Peer-Reviewed Papers

Carleton University:

46. T. Zeng*, R. J. Hickman, A. Kadri, and I. Seidu “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve T, E states and t, e vibrations.J. Chem. Theory Comput. 2017, 13, 5004-5018.

45. A. M. Rawashdeh, P. C. Parambil, T. Zeng, and R. Hoffmann “An iodabenzene story.J. Am. Chem. Soc. 2017, 139, 7124-7129.

44. T. Zeng* “A diabatization protocol that includes spin-orbit coupling.” J. Chem. Phys. 2017, 146, 144103.

43. T. Zeng* and I. Seidu “Revisiting the (E + A)×(e + a) problems of polyatomic systems with trigonal symmetry: general expansions of their vibronic Hamiltonians.” Phys. Chem. Chem. Phys. 2017, 19, 11098-11110. (Highlighted as one of the 2017 PCCP HOT Articles)

42. T. Zeng* “Through-Linker Intramolecular Singlet Fission: General Mechanism and Designing Small Chromophores.J. Phys. Chem. Lett. 2016, 7, 4405-4412.

41. L. Hajjar, R. G. Hicks, and T. Zeng* “A computational study of the protoisomerization of indigo and its imine derivatives.” J. Phys. Chem. A 2016, 120, 7569-7576. ( Laurence was our 4908 undergraduate researcher from August 2015 to July 2016.)

40. T. Zeng* and Prateek Goel “Design of small intramolecular singlet fission chromophores: an azaborine candidate and general small size effects.J. Phys. Chem. Lett. 2016, 7, 1351-1358. (We thank Shaohong Li (University of Minnesota) for discussion.)

Cornell University:

39. R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill III, T. Zeng, and G. Manca “From widely accepted concepts in coordination chemistry to inverted ligand fields.” Chem. Rev. 2016, 116, 8173-8192.

38. E. G. Fuemmeler, S. N. Sanders, A. B. Pun, E. Kumarasamy, T. Zeng, K. Miyata, M. L. Steigerwald, X.-Y. Zhu, M. Y. Sfeir, L. M. Campos, and N. Ananth “A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers.” ACS Central Science 2016, 2, 316-324.

37. T. Zeng, R. Hoffmann, R. Nesper, N. W. Ashcroft, T. A. Strobel, and D. M. Proserpio “Li-filled B-substituted carbon clathrates.” J. Am. Chem. Soc. 2015, 137, 12639-12652.

36. T. Zeng, D. Danovich, S. Shaik, N. Ananth, and R. Hoffmann “Tuning the ground state symmetry of acetylene radicals.” ACS Central Science 2015, 1, 270-278.

35. T. Zeng, K. M. Lancaster, N. Ananth, and R. Hoffmann “Anomalous orbital admixture in ammine complexes.” J. Organomet. Chem. 2015, 792, 6-12.

34. T. Zeng, H. Wang, Y. Lu, Y. Xie, H. Wang, H. F. Schaefer, N. Ananth, and R. Hoffmann “Tuning spin-states of carbynes and silylynes: a long jump with one leg.” J. Am. Chem. Soc. 2014, 136, 13388-13398.

33. T. Zeng*, N. Ananth, and R. Hoffmann “Seeking small molecules for singlet fission: a heteroatom substitution strategy.” J. Am. Chem. Soc. 2014, 136, 12638-12647. (* corresponding author)

32. T. Zeng, R. Hoffmann, and N. Ananth “The low-lying electronic states of pentacene and their roles in singlet fission.” J. Am. Chem. Soc. 2014, 136, 5755-5764 (JACS Spotlights).

University of Waterloo:

31. T. Zeng, N. Blinov, G. Guillon, H. Li, K. P. Bishop, and P.-N. Roy “MoRIBS-PIMC: a program to simulate molecular rotors in bosonic solvents using path-integral Monte Carlo.” Comput. Phys. Commun. 2016, 204, 170-188.

30. T. Zeng, H. Li, and P.-N. Roy “Potential generation and path-integral Monte Carlo in Study of Microscopic Superfluidity.” Int. J. Quantum Chem. 2014, 115, 535-540.

29. Y.-T. Ma, T. Zeng, and H. Li “Analytical Morse/long-range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: a case study of a case study of CH3F-He.” J. Chem. Phys. 2014, 140, 214309, 13 pages.

28. T. Zeng and P.-N. Roy “Microscopic molecular superfluid response: theory and simulations.” Rep. Prog. Phys. 2014, 77, 046601, 40 pages.

27. G. Guillon, T. Zeng, and P.-N. Roy “A new post-quantization constrained propagator for rigid tops for use in path integral quantum simulations.” J. Chem. Phys. 2013, 139, 184115, 10 pages.

26. S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy “Langevin equation path integral ground state.” J. Phys. Chem. A 2013, 117, 7461-7467.

25. G. Guillon, T. Zeng, and P.-N. Roy “On the origin and convergence of a ‘Rattle and Shake’ propagator for path integral quantum simulations.” J. Chem. Phys. 2013, 138, 184101, 11 pages.

24. Y. Tritzant-Martinez, T. Zeng, A. Broom, E. Meiering, R. J. Le Roy, and P.-N. Roy “On the analytical representation of free energy profiles with a Morse/Long-Range model: application to the water dimer.” J. Chem. Phys. 2013, 138, 234103, 12 pages.

23. T. Zeng, G. Guillon, and P.-N. Roy “Probing the superfluid response of para-hydrogen with a sulfur dioxide dopant.” J. Phys. Chem. Lett. 2013, 4, 2391-2396.

