ

)1/7

(2.60)
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The recovery factorRF in Eq. (2.59) is known to be a function of Prandtl’s number

Pr =
µ Cp

λ
(2.61)

whereCp is the specific heat at constant pressure andλ is the thermal conductivity. Since

the flow is supersonic, the turbulent flat plate recovery factor

RF =
3
√

Pr (2.62)

defined by Barnhart [32] is implemented.

Evaluation of the boundary layer thicknessδ in Eq. (2.60) is determined from a Blasius

skin friction coefficientCf equation for a turbulent boundary layer

δ =

(

0.0456
Cf

)4 µaw

ρV
(2.63)

where the adiabatic wall viscosityµaw is evaluated at an adiabatic wall temperatureTaw.

The heat transfer term in Schlichting’s [37] boundary layertemperature expression is de-

pendent on(Tw−Taw) meaning that Eq. (2.59) can solve for the adiabatic wall temperature

whenTw = Taw andūw = 0 as

Taw = T

(

1+RF
γ −1

2
M2
)

(2.64)

In order to define the skin friction coefficient in Eq. (2.63),Barnhart [32] implements White

and Christoph’s [35] flat plate compressible turbulent skinfriction coefficient formulation

Cf =
0.455

Ω2 ln2
(

0.06
Ω ReL

µ
µw

√

T
Tw

) (2.65)
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where

Ω =

√

Taw
T −1

sin−1
(

2a2−b√
b2+4a2

)

+sin−1
(

b√
b2+4a2

) (2.66)

a =

√

γ −1
2

M2 T
Tw

(2.67)

b =
Taw

Tw
−1 (2.68)

Additionally, Eq. (2.65) is dependent on a flat plate Reynolds numberReL where Barnhart’s

[32] calculation uses an effective length based on lateral surface area and Sutherland’s

law for viscosity calculations. Since the proposed nozzle design is not axially symmetric

and curvefit correlations are available, Eq. (2.41) is equated using Eq. (2.43) to define the

lengthL and the viscosity is calculated at a freestream temperatureT using McBride and

Gordon’s [34] coefficients.

Since both the boundary layer temperature and freestream temperature are evaluated

based upon the freestream pressure, the ideal gas law can redefine the density expression

in Eq. (2.58) as
ρ̃
ρ

=
T

T̃
(2.69)

Substituting Eqs. (2.60) and (2.59) through Eq. (2.69) intoEq. (2.58) gives

δ ∗ =
∫ δ

0

1+RFγ−1
2 M2

[

1−
(

r ′
δ

)2/7
]

−
(

r ′
δ

)1/7

1+RFγ−1
2 M2

[

1−
(

r ′
δ

)2/7
] dr′ (2.70)

Hunter [33] uses Simpson’s rule for numerical integration that is derived using quadratic
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interpolation to solve Eq. (2.70) and define the displacement thickness as

δ ∗ =
δ
6



1+4





1+RFγ−1
2 M2

[

1−
(

1
2

)2/7
]

−
(

1
2

)1/7

1+RFγ−1
2 M2

[

1−
(1

2

)2/7
]







 (2.71)

2.2.1 Adding Displacement Thickness to Geometry

Figure 2.21 shows how the displacement thicknessδ ∗ is added to the inviscid inner, outer,

and swept walls at a given cross section. Additionally, Fig.2.22 notes that the inner and

outer displacement thicknesses,δ ∗
in andδ ∗

out, are added along ther ′-axis to ensure that a

cross section remains on az′-plane. (see Fig. 2.17 for inviscid 2D orientation). It follows

that the viscousP4 points are located at

P4visi =

(

[rvisi cosχ], [rvisi sinχ],zvisi

)

(2.72)

where

rvisi = r i +δ ∗
outi cosΦi (2.73)

and

zvisi = zi −δ ∗
outi sinΦi (2.74)

In a similar fashion, the viscousP3 points are located at

P3visi =

(

[(rvisi − tvisi cosΦi)cosχ], [(rvisi − tvisi cosΦi)sinχ], [zvisi + tvisi sinΦi ]

)

(2.75)

where

tvisi = ti +δ ∗
ini

+δ ∗
outi (2.76)

The swept wall displacement thicknessδ ∗
sw is the distance along the viscous outer wall

in the circumferentialΨ′-direction (refer to Fig. 2.18). Placement of the viscousP1 points
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Figure 2.21: Addition of displacement
thickness to inviscid design (z′-
plane)
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r ′
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Figure 2.22: Viscous cross section orien-
tation (2D)

can thus be found from

P1visi =

(

[rvisi cos(χ −ψvis.outi )], [rvisi sin(χ −ψvis.outi )],zvisi

)

(2.77)

where

ψvis.outi = ψi +
δ ∗

swi

rvisi

(2.78)

To complete a viscous cross section as shown in Fig. 2.21, theviscousP2 points are placed

at

P2visi =

(

[(rvisi − tvisi cosΦi)cos(χ −ψvis.ini )],

[(rvisi − tvisi cosΦi)sin(χ −ψvis.ini)], [zvisi + tvisi sinΦi ]

)

(2.79)

where

ψvis.ini ≈ ψi +
δ ∗

swi

rvisi − tvisi cosΦi
(2.80)
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In the event thatP2visi drops below thex-axis, Fig. 2.23 shows that the point is relocated

to the intersection between a circle of radius(rvisi − tvisi cosΦi) and thex-axis. Additionally,

P1visi is shifted on a circle of radiusrvisi such that the swept wall angle(χ −ψi) does not

change; however, this causes a reduction toδ ∗
swi

.

PSfrag

P1iP2i

P3i

χ

P4i

P1visi

P2visi

P3visi

P4visi

ψi

inner wall

outer wall
rvisi

swept wall

δ ∗
swi

(Eq. (2.42))
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Figure 2.23: Swept wall correction
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Figure 2.24: Processor computing
times for nozzle design genera-
tion

2.3 Computational Implementation

MATLAB r 7.0.1 was selected as the computer language for developing anozzle mod-

elling program using the provided methodology. Results were obtained using an Intel Core

Duo processor T2300 (1.66 GHz, 2.00 GB RAM). Figure 2.24 shows computational solver

time with respect to number of cross sectionsN for a code that generates both an inviscid

geometry design and a viscous geometry design through consideration of a displacement

thickness correlation. These geometry designs can then be loaded into an external meshing

software that creates grids for computational fluid dynamics analyses.



