## Peer-Reviewed Papers

(* indicates TZ as the corresponding author or one of the corresponding authors of a publication.)

### Carleton University:

54. T. Stuyver, **T. Zeng**, Y. Tsuji, P. Geerlings, F. De Proft “Diradical Character as a Guiding Principle for the Insightful Design of Molecular Nanowires with an Increasing Conductance with Length.” *Nano Lett.* **2018** accepted.

53. R. A. Lang^{‡}, A. Japahuge, and **T. Zeng*** “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve *A*-type states and *a*-type vibrations.” *Chem. Phys.* **2018** accepted (^{‡}Rob was our 4908 undergraduate researchers from September 2017 to April 2018. This is an invited article for the Wolfgang Domcke 70th Birthday Festschrift.).

52. **T. Zeng***, S. Mellerup, D.-T. Yang, X. Wang, S. Wang, and K. Stamplecoskie “Identifying (BN)_{2}-pyrene as a new class of singlet fission chromophores: significance of azaborine substitution.” *J. Phys. Chem. Lett.* **2018**, *9*, 2919-2927.

51. R. J. Hickman^{‡}, R. A. Lang^{‡}, and **T. Zeng*** “General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond.” *Phys. Chem. Chem. Phys.* **2018**, *20*, 12312-12322 (^{‡}Riley and Rob were our 4908 undergraduate researchers from September 2017 to April 2018.)

50. R. Leung, C. Venus^{‡}, **T. Zeng**, and A. Tsopmo “Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin.” *Food Chem.* **2018**, *254*, 165-169. (^{‡} Colin was our 4908 undergraduate researcher from September 2016 to April 2017.)

49. S. Stefanoski, G. Finkelstein, M. Ward, **T. Zeng**, K. Wei, E. Bullock, C. Beavers, H. Liu, G. Nolas, and T. Strobel “Zintl ions within framework channels: the complex structure and low-temperature transport properties of Na_{4}Ge_{13}.” *Inorg. Chem.* **2018**, *57*, 2002-2012.

48. A. Japahuge and **T. Zeng*** “Theoretical studies of singlet fission: searching for materials and exploring mechanisms (review).” *ChemPlusChem* **2018**, *83*, 146-182. (This is an invited article for the special issue of New Materials and Approaches for Advanced Optoelectronics. It is selected as a **Very Important Paper**.)

47. T. Stuyver, **T. Zeng**, Y. Tsuji, S. Fias, P. Geerlings, and F. De Proft “Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices.” *J. Phys. Chem. C* **2018**, *133*, 3194-3200..

46. **T. Zeng***, R. J. Hickman, A. Kadri, and I. Seidu “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve *T*, *E* states and *t*, *e* vibrations.” *J. Chem. Theory Comput.* **2017**, *13*, 5004-5018.

45. A. M. Rawashdeh, P. C. Parambil, **T. Zeng**, and R. Hoffmann “An iodabenzene story.” *J. Am. Chem. Soc.* **2017**, *139*, 7124-7129.

44. **T. Zeng*** “A diabatization protocol that includes spin-orbit coupling.” *J. Chem. Phys.* **2017**, *146*, 144103.

43. **T. Zeng*** and I. Seidu “Revisiting the (*E* + *A*)×(*e* + *a*) problems of polyatomic systems with trigonal symmetry: general expansions of their vibronic Hamiltonians.” *Phys. Chem. Chem. Phys.* **2017**, *19*, 11098-11110. (Highlighted as one of the 2017 PCCP HOT Articles)

42. **T. Zeng*** “Through-Linker Intramolecular Singlet Fission: General Mechanism and Designing Small Chromophores.” *J. Phys. Chem. Lett.* **2016**, *7*, 4405-4412.

41. L. Hajjar^{‡}, R. G. Hicks, and **T. Zeng*** “A computational study of the protoisomerization of indigo and its imine derivatives.” *J. Phys. Chem. A* **2016**, *120*, 7569-7576. (^{‡} Laurence was our 4908 undergraduate researcher from August 2015 to July 2016. This is an invited article for the special issue “Mark S. Gordon Festschrift”.)

40. **T. Zeng*** and Prateek Goel “Design of small intramolecular singlet fission chromophores: an azaborine candidate and general small size effects.” *J. Phys. Chem. Lett.* **2016**, *7*, 1351-1358. (We thank Shaohong Li (University of Minnesota) for discussion.)

### Cornell University:

39. R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill III, **T. Zeng**, and G. Manca “From widely accepted concepts in coordination chemistry to inverted ligand fields.” *Chem. Rev.* **2016**, *116*, 8173-8192.

38. E. G. Fuemmeler, S. N. Sanders, A. B. Pun, E. Kumarasamy, **T. Zeng**, K. Miyata, M. L. Steigerwald, X.-Y. Zhu, M. Y. Sfeir, L. M. Campos, and N. Ananth “A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers.” *ACS Central Science* **2016**, *2*, 316-324.

