

# Carbon Pricing and Competitiveness A European perspective on the path to 2050

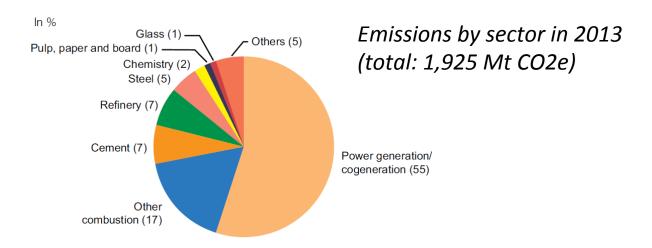
#### Michael Themann

Conference on "Clean Energy and Climate Policy in Canada and the EU: An exchange of experiences, views, and visions for the future"

Ottawa | February 9, 2018

#### **EU climate policy framework**

#### 2020 climate & energy package


- 2020: 20% cut in greenhouse gas emissions (from 1990 levels)
- Also: 20% of EU energy from renewables; 20% improvement in energy efficiency

#### 2030 climate & energy framework

- 2030: 40% reduction (vs. 1990) = 43% EU ETS (vs. 2005) + 30% non-EU ETS (vs. 2005)
- Also: at least 27% of EU energy from renewables; at least 27% improvement in energy efficiency
- 2050: 80-95% reduction (vs. 1990)

#### The EU Emissions Trading System (EU ETS)

- 45% of the EU's GHG emissions, 4% of global emissions: power, manufacturing
- > 55% not covered: housing, transport, agriculture, waste (national "effort sharing", EU car emission standards, etc.)
- In 31 countries: 28 EU Member States plus Iceland, Lichtenstein and Norway
- From more than 11,000 installations



Source: CITL, CDC Climat Research

# **EU ETS: Cap and Allocation Learning by doing process**

#### 2003 EU ETS Directive

- Phase I: 2005-2007 (trial phase)
- Phase II: 2008-2012 (Kyoto Protocol commitment period)
- EU ETS was a decentralized system: sum of 25 individual National Allocation Plans
- Allowances freely allocated based on historical emissions

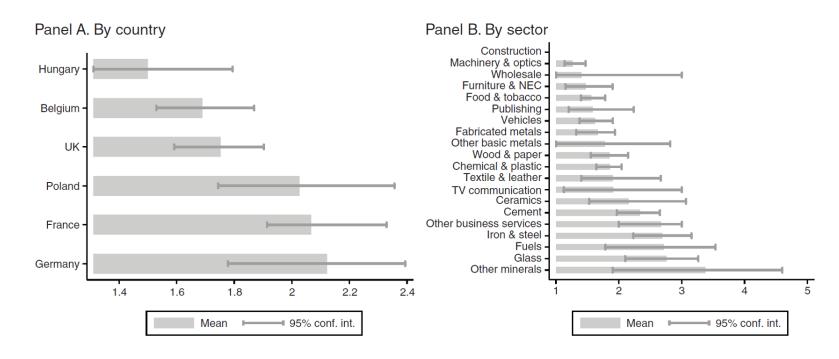
#### 2009 Revised Amended Directive and 2030 climate and energy framework

- Phase III from 2013 to 2020.
- Adoption of an EU cap, declines annually by 1.74% p.a. (from 2021 on: 2.2%)
- Estimated 57% of all allowances to be auctioned (manufacturing: 70% in 2020)
- Exception: sectors at high risk of carbon leakage (0%)

#### **Outline**

Empirical Evidence on Benefits (Abatement, Innovation)

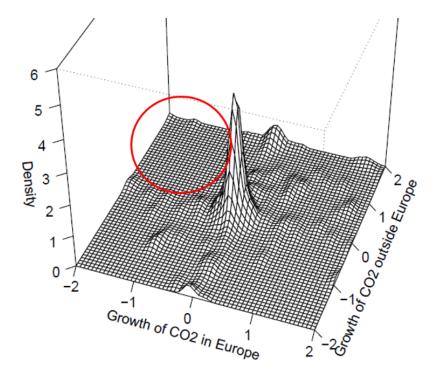
Empirical Evidence on Competitiveness and Carbon Leakage