Chapter 3

Numerical Setup

3.1 Design Selection

The design to be considered in the computational fluid dynamics analyses is developed

from the Mach number distribution shown in Fig. 3.1 (and is the data set used to obtain

the area profile shown in Fig. 2.1). ThisM(z) distribution reachesMe = 2.75 at the outlet

and is created using the theory described in Etele [21] through matching specific impulse at

sea levelIsp = 220 [s] and total pressureP0 = 48 [atm] to an Atlas E/F LR-105-5 sustainer

engine. The exhaust flow properties correspond to the products from a keroseneC12H24

and air reaction with 100% combustion efficiency and an equivalence ratio of 1.49. The

required input fluid properties that represent the exhaust mixture are molar massMW =

29.54
[

kg
kmol

]

and specific heat ratioγ = 1.22. Additionally, the total temperature is set

to T0 = 3668 [K] such that the input throat temperature can be found from Eq. (2.48) as

Tth = 3300[K] and Eq. (2.57) solves for the input throat pressure asPth = 2724[kPa].

Based on thePth and Tth values, Eq. (2.45) calculates the throat velocity asVth =

1066
[m

s

]

and the ideal gas law givesρth = 2.93
[

kg
m3

]

. An exhaust mass flow rate of

ṁe = 29.8
[

kg
s

]

for the entire nozzle is implemented such that the throat radius can be

46
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found from

rth =

√

ṁe

πρthVth
(3.1)

asrth = 0.0551[m]. Solving forA(z) from Eq. (2.1) based on non-dimensionalizing using

Eq. (2.5) for the givenM(z) distribution calculates the outlet area for a four-clover configu-

ration asAe = 0.0054[m2] at a depth ofze = 0.93 [m]. Since an axisymmetric nozzle gives

an outlet radius ofre = 0.12 [m] for the givenAe, the proposed nozzle design is set to an

arbitrary value in the range of four times greater to accountfor the air intake area and so

the outlet radius is defined asre = 0.5 [m].

Additionally, the nozzle should span the entire circumference at the outlet. The swept

wall displacement thickness must be considered when choosing the outlet arc angle. Given

the two options available for viscous consideration, Fig. 3.2 plots the displacement thick-

ness curves along the outer wall forTw = 500[K]. A wall temperature of 500[K] is defined

as a conservative value based on the expectation that the nozzle material is an aluminum

alloy where the material strength has not been compromised since the melting tempera-

ture for aluminum is 930[K] [3]. Edenfield’s method givesδ ∗
oute = 0.0049 [m] whereas

NPAC calculatesδ ∗
oute = 0.0018[m]. As a result, Edenfield’s method is implemented since

it is the more conservative estimate. Along the swept wall, Edenfield’s method calculates

δ ∗
swe

= 0.0053[m] and so to accommodate for this addition to the inviscid design, the outer
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wall arc angle is defined asψe = 44.5◦.

Completion of the nozzle design requires values for the gatevariables. To ensure that

the flow remains attached through the domain, it is best to avoid rapid or abrupt changes in

the geometry. Developing smooth geometry wall contours should prevent shock wave for-

mation and allow the expected inviscid region to remain approximately isentropic. Based

on the observations provided for Figs. 2.9(a) and 2.9(b), the best location forrg and

zg to reduce the radial contour slopedr
dz magnitude along ther(z) contour is to specify

rg ≈ 1
2 (re− rth) andzg ≈ 1

2ze.

The outlet radial contour angleΦe shown in Fig. 2.11 also has a strong influence on

the r(z) contour. Because of the trade-off between maximum thrust for Φe = 0◦ and the

reduction in radial slope for higherΦe, a value ofΦe = 1◦ is selected. It is felt that thrust

direction is the more important criteria due to the performance impact; however, Fig. 2.11

shows that even theΦe = 2◦ curve has effectively levelled off at the outlet and so the slight

increase inΦe can be of benefit to reducing the radial contour slope along the contour. With

respect to the swept wall curvature, Figs. 2.7 and 2.10 both show that maximizing the fillet

radius creates a smoother swept wall surface.

In addition to designing smooth walls, maximizing the air intake area is expected to

increase the amount of air mass flow entrainment. Figures 2.5(a) and 2.7 show that increas-

ing rg andr f result in an increase toAintake whereas Fig. 2.5(b) identifies that an increase

in ψg causesAintake to decrease. Since some of the motivations for reducing wallcurvature

are in conflict with those for increasing the size of the air intake area, Table 3.1 lists the

values selected. Definition of these variables produce the nozzle shown in Fig. 3.3.
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Table 3.1: Input geometry variables for selected design

Variable Value Variable Value

rth [m] 0.0551 zg [m] 0.5

r f [m] 0.17 re [m] 0.5

rg [m] 0.37 ψe 44.5◦

ψg 17.6◦ Φe 1◦

front view

air intake

nozzle outlet

rocket exhaust

rocket exhaust

nozzle throat

Figure 3.3: Selected nozzle design

3.2 Numerical Methods

The computational fluid dynamics (CFD) commercially available code ANSYSr CFX 10.0

(and CFX 11.0) is used to compute flow properties within the considered nozzle domain us-

ing time-dependent, three-dimensional, compressible Navier-Stokes equations. The CFX

turbulence models being used are referred to as statisticalturbulence models since the orig-

inal unsteady Navier-Stokes equations are modified throughthe introduction of averaged

and fluctuating quantities to produce the Reynolds AveragedNavier-Stokes equations. For
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steady flow, CFX offers numerous two-equation turbulence models to account for the fluc-

tuating quantities [38]. The well-establishedk-ε model has proven to be stable and numer-

ically robust wherek is the turbulence kinetic energy

k =
1
2

u′iu
′
i (3.2)

andε is turbulence eddy dissipation

ε = −µ
ρ

∂u′i
∂x j

∂u′j
∂xi

(3.3)

Thek-ε turbulence model uses scalable wall functions that are dependent on an alternative

velocity scale

u∗ = Cµk
1
2 (3.4)

whereCµ = 0.09 rather than the dimensionless near wall velocityu+ that is typically used

in the law of the wall correlations that determine the velocity profile in a boundary layer.

Implementation of scalable wall functions allows for a coarser near-wall grid resolution of

y+ < 100 (3.5)

The effective viscosity that accounts for turbulence is calculated using

µe f f = µ + µt (3.6)

where turbulence viscosity is defined as

µt =
ρCµk2

ε
(3.7)

In comparison, thek-ω turbulence model accounts for near wall treatment by linking
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turbulence viscosity to turbulence kinetic energy and turbulent frequencyω from

µt = ρ
k
ω

(3.8)

and requires at least

y+ < 2 (3.9)

Additional models exist that are derived from these two turbulence models include Menter’s

shear stress transport (SST) model. The SST model usesk-ω for near wall treatment and

k-ε is implemented in the outer wake region and in free shear layers [39].

