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Abstract

We develop a new method to approximate the asymmetric multivariate probability den-

sity function (pdf) of financial asset returns by using series expansions; a rate of convergence

for the mean absolute error of this approximation is also provided. We then propose the

method of maximum likelihood and the generalized method of moments to estimate the pa-

rameters of the approximated pdf. A Monte-Carlo experiment corroborates the feasibility

of our approach.
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1 INTRODUCTION

Modeling joint distributions of asset returns has been considered as a core task in determining

optimal strategies and managing risk for investment under uncertainty. In this sprit, many risk
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measures and portfolio performance measures are naturally embedded into the moments of the

portfolio return distribution. For instance, Malevergne and Sornette (2006) propose a large choice

of relevant risk measures congruent with high-order moments, which a portfolio manager is free

to choose from, depending on his/her own risk aversion to small versus large risks. In addition,

a recent issue of asymmetric dependence, possibly explained by the tendency for stock market

declines to be much more rapid than rises, is particularly important for risk control and policy

management. This is because dependence structure across risky assets is a key feature of the

portfolio choice problem and optimal asset allocation depends on forecasts of asset dependence

(see, e.g., Cont (2001) and Okimoto (2008)).

The methods of constructing joint distributions for asset returns characterized by asymmet-

ric dependence include, among many others, the copula approach and series approximations.

Copula is conceptually a device to effectively capture a variety of nonlinear relationships which

are usually ignored by the multivariate Gaussian distribution. (See, e.g., Patton (2004), Chu

(2011b), and references therein for further details on this subject.) The Edgeworth expansion

and its variant – so-called the saddlepoint method – has been widely used in a variety of practical

investment problems, such as the calculation of shortfall probability and expected shortfall in

loss distributions (see, e.g., Sargan (1976), Barndorff-Nielsen and Cox (1979) and Martin (2006),

among many others). In the sequel, the purpose of the present paper will be to develop a new ap-

proach based on series expansion, which has a natural congruence with the Edgeworth expansion,

to approximate the asymmetric joint probability density function (pdf) of asset returns.

In this paper, we shall primarily be concerned with the issue of approximating the multivariate

pdf of asset returns by using the series expansion technique. It is to be stressed at this point

that we shall not strive for conditions under which a series approximation of a multivariate pdf

is nonnegative on its domain because of the complicated nature of this problem; instead we shall

assume that the asset returns are uniformly bounded so that a second-order series approximation

is legitimate in the sense that, on a compact subset of the positive real surface ℝ+2, the first low-

order orthogonal polynomials have dominant influence in a series expansion. Given the validity of

this series approximation on some compact subset in ℝ
+2, we shall propose methods to estimate
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the parameters (or the correlation coefficients) of this approximated pdf.

The remainder of this paper is organized as follows. Section 2 is mainly concerned with a

series approximation for a joint pdf marginalized by either mixtures of the Gamma distributions

(see, e.g., Knight et al. (1995)) or the Gaussian distributions; and the formula representing the

rate of convergence of the approximation is also provided in this section as Theorem 1. Section

3 proposes the maximum likelihood estimation (MLE) method and the generalized method of

moments (GMM) to estimate the parameters of the approximated pdf. These methods are shown

to be potentially useful from the practical point of view. Finally, a summary of a simulation study

comparing the small-sample properties of the ML and GMM estimators is contained in Section 4.

Overall, it was found that the GMM performs relatively well vis-à-vis the ML estimator. Section

5 concludes this paper.

2 MULTIVARIATE DISTRIBUTIONS OF ASSET RE-

TURNS

2.1 Approximate A Bivariate Gamma Probability Density Function

with the Laguerre Polynomials

One of many stylized facts about equity returns is gain/loss asymmetry in the return distribution

(i.e., large drawdowns in stock prices are not equal to large upward movements.) More often,

an asymmetric return distribution can be parametrically modeled with a mixture of the Gamma

distributions – in what follows, we shall denote by G (�, �) a Gamma distribution with the scale

parameter � and the location parameter �. Let (X, Y ) represent a vector of stock returns. In view

of Knight et al. (1995), the probability density functions (pdfs) of the mixtures of the Gamma

distributions of (X, Y ) are then given by

fX(x) = p
1

��11
11 Γ(�11)

x�11−1 exp

{
− x

�11

}
I(x ≥ 0)
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+ (1− p)
1

��12
12 Γ(�12)

(−x)�12−1 exp

{
x

�12

}
I(x < 0) (2.1)

and

fY (y) = q
1

��21
21 Γ(�21)

y�21−1 exp

{
− y

�21

}
I(y ≥ 0)

+ (1− q)
1

��22
22 Γ(�22)

(−y)�22−1 exp

{
y

�22

}
I(y < 0), (2.2)

where I(x ≥ 0) is an indicator function with its value equal to 1 if x ≥ 0 and to 0 otherwise;

I(x < 0) = 1− I(x ≥ 0); Γ(x) denotes the Gamma function; p and q are the probability weights;

�11, �12, �21, and �22 signify the scale parameters of the Gamma distributions; and �11, �12, �21,

and �22 represent the shape parameters of the Gamma distributions. Note that these scale and

shape parameters are, by definition, positive and finite. The closed-form maximum likelihood

estimates (MLEs) of these parameters are obtained by Chu et al. (2010).

In the sequel, we propose to construct a bivariate pdf marginalized by mixtures of the Gamma

distributions as follows:

fXY (x, y) = P{x ≥ 0, y ≥ 0}fX(x+)fY (y+)
(
1 + g(x+, y+,�++)

)

+ P{x < 0, y < 0}fX(x−)fY (y−)
(
1 + g(x−, y−,�−−)

)

+ P{x ≥ 0, y < 0}fX(x+)fY (y−)
(
1 + g(x+, y−,�+−)

)

+ P{x < 0, y ≥ 0}fX(x−)fY (y+)
(
1 + g(x−, y+,�−+)

)
, (2.3)

where X+ = XI(X ≥ 0) and X− = XI(X < 0); and g(X, Y,�) is some analytic function with

� representing linear and nonlinear correlation coefficients. The intuition for this functional

specification is as follows: If X and Y are independent, then the joint pdf of X and Y is merely

the product of the two mixtures of the Gamma pdfs. Thus, in the presence of dependency, it

is natural to specify the joint pdf as a separable function with two components (the product

of the two mixtures of the Gamma pdfs and a coupling function, g (X, Y,�), used to capture

asymmetric dependence).

For illustration purposes, we shall provide an approximation to g (X+, Y +,�++), because the
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other coupling functions can be approximated in the same manner. (For future references, it is

helpful to note that, in what follows, the superscript + will be suppressed unless confusion is

likely.) First, we need some preliminary results on sequences of orthonormal polynomials:

Definition 1. (Parthasarathy, 1977, p. 219) Let (X ,ℬ, �) represent a probability space with a

measure, �. Then gn(x) is a sequence of orthonormal polynomials on a Hilbert space, say L2(�),

if and only if
∫
X gn(x)gm(x)d�(x) = �n,m, where �n,m = 1 if n = m and �n,m = 0 otherwise.

Lemma 1. Let {(Xi,ℬi, �i)}ki=1 denote a sequence of probability spaces; and � = �1 × ⋅ ⋅ ⋅ × �k

represents a product measure on the product space (X1 × ⋅ ⋅ ⋅ × Xk,ℬ1 × ⋅ ⋅ ⋅ × ℬk). Let {fi,ni
}ki=1

be an orthonormal basis for L2(�i), then the tensor products gn1,...,nk
(x1, . . . , xk) = f1,n1(x1) ×

⋅ ⋅ ⋅×fk,nk
(xk) become an orthonormal basis, which contains orthonormal multivariate polynomials

that linearly span L2(�).

Proof. An application of the Fubini theorem yields

� =

∫

X1×⋅⋅⋅×Xk

gn1,...,nk
(x1, . . . , xk)gm1,...,mk

(x1, . . . , xk)d�(x1, . . . , xk) =
k∏

i=1

∫

Xi

fi,ni
(xi)fi,mi

(xi)d�i(xi).

It then follows that � = 1, if ni = mi ∀ i = 1, . . . , k, and � = 0 otherwise.

Lemma 2. Suppose that the probability measure � (as given in Definition 1) is the Gamma dis-

tribution, then the orthonormal basis for L2(�) is the following sequence of normalized Laguerre

polynomials:

p(�)n =

{
1

n!

Γ(�)

Γ(k + n)

} 1
2

L(�)
n (x),

where

L(�)
n (x) = (−1)nx1−� exp(x)

∂n

∂xn
(
xn+�−1 exp(−x)

)
, (2.4)

such that ∫ ∞

0

1

Γ(�)
x�−1 exp(−x)p(�)n (x)p(�)m (x)dx = �m,n.

Proof. The proof immediately follows from Rade and Westergren (1999, p. 263).
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Eq. (2.4) yields the first three Laguerre polynomials: L
(�)
0 (x) = 1, L

(�)
1 (x) = x− �, L

(�)
2 (x) =

x2 − 2(�+ 1)x+ �(1 + �), and L
(�)
3 (x) = x3 − 3(�+ 2)x2 + 3(�+ 1)(�+ 2)x− �(�+ 1)(�+ 2).