Outlook on 2030, 2050 and "lessons learned"

#### **Empirical Evidence: Abatement, Innovation**

- General consensus that the EU ETS has driven GHG abatement at least in Phase I and beginning of Phase II
  - Phase I, estimates based on aggregate emissions: about 3% (Ellerman/Buchner 2008; Ellerman et al. 2010; Anderson/Di Maria 2011)
  - Phase II, studies based on firm data: 10-28% reduction of German and French EU ETS firms in early Phase II wrt non-regulated firms (Petrick/Wagner 2014; Wagner et al. 2013)
  - > 1% increase in low-carbon patenting (Calel and Dechezleprêtre, 2016)
  - Effects related to stringency in early Phase II (EUA price ~15€)
- In late Phase II and early Phase III (emissions<cap), other reasons for reductions: (i) effect of economic crisis (Bel et al. 2015) and (ii) renewables and energy efficiency (Alberola et al. 2014)
- Environmental effectiveness of EU ETS is a given; emission target has in fact been overachieved.

#### **Empirical Evidence: Surveys**

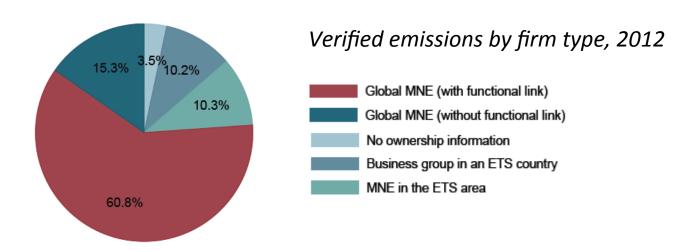

- 1. Martin et al. (2015): Interviews of 761 company managers
  - average relocation risk for the near future clearly below a 10% reduction in production/jobs



[Scale: 1 = no impacts; 3 = >10% outsourced; 5 = plant closure]

# **Empirical Evidence: Emissions**

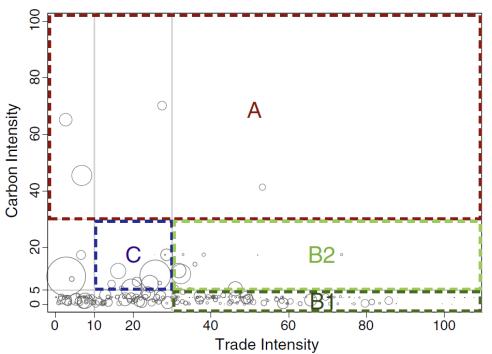
- 2. Dechezleprêtre et al. (2015): Data on emissions of multinational enterprises within the Carbon Disclosure Project
  - no evidence for emission leakage from Europe towards the rest of the world (within a company structure)




#### **Empirical Evidence: Foreign Direct Investments (FDI)**

- 3. Koch/Basse Mama (2017): FDI from 547 German EU ETS regulated companies based on administrative data from Deutsche Bundesbank
  - On average -0.02% change compared to non-ETS companies
  - Curious: Investment leakage only for footlose companies in "clean" industries
    - machine building, electronics and automobiles
    - increased FDI significantly by 52%
    - represent 3% of German EU ETS emissions

#### **Empirical Evidence: Asset structure**


- 4. aus dem Moore / Großkurth / Themann (2017): fixed assets and firm structure data from 1.677 European manufacturing firms based on administrative data from Bureau van Dijk
- 11.1 14.8 % increase in EU assets compared to non-ETS companies
- Less committment by "lightweight" multinational enterprises (MNEs)
  - increased asset base by only 1.3%
  - represent less than 4% of overall EU ETS emissions in 2002-2012

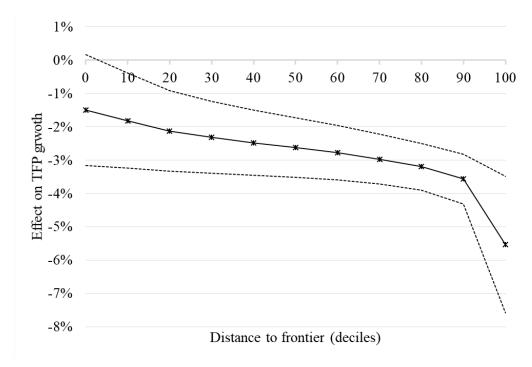


#### **Empirical Evidence: Compensation**

5. ~90% manufacturing emissions (2012) exempted from auctioning (aus dem Moore / Großkurth / Themann 2017)