Figures 3.4 and 3.5 compare area-averaged Mach number and pressure distributions

for three turbulent schemes on the selected nozzle configuration obtained using the values

provided in Table 3.1. The RNGk-ε turbulence model is similar to thek-ε turbulence

model with the exception that the model constants in the transport equation for turbulence

dissipation are slightly different [38]. The trends on bothgraphs show that the examined

turbulence models agree well with each other to the effect that Table 3.2 shows a 0.06

range between schemes in outlet Mach number and a 2.0 [kPa] difference in outlet pressure.

Subsequently, results shown in the viscous analysis are calculated using thek-ε turbulence

model and can be taken as representative of results obtainedby any of the two-equation

turbulence models considered.
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Figure 3.4: Turbulence model influence
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Table 3.2: Turbulence model influence on outlet values

Turbulence model M̄e P̄e [kPa]

k-ε 2.56 106.6

RNGk-ε 2.60 104.7

SST 2.54 106.7

The CFX solution algorithm is based on a finite volume scheme for an arbitrarily shaped

three-dimensional cell that uses a coupled solver [38]. Thecoupled solver solves all of the

hydrodynamic equations as a single system at each finite volume. The finite volumes are

formed by generating a mesh to represent the spatial domain.The solution variables are

stored at the nodes; however, the discretized form of the governing mass and momentum

equations are dependent on properties at integration points (ip):

V
∆ρ
∆t

+∑
ip

(

ρu j∆n j
)

ip = 0 (3.10)

and

V
∆(ρui)

∆t
+∑

ip
ṁip(ui)ip = ∑

ip
(P∆ni)ip +∑

ip

[

µe f f

(

∂ui

∂x j
+

∂u j

∂xi

)

∆n j

]

ip

(3.11)

whereV is a discrete control volume. Figure 3.6 shows that the integration points are be-

tween an element face centre and an element edge. The elements identify one side of a con-

trol volume. Shape functions are implemented to calculate geometric properties required

by the advection, pressure, diffusion, and velocity terms at the integration point coordinates

based on the surrounding nodes defining the given element. The exact location of the in-

tegration point within the element is dependent on a user specified value; this choice can

range from 0 to 1 and is influential on the order of accuracy of the spatial domain where a

value of 0 gives a first-order accurate upwind differencing scheme, and 1 corresponds to a

second-order accurate scheme [38].
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Figure 3.6: Mesh element

For steady state analyses, the transient term in Eq. (3.11) is discretized such that a

marching method using a timestep∆t is implemented to converge the implicit equations

to a solution. The mass ˙mip term is calculated at the previous timestep and along a length

identified by a discrete outward normal surface vector∆n. For compressible flow, theρu j

terms are solved based on previous and current iteration values

(

ρu j
)new≈ ρnewuold

j +ρoldunew
j −ρolduold

j (3.12)

Subsequently, a second mass conservation calculation is beneficial and thus implemented

at each iteration to actively linearize bothρ andu j . To solve Eqs. (3.10) and (3.11) si-

multaneously at each timestep, CFX uses an incomplete lowerupper factorization iterative

technique that is described in the CFX user manual [38].



CHAPTER 3. NUMERICAL SETUP 54

3.3 Fluid Properties

Table 3.3 shows that the thermodynamic properties requiredto define a fluid in CFX are

consistent with those used to generate the selected geometry design based on the input val-

ues provided in Table 3.1. The reference values for enthalpyhre f and entropysre f are with

respect to a pressure of 1[atm] and temperature of 298[K] and are non-zero because the

fluid mixture considers the products of a C12H24/air reaction. Products by molar fractions

consist of 13% carbon dioxide, 13% water vapour, 73.4% nitrogen, and 0.6% of unburned

C12H24 hydrocarbon.

Table 3.3: Design fluid properties

Variable Value

MW
[

kg
kmol

]

29.54

Cp

[

J
kg K

]

1543

hre f

[

J
kg

]

459,670

sre f

[

J
kg K

]

8,788

µ
[

kg
m s

]

7.276·10−5

λ
[

W
m K

]

0.154

Although the nozzle design calculates viscosityµ and conductivityλ as functions of

temperature, constant values are used in CFX. The values shown in Table 3.3 are averaged

over the temperature range obtained by Eq. (2.47) that correspond to the Mach number

distribution shown in Fig. 3.1. To ensure that this viscosity difference does not cause large

errors, a displacement thickness at the outlet outer wall iscalculated asδ ∗
oute = 0.0051[m]

for a constantµ = 7.276·10−5
[

kg
m s

]

and translates into a 3.1% increase in displacement

thickness over the value found whenµ is a function ofT. If all three sides are adjusted at

the outlet, the constantµ cross sectional area is 1.3% greater.
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3.4 Boundary Conditions

For the computations presented throughout this thesis, thethroat surface shown in Fig. 3.7

is specified as an inlet boundary condition. A uniform flow with V = 1114
[m

s

]

acting

normal to the throat cross section is used. This value equates to M = 1.05 and is used

instead ofM = 1 to avoid potential shock wave issues due to the fact that theflow at the

throat is within the transonic range. It has been found that best convergence occurs when

static pressure and total temperatureT0 = 3668[K] are specified as the two remaining throat

parameters. In order to agree with the adjusted velocity value,P= 2577[kPa] is calculated

from Eq. (2.56) since Eq. (2.47) givesT = 3266 [K]. No information could be located

regarding the turbulence intensity for three-dimensionaldiverging nozzle configurations so

the default value of medium 5% is used; however, several turbulence intensity values were

tested and did not have any appreciable influence on the results.

throat

inner wall

outer wall

swept wall

centreline

outlet

zg

ψg

ze

ψe

re

rg

z

Figure 3.7: Nozzle boundary labels

The inner, outer, and swept walls as shown in Fig. 3.7 are assigned wall boundary
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conditions. For the inviscid, no turbulence model analysis, adiabatic walls are defined as

free-slip. A free-slip wall is defined such that both the wallshear stress and the normal

velocity component equal zero [38]. The viscous analysis defines walls as no-slip to ensure

that velocity equals zero at the wall. For compatibility with the designed nozzle, a constant

wall temperature of 500[K] is specified. Given that Edenfield’sδ ∗ procedure (Eq. (2.42))

is not based on a surface roughness, walls are specified as smooth fork-ε simulations.