Now we can proceed to approximate the joint Gamma pdf f(x, y). Lemma 1 yields a sequence

of the bivariate orthogonal Laguerre polynomials,

L(�11,�21)
n,m (x, y) = (−1)m+nx1−�11y1−�21 exp(x+ y)

∂n+m

∂xn∂ym
(
xn+�11−1ym+�21−1 exp(−(x+ y))

)
.

By virtue of Parseval’s theorem (see, e.g., (Parthasarathy, 1977, Proposition 6.3.4)), upon nor-

malizing the Gamma random variables by their scale parameters, we obtain the following ap-

proximation:

fNM(x, y)
.
=

1

Γ(�11)Γ(�12)
x�11−1y�21−1 exp{−(x+ y)}

{
1 +

N∑

i=1

M∑

j=1

AijL
(�11,�21)
i,j (x, y)

}
(2.5)

for some integers N > 1 and M > 1, where

Aij =
1

i!j!

Γ(�11)Γ(�21)

Γ(�11 + i)Γ(�21 + j)

∫

[0,∞]2
L
(�11,�21)
ij (x, y)f(x, y)dxdy

=
1

i!j!

Γ(�11)Γ(�21)

Γ(�11 + i)Γ(�21 + j)

(
g, L

(�11,�21)
ij

)∗
, (2.6)

where
(
g, L

(�11,�21)
ij

)∗
represents the inner product between g(x, y,�++) and L

(�11,�21)
ij (x, y), taken

under the measure d� = 1
Γ(�11)Γ(�12)

x�11−1y�21−1 exp{−(x + y)}, on the Hilbert space L2(�).

Note at this point that Eq. (2.6) is derived by using the following orthonormality property:
∫
[0,∞]2

L
(�11,�21)
ij (x, y)f(x, y)dxdy = Aiji!j!

Γ(�11+i)Γ(�21+j)
Γ(�11)Γ(�21)

.

Kibble (1941) propose an alternative decomposition of a bivariate Gamma distribution as

given by f(x, y) = 1
Γ(�11)Γ(�12)

x�11−1y�21−1 exp{−(x + y)}
{
1 +

∑∞
i=1 �

iL
(�11,�21)
i,i (x, y)

}
, where �

represents the simple linear correlation between two Gamma random variables.1 However, it can

be immediately seen that this formulation does not allow for nonlinear correlations, which are the

main characteristics of asymmetric dependence in asset returns, albeit its parametric parsimony,

1I am indebted to a referee for pointing out this simplified formulation.
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while our formulation can be implicitly represented in terms of nonlinear correlations.

Theorem 1 (below) provides the asymptotic mean absolute error (MAE) of the series approx-

imation [defined in Eq. (2.5)] in terms of N and M .

Theorem 1. Let Λ2
r! (M0, . . . ,Mr+1;ℝ

+2), where ℝ+2 is the positive half-plane, represent a class

of smooth bivariate functions, say ℓ(x, y) for every (x, y) ∈ ℝ
+2, with the continuous partial

derivatives of orders, j = 0, . . . , r, that satisfy the following conditions: For each partial derivative

of order j, ∥Djℓ∥2 ≤Mj with j = 0, . . . , r, where the L2− norm is taken with respect to the joint

pdf, f(x, y); and in addition, for each partial derivative of order r, !x (D
r
xℓ, ℎ) ≤ Mr+1!x (ℓ, ℎ)

and !y

(
Dr

yℓ, ℎ
)
≤Mr+1!y (ℓ, ℎ), where D

r
xℓ indicates the r− tℎ order partial derivative of ℓ with

respect to x; and !x (ℓ, ℎ)
.
= max x,y

∣t∣≤ℎ
∣ℓ(x+ t, y)− ℓ(x, y)∣ is the modulus of continuity of ℓ with

respect to x.

Suppose that the bounded function g(x, y) = g(x, y,�++) such that supx,y g(x, y) ∈ (−1,∞)

(cf. Eq. (2.3)) belongs to the class Λ2
r! (M0, . . . ,Mr+1;ℝ

+2); and the random variables (X, Y )

satisfy the joint-moment condition max1≤i≤N
1≤j≤M

E [∣X∣pi∣Y ∣pj] < ∞ for some p > 1, where the

expectation is taken with respect to the joint pdf, f(x, y), then one has that

∙ If N =M and r ≥ 1, then, for some generic constants, m > 3p
p−1

and a ∈
(
0, 1− 3p

m(p−1)

)
,

∥fNN(X, Y )− f(X, Y )∥1 = O

⎛
⎝max

⎛
⎝N3−m

(p−1)(1−a)
p ,

!x

(
N−a

2

)

N r−1
+
!y

(
N−a

2

)

N r−1

⎞
⎠
⎞
⎠ ,

where the L1− norm is taken with respect to the joint pdf, f(x, y); !x(.) and !y(.) signify

the moduli of continuity of the function g with respect to x and y respectively.

∙ If N� < M < N�, with 0 < � < � being given, and r > max
(
�+1
2
, �+1

2�

)
, then, for

some generic constants, m > 3
2
max

(
p(�+1)
p−1

, p(�+1)
�(p−1)

)
, a ∈

(
0,min

(
1, 1− 3

2
p(�+1)
m(p−1)

))
and

b ∈
(
0,min

(
1, 1− 3

2
p(�+1)
�m(p−1)

))
,

∥fNM(X, Y )− f(X, Y )∥1 = O
(
max

(
N

3(�+1)
2

−m(p−1)(1−a)
p ,M

3(�+1)
2�

−m(p−1)(1−b)
p ,
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N
�+1
2

−r!x

(
N−a

2

)
+M

�+1
�

−r!y

(
M−b

2

)))
.

Proof. See Appendix.

Remark 2.1. We shall now discuss on the behavior of the asymptotic series, fNM(x, y), defined

in Eq. (2.5). Theorem 1 asserts that the MAE of the series approximation converges to zero as the

orders of approximation (N andM) become large; and the rate of convergence essentially depends

on the ratios (M/N�, M/N�) and the degree of smoothness of the function g(x, y) [as measured

by the moduli of continuity, !x(.) and !y(.)] as well as the order of partial differentiation, r.

In particular, given some finite, but sufficiently large, orders of approximation, this series is

always convergent on a certain compact subset (for instance, a parallelepiped) of ℝ+2; and, close

in spirit to the Edgeworth expansion, the first few Laguerre polynomials will contribute most of

the influence in this expansion – that is, higher-order terms will have smaller impact.2 Moreover,

since X and Y are both standardized by their scale parameters, it is possible in a number of cases

to approximate the joint pdf with a few low-order Laguerre polynomials if the scale parameters are

sufficiently large. However, we are agnostic ex ante as to which orders of the Laguerre polynomial

may optimally approximate the joint pdf. In general, we believe that the choice of finite, but not

too large, N and M would be sufficient to obtain a good approximation as the scale parameters

are large enough.

Theorem 2. Let (X+, Y +) be a vector of positive Gamma random variables. The second-order

series approximation of the joint pdf, f(x, y), is given by

f22(x, y) =
1

Γ(�11)Γ(�21)
x�11−1y�21−1 exp{−(x+ y)}

{
1 + a1L

(�11)
1 (x)L

(�21)
1 (y)

+ a2L
(�11)
1 (x)L

(�21)
2 (y) + a3L

(�11)
2 (x)L

(�21)
1 (y) + a4L

(�11)
2 (x)L

(�21)
2 (y)

}
, (2.7)

2Reminiscent that the Edgeworth expansion of the pdf of S∗

n =
∑n

i=1
Xi/

√
n utilizes the Hermite polynomials.

The truncation at the sixth-order Hermite polynomial yields an error term, Op(n
−3/2), because the fourth-order

cummulant of S∗

n is O(n−3/2). (See, e.g., Small (2010, p. 261).)
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where x = x+/�11, y = y+/�21,

a1 =
1√

�11�21
�xy,

a2 =
1

2�11�21(�21 + 1)

{√
m

(x)
2 m

(y)
4 �xy2 − 2

√
m

(x)
2 m

(y)
2 �xy

}
,

a3 =
1

2�11�21(�11 + 1)

{√
m

(x)
4 m

(y)
2 �x2y + 2

√
m

(x)
2 m

(y)
2 �xy

}
,

a4 =
1

4�11�21(�11 + 1)(�21 + 1)

{√
m

(x)
4 m

(y)
4 �x2y2 − 2

√
m

(x)
4 m

(y)
2 �x2y − 2

√
m

(x)
2 m

(y)
4 �xy2

+ 4

√
m

(x)
2 m

(y)
2 �xy − �11�21

}
,

with �xy = Corr(X, Y ), �x2y2 = Corr(X2, Y 2), �xy2 = Corr(X, Y 2), �x2y = Corr(X2, Y ); and

m
(x)
n and m

(y)
n respectively represent the n-th central moments of X and Y .

Proof. The proof immediately follows from Eqs. (2.5) and (2.6).

Remark 2.2. Like the Edgeworth expansion, the approximator fNM(x, y) can also take negative

values. Thus the validity of the proposed series approximation for approximating the joint pdf

f(x, y) with small orders of approximation, N and M , can be legitimately questioned. In fact the

function fNM(x, y) will be nonnegative if the supremum of the series
∣∣∣
∑∞

i=N

∑∞
j=M AijL

(�11,�21)
ij (x, y)

∣∣∣

converges to zero as (N,M) −→ ∞, and so we shall insist that

lim
(N,M)→∞

sup
(x,y)∈ℝ2

∣∣∣∣∣
∞∑

i=N

∞∑

j=M

AijL
(�11,�21)
ij (x, y)

∣∣∣∣∣ = 0.

