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Abstract. Given the similarity in form and dynamics between earth-based and
space-based robotic manipulators, transfer learning of neural network controllers
would naturally be a plausible avenue to address the challenges of limited compu-
tation resources onboard the spacecraft (spacemanipulator).We have introduced a
pretrained and learned feedforward neural network formodeling the control error a
priori. While the results are encouraging, there are major limitations of neural net-
works’ capability to ensuring the transfer learning of similar earth-based dynamics
to space-based dynamics, given that the parameters of contrast are fairly straight-
forward. To show these limitations, we present a novel approach that is inspired
by human motor control. We have explored the adaptability of neural networks as
a key feature for robust AI which has traditionally suffered from brittleness. This
was demonstrated through a practical problem of transferring a neuro-controller
from earth to space. It was discovered that neural networks including deep learning
models are still too brittle for general AI. We have developed appropriate neural
network models using trajectory data from 7 degrees-of-freedom (7-DOF) Barrett
Arm, as representative of an earth-based to space-based manipulator kinematics
and dynamics.

Keywords: Transfer learning · Neural network · Forward model · Space
robotics · Manipulator · Free-flyer

1 Introduction

In human level manipulation, various sections of the brain extend into the motor areaM1
to supply feedback signals. The parietal cortex, for instance, deals with visual control of
hand motions, and it calculates the error between the current cartesian position and the
desired cartesian position [1]. To do this, an efference copy of the motor commands is
required to produce a feedforward compensation. The efference copy of the motor com-
mands is typically transmitted to an emulator which models the input-output response
of the musculoskeletal system. From a biomimetic perspective, it is believed that a hier-
archical neural network system in any control architecture can imitate this function of
the motor cortex [2]. During human manipulation, the error between the actual motor
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outputs (joint position (θ ) and joint velocity (θ̇) evaluated by the proprioceptors) and the
commanded motor input (torque τ, from the motor cortex) is fed back as [θdesired − θ ]
having a time delay of 40–60ms [3]. However, a “forward dynamicsmodel of themuscu-
loskeletal system exists within the spinocerebellum-magnocellular red nucleus system”
[3]. This forward model accepts feedback (θ and θ̇ ) from the proprioceptors and an
afferent copy of the motor command (τ) from the motor cortex. Consequently, the for-
ward model receives motor command τ as its input and outputs an estimated predictive
trajectory θ∗ [3], processing this input-output comparison between the pair (τ and θ∗) to
generate a predicted error [θdesired − θ∗] in a much faster manner to minimize the error.
The forward model does this prediction/comparison in 10–20ms, transmitting this to the
motor cortex in the process [3]. The sensory effects of the motor command are predicted
by this forward model. This type of top-down prediction model is centered on the sta-
tistical reproducible model of the causative nature of the world learned via input-output
pairs. This can be directly explored with predictive neural networks as forward model by
adopting input-output models of deep learning architecture or multivariate regression.
In human level interaction, these forward models of the musculoskeletal system have
been learned through the initial motor babbling that started from infancy [3]. And the
learned models are transferred to adapt to changes in stimuli or environments, given the
underlying dynamics remain the same.

This leads to the practical problemwe have detailed in this paper, which is the transfer
learning from earth-based manipulators to space-based manipulators. In space robotics,
there are simply two fundamental changes from earth to space which are accounted for
through: (i) the absence of gravity in space, and (ii) the direct substitutions of certain
derived parameters which are quantified in numbers and readily available as a modifica-
tion of the earth-based equivalents. So, essentially, the dynamics of the robotic system
remain the same, and necessary environmental variations are readily accounted for. All
other space-based environmental factors are known to be negligible as they pertain to the
dynamics of space robot’s interaction. The environmental disturbance torques (gravity
gradient, aerodynamics and magnetic torques) imposed on the robot’s spacecraft are
very small – within 10e−6 Nm [4]. The primary differentiating characteristics of space
robotics from terrestrial robotics is that the robot operates in a microgravity environ-
ment. Transfer learning of neural network controller trained as a forward model in a
biomimetic approach similar to how human manipulation is carried out should be able
to exhibit efficient generalization as typically shown for new data input in most deep
learning domain/applications. However, the practical limitation of transfer learning of
neural network controllers is the exhibition of lack of general intelligence, as detailed
in this paper.

