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Abstract: Robotic on-orbit servicing is the key to the commercial development of a space robotics
infrastructure. A major technical difficulty has been the problem of control of the robotic
manipulators mounted onto a freeflying platform in space. The problem of control is directly related
to the fact that manipulator motions exert reaction effects on the mounting spacecraft. A solution to
this problem is outlined—one in which no fuel is expended and that demands no excessive
computational resources that would otherwise preclude real-time performance.
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NOTATION

a ¼ ðaxayazÞT approach vector perpendicular to the
end-effector palm (turn) for i¼ n

bi viscous friction on joint i
fi force on link i as a result of link i� 1

supporting outboard links
Fci total force on the link i centre of mass
FT total force acting at the manipulator

base ðx0y0z0Þ with respect to the base
coordinates

F0 total force acting at the manipulator
base ðx0y0z0Þ with respect to the inertial
coordinates

Fext ¼ ðFextN extÞT ¼ ðFxFyFzNxNyNzÞT
generalized external Cartesian forces
acting on the end-effector

i link number from 0 to n
Ii 36 3 inertia matrix of link i
l i ¼ ri þ si ¼ ð pi � pi � 1Þ

vectorial length of link i from
ðxI�1yI�1zI�1Þ to ðxiyiziÞ

L angular momentum of the system
mi mass of each component rigid body i

comprising the systemPnþ1
i¼0 mi ¼ mT

total mass of the system
m0 mass of the spacecraft bus
n number of serial rigid body links
n¼ 0 link representing the spacecraft body

nþ 1 payload link
ni moment on link i as a result of link i�1

supporting outboard links
n ¼ ðnxnynzÞT normal vector perpendicular to the end-

effector finger grip (tilt) for i¼ n
Nci total moment about the link i centre of

mass
Nr total reaction torque about the centre of

mass of the spacecraft bus with respect
to the inertial coordinates

NT total moments acting at the
manipulator base ðx0y0z0Þ with respect
to the base coordinates

N0 total moments acting at the
manipulator base ðx0y0z0Þ with respect
to the inertial coordinates

pci location of the centre of mass of link i
with respect to the base coordinates

pi�1 position of the link i origin with respect
to the base coordinates

p� position of the end-effector with respect
to the inertial coordinates

p�ci position of the link i centre of mass with
respect to the inertial coordinates

p�cm location of the centre of mass of the
total robot/spacecraft system with
respect to the inertial coordinates

p ¼ ð pxpypzÞT Cartesian position vector of the end-
effector with respect to the base
coordinates

P linear momentum of the system
q ¼ ðnsapÞT generalized Cartesian position of the

end-effector with respect to the base
coordinates

The MS was received on 19 March 2004 and was accepted after revision
for publication on 25 April 2004.

1

G01504 # IMechE 2004 Proc. Instn Mech. Engrs Vol. 218 Part G: J. Aerospace Engineering



rci ¼ ð pci � pciþ1Þ
distance between the centres of mass of
adjacent links with respect to the base
coordinates

rc0 position of the spacecraft centre of mass
with respect to the inertial coordinates

_rri velocity of the centre of mass of each
rigid body component of the system

ri ¼ ð pI�1 � pciÞ
vectorial distance from the origin of link
i to the centre of mass of link i

R0 attitude of the spacecraft with respect to
the inertial coordinates

Ri ¼ ðnisiaiÞ 36 3 direction cosine matrix of each
link with respect to the base coordinates

s ¼ ðsxsyszÞT ¼ a6n
slide vector parallel to the end-effector
finger grip (twist) for i¼ n

si ¼ ð pci � piÞ vector position of the link i centre of
mass from joint i

s0 position vector of the manipulator base
with respect to the spacecraft body
centre of mass

vci linear velocity of the link i centre of
mass

vi linear velocity of joint i
_vvci linear acceleration of the link i centre of

mass
_vvi linear acceleration of joint i
wi angular velocity of joint i
_wwi angular acceleration of joint i
W work done
V i ¼ ðviwiÞT 66 1 velocity vector of joint i
zi�1 rotational axis of joint i

y ¼ ðy1 . . . ynÞT joint angle displacements of each
robotic link

t ¼ ðt1 . . . tnÞT robot joint torques

1 INTRODUCTION

On-orbit servicing is a major application of space
robotics with significant implications for increasing the
availability of the current and future satellite fleet. This
approach to space infrastructure development has
significant commercial potential [1]. Space robotics
generally is characterized by introducing significant
problems concerning the control of manipulators in
space—this is still a problem requiring an adequate
solution (von Winnendael, 2002, personal communica-
tion). The primary differentiating characteristic of on-
orbit servicing space robotics from terrestrial robotics is
that the robot operates in a microgravity environment.
The environmental disturbance torques (gravity gradi-