This certainly holds under the following two conditions: supi≥N,j≥M sup(x,y)∈ℝ2

∣∣∣L(�11,�21)
ij (x, y)

∣∣∣ <

∞ and
∑∞

i=N

∑∞
j=M ∣Aij∣ < ∞. In this spirit, a feasible way to deal with the non-positiveness

of f22(x, y) in an estimation procedure is possibly to restrict {ai}4i=1 to be infinitesimally small

relative to the sample size.

Remark 2.3. In view of Lemma 1 the above approximation can be generalized to the n-dimensional

case without any significant difficulty. We shall present this generalization in Section 2.2.

In addition, the correlation coefficients �xy, �x2y2, �xy2, and �x2y are fully identified from
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a1, a2, a3, and a4 which can then be efficiently estimated by MLE or the generalized method of

moments (GMM).

The pdfs of (X−, Y −), (X+, Y −), and (X−, Y +) can be approximated by using the same

method, which gives rise to rather cumbersome expressions, so we shall allow ourself to dispense

with the need of presenting them here. However, all the details are given in Chu (2011a).

An example:

It is necessary to be stressed at this point that the accuracy of the above approximation, defined

in Eq. (2.7), can be legitimately questioned. We shall now examine the validity of this approxi-

mation with a simple example. In what follows, we use an exact bivariate Gamma pdf with the

marginal Gamma pdf (see, e.g., Johnson and Kotz (1972)). The method introduced in Section

2.1 is then applied to construct the second-order series approximation of this bivariate pdf. As

shown, this approximation is parameterized by (�xy, �xy2 , �x2y, �x2y2). We then use Monte Carlo

data simulated from the exact pdf to estimate these parameters by the MLE and GMM meth-

ods. Hence, the accuracy of the approximated pdf can be evaluated by computing the differences

between the theoretical correlation coefficients and their estimates.

Johnson and Kotz (1972) show that a bivariate vector of dependent, positive Gamma random

variables, (Y +
1 , Y

+
2 ), can be constructed by Y +

1 = X+
0 + X+

1 and Y +
2 = X+

0 + X+
2 , where X

+
0 ,

X+
1 , and X

+
2 have the pdfs G(�0), G(�1), and G(�2) respectively. It then immediately follows

that Y +
1 ∼ G(�0 + �1) and Y

+
2 ∼ G(�0 + �2). Since the joint characteristic function of (Y +

1 , Y
+
2 )

is

E
[
exp(t1Y

+
1 + t2Y

+
2 )
]
= (1− (t1 + t2))

−�0(1− t1)
−�1(1− t2)

−�2 ,

the Fourier inversion yields the following joint pdf

f(y1, y2) = (Γ(�0)Γ(�1)Γ(�2))
−1 exp(−y1 − y2)∫ min(y1,y2)

0

x�0−1(y1 − x)�1−1(y2 − x)�2−1 exp(x)dx. (2.8)
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The correlation coefficients are given by

�++
xy =

1√
�1�2

{
E[Y +

1 Y
+
2 ]− �1�2

}
,

�++
x2y =

1√
�2(3�21 + 6�1)

{
E[Y +2

1 Y +
2 ]− �2�1(�1 + 1)− 2�1E[Y

+
1 Y

+
2 ] + 2�21�

+
2

}
,

�++
xy2 =

1√
�1(3�22 + 6�2)

{
E[Y +

1 Y
+2
2 ]− �1�2(�2 + 1)− 2�2E[Y

+
1 Y

+
2 ] + 2�1�

2
2

}
,

�++
x2y2 =

1√
(3�21 + 6�1)(3�22 + 6�2)

{
E[Y +2

1 Y +2
2 ]− 2�2E[Y

+
2 Y

+2
1 ]− 2�1E[Y

+
1 Y

+2
2 ]

+ �21�2(�2 + 1) + �22�1(�1 + 1)− 3�21�
2
2

}
, (2.9)

where �1 = �0 + �1; �2 = �0 + �2; E[Y
+
1 Y

+
2 ] = (1 + �0)�0 + �0�1 + �0�2 + �1�2; E[Y

+2
1 Y +

2 ] =

(2 + �0)(1 + �0)�0 + 2(1 + �0)�0�1 + �0(1 + �1)�1 + (1 + �0)�0�2 + 2�0�1�2 + (1 + �1)�1�2;

E[Y +
1 Y

+2
2 ] = �0

(
(2+�0)(1+�0)+2(1+�0)�2+(1+�2)�2

)
+�1

(
(1+�0)�0+2�0�2+(1+�2)�2

)
;

and E[Y +2
1 Y +2

2 ] = (1 + �0)�0
(
(3 + �0)(2 + �0) + 2(2 + �0)�2 + (1 + �2)�2

)
+ 2�0�1

(
(2 + �0)(1 +

�0) + 2(1 + �0)�2 + (1 + �2)�2
)
+ (1 + �1)�1

(
(1 + �0)�0 + 2�0�2 + (1 + �2)�2

)
.

The bivariate Gamma random variables (Y −
1 , Y

−
2 ), (Y −

1 , Y
+
2 ), and (Y +

1 , Y
−
2 ) can be immedi-

ately constructed by using the same method, so we shall not present them here. However, the

details are given in Chu (2011a).

Substituting Eq. (2.9) into Eq. (2.7) yields the second-order approximation of the exact pdf

defined in Eq. (2.8). In Section 4, we shall provide some Monte Carlo simulations to examine

the accuracy of the proposed approximations.

2.2 Approximation of the Multivariate Distribution

Suppose that we have a n-dimensional vector of asset returns, say X = (X1, .., Xn). Then

there are 2n quadrants of multivariate probability densities. In order to make the analytics

tractable, we shall consider only the total loss of individual assets, X− = (X−
1 , ⋅ ⋅ ⋅ , X−

n ). We

then approximate the joint pdf ofX− by using the Laguerre series expansion. This approximation

can be potentially used for approximating downside-risk or tail-risk measures.

11



Theorem 3. Suppose that the losses, X−, from investment assets have Gamma distributions,

the n-dimensional loss pdf can be approximated as

f(x1, . . . , xn) ≈ 1∏n
1 Γ(�i)

(−1)
∏n

1 (�i−1)

n∏

1

(xi)
�i−1 exp

{
n∑

1

xi

}{
A+ B(x1, . . . , xn)�1

+ C (x1, . . . , xn) �2 +
∑

{(J,K)⊂I and J
∩

K=∅}
∪{J=∅ and K⊂I}
∪{J⊂I and K=∅}

DK,J (x1, . . . , xn) �JK

⎫
⎬
⎭

, (2.10)

where

A = 1 + (−1)n
n∏

1

�i,

B (x1, ⋅ ⋅ ⋅ , xn) = (−1)n
1√∏n
1�i

L
(�1,...,�n)
1 (x1, . . . , xn) +

1

2n
∏n

1

√
�i(�i + 1)

L
(�1,...,�i)
2 (x1, ⋅ ⋅ ⋅ , xn) ,

C (x1, . . . , xn) =

∏n
1

√
3�2i + 6�i

4n
∏n

1 �i(�i + 1)
L
(�1,...,�n)
2 (x1, . . . , xn),

DK,J

(
x1, . . . , x

+
n

)
= (−1)∣I∖J

∪

K∣2∣K∣
∏

i∈J

√
3�2i + 6�i

∏

i∈K

√
�i

∏

i∈I∖J ∪

K

�iL
(�1,...,�n)
2 (x1, . . . , xn) ,

�1 = E

[
n∏

1

(Xi + �i)

]
,

�2 = E

[
n∏

1

(Xi + �i)
2

]
,

�JK = E

[∏

i∈J
(Xi + �i)

∏

i∈K
(Xi + �i)

]
,

where L
(�1,...,�n)
i (∙) denotes a Laguerre polynomial such that

L(�1,...,�n)
m (x1, . . . , xn) =

n∏

1

(xi)
1−�i exp

(
n∑

1

xi

)
n∏

i=1

∂m

∂xmi

{
(xi)

m+�i−1 exp

(
−

n∑

1

xi

)}
.

For instance, L1(x1, . . . , xn) = (−1)n
∏n

1 (�i − xi) and L2 =
∏n

1

(
x2i + 2(�i + 1)xi + �i(�i + 1)

)
.
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The notation
∑

{(J,K)⊂I and J
∩

K=∅}
∪{J=∅ and K⊂I}
∪{J⊂I and K=∅}

signifies a summation taken over all the possible, different

subsets, K and J , of the index set I = {1, . . . , n} and ∣K∣ denotes the cardinality of the subset

K.

Proof. Available upon request.

For example, if there are three risky assets, say I = {1, 2, 3}, then {J,K} = {1, 2}, {2, 3}, {1, 3},

{3, 2}, {3, 1}, {2, 1}, {(1, 3), 2}, {(1, 2), 3}, and {(2, 3), 1}. Substituting these (J,K) into Eq. (2.10)

yields an approximation for the trivariate loss pdf.