The final two surfaces shown in Fig. 3.7 to define the computational domain are the

centreline and the outlet. Symmetry about theχ-plane allows the centreline to use a sym-

metry boundary condition whereas a supersonic boundary condition that does not require

specification of any flow properties is applied at the outlet.

3.5 Mesh Generation and Convergence Study

Three structured grids are created using ANSYSr ICEM CFD 10.0 and are distinguished

as coarse, medium, and fine. The medium grid consists of 750,000 nodes with 50 placed

along the thicknesst as shown in Fig. 3.8 using a bigeometric inflated boundary layer tech-

nique that geometrically increases space size from small distances near both walls to larger

distances in the middle. The first space from both the inner and outer walls is 4·10−5 [m].

A space increment of 4·10−5 [m] is sufficient to ensure at least 10 nodes are within the

boundary layer and corresponds to a boundary layer dimensionless wall distance range of

18< y+ < 119 on the outer wall. The enlarged views in Fig. 3.8 show the placement of

the first node on the wall and the second and third nodes off theindicated walls. The space

increments along the thicknessr ′ direction are found from

∆t1 = 4 ·10−5 [m] (3.13)
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Figure 3.8: Outlet mesh

and

∆ti = 1.2 ·∆ti−1 (3.14)

A geometric ratio specified at the outlet plane of 1.2 (increases to 1.27 at the throat be-

cause of the thickness variation over the depth) is multiplied by each previous increment

to calculate the next increment until the point that 1.2 ·∆ti−1 is greater than a uniform∆ti.

A uniform ∆ti can be calculated based on the remaining distance and numberof nodes

required to fill in the distance. For the inviscid analysis, afirst space of 0.001 [m] is de-

fined since wall shear forces are ignored and number of nodes in the thickness direction is

reduced to 25.

Figure 3.8 also shows that 100 nodes are specified in the circumferentialΨ′-direction

with the first spaces adjacent to the centreline (cl) and swept wall (sw) set to∆Ψ′
1cl

=

0.001[m] and∆Ψ′
1sw

= 4·10−5 [m] respectively with geometric ratios of 1.2 at the arclength
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on the outlet edge. Similarly to the procedure for locating nodes in ther ′-direction, the

bigeometric technique is implemented to define the locations of the remaining nodes in the

Ψ′-direction.

Figure 3.9 shows that the 150 nodes in the streamwisez′-direction maintain orthogo-

nality with respect to the radial contour. Since the shape ofa cross section does not dramat-

ically change in theΨ′-direction within the first third of the domain, spaces are increased

to 0.020 [m] from 0.001 [m] at the throat; however, to better resolve the circumferential

expansion caused byΨ′(z) beyond the gate, spaces are reduced to 0.006 [m]. Further re-

ductions occur within the last eighth of the domain to a final space of 0.001[m] adjacent to

the outlet. Maximum spaces developed are 0.0036[m] along the thickness, 0.0054[m] in

theΨ′-direction, and 0.020[m] in thez′-direction.

z

r

z′r ′

Figure 3.9: Centreline mesh

To avoid singularity difficulties when generating solutions using CFX, the throat is

defined as a four-sided shape. Subsequently, a correction ismade to the inner wall to ensure

a finite length at the throat’s cross section. An inner radiusof 0.05rth is used and represents
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a loss inAth of 0.25%, or more importantly, a loss in mass flow of 0.25% thusmaking it

more appropriate to compare CFD area-averaged values to theisentropic equations.

With respect to the medium grid, the coarse mesh doubles all of the values at the

boundaries such that the maximum spaces developed are 0.0072[m] along the thickness,

0.011 [m] in the Ψ′-direction, and 0.040 [m] in thez′-direction. The resulting number of

nodes is 131,040. Similarly, the fine mesh consists of 3,678,908 nodes where all of the

values at the boundaries assigned to the medium grid are halved such that the maximum

spaces are 0.0018[m], 0.0027[m], and 0.010 [m] respectively. The consistency between

the grids result in grid refinement factorsGRF of two using

GRF=
∆hcoarse

∆hmedium
=

∆hmedium

∆hf ine
= 2.0 (3.15)

where the representative grid sizes∆h are obtained from

∆h =
[

∆tmax∆Ψ′
max∆z′max

]1/3
(3.16)

Table 3.4 summarizes the characteristics of each of the three meshes. In order to obtain

GRF = 2.0 between two meshes, the maximum spaces (and similarly all spaces at the

surfaces) were halved and doubled with respect to the mediumgrid; however, because of

the bigeometric spacing technique implemented, this does not translate into halving and

doubling the number of nodes in a given direction, thus explaining why there is not a factor

of eight difference in total number of nodes between grids. The providedy+ values are

obtained along the outer wall at theP4vis points and further support the decision to use the

k-ε turbulence model since a near wall resolution ofy+ < 2 is not present.

Figures 3.10 and 3.11 show similar area-averaged Mach number M̄(z) and pressure

P̄(z) distributions for the three grids. A comparison of values between the medium and

fine grids at several locations is listed in Table 3.5. The errors calculated are with respect
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Table 3.4: Mesh characteristics

Number of nodes outer wally+ maximum space[m]

Grid r ′ Ψ′ z′ Total Throat Outlet ∆tmax ∆Ψ′
max ∆z′max

Coarse 26 63 80 131,040 214 38 0.0072 0.0110 0.040

Medium 50 100 150 750,000 119 18 0.0036 0.0054 0.020

Fine 73 172 293 3,678,908 66 9 0.0018 0.0027 0.010
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Figure 3.10: Comparison of grid Mach
number distributions
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Figure 3.11: Comparison of grid pres-
sure distributions

Table 3.5: M andP variation between medium and fine meshes

z-Plane[m] M̄ f ine M error, % M GCI, % P̄f ine, [kPa] P error, % P GCI, %

0.05 1.27 0.39 0.16 1955.7 0.46 0.19

0.5 2.44 0.18 0.08 235.0 0.07 0.03

0.93 2.55 0.35 0.15 107.2 0.57 0.24

to the finest grid and are all less than 1.0%. For uniformity ofreporting computational

results, the grid convergence index (GCI) is a method for reporting error estimates in grid

convergence studies without restrictions placed on integer refinement (for example, grid

doubling) and involves the comparison of discrete solutions at two different grid spacings

[40]. Determination of the GCI is based on a suggested factorof safety of 1.25 [40, 41]

such that there is a 95% confidence interval in the error estimates. For example, the Mach

number at the outlet is reported as̄Me = 2.55±0.004 (±0.15%). Subsequently, there is
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confidence that the computational results are independent of grid and leads to the choice

that the medium grid is sufficient for use in all subsequent calculations.