ent, solar pressure, aerodynamic and magnetic torques)
imposed on the robot spacecraft are very low at
*10� 6Nm [2]—for the purposes of this paper, these
can be ignored as negligible. Whereas a terrestrial robot
is mounted onto terra firma, in space there is no such
reaction force/torque cancellation to the motion of the
robotic arms. The motions of the manipulators will
generate reaction forces and moments on the spacecraft
platform at the spacecraft mounting/manipulator cou-
pling points. This will induce translational and rota-
tional motion of the satellite platform in response to the
movements of the manipulators. If no compensation is
made for the motion of the mounting spacecraft, the
robot end-effectors will not attain their targets since the
coupling has a significant effect on the manipulator
kinematics, dynamics and control. Feedforward thruster
control may be utilized to compensate for the motion of
the spacecraft mount, but this introduces undesirable
and prohibitively excessive expenditure of fuel as fuel
capacity is a major design driver to all spacecraft.
Indeed, it has been found that fuel expenditure of space-
based manipulators is prohibitive [3]. Furthermore, the
fuel is required for orbit transfers which defines the
redeployment capabilities of the on-orbit servicer. In
addition, thrusters are difficult to control proportionally
since they operate in pulse mode which introduces limit
cycles. Hence, it is highly desirable to avoid the use of
critically finite resources such as propellant.

2 REVIEW OF THE LITERATURE ON SPACE-

BASED MANIPULATOR KINEMATICS AND

DYNAMICS

Generalized multi-body dynamics in space has attracted
interest for some years owing to its applicability to
orbiting spacecraft which are characterized by complex,
extended structures. A space-based manipulator system
may be regarded as a multi-body system represented as a
kinematic chain of interconnected rigid bodies (links).
The first dynamics formulation for multiple bodies in
space determined that, for n rigid bodies connected by
rotational joints in an arbitrary open topological tree
configuration (i.e. no closed loops), any rotational
motion of the bodies produced a relative translation
with respect to each other [4]. The notion of the
connection barycentre was introduced which was
defined as the composite centre of mass of each body
from 0 to n obtained by loading each joint of the body
with the total residual mass of the system connected to
that joint; i.e. the mass distribution is represented by the
total mass of inboard links acting on the inboard joint i
and the total mass of outboard links acting on the
outboard joint iþ 1 to form an augmented body. The
connection barycentre for each link defined from the
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system centre of mass is given by [4]

ci ¼
Xi�1

j¼0

mj

mT
ri þ

Xn
j¼iþ1

mj

mT
si ð1Þ

The barycentric concept was used to derive the inertia
dyadics for the Newton–Euler dynamic equations to
describe the attitude equations of the system. This
technique was extended by eliminating the constraint
torques for the n-body attitude equations using the
Lagrangian method and so reducing the number of
equations to be solved [5]. The direct path approach to
multi-body dynamics involves determining the contribu-
tion of the motion of each body singly to coefficient
matrices of the overall dynamic equations describing the
system [6]. The direct path is a vectorial path from the
main reference body 0 to each separate body j centre of
mass comprising the system. The motion of each body
influences the motion of the whole system. Since linear
and angular positions, velocities and accelerations are
related to the other bodies and to the reference
coordinates kinematically, these direct path vectors
transform the influence of the motion of one body to
the other bodies. The direct path method has been
adapted by introducing the concept of path matrices and
reference matrices which describe the particular topol-
ogy of the system [7]. Primitive equations of motion for
each body were derived separately, considering them to
be freebodies. By converting inertial velocities to relative
velocities using linear operators, the constraints of
motion were applied to the system equations. Hughes
suggested that the direct path method is superior to
the barycentric approach and is suited to implementa-
tion through Newton–Euler dynamic analysis [8]. The
direct path method and the barycentric approach are
closely related in that they both involve the construc-
tion of composite bodies. However, the method is
unsuitable for closed-chain configurations whose
inertial velocities cannot be expressed as independent
sets of relative velocities for each body. These
methods are very general and may be applied to
multiple-degree-of-freedom joints as well as for
forward dynamic analysis for simulation. However,
generality is not an issue for space robotic control
which only requires inverse dynamic solutions where
each actuator has only a single degree of freedom
which determines the relative motion between the
links, and efficient dynamic equations have been
developed for these problems. Robot dynamics is
concerned with relating joint motions (position,
velocity, acceleration) to the required joint torques
to achieve those motions. The required actuator joint
torques are computed to enforce tracking of the
prescribed trajectory describing the Cartesian motion
of the end-effector.

