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Abstract. Artificial intelligence and robotics are leveraging technologies for
lunar exploration. However, future lunar surface exploration will require exploita-
tion of in-situ resources to reduce (and ultimately eliminate) the costs imposed
by the transport of materiel from Earth. Solid-state manufacturing of electronics
assets from lunar resources to eliminate its supply from Earth is impractical. We
propose the in-situ manufacture of vacuum tube-based computational electron-
ics which requires only a handful of materials that are available on the Moon.
To offset the problem of exponential growth in physical footprint in CPU-based
electronics, we propose the implementation of analogue neural network hardware
which has Turing machine capabilities. We suggest that the artificial intelligence
requirements for lunar industrialisation ecology can be demonstrated in principle
by analogue neural networks controlling a small rover. We pay particular attention
to online learning circuitry as the key to adaptability of analogue neural networks.

Keywords: Analogue neural network hardware · Turing machine models ·
Lunar in-situ resource utilisation · Neural network rover navigation

1 Introduction

Everyone is choosing to go theMoon, not because it is easy, but because it has potentially
useful resources. Current interest in in-situ resource utilisation (ISRU) on the Moon is
based on recovering water ice at the polar regions ostensibly to support a human pres-
ence. The advent of commercial, government and other interests towards lunar resources
leads to a loose confederation of private and government installations on the Moon, the
“Moon Village”. However, rather than adopting ISRU as an addendum to human bases
on the Moon, we are interested in leveraging lunar resources as a modus operandi for
total lunar industrialisation as independent of Earth as is feasible, i.e. to bootstrap an
entire infrastructure from lunar resources. A crucial backbone to this notion is the ability
to constructmachines of production rather than products per se from lunar resourcesAny
kinematicmachine – be they load-haul-dump rovers, CNCmillingmachines, 3D printers
or assembly manipulators as the machines of production - comprises specific configura-
tions of electric motors supported by control systems capable of universal computation.
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It is the latter that is of concern here. A general approach to exploiting in-situ resources
on the Moon involves extracting around 10 materials sufficient to realise all basic func-
tional subsystems of a spacecraft – a demandite list extracted through a lunar industrial
ecology [1, 2] which feeds into a generalised metal extraction system [3]. Two examples
of utilities that can be leveraged from such in-situ resources are an energy infrastructure
[4] and lunar bases [5]. We wish specifically to construct computational resources from
in-situ resources on theMoon. An important consideration is that we cannot import Earth
technology with all its complex supply chains to the extraterrestrial environment. Any
technology we employ on theMoon must have a robust lunar supply chain with minimal
reliance on Earth. So it must be with lunar computers which must function in a ther-
mally hostile and radiation-saturated environment.We cannot simply shoehorn terrestrial
technologies wholesale to the Moon it is premised on the entire globally-interconnected
industrial complex on Earth. A mobile phone for instance comprises over 30 different
materials for different functional components – each material must be mined, extracted,
refined, mixed, formed and assembled. The manufacturing process assumes a bevy of
reagents and high precision terrestrial facilities. The in-situ lunar environment imposes
severe constraints on the availability of material and infrastructure resources. Here, we
focus on using lunar resources to construct neural electronics capabilities in-situ as a
step towards full self-sufficiency of computer technology necessary to realise artificial
intelligence functions. The implementation of solid-state computers would be impossi-
ble from lunar resources due to [6]: (i) paucity of common reagents used in solid-state
manufacture; (ii) stringently controlled environmental conditions required in solid-state
manufacture; (iii) extreme temperatures required for solid-statemanufacture; (vi) unsuit-
ability of solid-state electronics to severe thermal and radiation environments extant on
the Moon; (v) extreme cost of electronics foundries. Furthermore, given the paucity of
plastic ingredients – carbon in particular – and exotic metals on the Moon suggest that
approaches using organic polymers, nanoparticles or exotic metals cannot be substituted
on the Moon. We must adopt a new engineering philosophy that exploits technologies
derived from the available materials.