Considerable effort has been put into developing machine learning methods that can
learn and improve inverse dynamics model of robotic manipulators [5–8]. Online learn-
ing has been the focus in these settings because when considering motions with object
interactions, learning one global model becomes very challenging, if not impossible,
since the model must be a function of contact and payload signals. To approach the
issue of global/dynamic model, learning task-specific (error) models has been proposed
in the past [9–12], such that the overall global problem is simplified into two subprob-
lems – (1) finding a task-specific inverse dynamics model and (2) detecting which task
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model to use. This permits to iterate the collection of data specific to a task, learn an
error model, and then apply the learned model during the required task execution. How-
ever, a key difficulty that has been encountered is the computationally efficient learning
of models that are data-efficient as possible, such that only few iterations are required
while achieving consistent convergence in the error model learning. We seek to address
this using predictive feedforward approach, in a pre-learned fashion, by ensuring the
transfer learning of earth-based model to space environment. Our take on this is that
pre-learned input-output models are computationally efficient compared with analyti-
cal models – the latter require exact knowledge of parameters (commonest sources of
errors which include payload variation) and require computation time. Learned models
reduce computation by storing model in memory, which also ensure a more compliant
and reactive robot.

For feedback control to work, errors must exist to invoke the corrective behaviour.
This is not the case for feedforward control which does not require errors to work.
Forward model implemented in conjunction with feedback control reduces the potential
error excursions [13]. Currently, space manipulators are typically teleoperated in space
by astronauts or by ground operators and are operated very slowly. This acts as a severe
restriction on productivity rates. The incorporation of feedforward controllers, therefore,
offers the advantage to robustify and speed up operations as they do not require error
excursion to function. In the following, we first described in Sect. 2, the background to
the derived parameters relating space-based manipulator’s kinematics and dynamics to
earth-based environment. In Sect. 3, we detailed a novel predictive feedforward control
via a forward model; followed by a complete overview of our learning algorithms and
manipulator configuration in Sect. 4. Finally, we evaluate the results of the proposed
scheme in Sect. 5 and outlined the practical limitations of transfer learning of the neural
network controller. Section 6 detailed the conclusion which exposes problems in neural
networks including deep learning as a model of general intelligence.

2 Space-Based Kinematics and Dynamics

Wemust first consider the kinematics and dynamics of a freeflyer-mounted manipulator.
The main differentiating characteristics of space robots from terrestrial robots is that
terrestrial robots are mounted onto a firm ground; in space, we have no such force or
torque reaction cancellation to the movement of manipulator arms. Additionally, the
robot operates in a microgravity environment; hence, the kinematics and dynamics of
free-flying robotic manipulator deployed in space will take a different approach. In the
consideration of a free-flying robotic manipulator mounted on a spacecraft bus having
dedicated attitude control, the position kinematics (p∗) of the manipulator in connection
with inertial space is given by [14, 15]:

p∗ = rc0 + R0s0 +
n∑

i=1

Rili (1)

where rc0 is the position of the spacecraft centre of mass with respect to the inertial
coordinates; R0 is the attitude of the spacecraft with respect to the inertial coordinates;
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s0 is the position vector of the manipulator base with respect to the spacecraft body
centre of mass; Ri is the 3-by-3 direction cosine matrix of each link with respect to the
base coordinates; n is the number of serial rigid body links; i represents the link number
from 0 to n; while li is the vectoral length of link i from (xi−1, yi−1, zi−1) to (xi, yi, zi)
(Shown in Fig. 1.)

Fig. 1. Spacecraft-Manipulator Geometry (C0 represents spacecraft’s center of mass; rci is the
distance between the centres of mass of adjacent links with respect to the base coordinates; Ci
is the center of mass of link i; p∗

ci is the position of the link i centre of mass with respect to the
inertial coordinates).