Martin et al. (2015) identify three groups:




Carbon and trade intensities of four-digit industries

Size of circles proportional to # firms in a given industry

Main issue: relocation risk related with CO2-intensity, but not trade intensity

## **Empirical Evidence: Total factor productivity (TFP)**

- 6. Themann/Koch (2018): growth in TFP from 3.911 EU ETS regulated companies based on administrative sources compiled by provider Bureau van Dijk
  - % change compared to non-ETS companies (preliminary results)
  - Impact depends on the distance to the technology frontier



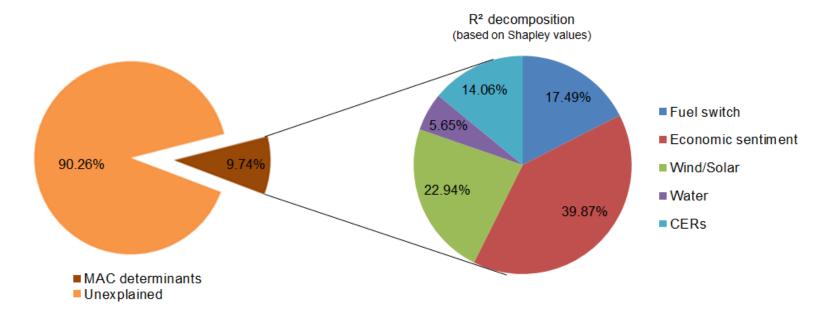
Estimated overall effect, with 95% confidence intervals

## **Lessons learned (I)**

In phases I+ II the EU ETS (so far)

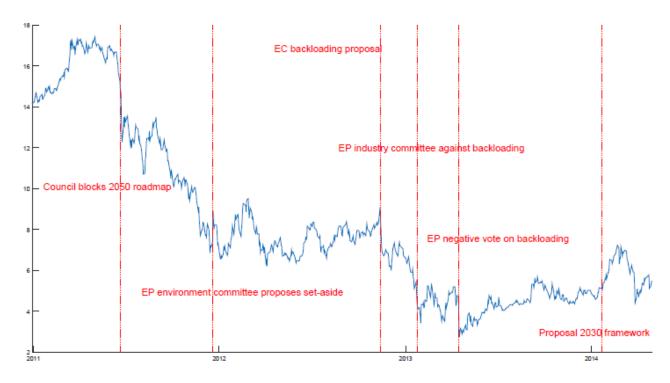
- 1. helped to reduce GHG emissions
- 2. had some impact on investment
- 3. induced little investment into patented (!) low-carbon innovations

#### In terms of competitiveness


- has not induced carbon leakage (relocation costs, cost pass-through, compensation, lack of stringency)
- 2. has let to some productivity decreases for regulated (!) firms
- 3. has provided extensive, not cost-effective protection from carbon leakage

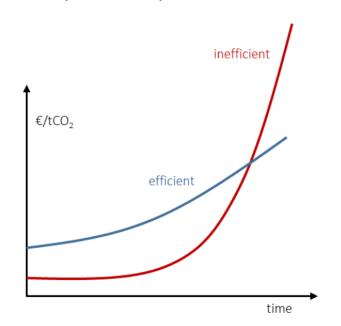
#### But major uncertainties

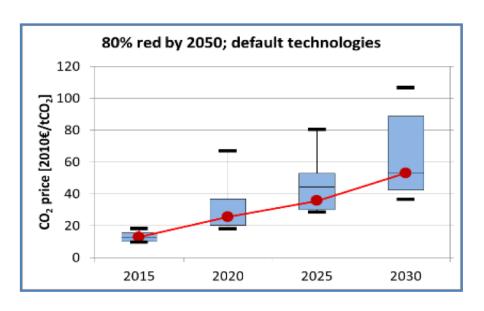
- Effect of higher EUA-prices in the future?
- Effect of increased auctioning?