2 Modes of Computation

We propose thermionic vacuum tubes as an alternative to transistors because they com-
prise of only a small number ofmaterials configured into a relatively simple construction,
all of which can be sourced from the Moon. A vacuum tube is simple in construc-
tion – a tungsten cathode that emits electrons attracted to a nickel anode controlled by
a third nickel grid electrode encased in an evacuated glass or ceramic tube and linked
by silicone or ceramic-insulated kovar wiring. Fused silica glass encapsulation may be
derived from lunar anorthite), aluminum wire from lunar anorthite, high temperature
kovar wiring from nickel-iron meteorites, tungsten filament cathodes from nickel-iron
meteorites coated with calcium oxide and alumina from lunar anorthite, and nickel
anodes and control grids from nickel-iron meteorites. Only a small number of materials
are required and are readily extracted from lunar resources. The chief problem resides
in that vacuum tube-based computers are cumbersome – ENIAC used almost 17,500
vacuum tubes, over 7000 diodes, 1500 relays, 70,000 resistors and 10,000 capacitors
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with a mass of over 25 tonnes covering an area of almost 170 m2 and consumed 150 kW
of power. Clearly, the enormity of such a computer renders this approach infeasible for
a lunar infrastructure. This is a direct result of the von Neumann central processing unit
(CPU)-based architecture. The core of the CPU is one or more arithmetic logic units
(ALU), each a combinatorial logic circuit for performing arithmetic operations (addi-
tion, subtraction, negate, increment/decrement and sign) and bitwise logical operations
(AND, OR, EX-OR and NOT) on 4-bit, 8-bit, 16-bit, 32-bit or 64-bit data widths. For
example, the modest embedded 8051 CPU comprises 2,200 logic gates but modern com-
puters comprise ~500 million logic gates. The von Neumann architecture stores data in
a variety of different memory locations which must be fetched as input data to the CPU
and the results of which must be pushed back into memory. The basic operation of the
von Neumann architecture is the fetch-decode-execute cycle which is wasteful in hard-
ware footprint and energy. There are alternative Turing machine-equivalent approaches
to computation. We have adopted a neural network architecture implemented as elec-
tronics of such a machine. This was driven by several constraints: (1) limited material
availability on the Moon for electronics manufacture, (2) superiority over the traditional
von Neumann architecture in terms of Turing computability, (3) superiority of neural
architectures over von Neumann architectures in terms of physical footprint.

3 3D Printer-Based Turing Machine

To address the problem of 3D printing computing machines, we revert to the original
Turing machine model of a computer. Our implementation of a Turing machine com-
prises an input tape represented by magnetic core memory rather than a magnetic tape,
an output tape represented by an analogue neural network circuit and a read/write head
represented by a generic 3D printer (Fig. 1).

Fig. 1. Turing machine model with magnetic core memory (input tape), neural net circuit (output
tape) and 3D printer (read/write head).
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Magnetic core memory comprises the same basic components as a DC electric
motor – 3D printing of such has been demonstrated [7]. Magnetic core memory uses
ferrite magnetic cores (toroids) through which wires are passed to convey read and write
signals. Each core stores 1 bit of information non-volatilely as zero or one depending on
the direction of the core’s magnetisation. The coincident current system enables a small
number of wires to control a large number of cores in 3D stacks. A large number of small
ferrite toroidal cores are held on layers of XY grids of wires through the toroidal centres.
Only where the combined magnetic field from X and Y lines cross exceeds the threshold
will the magnetic polarity reverse. Magnetic core memory offers high reliability and
was used for the Apollo Guidance Computer and Space Shuttle Flight Computers. An
automated assembler machine based on a four-axis cartesian (x,y,z,R) gantry that posi-
tions two tooling heads with respect to a worktable constitutes a possible model of the
3D printer [8]. The tooling heads position standard parts for assembly with compliance
to accommodate small positioning errors. A punch-press was used for fabricating the
modular boards of electrical insulator FR4 fibreglass-epoxy composite. A wire-electric
discharge machine was used for fabricating electrically conducting tin-plated phosphor-
bronze alloywire. Together, these twomaterials constituted themodules for the assembly
of electrical circuits. In our Turingmachine model, the 3D printer thus becomes a central
component of universal computation that operates in much the same way as a Jacquard
loom – it prints out analogue neural network hardware circuitry according to the program
stored in magnetic core memory as its output.