3.6 Convergence

Examination of the residual convergence history shown in Fig. 3.12 can further the con-

fidence that the properties calculated by the individual control volume equations are con-

served. Figure 3.12 shows root-mean-square (RMS) residuals for mass and the three mo-

mentum equations on the medium grid for a viscous analysis. The abrupt change at the

forty-eighth iteration is caused by switching advection schemes. The stability of the up-

wind differencing scheme provided little difficulty in marching through the solution to

RMS= 10−4 convergence (in 97[min]) based on constant global initialization values of

Vz = 1990
[m

s

]

, P = 494 [kPa], andT = 2400 [K]. The initial values are taken as aver-

ages of theN cross section velocity, pressure, and temperature values that are calculated

using the isentropic equations based on the Mach number distribution shown in Fig. 3.1.

After the forty-eighth iteration, the second order accurate advection scheme in the spatial

domain is implemented. Due to machine roundoff issues in CFXfor convergence below

10−5, properties are stored to double precision after the 83rd iteration.

The linear decay on the semi-log plot shown in Fig. 3.12 of theresiduals is obtained

using an automatic timescale method such that the timestep is on the order of 2·10−5 [s].

The auto timescale option is similar but more conservative than the physical timescale and

is described in the CFX user manual [38]. The physical timescale option considers the time

for a fluid parcel to travel through the domain. Calculation of the physical timestep using

the isentropic calculated average velocity value and outlet depth is

∆t ≈ 0.3
ze

V̄
= 0.3

0.93 [m]

1990
[

m
s

] = 1 ·10−4 [s] (3.17)
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Figure 3.12: Residual convergence history

A factor of 0.3 is multiplied in Eq. (3.17) to allow a fluid parcel to spend at least three

iterations within the domain and is traditionally includedfor advection dominated flows.

Since the value obtained by the auto timescale is more conservative, it equates to slower

convergence; however, after switching advection schemes,180[min] of computational time

is required to reachRMS= 10−7 convergence using two Intel Pentium 4 processors (2.00

GB RAM).

To ensure that there were no localized problems in the domain, maximum mass and

momentum residuals were also monitored and adhere to the expectation of being one order

of magnitude greater than the RMS residuals. Additionally,Fig. 3.13 plots velocity at four

selected points with respect to the iteration number. Threepoints are located along the

centreline atz= 0.01 [m], z= 0.4 [m], andz= 0.9 [m] and the fourth monitor is placed

near the swept wall atz= 0.72 [m]. The maximum difference between the monitor points

at RMS= 10−5 andRMS= 10−7 is 0.043%. Therefore, the solutions are considered con-

verged when theRMSresiduals are reduced by four orders of magnitude to a value of 10−5.
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Figure 3.13: Velocity monitor points convergence history



Chapter 4

Inviscid Results

Figures 4.1 and 4.2 compare the inviscid CFD area-averagedM̄(z) and P̄(z) results to

the predefinedM(z) distribution and the isentropic pressure calculated usingthe M(z)

distribution respectively. Computational results predict outlet values ofM̄e = 2.70 and

P̄e= 183.1 [kPa]. In comparison, the predefinedM(z) givesMe= 2.75 andPe= 170.0 [kPa]

and translate into differences of 1.6% and 7.6% respectively. A maximumM variation of

5.0% occurs atz= 0.0 [m] whereas a maximumP variation of 8.5% occurs atz= 0.8 [m].

Prior toz= 0.1 [m], variations occur because of the slightly higher Mach 1.05 throat inlet

condition used to generate the CFD results. If the first 0.1 [m] is ignored, the maximum

variation in Mach number reduces to 1.6% and occurs fromz= 0.85 [m] to the outlet.

Figure 4.3 plots the velocity field on severalΨ′-planes varying from 0.0Ψ′ correspond-

ing to the centreline to 1.0Ψ′ that corresponds to the swept wall as shown in Fig. 4.4.

The contours show that velocity increases through the nozzle since cross-sectional area

increases and that the flow stays attached to all of the walls as indicated by the velocity

vectors. Additionally, the increase in velocity originates along a convex surface—along

the outer wall near the inlet (z = 0.0 [m]) and along the inner wall just past the gate

(z = 0.5 [m])—and develops through the thickness downstream. This observation is in

agreement with the expectation that the localized area expansion along a convex surface

64
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supports the trends expected for gradual isentropic expansion on a convex surface since

velocity increases and the contours diverge. Of further interest is that the 1900
[m

s

]

and

2000
[

m
s

]

velocity contours regain orthogonality to the radial contour. In comparison, the

outer wall radial contour point of inflection is located atz= 0.33 [m].

Figure 4.5 shows the velocity field onz-planes taken at the locations indicated in

Fig. 4.6. To assist in explanation of the trends observed, the curve shown in Fig. 4.7 defines

the arclength(ψr) change with depth and hence can be used to obtain thedΨ′
dz slope of

the swept wall (recall Fig. 2.10). Prior toz= 0.4 [m] the curve is relatively flat, which is

in agreement with the absence of circumferential velocity variation in the first five planes

shown in Fig. 4.5. Fromz≈ 0.4 [m] to z≈ 0.8 [m], Fig. 4.7 shows that the swept wall has

convex curvature. In agreement to the expectation of isentropic expansion along convex

surfaces, velocity near the swept wall on thez= 0.47 [m] to z= 0.74 [m] planes in Fig. 4.5

(see also Fig. 4.3) is greater than the velocity nearer to thecentreline. The slight decrease in

velocity on thez= 0.84 [m] andz= 0.93 [m] planes near the swept wall can be contributed
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to the slightly concave curvature shown in Fig. 4.7 afterz≈ 0.8 [m]. Opposite to convex

surfaces, concave surfaces cause essentially isentropic compression and result in a velocity

decrease.

Figures 4.3 and 4.5 have shown velocity magnitudes whereas the tangential velocity

vectors (vectors tangent to thez-planes) shown in Fig. 4.8 give 3D direction to the velocity.