3 ESTIMATION OF CORRELATION COEFFICIENTS

3.1 Maximum Likelihood (ML) Estimation

In this section, we shall provide the ML estimates of
(
�x+y+ , �x+2y+2 , �x+2y+ , �x+y+2

)
. (Note

that the estimates of the correlation coefficients in other probability quadrants can be similarly

derived. Eq. (2.7) can be rewritten as

fX+Y +(x, y) ≈ G(x, �11)G(y, �21)
{
B0(x, y)+B1(x, y)�x2y2+B2(x, y)�xy+B3(x, y)�xy2+B4(x, y)�x2y

}
,

where B0(x, y) = 1 + �11�21L
(�11)
2 (x)L

(�21)
2 (y); B1(x, y) =

√

m
(x)
4 m

(y)
4

4�11�21(�11+1)(�21+1)
L
(�11)
2 (x)L

(�21)
2 (y);

B2(x, y) =
1√

�11�21

(
L
(�11)
1 (x)L

(�21)
1 (y)− 1

�21+1
L
(�11)
1 (x)L

(�21)
2 (y)− 1

�11+1
L
(�11)
2 (x)L

(�21)
1 (y)

+ 1
(�11+1)(�21+1)

L
(�11)
2 (x)L

(�21)
2 (y)

)
; B3(x, y) =

√

m
(x)
2 m

(y)
4

2�11�21(�21+1)

(
L
(�11)
1 (x)L

(�21)
2 (y)− 1

�11+1
L
(�11)
2 (x)L

(�21)
2 (y)

)
;

and B4(x, y) =

√

m
(x)
4 m

(y)
2

�11�21(�11+1)

(
L
(�11)
2 (x)L

(�21)
1 (y)− 1

�21
L
(�11)
2 (x)L

(�21)
2 (y)

)
.

Theorem 4. The ML estimates of
(
�x+y+ , �x+2y+2 , �x+2y+ , �x+y+2

)
solve the following system:

n∑

i=1

Bk(xi, yi)

{ ∑

(I,J ,K,G,H)⊂{1,2,⋅⋅⋅ ,i−1,i+1,⋅⋅⋅ ,n}
I
∩

J
∩

K
∩

G
∩

H=∅

∣I∣+∣J ∣+∣K∣+∣G∣+∣H∣=n−1

∏

i∈I
Bi

0(x, y)
∏

J⊂{1,2,⋅⋅⋅ ,i−1,i+1,⋅⋅⋅ ,n∖I}
Bj

1(x, y)

13



(�x2y2)
∣J ∣ ∏

K⊂{1,2,⋅⋅⋅ ,i−1,i+1,⋅⋅⋅ ,n∖J}
Bj

2(x, y) (�xy)
∣K∣ ∏

H⊂{1,2,⋅⋅⋅ ,i−1,i+1,⋅⋅⋅ ,n∖K}
Bj

3(x, y)

(�xy2)
∣H∣ ∏

G⊂{1,2,⋅⋅⋅ ,i−1,i+1,⋅⋅⋅ ,n∖H}
Bj

4(x, y) (�x2y)
∣G∣
}

= 0, (3.1)

where k = 1, 2, 3, 4 and A∥B denotes the complement of B in A.

Proof. See Chu (2011a) for details.

In reality, it is very complicated to solve Eq. (3.1), even numerically. Hence, we have to rely

on a recursive algorithm such that, given a starting point, the system will converge to a fixed

point which is a unique solution to Eq. (3.1); see Chu (2011a) for details.

Remark 3.1. The conditions required for the existence of the ML estimates are rather strong so

that the MLE may not be achieved in practice. In the example presented below, the MLE does

not work because the pdf defined in Eq. (2.7) is underidentified.

First, let’s rewrite Eq. (2.7) as

fX+Y +(x, y) ≈ G(x, �11)G(y, �21)
2∑

i,j=0

cijx
iyj,

where c00 = 1+a1�11�21−a2�11�21(�21+1)−a3�11�21(�11+1)+a4�11�21(�11+1)(�21+1); c10 =

�21(�21+1)a2+2�21(�11+1)a3−�21a1−2�21(�11+1)(�21+1)a4; c01 = �11(�11+1)a3+2�11(�21+

1)a2−�11a1− 2�11(�11+1)(�21+1)a4; c20 = �21(�21+1)a4−�21a3; c02 = �11(�11+1)a4−�11a2;

and c11 = a1 − 2(�21 + 1)a2 − 2(�11 + 1)a3 + 4(�11 + 1)(�21 + 1)a4. Setting � =
√
n, where n

denotes the sample size of the data, a Taylor approximation to the log-likelihood function yields

ℒ(Θ) =
n∑

i=1

logPdf(x+i , y
+
i ∣Θ) ∝

n∑

k=1

log
2∑

i,j=0

cijx
i
ky

j
k ∝ c10x̄+ c01ȳ +

1

2

(
c20 −

c210
c00

)
x̄2

+
1

2

(
c02 −

c201
c00

)
ȳ2 +

(
c11 −

c10c01
c00

)
x̄y +O(n−3/2), (3.2)

where X̄ denotes the sample average ofX; and Θ represents the set of parameters to be estimated.

In order to facilitate our analysis, we assume that the leading term of the log-likelihood function

14



(c00) satisfies c00 − 1 = O(1) such that it has small impact on the value of the log-likelihood

function, i.e we set c00 = 1+ �. Taking first-order derivatives of the approximated log-likelihood

function in Eq. (3.2) yields

ℒ(Θ)

�ij
∝

(
C

(ij)

0 − 1

4(�11 + 1)(�21 + 1)
C

(ij)

4

)
+

{
1√

�11�21
C

(ij)

1 +
1√

�11�21(�21 + 1)
C

(ij)

2

+
1√

�11�21(�11 + 1)
C

(ij)

3 − 1√
�11�21(�11 + 1)(�21 + 1)

C
(ij)

4

}
�xy

−
{
C

(ij)

2

√
�11(3�221 − 6�21)

2�11�21(�21 + 1)
− C

(ij)

4

√
�11(3�221 − 6�21)

2�11�21(�11 + 1)(�21 + 1)

}
�xy2

−
{
C

(ij)

3

√
�21(3�211 − 6�11)

2�11�21(�11 + 1)
−

√
�21(3�211 − 6�11)

2�11�21(�11 + 1)(�21 + 1)
C

(ij)

4

}
�x2y

−
√
(3�211 − 6�11)(3�221 − 6�21)

4�11�21(�11 + 1)(�21 + 1)
C

(ij)

4 �x2y2

= Ĉ
(ij)
0 − Ĉ

(ij)
1 �xy − Ĉ

(ij)
2 �xy2 − Ĉ

(ij)
3 �x2y − Ĉ

(ij)
4 �x2y2 = 0, (3.3)

where i, j = {1, 2}; Ĉ(ij)
∙ has an obvious meaning; and C

(ij)

∙ are defined as C
(ij)

0 = C
(ij)
0 , C

(ij)

1 =

�21C
(ij)
1 +�11C

(ij)
2 , C

(ij)

2 = (�21+1)(�21C
(ij)
1 +2�11C

(ij)
2 ), C

(ij)

3 = (�11+1)(2�21C
(ij)
1 +�11C

(ij)
2 ), and

C
(ij)

4 = 2(�11+1)(�21+1)(�21C
(ij)
1 +�11C

(ij)
2 ), with C

(ij)
0 = c

(ij)
10 x̄+

1
2
(c

(ij)
01 ȳ+c

(ij)
20 x̄

2)+c
(ij)
02 ȳ

2+c
(ij)
11 x̄y,

C
(ij)
1 = 1

�
(c

(ij)
10 x̄

2 + c
(ij)
01 x̄y), and C

(ij)
2 = 1

�
(c

(ij)
01 ȳ

2 + c
(ij)
10 x̄y), where the mathematical expressions

of c
(ij)
10 , c

(ij)
01 , c

(ij)
20 , c

(ij)
02 , and c

(ij)
11 , for i, j = {1, 2}, are rather cumbersome, thus we shall resist the

temptation to tax the readers’ patience with a burden of notations. However, all the details are

given in Chu (2011a).

By virtue of Eq. (3.3), one can show that {�xy, �xy2 , �x2y, �x2y2} solves the following system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĉ
(11)
1 Ĉ

(11)
2 Ĉ

(11)
3 Ĉ

(11)
4

Ĉ
(12)
1 Ĉ

(12)
2 Ĉ

(12)
3 Ĉ

(12)
4

Ĉ
(21)
1 Ĉ

(21)
2 Ĉ

(21)
3 Ĉ

(21)
4

Ĉ
(22)
1 Ĉ

(22)
2 Ĉ

(22)
3 Ĉ

(22)
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�xy

�xy2

�x2y

�x2y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĉ
(11)
0

Ĉ
(12)
0

Ĉ
(21)
0

Ĉ
(22)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

Since, as shown, C
(ij)

4 = 2(�11 + 1)(�21 + 1)C
(ij)

1 and C
(ij)
2

�21+1
+ C

(ij)
3

�11+1
= 3C

(ij)

1 , in view of Eq.
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(3.3), the columns Ĉ
(ij)
1 and Ĉ

(ij)
4 of Eq. (3.4) satisfies Ĉ

(ij)
1 = const.Ĉ

(ij)
4 . It then follows that

the determinant in Eq. (3.4) is zero. That is, there exists a redundant equation; and thus the

approximated log-likelihood function, defined in Eq. (3.2), contains a unidentified parameter.