## **Empirical evidence: Prices are driven by expectations (I)**

 Koch et al. (2014): Demand-side fundamentals related to abatement matter (Alberola et al. 2008, Mansanet-Bataller et al. 2007, Hintermann 2010), but explain less than 10% of EUA price dynamics




#### **Empirical evidence: Prices are driven by expectations (II)**


- 8. Koch et al. (2015): Event-induced price falls reflect a downward adjustment of expectations about the cap stringency
  - Mere speculation about the cap can influence market outcomes



#### The path to 2030

- 9. Edenhofer et al. (2017): EUA price observed on the market and expected by companies may remain below its economical benchmark level for several years to come
  - lock-in of high-carbon capital stocks that remain profitable (steady EUA demand)
  - cap declining by 2.2% per year
  - prices and political costs of sticking to the cap schedule will rise steeply





#### The path to 2050

#### Costs projections for a universal carbon price

Carbon price needs to stimulate demand for low-carbon technologies in all sectors (power, heat and mobility).

- Only 45% of emissions covered by EU ETS
- Very different price signals across sectors (ineffective sectoral policies)
- 10. German Academies of Science (2017): -85% reduction scenarios for Germany in 2050 using an universal carbon price across all sectors
  - > 2030 critical juncture: risk of lock-in effects (technical lifetimes, investment cycles)
  - Electricity demand can double (1000 TWh in 2050)
  - 5-7 times higher wind and solar capacity than today (500-600 GW)
  - Investments into energy efficiency, grids, backup capacities (100 GW), s. gases, fuels
  - Systemic costs around 1-2 % of GDP in 2017 (125 bio. € yearly, 1.500 bio.€ total)

#### Policy options and shared learning

- Carbon price (EU ETS) needs to be cross-sectoral, consistent, effective
  - Carbon price floor starting at 30€ in 2020 (Canada Proposal: ~32 € / 50 CAD)
  - Establish credible price path to 2050 as soon as possible
  - Commitment to the (short-run) costs and long-term benefits
  - Compensation only if necessary
- Support policies
  - Technology development and adaption (productivity and innovation)
  - Revamp system of energy taxes, levies, subsidies to reduce distortions and costs
  - Regulatory policies in case of market failure (infrastructure, adoption...)
- Also: measure causal effects wrt benefits: "green" value added, employment...

#### For more information

acatech/Leopoldina/Akademienunion (German Academies of Science), 2017: Coupling of Energy Sectors – Options for the next phase of the German Energy Transition (Series on science based policy advice), 2017. ISBN: 978-3-8047-3672-6.

aus dem Moore, N., Großkurth, P., Themann, M. (2017): Multinational corporations and the EU Emissions Trading System: Asset erosion and creeping deindustrialization? Ruhr Economic Papers, No. 719.

Calel, R. and Dechezleprêtre, A., 2016. Environmental policy and directed technological change: Evidence from the european carbon market. Review of Economics and Statistics, 98(1): 173–191.

Edenhofer, O., C. Flachsland, C. Wolff, L. K. Schmid, A. Leipprand, N. Koch, U. Kornek, M. Pahle. 2017: Decarbonization and EU ETS Reform: Introducing a price floor to drive low-carbon investments. MCC Policy Paper, 24.11.2017.

Koch, N., Basse Mama, H. (2016): European climate policy and industrial relocation: Evidence from German multinational firms, SSRN Working Paper, 2868283.

Koch, N., Grosjean, G., Fuss, S., Edenhofer, O., 2015: Politics matters: Regulatory events as catalysts for price formation under cap-and-trade, Journal of Environmental Economics and Management, 78, 121-139.

Koch, N., Fuss, S., Grosjean, G., Edenhofer, O., 2014: Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything? New evidence, Energy Policy, 73, 676-685.

Martin, R., Muûls, M., Preux, Laure B. de, Wagner, U. J., 2014. Industry compensation under relocation risk: A firm-level analysis of the eu emissions trading scheme. American Economic Review, 104(8):2482–2508.

Martin, R., Muûls, M., de Preux, Laure B., Wagner, U. J., 2015. On the empirical content of carbon leakage criteria in the EU Emissions Trading Scheme. Ecological Economics, 105:78–88.