37. **T. Zeng**, R. Hoffmann, R. Nesper, N. W. Ashcroft, T. A. Strobel, and D. M. Proserpio “Li-filled B-substituted carbon clathrates.” *J. Am. Chem. Soc.* **2015**, *137*, 12639-12652.

36. **T. Zeng**, D. Danovich, S. Shaik, N. Ananth, and R. Hoffmann “Tuning the ground state symmetry of acetylene radicals.” *ACS Central Science* **2015**, *1*, 270-278.

35. **T. Zeng**, K. M. Lancaster, N. Ananth, and R. Hoffmann “Anomalous orbital admixture in ammine complexes.” *J. Organomet. Chem.* **2015**, *792*, 6-12.

34. **T. Zeng**, H. Wang, Y. Lu, Y. Xie, H. Wang, H. F. Schaefer, N. Ananth, and R. Hoffmann “Tuning spin-states of carbynes and silylynes: a long jump with one leg.” *J. Am. Chem. Soc.* **2014**, *136*, 13388-13398.

33. **T. Zeng***, N. Ananth, and R. Hoffmann “Seeking small molecules for singlet fission: a heteroatom substitution strategy.” *J. Am. Chem. Soc.* **2014**, *136*, 12638-12647. (* corresponding author)

32. **T. Zeng**, R. Hoffmann, and N. Ananth “The low-lying electronic states of pentacene and their roles in singlet fission.” *J. Am. Chem. Soc.* **2014**, *136*, 5755-5764 (JACS Spotlights).

### University of Waterloo:

31. **T. Zeng**, N. Blinov, G. Guillon, H. Li, K. P. Bishop, and P.-N. Roy “MoRIBS-PIMC: a program to simulate molecular rotors in bosonic solvents using path-integral Monte Carlo.” *Comput. Phys. Commun.* 2016, *204*, 170-188.

30. **T. Zeng**, H. Li, and P.-N. Roy “Potential generation and path-integral Monte Carlo in Study of Microscopic Superfluidity.” *Int. J. Quantum Chem.* **2014**, *115*, 535-540.

29. Y.-T. Ma, **T. Zeng**, and H. Li “Analytical Morse/long-range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: a case study of a case study of CH_{3}F-He.” *J. Chem. Phys.* **2014**, *140*, 214309, 13 pages.

28. **T. Zeng** and P.-N. Roy “Microscopic molecular superfluid response: theory and simulations.” *Rep. Prog. Phys.* **2014**, *77*, 046601, 40 pages.

27. G. Guillon, **T. Zeng**, and P.-N. Roy “A new post-quantization constrained propagator for rigid tops for use in path integral quantum simulations.” *J. Chem. Phys.* **2013**, *139*, 184115, 10 pages.

26. S. Constable, M. Schmidt, C. Ing, **T. Zeng**, and P.-N. Roy “Langevin equation path integral ground state.” *J. Phys. Chem. A* **2013**, *117*, 7461-7467.

25. G. Guillon, **T. Zeng**, and P.-N. Roy “On the origin and convergence of a ‘Rattle and Shake’ propagator for path integral quantum simulations.” *J. Chem. Phys.* **2013**, *138*, 184101, 11 pages.

24. Y. Tritzant-Martinez, **T. Zeng**, A. Broom, E. Meiering, R. J. Le Roy, and P.-N. Roy “On the analytical representation of free energy profiles with a Morse/Long-Range model: application to the water dimer.” *J. Chem. Phys.* **2013**, *138*, 234103, 12 pages.

23. **T. Zeng**, G. Guillon, and P.-N. Roy “Probing the superfluid response of para-hydrogen with a sulfur dioxide dopant.” *J. Phys. Chem. Lett.* **2013**, *4*, 2391-2396.

22. **T. Zeng**, H. Li, and P.-N. Roy “Simulating asymmetric top impurities in superfluid clusters: a para-water dopant in para-hydrogen.” *J. Phys. Chem. Lett.* **2013**, *4*, 18-22.

21. C. Ing, J. Yang, K. Hinsen, **T. Zeng**, H. Li, and P.-N. Roy “A path-integral Langevin equation treatment of low-temperature doped helium clusters.” *J. Chem. Phys.* **2012**, *136*, 224309, 12 pages.

20. **T. Zeng**, H. Li, R. J. Le Roy, and P.-N. Roy “Adiabatic-hindered-rotor treatment for para-H2 and H2O system.” *J. Chem. Phys.* **2011**, *135*, 094304, 15 pages.

### University of Alberta:

19. **T. Zeng**, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Natural spinors reveal how the spin-orbit coupling affects the Jahn-Teller distortions in the hexafluorotungstate(V) anion.” *J. Chem. Theory Comput.* **2012**, *8*, 3061-3071.

18. H. Mori, **T. Zeng**, and M. Klobukowski “Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes.” *Chem. Phys. Lett.* **2012**, *521*, 150-156.