For spacecraft bus with dedicated attitude control, R0 = I3 (identity matrix). The
center of mass of the whole system (the robotic manipulator, satellite bus mount, and
the payload) is represented by [14, 15]:

p∗
cm =

∑n+1
i=0 mip∗

ci∑n+1
i=0 mi

(2)

where p∗
cm is the location of the centre of mass of the complete manipulator/spacecraft

system with regards to the inertial coordinates; mi is the mass of each component rigid
body links; n is the number of rigid body links; n = 0 represents the spacecraft body link;
p∗
ci is the position of link i centre ofmass in reference to the inertial coordinates. Similarly
to terrestrial manipulator algorithms in the form of pi = Rili, the equation of the space
manipulator for the location of the center ofmass of the completemanipulator/spacecraft
system with regards to the inertial coordinates (p∗

cm) has been derived to be [16–18]:

p∗
cm = rc0 +

(
1 − m0

mT

)
s0 + 1

mT

n∑

i=1

Ri

⎛

⎝
n+1∑

j=i+1

mjli + miri

⎞

⎠..

+ mn+1

mT
Rn+1rn+1

(3)

where m0 is the mass of the spacecraft bus; mT is the total mass of the system; mi is the
mass of each component rigid body i comprising the system; ri is the vectorial distance
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from the origin of link i to the centre of mass of link i; n+1 represents the corresponding
notations for the payload link. Equation (3) was separated into three parts: parts related
to body 0 (the spacecraft), bodies 1 to n (the manipulator links) and body n+ 1 (for the
payload). This then reduces to [18]:

p∗
cm = rc0 +

(
1 − m0

mT

)
s0 +

n∑

i=1

RiLi +
(
mn+1

mT

)
rn+1

where Li = 1

mT

⎛

⎝
n+1∑

j=i+1

mjli + miri

⎞

⎠
(4)

This concludes the location of center of mass of the system with respect to inertial
space. It is assumed arbitrarily that the local inertial reference frame initially coincides
with the spacecraft bus center of mass, that is, rc0 = 0, since any point fixed in the
interceptor body could be regarded as inertially fixed prior to any robotic maneuver
[18]. Having defined p∗

cm, the term rc0 is then substituted into Eq. (1), which gives

p∗ = p∗
cm + s0 +

n∑

i=1

Rili − 1

mT

n+1∑

i=1

n+1∑

j=i

mjrci (5)

This is further simplified into:

p∗ = p∗
cm + s0 +

n∑

i=1

Rili − . . .

1

mT

n+1∑

i=1

n+1∑

j=i

mj(Riri + Ri−1si−1)

(6)

where rci = Riri + Ri−1si−1 [18]. Similarly, we separate out the three parts associated
to the spacecraft mount (body 0), bodies 1ton for the manipulator links and body n + 1
for the payload [18]. This gives

p∗ = p∗
cm + m0

mT
s0 +

n∑

i=1

Riλi − mn+1

mT
Rn+1rn+1

where λi = 1

mT

i∑

j=0

(mjlj − miri)

(7)

Accordingly,λi is referred to as the lumpedkinematic parameter for eachmanipulator
link. The Eq. (7) of p∗ is an equivalent form to that of the terrestrial-based manipulator

of the form p =
n∑

i=1
Rili with added constants; (p∗

cm is constant, and λi is constant as the

lumped kinematic/dynamic parameter, replacing the li in terrestrial-based manipulator).
Therefore, the inverse kinematics solution to the space manipulator geometry can be

found with little modifications to the terrestrial algorithms.
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3 Predictive Feedforward Control