Martin, R., Muûls, M., Wagner, U. J., 2016. The impact of the European Union Emissions Trading Scheme on regulated firms: What is the evidence after ten years? Review of Environmental Economics and Policy, 10(1): 129–148

Themann, M., Koch, N (2018): Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on productivity growth, mimeo.

# Thank you!

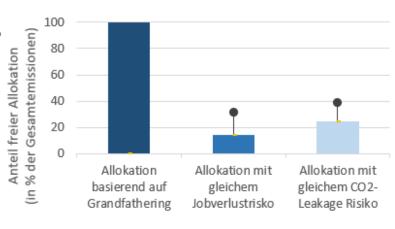
#### **Michael Themann**

RWI – Berlin Office



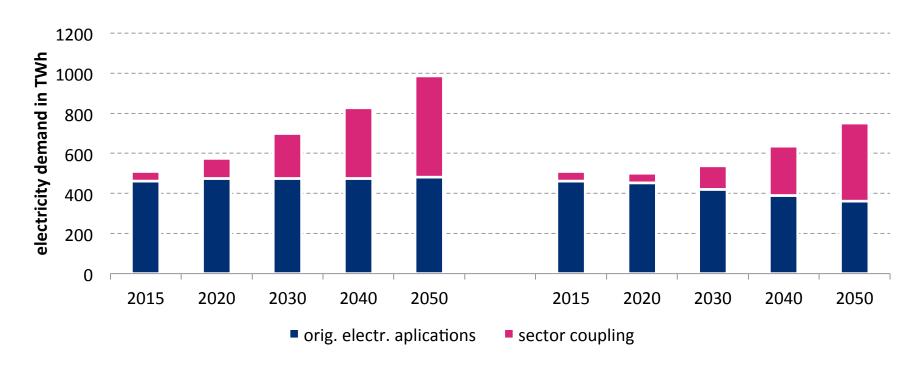
Leibniz Institute for Economic Research

Research Group Sustainability & Governance

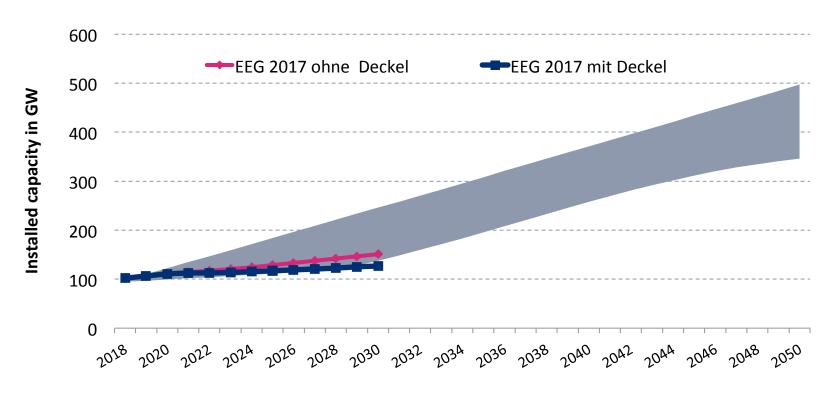

Michael.Themann@rwi-essen.de

# research with impact

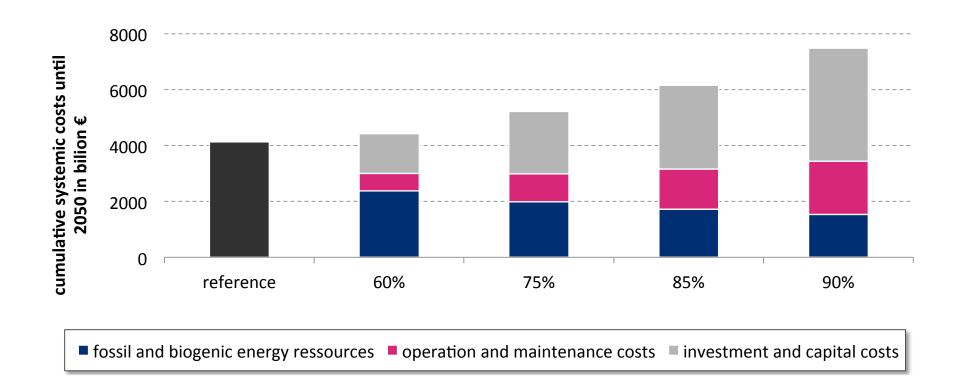
#### Reform example: improve permit allocation