This can be summarized in the following remark:

Remark 3.2. Suppose that the logarithm of the second-order series approximation defined in

Eq. (2.7) has a sufficiently small leading term and the second-order Taylor expansion of this

logarithm is valid, then the ML estimates are not feasible.

3.2 GMM Estimation

In this section, we present a GMM estimator for � = (�xy, �x2y, �xy2 , �x2y2). Note that, with a

little generalization, this estimator can be applied to estimate the parameters of a higher-order

series approximation of the joint pdf.

The intuition for this estimator is that the approximation given by Eq. (2.7) is fully charac-

terized by complete orthogonal polynomials in the sense that each joint moment evaluated under

this approximated pdf can be represented as a linear combination of the expectations of these

orthogonal polynomials. This assertion is summarized in Lemma 2 in Chu and Satchell (2003).

We shall restate it in the following lemma:

Lemma 3. The pdf defined in Eq. (2.7) can be characterized via the following four moment

conditions:

1

�11�21
Ef

X+Y + [L
(�11)
1 (X+)L

(�21)
1 (Y +)] = a1,

1

2�11�21(�21 + 1)
Ef

X+Y + [L
(�11)
1 (X+)L

(�21)
2 (Y +)] = a2,

1

2�11�21(�11 + 1)
Ef

X+Y + [L
(�11)
2 (X+)L

(�21)
1 (Y +)] = a3,

1

4�11�21(�11 + 1)(�21 + 1)
Ef

X+Y + [L2(X
+)L2(Y

+)] = a4. (3.5)

Eq. (3.5) implies that the expectation, taken under fX+Y +(x, y), of any function defined on

ℝ
+2, say g(x+, y+), in the Hilbert space L2(�) can be uniquely expressed as a linear combination
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of a1, a2, a3, and a4. This is because g(x+, y+) always adopts the following representation:

g(x+, y+) =
∑∞

i=1

∑∞
j=1 !ijL

(�11)
i (x+)L

(�21)
j (y+), where !ij = Ef

X+Y +

[
L
(�11)
i (X+)L

(�21)
j (Y +)

]
.

Proof. See Lemma 2 in Chu and Satchell (2003).

Applying the Gram-Schmidth orthogonalization technique, one can derive four orthogonal

conditions for the standard GMM procedure. First let’s write Eq. (3.5) as follows:

Ef
X+Y + [h1(X, Y, �xy)] = 0,

Ef
X+Y + [h2(X, Y, �xy, �xy2)] = 0,

Ef
X+Y + [h3(X, Y, �xy, �x2y)] = 0,

Ef
X+Y + [h4 (X, Y, �xy, �x2y, �x2y2 , �xy2)] = 0,

where the meanings of notations, hi(x, y, �), are clear from the context. It then follows that

ho
1(x, y, �xy) = h1(x, y, �xy),

ho
2(x, y, �xy, �xy2) = h2(x, y, �xy, �xy2)

− < h2(x, y, �xy, �xy2),h1(x, y, �xy) >

< h1(x, y, �xy),h1(x, y, �xy) >
ho

1(x, y, �xy),

ho
3(x, y, �xy, �x2y) = h3(x, y, �xy, �x2y)

− < h3(x, y, �xy, �x2y),h
o
2(x, y, �xy, �xy2) >

< ho
2(x, y, �xy, �xy2),h

o
2(x, y, �xy, �xy2) >

ho
2(x, y, �xy, �xy2)

− < h3(x, y, �xy, �x2y),h
o
1(x, y, �xy) >

< ho
1(x, y, �xy),h

o
1(x, y, �xy) >

ho
1(x, y, �xy),

ho
4(x, y, �xy, �x2y, �x2y2 , �xy2) = h4(x, y, �xy, �x2y, �x2y2 , �xy2)

− < h4(x, y, �xy, �x2y, �x2y2 , �xy2),h
o
3(x, y, �xy, �x2y) >

< ho
3(x, y, �xy, �x2y),h

o
3(x, y, �xy, �x2y) >

ho
3(x, y, �xy, �x2y)

− < h4(x, y, �xy, �x2y, �x2y2 , �xy2),h
o
2(x, y, �xy, �xy2) >

< ho
2(x, y, �xy, �xy2),h

o
2(x, y, �xy, �xy2) >

ho
2(x, y, �xy, �xy2)

− < h4(x, y, �xy, �x2y, �x2y2 , �xy2),h
o
1(x, y, �xy) >

< ho
1(x, y, �xy),h

o
1(x, y, �xy) >

ho
1(x, y, �xy),

where < X, Y > denotes the inner product of X and Y in the Hilbert space. Hence, we obtain
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four orthogonal conditions:

Ef
X+Y + [h

o
1(X, Y, �xy)] = 0,

Ef
X+Y + [h

o
2(X, Y, �xy, �xy2)] = 0,

Ef
X+Y + [h

o
3(X, Y, �xy, �x2y)] = 0,

Ef
X+Y + [h

o
4 (X, Y, �xy, �x2y, �x2y2 , �xy2)] = 0.

LetHo(X, Y,�) = {ho
1(X, Y, �xy),h

o
2(X, Y, �xy, �xy2),h

o
3(X, Y, �xy, �x2y),h

o
4 (X, Y, �xy, �x2y, �x2y2 , �xy2)}

′

.

The GMM estimates of � = {�xy, �x2y, �xy2 , �x2y2}
′

are given by

�̂ = argmin�∈[−1,1]4Ĥ
o(�)

′

1×4

Ŵ−1(�)
4×4

Ĥo(�)
4×1

, (3.6)

where

�̂
d≈ N

⎛
⎜⎜⎜⎜⎝
0, [TD(�̂)

′

4×4

Ŵ−1(�̂)
4×4

D(�̂)T

4×4

]−1

︸ ︷︷ ︸
Asymptotic Variance

⎞
⎟⎟⎟⎟⎠

(3.7)

together with

Ĥo(�) =
1

T

T∑

i=1

Ho(Xi, Yi,�)
4×1

,

Ŵ (�)
4×4

=
1

T

T∑

i=1

Ho(Xi, Yi,�)
1×4

Ho′(Xi, Yi,�)
4×1

,

D(�) =
∂Ĥo(�)

∂�
.

It is helpful to note at this point that many numerical optimization techniques such as the

Nelder-Mead simplex algorithm can be used to find �̂.
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4 SIMULATION STUDY

In this section, we shall numerically examine the accuracy of the estimators proposed in Section

2. Since Monte Carlo simulation only requires random data simulated from a pdf, one can

effectively compare the performance of different theoretical models.

4.1 GMM

First, we assign some numbers to the parameters of the density (2.7), then use the von Neumann

acceptance/rejection technique to draw several batches of random data from this density. Next

the GMM is applied to generate estimates from these batches of data. To measure the accuracy

of the proposed GMM estimator, we compute the differences between the assigned parameters

and the empirical means of the GMM estimates. The steps are as follows:

STEP I: Assign the following values to the density (2.7):

�11 = 1.2, �12 = 1.5, �21 = 1.4, �22 = 1.8;

p = q = 0.5 (equal shifting positive-negative probabilities);

{�++
11 , �

++
12 , �

++
21 , �

++
22 } = {0.39, 0.09,−0.25, 0.52};

{�−−
11 , �

−−
12 , �

−−
21 , �

−−
22 } = {0.69, 0.08, 0.62, 0.51};

{�+−
11 , �

+−
12 , �

+−
21 , �

+−
22 } = {0.01, 0.11, 0.23, 0.29};

{�−+
11 , �

−+
12 , �

−+
21 , �

−+
22 } = {−0.18,−0.29, 0.98, 0.42}.

STEP II: Use the von Neumann algorithm to generate pseudo-random numbers in (−1, 1)

for the pdf defined in Eq. (2.7). Interested readers are referred to Chu (2011a) for the details of

this algorithm.3 (See, e.g., Niederreiter (1992).)

STEP III: Use the algorithm described in STEP II to draw 21 batches of 200 random

data points and input them into the GMM in Section 3.2. This yields 21 vectors of the GMM

estimates in Table 1. The absolute biases are reported in Table 3. These small biases confirm

3The SAS/IML code for generating these random numbers is available upon request.

19



that the GMM estimator for the density (2.7) is legitimately efficient. Moreover, this density

can be identified by its parameters.

4.2 MLE

The GMM fits the sample moments of orthogonal restrictions to the true moments. Thus, it

may still produce good estimates, even when the model is slightly misspecified. Meanwhile, the

MLE fits the likelihood function of data to the true likelihood function; that is to say the data

generation step is crucial in the MLE. We propose the following strategy:

1. As described in the example in Section 2.1, we draw three Gamma random variables to

construct a bivariate Gamma variable as follows: X = X1 +X2 and Y = X1 +X3.

2. We then use the method in Section 2.1 to approximate the density of (X, Y ) up to sec-

ond order. Since the mgf of (X, Y ) has a closed form, we can easily derive closed-form

expressions for the nonlinear correlations.