Our bio-inspired error-learning approach addresses the need for reactive and adaptive
behavior to diverse range of tasks under dynamic environmental conditions. If we could
successfully demonstrate this for a terrestrial manipulator, the idea is to incorporate the
approach in a free-flyer concept for the removal of space debris of varying sizes; with
the aim to offer a solution transferrable from earth to different orbital bands. In effect,
we propose here a control scheme that is centered on biomimetic models for predictive
forward control in conjunction with traditional feedback control. We believe that bio-
inspired forward models could provide solution for adaptive and robust control, which
could position robotic manipulators for the complex task of salvaging space debris if the
learned model can be successfully transferred to space environment. Adaptivity will be
implemented through learning of new forward models to adapt to new situations; robust-
ness is implemented in the form of forward models that provide rapid behavior without
relying on error excursions unlike traditional feedback controllers. The superiority of
feedforward-feedback control over feedback control only has been clearly demonstrated
[13]. Pure feedback control is implausible for reactive manipulation due to substan-
tial delays in sensors’ feedback signals. This is like the case biologically where human
reaction time is limited to a maximum of about 400–500 ms [19]. Therefore, predictive
feedforward strategy is proposed as addedmeasure to correct the robot’s trajectory along
with the feedback control. In this current study, we have not yet implemented feedback
delays into the forward model yet – the work presented here is the first step in building
a more comprehensive and sophisticated manipulator control system. The bio-inspired
control system should comprise a paired feedforward-feedback system with a learning
system that adapts forward models for different scenarios such as time delays and/or
payload variations. Hence, the core of this approach is the forward model presented. A
two-layer approach towards grasping has been presented: (i) position control through
feedback, which is the traditional approach – but delays in the feedback cycle can gen-
erate instabilities; (ii) the addition of a feedforward predictive capability to partially
circumvent this problem of instabilities by adopting pre-trained set of neural networks
which in a way emulates the function of the cerebellum as seen in humans.

The predictive feedforward approach involves pre-learned models trained offline,
which then provide a computationally efficient control model for low controller gains
necessary for reactive and adaptive control. We have introduced task-specific models
that are able to learn from their errors (make error predictions) under different and vary-
ing dynamics. The proposed approach is more practical for space-based manipulators
because there would be no major hindrances such as high computational complexity;
and secondly, the trained forward models do not require high computational resources
to implement which is usually a constraint onboard spacecraft. This is where transfer
learning comes in as a practical solution for transferring pre-trained earth-based model
to space environment. Most automatic control algorithms have not been demonstrated
in space as most manipulator control systems are teleoperated from earth.

Here, we present a forward model that is learned (or trained) as a neural network
approximator using some trajectory datasets relating the output torque τ to the kinematic
state of the joints (θ, θ̇ , θ̈ )T in an experimental teaching mode (Fig. 2). The trained
forward model will hence be able to take the analytically calculated torque (efference
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copy of input motor commands) as its input, while the output of the neural network
will be the predicted trajectory output (θff , θ̇ff , θ̈ff )

T . The system then incorporates an
inverse model with a feedforward adaptive part; that is, it includes a feedback loop and
feedforward component. The feedforward controller is trained using the output of the
feedback controller which serve as error signals. The trained feedforward component
models the inverse dynamics of the system. The feedback controller is effectively a
computed torque controller while the feedforward controller employs a gradient descent
to minimize the error.

Fig. 2. The predictive forward model scheme. The neural network (“NNet”) model is trained
using data from experimental teaching mode. DH stands for Denavit–Hartenberg; q represents
DH parameters for forward kinematics. D, C and G represent inertia matrix, coriolis and gravity
components respectively; Kd and Kp are derivative and proportional controller gains.

The forward dynamic model of a robotic manipulator is given by (for the sensory
joint acceleration rate):

θ̈ = D−1(θ)[τ − C(θ, θ̇ ) − G(θ)]

Joint acceleration θ̈ could be integrated to get joint rate θ̇ and joint rotation θ as
the predicted sensory state outputs from torque input τ. The body’s muscular nature
which produces a predicted trajectory output from efference input motor commands
can be imitated by the predictive forward model [20]. To compensate for time delays,
the feedforward control consequently predicts its response to system disturbances using
a model of the plant process [21]. This predicted trajectory output would be supplied
as input to the feedback component to compensate for delays (and this process could
continue iteratively). It is believed that forwardmodels can adjust 7.5 timesmore speedily
than when using only inverse models [22]. The forward model, in this case, is executed
as a neural network function estimator to the forward dynamics.
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4 Methodology

We present here the configuration and kinematics of the space manipular adopted,
and the mathematical implementation of the neural network multiple-target prediction
algorithms.

