ENVE 3004 Contaminant and Pollutant Transport in the Environment

Physical phenomena governing the transport of contaminants in the environment: diffusion, advection, dispersion, sorption, interphase transfer. Derivation and application of transport equations in air, surface and groundwater pollution; analytical and numerical solutions. Equilibrium partitioning of contaminants among air, water, sediment, and biota.

Course Outline for Winter 2024

Evaluation

Assignments: 30% Midterm: 20% Final: 50%

Instructor: Paul Simms, P.Eng. paul.simms@carleton.ca

Expected lecture and coursework schedule

Week	Торіс	Coursework
January 8 th	Introduction	
	Media 1: Water –	
	Review of pipe flow,	
	flow in lakes, rivers,	
	oceans.	
	Unique aspects of	
	contaminant transport	
	(e.g. partitioning to	
	sediments, thermal	
	stratification)	
January 15 th	Physical processes of	
	contaminant	
	transport:	
	Advection /	
	dispersion / diffusion	
January 22 nd	The Big Equation:	Assignment 1:
	Derivation of the	
	Advection -	Transport of contaminant in a
	Dispersion equation.	river
	Some analytical	

	solutions (eg. Ogata-	
	Banks)	
January 29 th	Mass removal	
-	mechanisms	
February 5	Your very own finite	Assignment 2:
	difference model for	Simulation of a conservative
	water transport	contaminant and sediment
		transport in a river-lake system
February 12 th	Your very own finite	
	difference model for	
	solution of the	
	advection-dispersion	
	equation	
	Midterm Review	
Break	Break	
February 26 th	Midterm on the	Midterm on the Tuesday
	Tuesday	
	Transport in the	
	atmosphere (air)	
March 4 th	Stack emission	Assignment 3: Stack design
	modelling for urban	problem
	environment	
) (1 1 1 th		
March 11 th		
	Groundwater	
	transport: differences	
	in application of	
	transport equations	
N 1 1 oth	from other media	
March 18 th	Groundwater	Assignment 4: Groundwater
	transport:	plume analysis and prediction
	Analysis of plumes	
	from old landfills	

March 25 th	Contaminant fate, toxicity, and ecological / impacts	
April 1 st	Review	