3. We apply the MLE described in Section 3.1 to estimate these correlations.

True values of the parameters and their estimates are reported in Table 2. As usual the accuracy

of statistical estimates is measured through biases, as reported in Table 3. Notice that the

second quadratic correlations’ estimates perform very poorly, possibly because this model is

under-identified when the scale parameters of the Gamma densities become large, or because

there is a redundant parameter (cf. Remark 3.2). For this reason the GMM performs better

than the MLE.

5 CONCLUSION

This paper is related to the recent, rapidly expanding, literature on modeling joint probability

distribution for equity returns in risk management and optimal asset allocation. We construct a

series approximation, based on a sequence of Laguerre polynomials, of a joint pdf. The MLE and

20



GMM methods to estimate the correlation coefficients of the approximated pdf from empirical

data are then proposed. We also provide a simulation study to compare the performance of these

two methods of estimation. Overall, it was found that the GMM method outperforms the MLE

method.
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Appendix A: MAIN PROOFS

Proof of Theorem 1: Define the linear operator UNMg =
∑N

i=1

∑M
j=1AijL

(�11,�21)
i,j (x, y) of

the bounded function g, where Aij is given in Eq. (2.6), as a map from the functional space

Λ2
r! (M0, . . . ,Mr+1;ℝ

+2), which is a subspace of the infinite-dimensional Hilbert space L2(�), into

a Hilbert space, L
(NM)
2 (�), of dimension NM . The space L

(NM)
2 (�) uses the Laguerre polynomials

as its basis. In view of Eq. (2.5), it is obvious that ∥fNM(X, Y )− f(X, Y )∥1 ∝ ∥UNMg − g∥1.

[Note at this point that, in what follows, all the quasi-norms are taken with respect to the pdf

f(x, y), unless otherwise indicated.]

An application of Lebesgue’s lemma (see, e.g., DeVore and Lorentz (1993)) yields ∣UNMg − g∣ ≤
(
1 + ∥UNM∥

L
(NM)
2 (�)

)
inf

PNM∈L(NM)
2 (�)

∣PNM − g∣ pointwise, where ∥UNM∥
L
(NM)
2 (�)

is the norm of

UNM , and PNM represents an algebraic polynomial in L
(NM)
2 (�). It then follows that

∥UNMg − g∥1 ≤
(
1 + ∥UNM∥

L
(NM)
2 (�)

)∥∥∥∥∥ inf
PNM∈L(NM)

2 (�)

∣PNM − g∣
∥∥∥∥∥
1

. (A-1)

Because

∥UNMg∥L2(�)
=

⎛
⎝
∫

ℝ+2

(
N∑

i=1

M∑

j=1

(
g, L

(�11,�21)
i,j

)∗
L
(�11,�21)
i,j (x, y)

)2
⎞
⎠

1/2

∝
(

N∑

i=1

M∑

j=1

(
g, L

(�11,�21)
i,j

)∗2
)1/2

≤ ∥g∥L2(�)

(
N∑

i=1

M∑

j=1

∥∥∥L(�11,�21)
i,j

∥∥∥
2

L2(�)

)1/2

,

where the last inequality follows from Hölder’s inequality, together with ∥g∥L2(�)
< ∞ and

∥∥∥L(�11,�21)
i,j

∥∥∥
L2(�)

<∞, we have

∥UNM∥
L
(NM)
2 (�)

= O
(
(NM)1/2

)
. (A-2)
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By using a truncation argument and Minkowski’s inequality, one can derive

∥PNM(X, Y )− g(X, Y )∥1 ≤
∥∥∥[PNM(X, Y )− g(X, Y )]I(X ≤ �N

∩
Y ≤ �M)

∥∥∥
1

+
∥∥∥[PNM(X, Y )− g(X, Y )]I(X > �N

∪
Y > �M)

∥∥∥
1
= I + II,

where �N and �M are the truncation parameters depending on N andM respectively. An applica-

tion of Hölder’s inequality, Tchebyshev’s inequality, and an elementary inequality ∣a1 + ⋅ ⋅ ⋅+ am∣r ≤

mr−1 (∣a1∣r + ⋅ ⋅ ⋅+ ∣am∣r) (see, e.g., Pötscher and Prucha (1997, p. 273)) yields, for some p > 1

and m > 1,

II ≤ (NM) max
1≤i≤N
1≤j≤M

(
E[∣X∣pi∣Y ∣pj]

)1/p
⎛
⎝E

p−1
p [∣X∣m]

�
m p−1

p

N

+
E

p−1
p [∣Y ∣m]

�
m p−1

p

M

⎞
⎠

≤ 2× Const.× max
1≤i≤N
1≤j≤M

(
E[∣X∣pi∣Y ∣pj]

)1/p
max

⎛
⎝ NM

�
m p−1

p

N

,
NM

�
m p−1

p

M

⎞
⎠ . (A-3)

∙ If N = M , then, by setting �N = �M = N1−a with 0 < a < 1 − 3p
m(p−1)

for some m > 3p
p−1

,

we have that, in view of Eq. (A-3),

II ≤ Const.×N2−m
(p−1)(1−a)

p . (A-4)

Moreover, in view of Lemma 4, for some r ≥ 1, imposing Hilbert norms on the variable

quantities yields

I ≤M∗
r

1

N r

(
!x

(
N−a

2

)
+ !y

(
N−a

2

))
. (A-5)

Hence, in view of Eqs. (A-1), (A-2), (A-4) and (A-5), one can immediately obtain

∥fNN(X, Y )− f(X, Y )∥1 = O

⎛
⎝max

⎛
⎝N3−m

(p−1)(1−a)
p ,

!x

(
N−a

2

)

N r−1
+
!y

(
N−a

2

)

N r−1

⎞
⎠
⎞
⎠ .

∙ If N� < M < N� for some 0 < � < �, then, by setting �N = N1−a and �M = N1−b
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with 0 < a < min
(
1, 1− 3

2
p(�+1)
m(p−1)

)
and 0 < b < min

(
1, 1− 3

2
p(�+1)
�m(p−1)

)
for some m >

3
2
max

(
p(�+1)
p−1

, p(�+1)
�(p−1)

)
, we have that, in view of Eq. (A-3),

II ≤ Const.×max
(
N�+1−m

(p−1)(1−a)
p ,M

�+1
�

−m
(p−1)(1−b)

p

)
. (A-6)

Moreover, an application of Lemma 4 together with a Hilbert norm argument yield, for

some r > max
(
�+1
2
, �+1

2�

)
,

I ≤M∗
r

(
1

N r
!x

(
N−a

2

)
+

1

M r
!y

(
M−a

2

))
. (A-7)

Hence, reminiscent of Eqs. (A-1), (A-2), (A-6) and (A-7), by noting that (NM)1/2 < N
�+1
2

and (NM)1/2 < M
�+1
2� , we obtain

∥fNM(X, Y )− f(X, Y )∥1 = O
(
max

(
N

3(�+1)
2

−m(p−1)(1−a)
p ,M

3(�+1)
2�

−m(p−1)(1−b)
p ,

N
�+1
2

−r!x

(
N−a

2

)
+M

�+1
�

−r!y

(
M−b

2

)))
. ■

Appendix B: AUXILIARY RESULTS

Lemma 4. Let Λ2
r! (M0, . . . ,Mr+1;B), where B = [a1, b1]× [a2, b2] with a1 < b1 and a2 < b2 is a

parallelepiped, represent a space of smooth bivariate functions, f(x, y), with the continuous partial

derivatives of orders, j = 0, . . . , r, that satisfy the following conditions: For each partial derivative

of order j, ∣Djf ∣ ≤Mj for every j = 0, . . . , r, and in addition, for each partial derivative of order

r, !x (D
r
xf, ℎ) ≤ Mr+1!x (f, ℎ) and !y

(
Dr

yf, ℎ
)
≤ Mr+1!y (f, ℎ), where D

r
xf represents the r-th

order partial derivative of f with respect to x; !x (f, ℎ)
.
= max x,y

∣t∣≤ℎ
∣f(x+ t, y)− f(x, y)∣ is the

modulus of continuity of f with respect to x. Then there exists a constant, M∗
r , with the property

that, for each f ∈ Λ2
r! (M0, . . . ,Mr+1;B), there are algebraic polynomials, PNM(x, y), of degrees
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N in x and M in y, for which

max
(x,y)∈B

inf
PNM

∣PNM(x, y)− f(x, y)∣ ≤M∗
r

(
1

N r
!x

(
f,

∣b1 − a1∣
2N

)
+

1

M r
!y

(
f,

∣b2 − a2∣
2M

))
,

where M∗
r depends only on r.

Proof. For each (x, y) ∈ B, there exists a pair of (u, v) ∈ [−1, 1]2, such that x = (b1−a1)u+(a1+b1)
2

and y = (b2−a2)v+(a2+b2)
2

. It can then be shown that f(x, y) = f
(

(b1−a1)u+(a1+b1)
2

, (b2−a2)v+(a2+b2)
2

)
=

�(u, v) = �(cos �1, cos �2) =  (�1, �2), where  (., .) is a periodic function with the period 2�, de-

fined for all real values of (�1, �2). Since f ∈ Λ2
r! (M0, . . . ,Mr+1;B), it follows that the function

�(., .) has continuous partial derivatives of orders, j = 0, . . . , r; in addition, Lemma 3 in Lorentz

(1966, p. 89) implies that !�1(D
r
�1
 , ℎ) ≤ C!u(�, ℎ), where C is a generic constant.