Based on Martin et al. (2014a, 2014b)

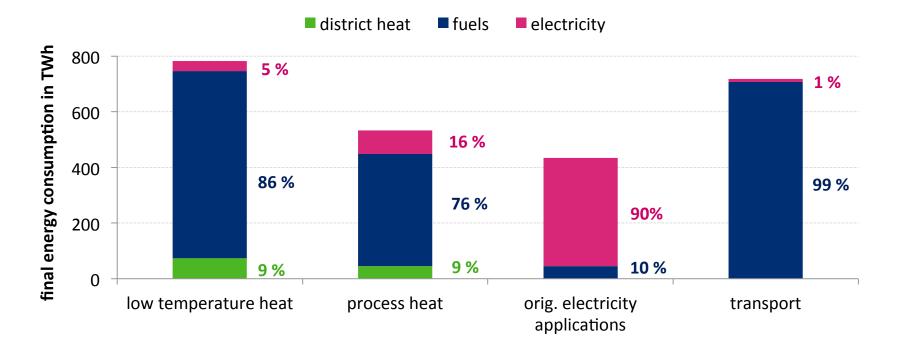
- Improvement 1: modify trade intensity threshold
  - Exemptions only for A+B2: 100.3 Mio. less free EUAs p.a.
  - Revenue: 500 Mio. € (EUA price = 5€) 3 Bio. € (EUA price = 30€) p.a.
- Improvement 2: Refining the definition of trade intensity
  - Trade intensity with less developed countries: 14.4 Mio. less free EUAs p.a.
  - > Revenue: 71 430 Mio. p.a.
  - Share of free allocation optimal < 40%</p>



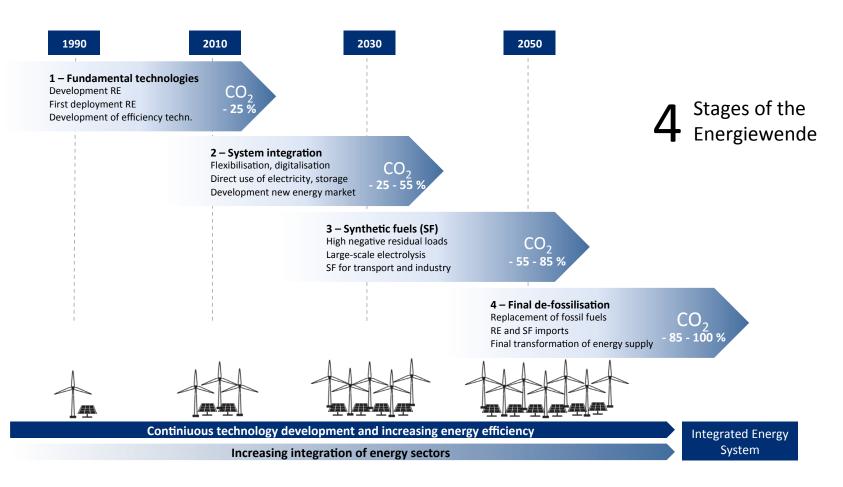

■ Mittel • 95% Konf.int.