4.1 Barrett WAM Configuration

For this study, the configuration of the WAM (Whole Arm Manipulator) representing
the parameters of the manipulator at the initial (stowed) position are shown below as
used in the simulation:

Fig. 3. D-H Table of the Barrett WAM.

The Barrett arm is a 7-DOFmanipulator with a three-fingered hand as representative
of an on-orbit servicing manipulator kinematics. For the kinematics solution, the proce-
dure discussed and presented in Sect. 2 was implemented for the space manipulator. The
procedure is the space-based kinematics shown for modifying terrestrial robots to space
robots. The key to the space application approach is to replace the terrestrial parameters
of ak and dk of Fig. 3 with the spaced-based equivalence [18], according to the lumped
kinematic parameters as described in Sect. 2.

4.2 Implementation of Multiple-Target Prediction Algorithms

Machine learning algorithms were developed to learn/train the forward dynamics model
by using the joint torques as input and the joint trajectories as targets. With respect to
the nature of the trajectory datasets, and after various experimentations, the multiple-
output regression tree and the multi-layer perception (MLP) multiple-output regression
algorithmswere identified for best prediction accuracy and computational efficiency.We
present here the implementation of the algorithms, with emphasis on the multiple-output
decision tree regression. Given a feature vector x, we aim to predict a vector of output
responses y using the function h(x):

x = (x1, x2, x3 . . . , xm)
h(x)⇒ y = (y1, y2, y3 . . . , yd )

Some of the notable challenges are the proper modeling of dependencies among
targets, i.e., between targets y1, y2, y3 . . . , yd ; and dealing with large number of multiple
variable loss functions outlined over the output vector, L(y, h(x)).
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There are two methods existing for multiple output regression, namely (i) prob-
lem transformation methods and (ii) algorithm adaptation methods. In our case,
we used the algorithm adaptation method because it provides more accurate pre-
dictive performance, particularly in cases where there are correlations among the
targets [23–25] - as we have in our robotic trajectory dataset, where the targets
(θ, θ̇ , θ̈ )T are co-related. Given a training dataset D of N samples containing a
value assignment for individual variable X1,X2, . . . ,Xm, Y1,Y2, . . . ,Yd ; that is, D =
{(x(1), y(1)), . . . , (x(N ), y(N ))}. Every sample is categorized by an input vector of m pre-
dictive variables x(l) = (x(l)

1 , . . . , x(l)
j , . . . , x(l)

m ) and an output vector of d target variables

y(l) = (y(l)
1 , . . . , y(l)

i , . . . , y(l)
d ), with i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}, and l ∈ {1, ...,N }.

The aim is to learnmultiple output regressionmodel fromD comprising of a function
h that ascribe to each sample, given by the vector x, and a vector y of d target values:

h : �X1 × ... × �Xm → �Y1 × ... × �Yd

x = (x1, ..., xm) → y = (y1, ..., yd ),

where �Xj and �Yi denote the sample spaces of each predictive variable Xj, for all
j ∈ {1, . . . ,m}, and each target variable Yi, for all i ∈ {1, . . . , d}, respectively. The vari-
ables in targets (θ, θ̇ , θ̈ )T are taken to be continuous, as it is the case for manipulators’
joint trajectory.The trainedmulti-outputmodelwill be employed subsequently to concur-
rently predict the values {ŷ(N+1)

, . . . , ŷ(N ′)} for all target variables of the new incoming
unlabeled examples {x(N+1), . . . , x(N ′)}. Multi-target regression trees, as adopted in our
case, can predict multiple continuous targets simultaneously. They have major benefits
over adopting single regression tree for individual target [26]. Here, we have adopted
an extension of the univariate recursive partitioning method (CART) [27] to our multi-
target regression task. Therefore, the multivariate regression trees are modeled similarly
to the steps followed in CART. The approach that performed better betweenMLP neural
network and multi-target regression was chosen in each instance.