We must now consider the 3D printed output circuitry. For our output tape, we have
adopted the artificial neural network whose architectural complexity grows only loga-
rithmically with space and time resource requirements compared with the exponential
growth in von Neumann architectures – any function that can be computed by logic
gates of size z and depth d can be computed by a neural network of depth d/elog(z)
and size O(z1+e) with error e > 0 [9]. Neural networks are capable of implementing
logic and arithmetic functions directly: (i) a finite neural network of discrete neurons
characterised by Heaviside squashing functions (McCulloch-Pitts neurons) is equiva-
lent to a finite sequential automaton implementing Boolean logic gates [10]; (ii) the
half-adder can be realised as two oscillator output neurons cross-strapped to their inputs
with excitatory connections and a direct bidirectional inhibitory link between the two
neurons. Recurrent neural networks (for example, the Elman simple recurrent neural net
is a Moore machine) are Turing machines so any computation that can be performed
by a von Neumann architecture-based CPU can be performed with a recurrent neural
network. A universal Turing machine was implemented on a recurrent neural network
comprising 886 neurons [11] though this was subsequently reduced to 96 then 25 and
finally to just 9 neurons [12]. A neural network with r = m + n + 2 layers of neurons
and two sets of second order connection weights can simulate in real-time a Turing
machine with m-symbols and n-states [13]. The neural Turing machine is based on a
recurrent neural network computer augmented by external addressable memory [14].
The recurrent neural network acts as a controller network that performs processing of
input data and data stored in memory, then storing it and outputting the results. Content-
based addressing through partial similarity matching of vectors simplifies data retrieval
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from the external memory. Like recurrent neural networks in general, the neural Turing
machine can be trained through gradient descent learning.

There is a bio-inspired rationale to the adoption of analogue neurons – neocortical
neurons exhibit the multistability of digital flipflop circuits with the graded response of
analogue circuits modulated by positive feedback gain in its recurrent connections [15].
These neuromorphic computing architectures favour analogue electronics with digital
encoding implemented as integrate-and-fire (spiking) neurons rather than McCulloch-
Pitts neurons [16]. However, we do not address spiking neurons here. The physical
circuit footprint of analogue electronics is often more efficient ceteris paribus than
digital architectures. Analogue neural networks implement asynchronous event-driven
computing eliminating the processor clock and reducing power consumption. They are
more tolerant of low-accuracy components than conventional logic-based computation.
Although analogue circuits suffer from noise and parameter variations, they offer high
speed and low energy consumption. The use of physical neural networks through its
synaptic weights co-locating data memory and data processing in massively parallel
architectures such as SpiNNaker (spiking neural network architecture) eliminate the
von Neumann bottleneck of CPUs and GPUs which waste energy [17]. In-memory
computing may be based on crossbar arrays of memory cells that conduct analogue
multiply-accumulate operations typical of a neural network of neurons [18].

4 Analogue Neural Network Learning Circuitry

Online learning is a highly desirable capability – indeed, it is essential for compensat-
ing for unreliable components, a trait of analogue circuitry. In general, neural learn-
ing involves weight update wij(t + 1) = wij(t) + ηδijxij performed at each iteration
until the output of the neural network minimised the error from the desired outputs
δoutij = (xdij − xij)xij(1 − xij). Implementing neural learning through weight update with
analogue circuitry represents a challenge. A simple learning algorithm is the Madaline
rule II (MRII) which implements feedforward neural network training so that weight
changes are minimized [19] –MRII extends the MR I to multilayer networks. This is the
minimum disturbance principle. All weights are set to small random values and training
patterns are then presented in random order. In response to an output error in the network,
the MRII algorithm selects first layer neuron with the lowest output value and reverses
it. The network output error is checked again: if the network output error is reduced,
the weight change is accepted, otherwise the original weight is restored. This process
continues with first layer neurons with increasing output values until all the output errors
are corrected. If all the output errors are not zero, the procedure is then applied to pairs
of first layer neurons beginning with those with outputs close to zero. Then it may be
applied to trios of neurons, etc. After the first layer has been exhaustively tested, the
second layer may be tested, etc. depending on the number of layers. Once completed,
the previous training patterns must be re-applied in random order to prevent oscillations.
Although a painstaking process in comparison with backpropagation, it is nevertheless
readily implemented in analogue electronics. These suffer from nonlinear distortions
which motivated the MR III algorithm which does not require the derivative of the error
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function. The weight update is given by a least square algorithm based on mean square
error as the performance index:

wi+1 = wi + �wi = wi − η

(
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)
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where �ei = −�yi, ei = ydi − yi = output error. This is the Widrow-Hoff rule which
may be simplified to eliminate the need for linear multipliers at the cost of slower
convergence:

wi+1 = wi + 2ηsgn(ei)sgn(∇yi) (2)