22. T. Zeng, H. Li, and P.-N. Roy “Simulating asymmetric top impurities in superfluid clusters: a para-water dopant in para-hydrogen.” J. Phys. Chem. Lett. 2013, 4, 18-22.

21. C. Ing, J. Yang, K. Hinsen, T. Zeng, H. Li, and P.-N. Roy “A path-integral Langevin equation treatment of low-temperature doped helium clusters.” J. Chem. Phys. 2012, 136, 224309, 12 pages.

20. T. Zeng, H. Li, R. J. Le Roy, and P.-N. Roy “Adiabatic-hindered-rotor treatment for para-H2 and H2O system.” J. Chem. Phys. 2011, 135, 094304, 15 pages.

University of Alberta:

19. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Natural spinors reveal how the spin-orbit coupling affects the Jahn-Teller distortions in the hexafluorotungstate(V) anion.” J. Chem. Theory Comput. 2012, 8, 3061-3071.

18. H. Mori, T. Zeng, and M. Klobukowski “Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes.” Chem. Phys. Lett. 2012, 521, 150-156.

17. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Effects of spin-orbit coupling on covalent bonding and the Jahn-Teller effect are revealed with the natural language of spinors.” J. Chem. Theory Comput. 2011, 7, 2864-2875.

16. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Two-component natural spinors from two-step spin-orbit coupled wave functions.” J. Chem. Phys. 2011, 134, 214107, 9 pages.

15. T. Zeng, D. G. Fedorov, and M. Klobukowski “Performance of dynamically weighted MCSCF and spin-orbit coupling calculations of diatomic molecules of Group 14 elements.” J. Chem. Phys. 2011, 134, 024108, 11 pages.

14. T. Zeng, D. G. Fedorov, and M. Klobukowski “Model core potentials of p-block elements generated considering the Douglas-Kroll relativistic effects, suitable for accurate spin-orbit coupling calculations.” J. Chem. Phys. 2010, 133, 114107, 11 pages.

13. T. Zeng, D. G. Fedorov, and M. Klobukowski “Multireference study of spin-orbit coupling in the hydrides of the 6p-block elements using the model core potential method.” J. Chem. Phys. 2010, 132, 074102, 15 pages.

12. T. Zeng, D. G. Fedorov, and M. Klobukowski “Model core potentials for studies of scalar-relativistic effects and spin-orbit coupling at Douglas–Kroll level. I. Theory and applications to Pb and Bi.” J. Chem. Phys. 2009, 131, 124109, 17 pages.

11. T. Zeng, H. Mori, E. Miyoshi, and M. Klobukowski “Calibration of new model core potentials for main group elements.” Int. J. Quantum Chem. 2009, 109, 3235-3245.

10. T. Zeng and M. Klobukowski “New model core potentials for gold.” J. Chem. Phys. 2009, 130, 204107, 12 pages.

9. T. Zeng and M. Klobukowski “Relativistic model core potential study on the Au+Xe system.” J. Phys. Chem. A 2008, 112, 5236-5242.

8. T. Zeng, Z. Jamshidi, H. Mori, E. Miyoshi, and M. Klobukowski “Electron affinities of heavier phosphoryl and thiophosphoryl halides APX3 (A = O, S and X = Br, I).” J. Comput. Chem. 2007, 28, 2027-2033.

Institute of Coal Chemistry, Chinese Academy of Sciences

7. X.-D. Wen, T. Zeng, and H. Jiao ‘Reply to “Comment on ‘Density functional theory study of triangular molybdenum sulfide nanocluster and CO adsorption on it’” J. Phys. Chem. B 2006, 110, 14004-14005.

6. X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, and H. Jiao “Hydrogen adsorption on a Mo27S54 cluster: A density functional theory study.” J. Mol. Catal. A: Chemical 2006, 249, 191-200.

5. C.-F. Huo, T. Zeng, Y.-W. Li, M. Beller, and H. Jiao “Switching end-on into side-on CN coordination: A computational approach.” Organometallics 2005, 24, 6037-6042.

4. T. Zeng, X.-D. Wen, Y.-W. Li, and H. Jiao “Removal of surface sulfur from MoSx cluster under CO adsorption.” J. Mol. Catal. A: Chemical 2005, 241, 219-226.

3. X.-D. Wen, T. Zeng, Y.-W. Li, J. Wang, and H. Jiao “Surface structure and stability of MoSx model clusters.” J. Phys. Chem. B 2005, 109, 18491-18499.

2. T. Zeng, X.-D. Wen, Y.-W. Li, and H. Jiao “Density functional theory study of triangular molybdenum sulphide nanocluster and CO adsorption on it.” J. Phys. Chem. B 2005, 109, 13704-13710.

1. T. Zeng, X.-D. Wen, G.-S. Wu, Y.-W. Li, and H. Jiao “Density functional theory study of CO adsorption on molybdenum sulfide.” J. Phys. Chem. B 2005, 109, 2846-2854.

Peer-Reviewed Book Chapters

2. T. Zeng and M. Klobukowski (2011) “Model core potential in the first decade of the XXI century.” in Practical Aspects of Computational Chemistry II, An Overview of the Last Two Decades and Current Trends, J. Leszczynski and M. K. Shukla (Eds.), Springer, Chapter 8, 209-254.

1. T. Zeng and M. Klobukowski (2011) “Guide to Programs for Non-relativistic Quantum Chemistry Calculations.” in Handbook of Computational Chemistry, J. Leszczynski (Ed.) Springer, Chapter 17, 611-630.