5 Results

Presented here are the results of the predictive feedforward model of the Barrett WAM
space manipulator. The significance of the result is to demonstrate how we have devel-
oped neural network and regression models which are capable of predicting (to a high
degree of accuracy) forward trajectory variables (θff , θ̇ff , θ̈ff ) from an efference copy
of the torque, as shown in Fig. 4. It means the models are poised to cancel the sen-
sory effects of the arm movement, providing anticipated sensory consequences from the
motor command. With this, instabilities that could arise in delays when using traditional
feedback cycle have been partially circumvented. This is akin to how the human cerebel-
lum functions as discussed in Sect. 3. Here, we adopt a dataset publicly made available
by [28], where the Barrett WAMwas taken by the end-effector and guided along several
trajectories in a teaching mode – in this case, it implies that sensor noise was included
in the training dataset. During the imagined motion, the joint trajectories (θ, θ̇ , θ̈ ) were
sampled from the robot and the corresponding motor torques (τ) measured for each data
point. The dataset has a total of 12,000 samples. For the 7 degree-of-freedom (7-DOF)
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Barrett arm, 7 motor torques were measured, along with 21 joint trajectory variables rep-
resenting seven joint angles (θ ), seven joint velocities (θ̇ ) and seven joint accelerations
(θ̈).

Deep learning neural network models and multiple-output regression models were
developed, and we learned the forward dynamics model by using the joint torques as
input and the joint trajectories as targets. Given a feature vector x, we aim to predict a
vector of output responses y using the function h(x):

x = (x1, x2, x3 . . . , xm)
h(x)⇒ y = (y1, y2, y3 . . . , yd )

Table 1. Prediction accuracy of joint angles (Data point 243).

Joint number Joint angle (rad)
Test Set

Joint angle (rad)
Predicted

Accuracy
(%)

1 0.0814 0.0799 98.2

2 0.6165 0.5696 92.4

3 0.0236 0.0222 94.1

4 1.745 1.6647 95.4

5 0.2123 0.199 93.7

6 0.0781 0.0751 96.2

7 0.0869 0.0844 97.1

The independent features were used to train each set of targets grouped separately
by the joint angles, joint velocities, and the joint accelerations. Meaning three different
models with different hyperparameters were trained (learned), in an attempt to manage
target dependencies. The first model relates the 7 joint torques as input to the 7 joint
angles as targets; the second model was learned between the 7 joint torques as input and
the 7 joint velocities as targets, while the third model learned the relationship between
the 7 joint torques as input and multiple-target prediction of the 7 joint accelerations as
the output. It should be noted that the joint trajectory datasets for the training and testing
were randomly split for better model learning and performance. In Table 1, a comparison
for a chosen data point (sample number 243) for the predicted feedforward joint angles
are shown, while Table 3 represents the case for joint velocities. These tables show the
results comparing the predicted feedforward joint trajectory (for angle and velocity)
to some desired joint trajectory specified as test set from the dataset. Table 2 shows
the comparison for the accuracy of the end-effector’s position in the three-dimensional
cartesian space. This relates the desired joint angles and the predicted joint angles for
the seven degrees of freedom, as carried out with space manipulator forward kinematics.
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Table 2. Prediction accuracy of end-effector’s position (data point 243).

End-effector
Cartesian position

Desired position Predicted (actual) position Accuracy (%)

x-position 0.0040 0.0037 92.5

y-position 0.0047 0.0046 97.9

z-position 0.9008 0.9005 99.9

Table 3. Prediction Accuracy of Joint Velocities (Data point 243).

Joint number Joint velocity (rad/s)
Test Set

Joint velocity (rad/s)
Predicted

Accuracy (%)

1 0.0657 0.0647 98.5

2 −0.1850 −0.1835 99.2

3 −0.1794 −0.160 89.2

4 −0.0678 −0.0646 95.3

5 −0.0235 −0.0231 98.1

6 0.0478 0.0434 90.8

7 −0.0895 −0.0872 97.4

Fig. 4. Predicted-to-desired, data points 240–255; 260–275, for joint angle 1, simulated free-flyer.