17. **T. Zeng**, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Effects of spin-orbit coupling on covalent bonding and the Jahn-Teller effect are revealed with the natural language of spinors.” *J. Chem. Theory Comput.* **2011**, *7*, 2864-2875.

16. **T. Zeng**, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Two-component natural spinors from two-step spin-orbit coupled wave functions.” *J. Chem. Phys.* **2011**, *134*, 214107, 9 pages.

15. **T. Zeng**, D. G. Fedorov, and M. Klobukowski “Performance of dynamically weighted MCSCF and spin-orbit coupling calculations of diatomic molecules of Group 14 elements.” *J. Chem. Phys.* **2011**, *134*, 024108, 11 pages.

14. **T. Zeng**, D. G. Fedorov, and M. Klobukowski “Model core potentials of p-block elements generated considering the Douglas-Kroll relativistic effects, suitable for accurate spin-orbit coupling calculations.” *J. Chem. Phys.* **2010**, *133*, 114107, 11 pages.

13. **T. Zeng**, D. G. Fedorov, and M. Klobukowski “Multireference study of spin-orbit coupling in the hydrides of the 6p-block elements using the model core potential method.” *J. Chem. Phys.* **2010**, *132*, 074102, 15 pages.

12. **T. Zeng**, D. G. Fedorov, and M. Klobukowski “Model core potentials for studies of scalar-relativistic effects and spin-orbit coupling at Douglas–Kroll level. I. Theory and applications to Pb and Bi.” *J. Chem. Phys.* **2009**, *131*, 124109, 17 pages.

11. **T. Zeng**, H. Mori, E. Miyoshi, and M. Klobukowski “Calibration of new model core potentials for main group elements.” *Int. J. Quantum Chem.* **2009**, *109*, 3235-3245.

10. **T. Zeng** and M. Klobukowski “New model core potentials for gold.” *J. Chem. Phys.* **2009**, *130*, 204107, 12 pages.

9. **T. Zeng** and M. Klobukowski “Relativistic model core potential study on the Au+Xe system.” *J. Phys. Chem. A* **2008**, *112*, 5236-5242.

8. **T. Zeng**, Z. Jamshidi, H. Mori, E. Miyoshi, and M. Klobukowski “Electron affinities of heavier phosphoryl and thiophosphoryl halides APX_{3} (A = O, S and X = Br, I).” *J. Comput. Chem.* **2007**, *28*, 2027-2033.

### Institute of Coal Chemistry, Chinese Academy of Sciences

7. X.-D. Wen, **T. Zeng**, and H. Jiao ‘Reply to “Comment on ‘Density functional theory study of triangular molybdenum sulfide nanocluster and CO adsorption on it’” *J. Phys. Chem. B* **2006**, *110*, 14004-14005.

6. X.-D. Wen, **T. Zeng**, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, and H. Jiao “Hydrogen adsorption on a Mo_{27}S_{54} cluster: A density functional theory study.” *J. Mol. Catal. A: Chemical* **2006**, *249*, 191-200.

5. C.-F. Huo, **T. Zeng**, Y.-W. Li, M. Beller, and H. Jiao “Switching end-on into side-on CN coordination: A computational approach.” *Organometallics* **2005**, *24*, 6037-6042.

4. **T. Zeng**, X.-D. Wen, Y.-W. Li, and H. Jiao “Removal of surface sulfur from MoS_{x} cluster under CO adsorption.” *J. Mol. Catal. A: Chemical* **2005**, *241*, 219-226.

3. X.-D. Wen, **T. Zeng**, Y.-W. Li, J. Wang, and H. Jiao “Surface structure and stability of MoS_{x} model clusters.” *J. Phys. Chem. B* **2005**, *109*, 18491-18499.

2. **T. Zeng**, X.-D. Wen, Y.-W. Li, and H. Jiao “Density functional theory study of triangular molybdenum sulphide nanocluster and CO adsorption on it.” *J. Phys. Chem. B* **2005**, *109*, 13704-13710.

1. **T. Zeng**, X.-D. Wen, G.-S. Wu, Y.-W. Li, and H. Jiao “Density functional theory study of CO adsorption on molybdenum sulfide.” *J. Phys. Chem. B* **2005**, *109*, 2846-2854.

## Peer-Reviewed Book Chapters

2. **T. Zeng** and M. Klobukowski (2011) “Model core potential in the first decade of the XXI century.” in Practical Aspects of Computational Chemistry II, An Overview of the Last Two Decades and Current Trends, J. Leszczynski and M. K. Shukla (Eds.), Springer, Chapter 8, 209-254.

1. **T. Zeng** and M. Klobukowski (2011) “Guide to Programs for Non-relativistic Quantum Chemistry Calculations.” in Handbook of Computational Chemistry, J. Leszczynski (Ed.) Springer, Chapter 17, 611-630.