Since no external forces are applied, streamlines are expected to parallel the nozzle walls
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and proceed in thez′-direction (refer to Fig. 2.17). Subsequently, the vector components

that act most noticeably in theX-direction shown in Fig. 4.8 are the result of the cosΦ com-

ponents introduced by the radial contour curvature. The vector tangents drawn in Fig. 4.8

are also dependent on a circumferential velocity component. Figure 4.7 shows that the

swept wall slopedΨ′
dz prior to z= 0.4 [m] can be taken as zero and agrees with the absence

of circumferential components in the first four planes (alsoobserved in Fig. 4.5). After

z= 0.4 [m], the nozzle begins to span more of the circumference and so the vectors that

appear to pass through the swept wall on thez= 0.56 [m] to z= 0.93 [m] planes are actually

in agreement to the swept wall direction calculated bydΨ′
sw

dz ; this ensures that streamlines

near the swept wall proceed in a direction parallel to the swept wall.

Also shown on Fig. 4.8 are total pressure contours or lack thereof. Since adiabatic walls

are implemented, the consistency of total pressure throughout the domain validates the

isentropic assumption and proves that the presumed isentropic expansion and compression

developed on convex and concave surfaces are in fact essentially isentropic. It is evident by



CHAPTER 4. INVISCID RESULTS 69

the slight total pressure decrease on thez= 0.74 [m] to z= 0.93 [m] planes near the swept

wall that compression caused by the swept wall concave surface requires a larger but still

acceptable tolerance to lead to the isentropic conclusion.Additionally, the uniformity of

the tangential velocity vectors throughout the thickness on a given plane shows the absence

of shear forces and hence the assignment of free-slip walls in CFX does simulate inviscid

flow.

To better quantify the outlet velocity distribution shown in Fig. 4.5, a central arcline

drawn atte2 as shown in Fig. 4.9 is considered. For the nearest 55% to the centreline along

the arcline, the velocity under-predicts the expectedVe= 2276
[m

s

]

by a maximum of 3.0%.

The next 35% along the arcline over-predicts by as much as 1.8%. The remaining 10% of

the arcline nearest to the swept wall under-predicts the outlet velocity by a maximum 5.0%.

This behaviour can be attributed to the circumferential expansion caused by the swept wall

curvature. Also calculated at the outlet is an area-averaged velocity of V̄e = 2254
[m

s

]

,

which is 1.0% less than the isentropic value.

arcline

Ve−max(0.03Ve)

Ve+max(0.018Ve)

Ve−max(0.05Ve)

r ′

Ψ′

te
2

swept wall

te

Figure 4.9: Comparison of outlet velocity to design value ofVe = 2276
[

m
s

]

along mid-
thickness arcline of exit plane

Now that the velocity behaviour is understood whereby velocity increases as area in-

creases for supersonic flow and also increases near convex surfaces first, consideration is
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given to temperature and pressure. Replacing Mach number inEq. (2.47) with the Mach

number definition of Eq. (2.45) allowsT for the given isentropic flow to be defined as a

function of velocity only and hence the temperature contours shown in Fig. 4.10 behave

in a similar manner to the velocity contours shown in Fig. 4.5. The maximum variation

between area-averaged temperatures and Eq. (2.47) occurs at the outlet and is 1.6%.
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Figure 4.10: Inviscid analysisz-plane temperature contours

Similarly, the pressure calculated by Eq. (2.56) is a function of temperature only and

hence velocity. As a result, the pressure field shown in Fig. 4.11 matches the characteristics

of the velocity field in Fig. 4.5 and temperature field in Fig. 4.10. It is because of the ve-

locity variation on a given cross section that the area-averaged pressure distribution shown

in Fig. 4.2 deviates from the isentropic calculation by as much as 8.5%.

Based on the minimal variations between velocity, temperature, and pressure to the

isentropic equations, it is evident that the isentropic equations are capable of calculating

good initial guesses for the flow properties. The differences however are attributed to the

fact that the isentropic equations are calculated using one-dimensional flow whereas the
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Figure 4.11: Inviscid analysisz-plane pressure contours

geometry’s radial contour curvature and swept wall curvature both influence the fluid prop-

erties at a given cross section and so the flow can only be treated as essentially isentropic:

it is the total pressure variation that accounts for the slightly larger deviation in the static

pressure comparison. This means that the flow must be treatedas fully three-dimensional

and so a CFD study is a good method for better prediction of theflow properties.



Chapter 5

Viscous Results

Figure 5.1 compares the viscous CFD area-averagedM̄(z) results to the predefinedM(z)

distribution. Computational results predict an outlet value ofM̄e = 2.56 that translates into

a 6.8% difference from the predefined value. A maximumM variation of 8.1% occurs

at z= 0.04 [m]. Similarly to the inviscid analysis, the throat Mach numberis defined as

Mth = 1.05 so if the first 0.1 [m] of nozzle depth is ignored, the maximum variation in Mach

number occurs at the outlet.

Betweenz = 0.1 [m] and z = 0.5 [m], Fig. 5.1 shows that the area-averaged Mach

number is within 2.4% of the predefined distribution. This isconsidered to be a small

0 0.2 0.4 0.6 0.8
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M̄
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Figure 5.1: Viscous analysis Mach number distribution
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variation and so there is confidence that the amount of displacement thickness added to all

three walls is sufficient to account for the viscous effects in the boundary layers within this

range. Afterz= 0.5 [m], the area-averaged Mach number increases to 2.61 atz= 0.73 [m]

and then decreases to the outlet value. This observation does not appear in the inviscid

analysis and so viscous effects are responsible for the additional decrease.

Figure 5.2 plots velocity fields within severalΨ′-planes as shown in Fig. 4.4. Figure 5.2
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Figure 5.2: Viscous analysisΨ′-plane velocity contours
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shares several similar characteristics that are apparent on the 0.0–0.76Ψ′-planes to the in-

viscid results shown in Fig. 4.3: the 1200
[

m
s

]

, 1400
[

m
s

]

, and 1600
[

m
s

]

contours diverge

away from the outer wall convex surface; the 1800
[

m
s

]

contour approximately regains or-

thogonality with respect to the radial contour; the 2200
[m

s

]

contour in Fig. 5.2 behaves

similar to the 2100
[

m
s

]

contour in Fig. 4.3 (only apparent on the 0.0–0.38Ψ′-planes) in that

the contour originates on the inner wall atz≈ 0.5 [m] and develops through the thickness

downstream; and the vectors show that the flow stays attachedthroughout the nozzle and

that streamlines proceed from the throat to the outlet.