Then, by virtue of Theorem 6 in Lorentz (1966, p.87), there are trigonometric polynomials,

TNM(�1, �2), for which

max
(x,y)∈B

inf
PNM

∣PNM(x, y)− f(x, y)∣ = max
(�1,�2)∈ℝ2

inf
TNM

∣TNM(�1, �2)−  (�1, �2)∣

≤ M∗
r

(
1

N r
!u

(
�,

1

N

)
+

1

M r
!v

(
�,

1

M

))
.

Using the same method employed to prove Lemma 2 in Natanson (1964, p. 121), one can imme-

diately verify that !u(�, ℎ1) ≤ !x (f, ∣b1 − a1∣ℎ1/2) and !v(�, ℎ2) ≤ !y (f, ∣b2 − a2∣ℎ2/2). Setting

ℎ1 = 1/N and ℎ2 = 1/M , Lemma 4 then follows.
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Table 1: GMM estimates of the correlation coefficients for the approximated bivariate Gamma
density

�++
11 �++

12 �++
21 �++

22 �−−
11 �−−

12 �−−
21 �−−

22

0.6730637 0.1223867 0.1432347 0.6828758 0.9299874 0.4307273 0.2969893 0.5128842
0.4557293 0.1012662 0.4326108 0.3545097 0.5355086 -0.289183 1.00005 0.8956267
0.2106303 0.2465397 -0.248404 0.0754728 0.9241941 0.1088326 1 0.4574445
0.5749553 0.0099689 0.1304068 0.6057853 0.9102113 0.0488261 0.204786 -0.019437
0.5070421 0.1203055 0.0994527 0.1577376 0.7447884 0.001082 0.1388486 -0.004572
0.4057905 0.0637831 0.1571887 0.3725408 0.7876742 -0.015461 0.8533368 -0.403638
0.4976929 0.1123169 -0.215775 -0.047582 0.8426215 0.1688845 1 -0.146799
0.6118393 -0.140833 -0.866268 -0.069186 0.925677 0.2489968 0.9116853 0.9591395
0.3729886 0.1282258 0.1539372 0.2048856 0.586707 -0.232206 0.1135751 0.6836731
0.3140399 0.0463992 0.0650365 0.4953924 0.8095857 0.187269 0.9826298 -0.283015
0.513071 0.1155333 -0.279779 -0.089335 0.8936176 0.2219065 1 0.9805002
0.336247 0.2716652 0.0030007 0.6139369 0.6304902 -0.204807 0.2173592 0.9686705
0.3891339 0.2172356 0.0169506 0.6797232 0.6571301 0.1110787 0.5585681 0.8202901
0.5210298 0.2041331 0.1048178 0.6458012 0.8507025 0.0974844 0.8425314 -0.44332
0.6381421 -0.100557 -1 0.6012079 0.6365218 -0.183036 0.8913917 0.6096091
0.7172848 0.1224623 -0.367307 0.5833059 0.7586488 -0.024203 0.4972418 -0.191014
0.4220508 0.1251892 0.0579074 0.1245374 0.6099436 -0.207999 0.3214134 0.9163124
0.301063 0.2448463 -0.120842 0.7911762 0.9219299 0.233542 1 0.5609462
0.6371962 0.0175613 0.1178328 0.6433291 0.8050357 0.1557702 1 0.3288951
0.4893729 0.089287 0.4147181 0.33436 0.9634782 0.2103238 0.6938591 0.8230263
0.6933347 -0.097265 -0.894399 -0.446117 0.6513061 -0.237694 0.5662478 0.6403664
0.4896m 0.0921m -0.099794m 0.34830m 0.77978m 0.03953m 0.67097m 0.41264m

0.141267v 0.113091v 0.3978v 0.33219v 0.13435v 0.2000v 0.33535v 0.49386v

0.39t 0.09t -0.25t 0.52t 0.69t 0.08t 0.62t 0.51t

m Sample means of estimates.
v Sample variance of estimates.
t True values of estimates.
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Table 1 continued
�+−
11 �+−

12 �+−
21 �+−

22 �−+
11 �−+

12 �−+
21 �−+

22

0.9260262 0.1118412 0.2286519 0.4411966 0.5681918 -0.326645 0.8875549 -0.536944
-0.33234 0.087687 0.573756 -0.284318 -0.342045 -0.173939 0.3972483 -0.326392
0.16582 0.1437655 0.3006312 0.2999764 -0.231809 -0.144689 0.3460006 -0.064928
-0.273685 0.0657121 0.3003377 -0.121501 -0.285064 -0.151136 0.3339118 -0.270312
-0.264066 0.1010835 0.0076608 0.9518736 -0.237804 -0.20005 0.8075336 0.2885684
0.0125447 0.2109293 -0.006478 0.3668681 -0.308642 -0.123754 0.7476014 0.4872635
-0.224699 0.0628517 0.3639834 -0.160763 -0.275373 -0.176222 0.1109797 -0.146932
0.9834569 0.9216398 0.6013394 0.875493 -0.231336 -0.159749 0.6316131 -0.047345
-0.323284 0.0667034 0.2511512 -0.106199 -0.288612 -0.191036 0.4418834 -0.36108
-0.273869 0.087516 0.4135002 -0.159064 -0.152913 -0.160601 0.8479214 0.4339158
-0.284789 0.0779757 0.3636866 -0.144237 -0.215926 -0.242189 0.8870396 0.2122554
-0.043522 0.2578679 0.1071299 0.2923216 -0.267437 -0.192861 0.8706073 -0.02047
0.4192471 0.4530386 0.0892572 0.608358 -0.198461 -0.307013 0.5734237 0.5539023
-0.287876 0.0653155 -0.123094 0.1220608 -0.281743 -0.151958 0.4225094 -0.329487
-0.077189 0.190744 0.2632309 0.1502213 -0.213604 -0.156652 0.7565706 0.0769401
-0.161489 0.0888689 0.1432991 0.0253181 -0.213396 -0.175284 0.9500512 0.4301483
0.3247014 0.4326993 0.2787204 0.586907 0.2473671 -0.451846 0.5457911 -0.462346
-0.284522 0.0702579 0.1142013 -0.020286 -0.272232 -0.150437 0.9290078 0.379338
0.4309398 0.368555 -0.047874 0.6903701 -0.193553 -0.163183 0.7898284 0.1985597
-0.135778 0.1668892 0.1062807 0.4560351 -0.214194 -0.130621 0.8229974 0.4733741
-0.290543 0.0705196 0.2908847 -0.106976 -0.269851 -0.138472 0.4760661 -0.349936
0.000241m 0.19535m 0.22001m 0.22684m -0.184468m -0.19373m 0.646482m 0.029433m

0.3991v 0.20629v 0.189659v 0.36903v 0.20807vv 0.079021v 0.24004v 0.354438v

0.01t 0.11t 0.23t 0.29t -0.18t -0.29t 0.098t 0.42t

m Sample means of estimates.
v Sample variance of estimates.
t True values of estimates.
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Table 2: MLE estimates of the correlation coefficients for the approximated
bivariate Gamma density.