Figure 4 represent results of several sample data points for the simulated Barrett
WAM free-flyer, showing prediction correlation along the path of joint-angle motion (θ )
for a single chosen joint (Joint 1). The joint trajectory dataset from the terrestrial case
was simulated and modified following the kinematics and dynamics of robotic free-
flyer presented in Sect. 2. Initially, the free-flyer dataset was tested on the predictive
model built earlier for the terrestrial case. The performance was, surprisingly, poor and
unsatisfactory. However, retraining the earth-based model using the newly gotten free-
flyer space dataset resulted in highly correlated trajectory accuracy between the desired
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and predicted as shown in Fig. 4 – without the need to tune the hyperparameters. The
drawback to the feedforwardmodel here is the need to re-learn the newdataset as adopted
for the spacemanipulator. It was discovered that the possibility of transfer learning could
not be exploited after the optimized initial training, even though the deduced terrestrial-
to-space manipulator dynamics were incorporated analytically in the model learning
process. A second limitation was the fact that a change in dynamics (such as time delays
and/or payload variations) resulted in the necessity to retrain the model, and learned
weights were not transferable. Again, the controlling equations and dynamics of the
terrestrial-to-space manipulator have not changed, these limitations should have been
learned (accounted for) in the trained model as part of the space robot’s dynamics.

The prediction accuracy in both cases ranged between 89–99%, and our model com-
pared favorably to the expected feedforward joint trajectory. In the simulation carried
out, low gains were required subsequently in the feedback controller for trajectory track-
ing. The feedforwardmodel provided good anticipatory sensory consequences, although
a morphing system will be required to transform between the terrestrial and free-flyer
dynamics. For the variations seen in the prediction accuracies, this issue will apply to
any serial manipulator control system.

6 Conclusion and Future Work

We have introduced forward models implemented as trained neural networks as a means
of supplementing traditional feedback controllers for space manipulators. The forward
models show high accuracy predictions for the feedforward joint trajectory; robust
enough to provide a platform for reactive manipulation (because of low gains in the
feedback controller), in a way to circumvent the sensor-dependent traditional approach.
Different forward model trainings were required for the terrestrial and space robot’s
joint trajectory predictions for high accuracy, although hyperparameter tuning was not
required, rather a case ofmodel re-training on new datasets (dynamics and environment).
Therefore, there might be a requirement for some offline adaptation or implementation
of morphing approach between the terrestrial and spaced-based dynamics. This exposes
severe problems in neural networks including deep learning as a model of general intelli-
gence – transfer learning lacks the adaptability and requires a profusion ofmotormodels,
and the introduction of payloads and force control exacerbates this. Yet, the human cere-
bellum can readily adjust to the space environment within seconds and does not have to
start learning from motor babbling as implied by the neural network model. It is clear as
detailed in Sect. 2 that the terrestrial kinematics and the space kinematics are of the same
form but with only changes in parameters. Given that the two equations are similar, the
two polynomial curve shapes should be similar but shifted in multidimensional space to
match their specific input-output mappings. Transfer learning cannot seem to shift one
polynomial curve fit onto the other, but the human cerebellum can. The problem is that
input-output mapping that a neural network learns does not retain the kinematic/dynamic
structure. This is a practical limitation of regression and neural networkmodels as shown
in this work.
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An obvious approach to provide a solution would be to explore reinforcement learn-
ing algorithm.An adaptive feedforwardmodel is pre-trained on earth prior to deployment
and subsequently adapts to changes in the dynamics and other environmental param-
eters of the system in space. A recent suggestion to such an approach was covered
in Rapid Motor Adaptation algorithm [29]. This is an approach that we are currently
exploring its feasibility for adaptive and compliant space manipulator control transfer-
able from learned model. Continuous online training as typically obtained in the context
of traditional reinforcement learning deployment is not feasible in the application of
space robotics, for reasons stated in Sect. 3 – constraint of high computational resources
onboard spacecraft.
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