In this case, DC offsets may appear which require adaptive cancellation using a number
of analogue approaches at the cost of physical footprint [20]. An analogue implemen-
tation of neural learning through gradient descent was presented composed of integra-
tors, summers, comparators and multipliers [21]. A simple Hebbian learning rule has
been implemented as voltage activations on a series of circuits – Vij multiplier - wijVj
multiplier - summer - Vi neuron multiplier circuits [22]:
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⎛
⎝∑

j

wijVj

⎞
⎠ (3)

dwij

dt
∝ dVij

dt
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where k, a, b = small constants, f(.) = sigmoidal activation function, Vi = voltage on
post-synaptic neuron i, Vj = voltage on pre-synaptic neurons j synapsing on neuron i.
The second term represents weight decay that may be set to zero as b = 0. Wide-range
Gilbert multipliers output a current that is proportional to the product of the input volt-

ages: I0 = a
(
V1−V2
V3−V4

)
. The summer outputs a current that is proportional to the sum of

inputs based onKirchoff’s laws. The synaptic weight wij may be represented as a voltage
Vij on a capacitor: Vij = Ic

C ∝ ViVj. . The non-linear function f(.) exploits the saturation
behaviour of the neuron multiplier. An analogue circuit block that implements back-
propagation without clock synchronisation has been devised in which synaptic weights

are stored as voltages in capacitors Vw(t) = Vw(0)+ 1
C

T∫
o
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C
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o
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where K = conductance coefficient, the charging of which imposes time delays [23].
Learning was implemented with analogue circuit feedback. Analogue multiple voltage
input lines with sample-and-hold circuits may implement input voltages as modifiable
synaptic weights which may be adjusted more easily than resistance weights [24]. Dur-
ing learning, input voltage is varied but during operations, connection weights are held in
the sample-and sold circuit. Online backpropagation offers the potential for continuous
online learning [25]. An electrical circuit representation of the more complex backprop-
agation learning algorithm has been derived [26]. The backpropagation algorithm of the
multilayer perceptron adjusts its weights (conductances) by gradient descent:

wih(t + 1) = wij(t) − η
∂e

∂wij
(5)
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The incremental connection weight may be represented by:

�wij(t) = −η
∂e

∂wij(t)
(7)

where η = RC = settling time constant. The implementation of the backpropagation
algorithm on physical neural networks offers both speed of learning and high energy
efficiencies [27]. To avoid complex computations of derivative of the error function
required of the delta rule, the Madaline III rule implements gradient estimation based
on node perturbation:

�wij = ∂E

∂f
(∑

j wijxj
)xj (8)

where f(.) = nonlinear squashing function. This requires wire routing to each neuron,
multiplication hardware and addressing logic. Rather than node perturbation, weight
perturbation may be employed with less hardware. Analogue VLSI implementation of
feedforward and recurrent neural networks may implement on-chip learning through
gradient estimation through finite differences as an approximation to backpropagation
[28]. The weight update rule involves a constant weight perturbation pertij and is given
by the finite difference which can be mapped onto an analogue implementation:

�wij = E(wij + pertij) − E(wij)

pertij
(9)

where E = total mean square error. Analogue implementation measures the errors with
unperturbed and perturbed weights, subtracts them and multiplies by a constant. No
backpropagation flow is necessary. A similar version applies simultaneous weight per-
turbations to compute central difference approximations to the differential of the error
in parallel [29]:

�wij = E
(
wij + 1

2pertij
) − E

(
wij − 1

2pertij
)

pertij
(10)

The learning rule thence becomes: wij(t + 1) = wij(t) − η�wij (11)

Our goal is to explore analogue neural networks with a focus on neural learning to
determine its plausibility as an approach to artificial intelligence on the Moon.
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5 Analogue Neural Network Circuit Simulations

Neural networks comprise of an input layer of input data to be processed, hidden layer(s)
responsible for extracting information from the input data and an output layer outputting
the desired response. Fixed weight neural networks are inflexible due to the inability
to be trained for different tasks as the neuron weights implemented as resistors remain
fixed. We have examined two approaches to analogue neural networks with learning
circuitry. The first was a simulated approach and the secondwas a simulated and physical
construction approach. In both cases, we implemented two analogue circuit modules –
a forward network that propagates signals from the input to the output layer and a
backpropagation circuit that propagates the error backwards through the network from
the output to compute the weight changes.