# Projected Development of Electricity Demand (-85% CO<sub>2</sub>)

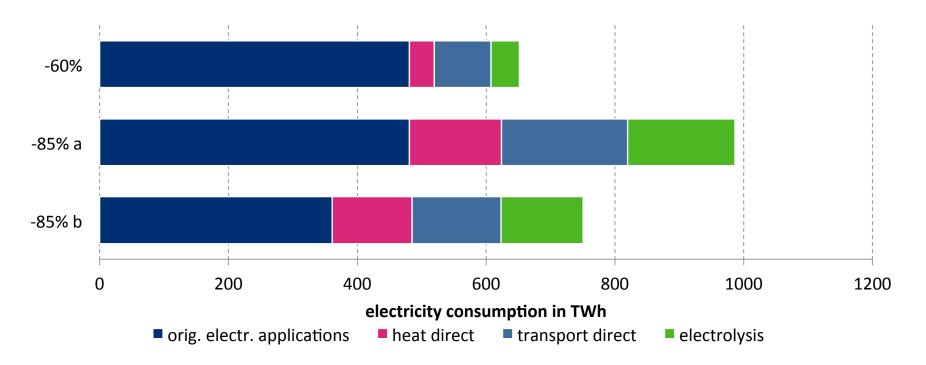



#### **Projected Installation of Wind and Solar Power**

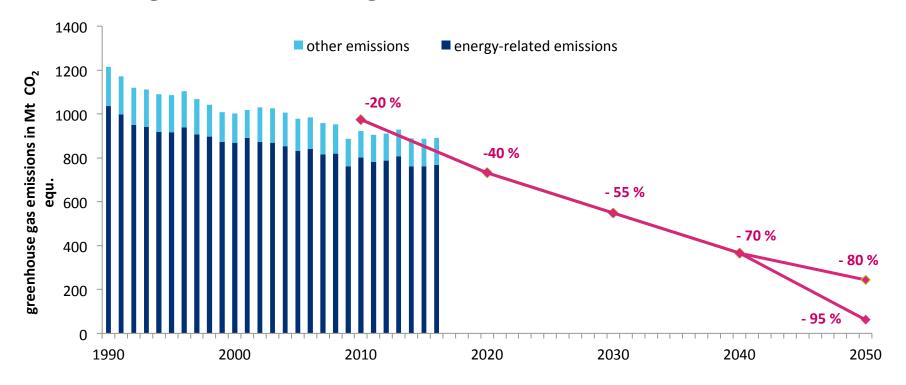



# **Projected Costs of the Energy Transition in Germany**

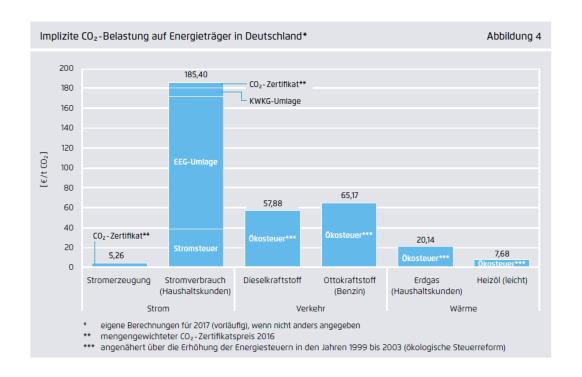



#### Final Energy Consumption in Germany by Energy Carrier (2016)



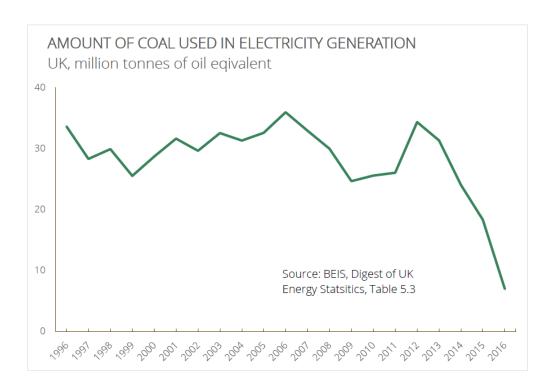

Federal Ministry for Economic Affairs and Energy (2017)




# Projected Use of Electricity (-85% CO<sub>2</sub>)



# Main goal of the 'Energiewende': reduce emissions




#### Implicit German CO2 prices for power, transport and heat



Agora Energiewende (2017)

#### **Carbon Price floor in UK**



BEIS (2017)

#### **Projected Costs of the Energy Transition in Germany**

The energy transition causes additional systemic costs.

In Germany, the additional costs per year will be around 1-2% of the GDP (although these calculations are always subject to significant uncertainties, they can help to estimate the order of magnitude)

The **systemic costs considered here include**: investments for all infrastructures (*e.g.* power plants, grids, cars, energy storage), financing costs, expenses for energy resources, operation and maintenance costs, costs for renovation of buildings.

**Not included are**: economic effects like local value added, employment effects, export opportunities. However, technology expertise and export is paramount for Germany.