# Ordinal-symbol skills: The bridge between mathematics and quantity-symbol skills

Chang Xu<sup>1</sup>, Katherine Newman<sup>2</sup>, Feng Gu<sup>1</sup>, and Jo-Anne LeFevre<sup>12</sup>
<sup>1</sup>Department of Psychology, <sup>2</sup>Institutive of Cognitive Science, Carleton University

## Introduction

- The abilities to access quantitative and ordinal information in numerical symbols are fundamental skills for numerical cognition (Sury & Rubinsten, 2012)
- **Hypothesis:** Ordinal-symbol knowledge will mediate the relations between quantity-symbol knowledge and math outcomes in adults beyond calculation (Lyons & Beilock, 2011).

## Method

Participants: N = 142 adults

#### **Basic numerical measures:**



#### **Mathematical measures:**

Math Problem

Solving



5791?

# A range of applied word problems (Keymath)

# Results

Table 1. Correlations Among Measures

|                                        | 1      | 2      | 3     | 4      |
|----------------------------------------|--------|--------|-------|--------|
| 1. Quantity-symbol                     | -      |        |       |        |
| 2. Ordinal-symbol                      | .67*** | -      |       |        |
| 3. Number line estimation <sup>a</sup> | 27***  | 40***  | _     |        |
| 4. Calculation fluency                 | .40*** | .64*** | 36*** | _      |
| 5. Math problem solving                | .34*** | .47*** | 47*** | .54*** |

*Note:* <sup>a</sup> Percent absolute error; †*p* = .061; \*\* *p* < .01; \*\*\* *p* ≤ .001.



Figure 1. The numbers above the arrows are the standardized coefficients for the path model. Model fits well:  $\chi^2(3) = .89$ , RMSEA = .93, CI = [0, .07], CFI = 1.0, SRMR = .007.

## Discussion

- Extends prior work by showing that performance on the ordinal judgment task is a strong predictor of math skills beyond calculation (cf. Lyons & Beilock, 2011).
- Ordinal-symbol skills also mediated the relations between quantity-symbol skills and math problem solving, suggesting that ordinal-symbol knowledge captures individual differences that are important for a range of mathematical tasks.
- The shared relations between number line performance and complex calculation were accounted for by their shared links to ordinalsymbol skills.

## Implications

- In line with the results of Lyons et al. (2014) that the knowledge of ordinality as opposed to quantity becomes increasingly important for children as they learn more complex math skills.
- The ability to access ordinal information as opposed to quantitative information in numerical symbols might be a milestone for the acquisition of mathematical development.

The 26th meeting of CSBBCS, Ottawa, Canada, June, 2016

http://carleton.ca/cacr/math-lab/

chang\_xu@carleton.ca