There are also several differences between the inviscid andviscous results on theΨ′-

planes: the velocity magnitude in Fig. 5.2 is much lower on the 0.94Ψ′ and 0.995Ψ′-planes

because the no-slip swept wall boundary condition forcesVsw = 0
[

m
s

]

; and the coalescing

of contours along the inner and outer walls show the existence of inner and outer wall

boundary layers. Since a core without velocity gradients isstill present inside the 2200
[m

s

]

contour, the boundary layers have not yet merged and so the flow does not become fully

developed inside the nozzle. In other words, there is still an inviscid core region near the

centreline out to approximately 0.75Ψ′ that has relatively constant freestream velocity at a

given cross section.

To obtain more information regarding the inner and outer wall boundary layers, the

cuts shown in Fig. 5.3 correspond to the velocity profile locations shown in Fig. 5.4 where

the inner wall is att = 0 [m]. Figure 5.4 is representative of 75% of the nozzle domain

nearer to the centreline. Comparison of averaged velocities on cross section edges along the

centreline (0.0Ψ′) to the isentropic velocity calculated from Eq. (2.45) (which exist within

any inviscid core region) are within 9.9% with the maximum occurring atz = 0.04 [m].

If the first z= 0.1 [m] is ignored, the maximum variation reduces to 4.9% and occursat

z= 0.12 [m]. In comparison, the inviscid area spanning 75% of the circumference in the

Ψ′-direction from the centreline has a maximum area-averagedvelocity variation from the

isentropic equations afterz= 0.1 [m] of 4.6% and also occurs atz= 0.12 [m]. Between
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Figure 5.4: Velocity profiles at 0.0Ψ′ (representative of profiles from 0.0–0.75Ψ′)

the inviscid core and the inner and outer walls are regions that experience an exponential

decrease in velocity and hence define the inner and outer wallboundary layer thicknesses.

The data used to create the velocity profiles shown in Fig. 5.4is used to produce the

boundary layer profiles shown in Fig. 5.5. The edge of the boundary layer is selected to

be at the location that has 99% of the freestream velocity at agiven cross section. Un-

fortunately, although an inviscid core is present, definition of the freestream velocity is

somewhat arbitrary. Since the inviscid analysis reports that convex wall curvature is re-

sponsible for expansion contours, the inviscid region shown in Fig. 5.2 has a velocity range

as much as 200
[

m
s

]

on some cross sections (particularly evident betweenz= 0.0 [m] and
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z = 0.2 [m]). Although it may be possible to identify a freestream velocity for a partic-

ular wall at a transition point between the exponential profile in the boundary layer and

the approximately linear profile in the inviscid core, dispersion errors introduced by the

second order accurate advection scheme are the likely causeof wiggles (as shown on the

z= 0.18 [m] velocity profile in Fig. 5.4) that introduce uncertainty into the transition point

location. Instead, the freestream velocity is selected to be the value obtained at the mid-

thickness
tvisi
2 location.

The choice to use the mid-thickness velocity as the freestream velocity however is

incapable of properly defining the inner wall boundary layerbetweenz = 0.0 [m] and

z = 0.35 [m] and so the dashed length on line (c) is an estimate. Furthermore, the cal-

culatedδi data at 0.99Vi oscillates to some extent so the presented boundary layer curves

are fourth-order polynomials that ensure the calculatedδis are within±0.001 [m] of the

curvefitδis. There is more confidence in the outlet values since the inviscid velocity range

is only∼ 20
[

m
s

]

and so the outlet boundary layer thicknesses areδine = 0.0070[m] and

δoute = 0.0097[m].

Also shown on Fig. 5.5 is Edenfield’s boundary layer thickness obtained using
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Eq. (2.40) that is calculated for the outer wall (the inner wall calculation is basically the

same since the inner wall length calculated by Eq. (2.43) isLine = 1.08 [m] as opposed to

the outer wall length ofLoute = 1.06 [m]). Edenfield’s equation calculates the outlet outer

boundary layer thickness asδoute = 0.0204 [m]. The trends show that Eq. (2.40) over-

predicts the CFD boundary layer thicknesses by a factor of two and does not reflect the

apparent levelling of the boundary layer thicknesses betweenz≈ 0.5 [m] andz≈ 0.8 [m].

Figure 5.6 shows the velocity field onz-planes taken at the locations shown in Fig. 4.6.

The absence of circumferential contours within 0.75Ψ′ of the centreline support the ob-

servation that the boundary layer profile does not change with respect toΨ′ in this region

and thus the region can be treated as two-dimensional. This 75% region is area-averaged

at the outlet to calculatēMe = 2.66 and is within 1.5% of the value obtained in the inviscid

analysis. The good agreement of Mach numbers suggest that the displacement thickness

added to the inner and outer walls is sufficient to account forthe viscous effects near these

walls to the extent that the viscosity inconsistency (a variableµ is used in the nozzle de-

sign whereas a constantµ is defined in CFX) may be responsible for the variation from the

predefined value.

Figure 5.7 shows the total pressure field onz-planes taken at the locations shown in

Fig. 4.6. The region inside the 4500[kPa] contour represents the inviscid freestream region

whereas the gradients present near the walls shows the presence of a viscous region. The

region of P0 reduction near the walls is not isentropic so Eq. (2.56) cannot be used to

evaluate the pressure in the boundary layer. The loss inP0 is associated to increasing

viscous forces (friction) necessary to reduce the velocityto zero at a wall. Viscous forces

are present near a wall since turbulence viscosity increases from zero in the inviscid region

to a value on the order ofµt = 0.02
[

kg
m s

]

closer to a wall (recall thatµ = 7.276·10−5
[

kg
m s

]

)

or three orders of magnitude increase in viscosity. Consideration of the Navier-Stokes

momentum equation (for example, Eq. (3.11)) proves that forsteady flow and advection

term known, if viscous friction forces increase, static pressure losses must occur. These
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pressure losses account for a 41.4% pressure variation betweenP̄e = 106.6 [kPa] and the

value calculated by the inviscid results.

The coalescing of velocity contours near the walls in Fig. 5.6 are now known to define

the boundary layer regions. It is also evident that viscous forces (shown by the related

P0 losses in Fig. 5.7) are more influential to the contours than geometry since the convex

surface around the swept wall fails to produce the localizedvelocity increase observed

in Fig. 4.5 on thez = 0.47 [m] to z = 0.74 [m] planes. Instead, the increasing velocity

gradients developing off the swept wall in this region are much more gradual than the

velocity gradients along either the inner or outer walls. Computational results estimate the

swept wall boundary layer thickness based on it spanning 0.25Ψ′ from the swept wall where

the velocity at
tvisi
2 is roughly 99% of that of the inviscid core at the outlet asδswe ≈ 0.09 [m];

in comparison, Eq. (2.40) calculates a value ofδswe = 0.021[m].