In our first simulated analogue neural network design using LTSPICE [30], we
adopted a two input neuron – three hidden neuron – one output neuron configuration for
the forward circuit. The forward network comprised several subcircuits – an op-amp-
based summation circuit, an activation function circuit, a voltage-controlled resistor,
an op-amp multiplier and a general inverter op-amp circuit. The neuron itself is con-
structed from a neuron summation sub-circuit and an activation function sub-circuit.
The combination of weighted resistors is used to provide summed outputs. The sum-
mer amplifier is well understood (see Fig. 6(b) for an example) such as that adopted in
the Yamashita-Nakamura neuron model [31]. Voltage-controlled resistors (VCR) were
adopted to implement synaptic weights similar to [32] – they were based on a surgeless
electronic variable resistor and attenuator design [33]. TheVCRdesignwas based on two
vacuum tubes with cross-connected cathodes and grids to operate as a voltage divider
(Fig. 2(a)). The weights represented by the VCR are updated from the backpropagation
network. Every neuron performs a set of operations for which a decision is madewhether
to fire a neuron or not based on the activation function. The activation function typi-
cally applies a nonlinear squashing function to the weighted summation. We explored
two activation functions – an op-amp-based linear activation function (Fig. 2(b)) and a
vacuum tube-based differential amplifier (Fig. 2(c)) [34]. The threshold may be adjusted
through the activation function but use of resistors requires positive weights. Inhibitory
links may be implemented through the activation function as negative state [35]. An
analogue op-ampmultiplier exploits the nonlinear properties of class AB op-amps using
three interconnected op-ampswith a collection of resistors to output an approximation of
the product of two inputs [36] (Fig. 3). There is a vacuum tube amplifier implementation
with class-AB operation characteristics [37].
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Fig. 2. (a) Voltage-controlled resistor; (b) linear activation function; (c) vacuum tube-based
differential amplifier.

Fig. 3. Op-amp multiplier.

The backpropagation circuit comprised three sub-circuits: (i) a subtraction sub-
circuit to calculate the error between the forward network output and the target value,
(ii) VCRs and (iii) the back propagation multiplication block that calculates the neuron
errors. The subtraction sub-circuit comprised an op-amp inverting amplifier to subtract
voltages as well as for adding voltage biases (Fig. 4).

Fig. 4. Subtracting op-amp inverting amplifier.

The backpropagation multiplication sub-circuit contains a subtraction op-amp and
cascaded op-amp multipliers. The resultant error outputs of the backpropagation circuit
are multiplied with the neuron outputs using op-amp multiplication circuits. Each of the
sub-circuits were functionally validated but once assembled into the neural network, the
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training simulations failed to update the weights of our vacuum tube-based analogue
neural network successfully. We suspected the problem may be associated with the
VCRs.

6 Analogue Neural Network Circuit Hardware

Webuilt a different trainable analogue neural network circuit to demonstrate the principle
of online training on a rover vehicle [38]. The forward interconnection of neurons were
arranged into successive layers – the analogue neural network configuration comprised
two input neurons plus a bias neuron followed by a two neuron hidden layer plus a
bias neuron to a two neuron output layer. As before, the neural network is primarily
constructed using (transistor-based) op-amps. The circuits were also simulated using
the Proteus PCB simulator software generating two outputs to our network with weight
values changed from output error to generate new outputs. Rather than VCRs for the
adjustable network weights, we adopted variable potentiometers which were updated
according to the voltage outputs from the backpropagation circuit during training. As
before, the analogue circuit implementation of the neuron requires aweighted summation
and a multiplication. Multiplication of the input and the weight was implemented by a
four quadrant translinear multiplier (AD534) based on the Gilbert cell. The inputs to the
multiplier can either be positive, negative or both yielding a combination of the signed
inputs. During the training phase, voltage Vx was varied using a potentiometer to update
and obtain the optimum weight yielding the output Vout. The weighted summation of
inputs to a neuron was followed a linear threshold activation function. It was executed
at the end of the forward pass during the training of data rather than at each neuron. The
forward circuit of the analogue neural network is prototype of the implementation of
this arrangement is shown in Fig. 5.

Fig. 5. Forward propagation neural network circuit.
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Fig. 6. (a) Window comparator; (b) summer amplifier (c) voltage comparator circuits.