�++
11 �++

12 �++
21 �++

22 �−−
11 �−−

12 �−−
21 �−−

22

0.4607398 0.0644466 0.4211025 0.2547295 0.0280979 -0.137311 0.2338121 0.1211056
0.2258627 -0.047231 -0.183393 0 0.5508075 -0.346507 -0.76702 1
0.4011386 0.1387048 0.1843259 0 0.4541232 -0.395179 -0.826771 1
0.7700997 -0.04508 0.6235942 0.0317679 0.2685211 -0.092907 -0.415615 0.4099073
0.4974558 0.6751502 0.4090423 1 0.2987722 -0.20439 -0.188046 0.0956322
0.5866687 0.5584372 0.6452364 1 0.6342863 -0.491351 -0.778177 0.8700885
0.2847864 0.0968794 -0.201032 1.04E-56 0.4405474 -0.42776 -0.593584 0.8637688
0.7614751 0.809886 0.164107 0.2840303 0.4197586 -0.164767 -0.524091 0.3413737
0.521727 0.486447 0.0748803 0.1107439 0.7608856 -0.227846 -0.84362 0.4177064
0.4600954 0.3450186 0.3975359 0.4816216 0.6457732 -0.750145 -0.61858 1
0.6352237 0.6864784 0.5896205 1 0.3947875 -0.382323 -0.188913 0.2632566
0.2758658 0.2141674 -0.159259 0.1356528 0.5060383 -0.560728 -0.46626 1
0.2933962 0.236212 0.1733243 0.4470176 0.4386419 -0.505187 -0.435968 1
0.5919078 0.1925363 0.3977034 0 0.5745414 -0.356836 -0.639683 0.4320255
0.4924768 -0.125783 0.6179296 0.2748857 0.775738 -0.841606 -0.277038 0.6037128
0.3242453 0.2043094 0.0850034 0.0219106 0.1979255 -0.064461 -0.650024 1
0.2308542 0.0950268 -0.09589 0 0.4838811 -0.382961 -0.513645 0.5566687
0.2240084 -0.078468 0.10972 0 0.2596469 -0.22028 -0.049659 0.1831497
0.5290685 0.7102645 0.3322862 1 0.5381966 -0.533565 -0.713204 1
0.1939863 -0.008139 0.0800304 0.3632461 0.18187 0.0693153 -0.490022 0.413735
0.2444463 0.0548246 0.0049966 0.0323727 0.2782986 -0.085535 -0.27166 0.0881147
0.5900649 0.6295063 0.4021926 0.6158496 0.859559 -0.827611 -0.933004 1
0.3145514 0.6389762 0.1781695 0.9397804 0.7938697 -0.740086 -0.848555 1
0.0861852 -0.069242 -0.129151 0 0.5291788 -0.154138 -0.077584 0.0104949
0.5776924 -0.268346 0.8360624 0 0.3942675 -0.450462 -0.326114 0.6573463
0.2493126 -0.161985 0.1742394 0 0.4714314 -0.641221 -0.424911 0.883609
0.0017841 -0.301315 -0.059536 0 0.2570237 -0.220843 -0.410113 0.6773432
0.2324235 -0.171697 0.0662391 0.2790612 0.7365611 -0.803375 -0.766552 1
0.8018351 0.298521 0.4244802 0.201589 0.774632 -0.227086 -0.705571 0.2737713
0.6062305 0.7129064 0.6027052 1 0.348279 -0.575109 -0.39672 1
0.3684036 0.2442753 0.2593266 0.3909626 0.721836 -0.726049 -0.053728 9.656E-57
-0.031634 -0.390804 -0.192107 0 0.4731626 -0.549979 -0.621648 1
0.6013609 0.5048365 0.3871922 0.5062076 0.3408837 -0.224044 -0.554313 0.6188665
0.2885378 0.8015108 -0.07025 1 0.4588213 -0.44763 -0.212971 0.2394289
0.2834996 -0.787581 0.605897 1.04E-56 0.0890135 -0.093685 -0.031943 0.7398167
0.6240983 0.3511746 0.5842334 0.540459 0.4297839 -0.338546 -0.63785 1
0.0453896 0.013318 -0.248168 1.04E-56 0.3205413 -0.172252 -0.383051 0.4896278
0.3719561 0.383658 0.3717725 0.6181806 0.7091912 -0.685409 -0.459438 0.5108382
0.5072256 0.90715 0.1869558 1 0.5852738 -0.482649 -0.558238 0.5418521
0.3794262 0.4822563 0.3820422 1 0.1994026 -0.476244 -0.254841 1
0.4804846 0.0475961 -0.162319 0 0.430004 -0.736523 -0.246409 1
0.5220239 0.5496672 0.4788608 0.8724914 0.482516 -0.384237 -0.53465 0.6258008
0.132228 -0.071231 -0.084503 0 0.4181495 -0.130449 -0.688394 1
0.396247m 0.223424m 0.224772m 7.404711m 0.464059m -0.399766m -0.468474m 2.998350m

0.20561v 0.37324v 0.28728v 25.93828v 0.19875v 0.23926v 0.26114v 15.30443v

0.45t 0.2450328t 0.2450328t 0.4542857t 0.45t -0.345033t -0.345033t 0.4542857t

m Sample means of estimates.
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Table 2 continued
�+−
11 �+−

12 �+−
21 �+−

22 �−+
11 �−+

12 �−+
21 �−+

22

-0.705045 0.7431995 -0.645447 1 -0.525542 -0.668617 0.5517036 1
-0.962715 0.156566 -0.798224 0.1955249 -0.172754 -0.252232 -0.273112 0
-0.53409 0.3749207 -0.175832 0.0187413 -0.261446 0.2220223 0.2185962 0
-0.514111 0.4872625 -0.440945 0.7089263 -0.243725 0.0954043 0.0881891 0
-0.185442 -0.028694 0.0175836 0 -0.701462 -0.548441 0.6190129 0.802483
-0.352638 0.4703795 -0.426141 1 -0.292949 0.1231165 0.1263402 0
-0.617529 0.5780983 0.1189296 9.658E-57 -0.557031 -0.720734 0.2800103 1
-0.45318 0.4389698 -0.565774 1 -0.383168 -0.77762 -0.160637 0.5858643
-0.3047 -0.015738 -0.191372 0.0039936 -0.754166 -0.792134 0.5397566 1
-0.734239 0.6338595 -0.199435 0.20735 -0.407514 -0.13154 0.357302 0.4972105
-0.208367 -0.004104 -0.047844 0 -0.120781 -0.113828 -0.13699 0.1274696
-0.490966 -0.205873 -0.618766 0.1313894 -0.247292 -0.025608 -0.108973 0
-0.845481 0.3842103 -0.958174 1 -0.18483 0.038339 0.0185968 0
-0.631977 0.2228924 -0.394311 0.0925887 -0.349066 -0.234666 0.1331822 0.2371404
-0.147441 0.8681121 0.4254843 1 -0.577308 -0.313897 0.8576076 0.9050508
-0.428523 0.2098789 0.2063592 0 -0.444945 -0.604043 0.3963558 1
-0.195115 0.0796259 -0.064716 0.3391465 -0.217772 0.0573444 -0.006842 0
-0.349041 0.3255628 -0.535979 1 -0.860591 -0.977145 0.6372728 1
-0.258603 0.0158704 0.0629071 0 -0.547418 -0.440004 0.7017435 1
-0.251898 -0.385538 -0.080279 0 -0.640278 -0.338996 0.7486358 1
-0.523897 0.4658516 -0.419458 0.6592378 -0.56806 -0.599613 0.574367 1
-0.52036 0.5278463 -0.580778 1 -0.474938 -0.166263 0.3056072 0.1001245
-0.390423 -0.019779 -0.080346 0 -0.131752 0.096296 0.0203089 0.1068036
-0.462914 0.1777521 -0.158341 0 -0.791983 -0.490404 0.41492 0.1324247
-0.257404 0.059505 -0.035735 0.4878197 -0.047859 0.2154999 -0.015896 0.0710316
-0.254791 0.2172544 -0.254799 0.6082698 -0.495463 -0.324794 0.0342687 0
-0.155532 0.458528 0.1735506 1 -0.495175 -0.472272 0.2107987 0.5336349
-0.361664 0.235348 -0.104689 0.0413851 -0.750559 -0.863926 0.6242197 1
-0.36796 0.4330418 -0.459109 1 -0.41783 -0.437001 0.4827321 1
-0.616083 0.6446127 -0.668016 1 -0.215951 0.145282 -0.004191 0
-0.207841 0.0825237 -0.258387 0.4734065 -0.487068 -0.381247 0.48589 1
-0.089511 -0.105263 0.1667338 0.1356506 -0.086739 0.0290682 -0.083497 0.1011624
-0.393798 -0.031707 -0.296334 0 -0.446715 -0.621007 0.2144225 0.8405274
-0.208137 0.0406794 0.0875552 0 -0.57997 -0.556281 0.3991365 0.6028199
-0.589002 0.49648 0.1459097 0 -0.728803 -0.382795 0.3391212 0.2609004
-0.499208 -0.100913 -0.424072 0 -0.408569 -0.472739 0.5403495 1
-0.928418 0.7831349 -0.892352 1 -0.126388 0.1413302 0.0794324 1.039E-56
-0.434092 0.0159417 -0.447964 0.2881554 -0.046625 -0.32437 -0.293003 0.2374036
-0.602489 -0.1798 -0.703628 0 -0.603892 -0.546673 -0.344696 0
-0.252773 0.0338561 0.0011723 0 -0.524503 -0.491964 0.6072495 1
-0.127825 -0.024011 0.1644927 0 -0.806799 -0.549551 0.9490256 1
-0.192625 0.1116957 0.2233106 0 -0.288536 -0.286661 -0.277324 1.039E-56
-0.835541 0.4649461 -0.849201 0.7650062 -0.524678 -0.513344 0.0247115 1.039E-56
-0.428916m 0.235744m -0.255406m 2.747828m -0.431137m -0.331551m 0.252923m 7.584699m

0.22478v 0.29339v 0.34645v 15.50192v 0.22297v 0.31708v 0.33396v 26.16612v

-0.45t 0.245033t -0.2450328t 0.3800827t -0.45t -0.2450328t 0.245033t 0.4542857t

m Sample means of estimates.
v Sample variance of estimates.
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Table 3: Bias of empirical means of estimates from their true values (∣�− �̂∣)
Coefficients of
correlations1

�++
11 �++

12 �++
21 �++

22 �−−
11 �−−

12 �−−
21 �−−

22

GMM 0.0996
0.1412

6.21−3

0.1130
0.1502
0.3978

0.1716
0.3321

0.0897
0.1343

0.0404
0.2001

0.0509
0.3353

0.0973
0.4938

MLE 0.0537
0.20561

0.0216
0.37324

0.0202
0.28728

6.9504
25.93828

0.014059
0.19875

0.054733
0.23926

0.1234
0.26114

2.544
15.30443

Coefficients of
correlations1

�+−
11 �+−

12 �+−
21 �+−

22 �−+
11 �−+

12 �−+
21 �−+

22

GMM 9.76−3

0.3991
0.0853
0.2062

9.99−3

0.1896
0.0631
0.3690

4.687−3

0.2080
0.0962
0.07902

0.3335
0.2400

0.39056
0.35443

MLE 0.02108
0.22478

9.289−3

0.29339
0.01037
0.34645

2.36677
15.34948

0.018863
0.22297

0.08651
0.31708

7.89−3

0.33396
7.1304
25.90839

1 Small numbers under the parenthesis are variances of the estimates.
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