Figures 5.8–5.10 plot velocity profiles onΨ′-planes closer to the side wall. The pro-

files shown in Fig. 5.8 are similar to those in Fig. 5.4 except that the inner and outer wall

boundary layers are slightly larger. The velocity profiles in Fig. 5.9 show slight decreases

in velocity magnitude whereas the velocity magnitude in Fig. 5.10 is approximately half of

that calculated by Eq. (2.45).

The fully viscous region shown by the total pressure contours in Fig. 5.7 is responsible

for the velocity reduction in the nearest 0.25Ψ′ to the swept wall as shown in Figs. 5.8–

5.10. Since flow in this region parallels two sets of walls that are joined at common edges

(the flow parallels two corners), the flow characteristics developed individually by each

wall combine in a cumulative manner to result in the larger viscous region than those

observed nearer to the centreline along the inner and outer walls. It is because of this

three-dimensionality that Edenfield’s formulation cannotaccurately predict the swept wall

displacement thickness.
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Figure 5.8: Velocity profiles at 0.76Ψ′

0 0.2 0.4 0.6 0.8 1

0 1000 2000
0

0.01

0.02

0.03

0.04

0.05

0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000

Eq. (2.45)
CFD

outlet

gate

t
[m

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

z [m]

Figure 5.9: Velocity profiles at 0.94Ψ′

0 0.2 0.4 0.6 0.8 1

0 1000 2000
0

0.01

0.02

0.03

0.04

0.05

0 1000 2000 0 1000 2000 0 1000 2000 0 1000 20000 1000 2000

Eq. (2.45)
CFD

outlet

gate

t
[m

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

V
[m

s

]

z [m]

Figure 5.10: Velocity profiles at 0.995Ψ′



Chapter 6

Conclusions and Recommendations

Based on provided geometric and fluid property input, the presented theory is capable of

generating fully three-dimensional diverging sections ofa converging-diverging rocket noz-

zle. Specification of three fully-constrained cross sections—throat, gate, and outlet—are

necessary to establish the progression of the nozzle geometry cross sectional area using a

predefined Mach number distributionM(z) and quantify the size of the air intake. Air en-

trainment into the centre of an annular rocket exhaust stream is a result of the void formed

because the gate is placed on the outer perimeter of the nozzle whose shape does not have to

remain axisymmetric but defines an intermediate cross section through which the exhaust

flow must pass.

Inviscid area-averaged computational results are within 1.6% of the predefined outlet

Mach number of 2.75 and 7.6% of the isentropic pressure predicted at the outlet. Similarly,

maximum variations of 1.0% in velocity and 1.6% in temperature also occur at the outlet.

The outer wall curvature near the throat is convex and so isentropic expansion is observed

whereby velocity contours diverge into the cross sectionalthickness. In a similar manner

just past the gate, both the inner and swept walls have convexcurvature and hence velocity

first increases along these surfaces. The direction of the velocity vectors is related to the

curvature as the streamlines parallel the nozzle walls: thecurvature of the radial contour is
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responsible for a radial velocity component whereas the swept wall curvature is responsible

for a circumferential velocity component.

Viscous computational results obtained using thek-ε turbulence model under-predict

the predefined outlet Mach number by 6.8%. Observations fromthe total pressure field

show that the flow does not become fully developed and that viscous effects are contained

within the boundary layers at each wall. Since the flow is not isentropic within the bound-

ary layer, there are corresponding pressure losses due to the increase in friction and thus a

41.4% pressure variation at the outlet when compared to the inviscid analysis. For 75% of

the nozzle nearer to the centreline, the flow can be considered two-dimensional and gives

an area-averaged outlet Mach number 1.5% less than that obtained by the inviscid compu-

tational results. This gives confidence in the amount of displacement thickness added to

the inner and outer walls.

The remaining 25% of the area by the swept wall becomes fully viscous at the outlet.

This viscous region gives a swept wall boundary layer thickness at the outlet an order of

magnitude greater than the boundary layer thicknesses along the centreline for the inner

and outer walls. Although streamlines remain parallel to the nozzle walls, the decrease

in velocity near the swept wall is contributed to the swept wall corners since the flow

characteristics along each wall combine in a cumulative manner. Subsequently, a three-

dimensional boundary layer correlation must be implemented for better prediction of the

swept wall displacement thickness.

Results are provided for one configuration only, which is unlikely to be an optimum

configuration and is not representative of all configurations. For example, reduction of the

outlet arc angleψe should reduce the magnitude of the circumferential velocity components

and avoid the likely presence of strong oblique shocks at thenozzle outlet. Furthermore,

choice of an axially symmetric radial contourr(z) is somewhat arbitrary. Given the defined

4.3 times increase in outlet diameter over an axisymmetric nozzle design with the same

M(z), it may be beneficial to consider profiles that end in elliptical or polygonal shapes
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at the outlet or consider designs with a smaller outlet radius. Additionally, corner point

selection of a cross section is simplified to enforce the shape to be representative of a

rectangle and a triangle. The viscous analysis shows that 25% of the flow near the swept

wall is fully viscous and results in much more gradual velocity and total pressure gradients

than those observed along the inner and outer walls. It may therefore be beneficial to round

out the swept wall corners by using a parabolic or higher-order equation as opposed to the

linear equation implemented to connect the swept wall corner pointsP1 andP2.

Since coupling ejector theory to rocket nozzle design has not been previously explored

to any great extent, investigation of the thrust and specificimpulse performance character-

istics are necessary to give confidence that the design concept can provide improvement

over existing thrust chambers. Although it is apparent thatincreasing the air intake size

is beneficial for increased mass flow, the air entrainment capability must consider shock

waves or expansion fans induced by the geometry design. Likewise, the mixing ability of

the rocket and air flows in the ejector is paramount to the overall rocket performance.

Lastly, an experimental investigation will provide invaluable data that can be compared

to predicted results using the isentropic equations and CFDsimulations, furthering the

confidence of the presented results. For experimental analysis, consideration to the com-

pressibility factor in the ideal gas law and a variable specific heat ratio should be given

when developing the geometry.
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