The backpropagation circuit required several subcircuits:

(i) Window comparator (Fig. 6(a)) to detect input voltage range – two voltage com-
parators provide upper (5 V) and lower (2 V) reference voltages. The output fires
if the input is outside this range but not of it is within the range, i.e. a bandstop
filter. A voltage inverter inverts this to give an output of 5 V within the range and
< 1 V outside the range.

(II) Summation circuit (Fig. 6(b)) to output subtraction of the two inputs (either 5 V
or <1 V) and the output of the window comparator.

(III) (iii) Voltage comparator (Fig. 6(c)) outputs (−1 V/+1 V) the input summation
which alternates between the negative and positive saturation voltage based on the
voltage at the non-inverting input of the op-amp.

Smaller learning rate ensures better stability over convergence speed but our data set
was simple so it was set at 0.1 V. The error output was defined thus:

Error = −1 when the desired output was less than 2 V but the actual output was greater
than 2 V

= 1 when the desired output was greater than 2 V but actual output was less than
2 V.

= 0 for zero error

The errors were output as voltage values of −1 V and +1 V. The backpropagation
circuit is shown in Fig. 7.

The forward and backpropagation circuits were mounted on a small rover over an
obstacle course. The rover was fitted with two front corner digital IR sensors to detect
obstacleswithin 9 cm connected directly to the input nodes of the forward neural network
through a 12-bitDACconverterMCP4725.AnArduinoUNOboard controlled four servo
motors for the four wheels, two on each side. Two voltage inputs to the neural network
are from the distance sensors that detect obstacles and from a bias node while the two-
node output layer is connected to the respective wheel motors of the rover on either side.
A simple dataset was used for training the network: zero obstacle path yielded inputs of
1 V but a left/right obstacle yielded an input of 4 V. A total motor output of 2 V yielded
all-stop while under 2 V yielded appropriate turns and forward movement. During the
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Fig. 7. Backpropagation circuit.

training phase, the circuit performing forward propagation was initiated with random
voltage weights to map distance sensor inputs to the output – this is subsequently fed
to the backpropagation circuitry comprising a threshold activation sub-circuit as well as
multipliers and summers. Over multiple iterations, the network successfully converge to
weight values that minimised the error from the desired output. The potentiometers were
varied according to the output over several iterations to drive robot to realise a BV2B
behaviour [39]. The robot successfully demonstrated the desired obstacle avoidance
behaviour through a path with several obstacles – a left obstacle stopped the right wheels
while driving the left wheels, and vice versa.

7 Conclusions

We have implemented a backpropagation algorithm in analogue circuitry demonstrating
that electronic hardware is malleable and therefore carries the potential to be used for
computational purposes as demonstrated on a simple rover. The neural network received
training through the analogue circuit without any software programs. However, there are
several issues that deserve further investigation. Although the training of the neural net
is implemented through the backpropagation circuitry, the weight updates were applied
manually which would preferably be implemented automatically clearly demonstrating
learning directly from the physical environment. The crux is to implement weight mem-
ory updates directly electronically. There are several options for non-volatile memory
cells including resistive RAM and magnetoresistive RAM in which each memory cell
encodes a synaptic weight as analogue conductance. Non-volatile memories may be
manufactured through microtechnology as magnetoresistive RAM comprising current-
controlled magnetic tunnel junctions collectively implementing resistance summation
[40]. This offers much lower energy consumption. Hardware implementation of neural
networks is of interest as an application of the electrical memory element, the memris-
tor for its ability to regulate current flow within itself, while simultaneously retaining
the memory of its previous state without electrical power [41–43], including CMOS-
basedmemristors [44–46].A ferroelectricmemristorwith a voltage-controlled resistance
employed as a variable synaptic weight suffer from conductance hysteresis from his-
torical voltages [47]. However, memristor micro-manufacturing (as for solid-state) does
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not appear feasible for the near future. Future work should involve training the network
of neural net with more complex tasks including sensing in its immediate domain and
with predicted expectations. This introduces the issue of analogue neural network scal-
ability. Although a neural design by trial-and-error was implemented because of the
circuit’s simplicity, genetic algorithms offer the possibility of evolving neural network
designs for more complex problems offline. However, incremental adaptation rather
than global optimization offers ease of implementation and time-efficiency [48]. Such
learning methods have yet to be tested, but they can plausibly be implemented through
electronic hardware. Finally, the internal circuitry of the op-amps consisted of transistor
configurations which should be replaced with vacuum tube-based circuitry to enhance
its relevancy to manufacturability on the Moon.
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