A number of research activities have considered the

introduction of flexibility into multi-body dynamics,
particularly associated with large, extended structures
typical of space stations, and the problem of vibration
suppression of flexural dynamics—the Space Station has
a fundamental vibration frequency of resonance of
*0.1Hz which lies uncomfortably close to typical
control cycle frequencies [9, 10]. The chief problem is
that vibration inputs can cause the mounting spacecraft
platform to tumble. Structural flexibility is also likely to
be non-negligible in long boom-like manipulators which
require damping by active control to behave more like
rigid manipulators—this is typically achieved using a
low-authority controller which damps out structural
vibrations while a high-authority controller provides the
nominal control effect assuming rigid bodies [11, 12].
There are two sources of flexibility in a boom-like
manipulator. Elasticity may be incorporated as joint
elasticity with finite rotational stiffness properties—a
joint stiffness spring constant of 1–10Nm/rad would
indicate a stiff joint, while values of 103–104Nm/rad
characterize flexible joints which may be incorporated
readily into Newtonian dynamic approaches. Flexibility
may also be incorporated by modelling the rigid
spacecraft body with flexible appendages as Euler–
Bernoulli cantilever beams with flexural rigidity EI (but
zero torsion). Energy-based Lagrangian techniques are
most commonly used in which the strain energy of a
single beam is modelled in the form

U ¼ 1

2
EI

q2w
qq2

� �2

dq

where

wijðx, tÞ ¼
XN
j¼1

fijðxiÞqijðtÞ

and where

N ¼ number of modes

fij ¼ eigenfunction of the cantilever beam

qij ¼ modal coordinate

Normal rigid body robotic control systems can be
readily adapted to modal control to suppress vibrations
by using a ‘virtual rigid manipulator’ approach—this is
achieved by replacing actual end-point kinematic vari-
ables with those of a ‘virtual rigid manipulator’ [13].
This approach, in spite of the increased degrees of
freedom introduced by flexibility, allows the use of a
smaller number of joint actuators to enforce tracking of
the desired end-effector trajectory. Most flexible
dynamic formulations require full state sensory observa-
tion of the system dynamic parameters which will not
necessarily, or indeed typically, be the case. Therefore,
flexibility is not considered further here other than to
note that it is essential to ensure that the algorithm
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control computation frequency is well separated from
the resonant frequency responses of appendages such as
solar panels, robotic manipulators and antennae. It is
possible to preplan control inputs such that perturba-
tions about the nominal trajectory owing to excitation
of structural vibrations remain within bounds by
specifying knot points of the trajectory to have zero
acceleration or jerk [14].

In general, there are two main approaches to
quantifying the dynamics of robot manipulators: the
Lagrange–Euler (LE) technique [15] and the Newton–
Euler (NE) technique [16] (excluding more exotic
techniques such as characterizing robot dynamics as a
Kalman filter problem through the introduction of
spatial operators [17, 18]), and these two formulations
are in fact equivalent [19]. Both generate a set of six
coupled second-order non-linear differential equations
in position, velocity and acceleration. The LE technique
yields highly structured equations highly suited to
control analysis in state-space form, yielding the general
form of the dynamics such that the joint torques for an
n-link manipulator are given by [20]

ti ¼
Xn
k¼1

DikðyÞ__yk þ
Xn
k¼1

Xn
m¼1

H ikmðy, _yyÞ þ GiðyÞ

þ Bi
_yyi þ nK iðyi � diÞ ð2Þ

where

DikðyÞ ¼ n6n mass inertia matrix

H ikmðy, _yyÞ ¼ n61 vector of non-linear Coriolis and
centrifugal forces

GiðyÞ ¼ n61 gravity loading vector

Bi ¼ n61 actuator viscous damping coefficient
(including dry Coulomb friction)

K i ¼ n61 actuator joint stiffness

di ¼ elastic joint deformation (for stiff joints, di ¼ yiÞ
n ¼ motor gear ratio

The advantage of the microgravity environment of
space is that the joint torques are no longer required to
support the gravitational loading of the manipulator
and its payload [21]. It is also possible to cast the LE
dynamics in end-effector (operational space) coordi-
nates [22], but the computational complexity of this
approach exceeds that of the LE formulation in the
joint coordinates outlined above. The computational
complexity of the LE method is polynomial with Oðn4Þ
such that the number of floating point computations
(multiplies and additions) grows to the fourth power
with the number of links n. For a space-based
manipulator, this is a significant problem given the
decade-long technological lag in space-rated computer
processors.

The NE formulation of manipulator dynamics
exploits d’Alembert’s principle of virtual work by
constraint forces which is applied to each link sequen-
tially [23]. d’Alembert’’s principle differentiates between
inertial and virtual forces in which virtual forces act as
constraints (but do not perform physical work) of the
form dF � __R dm ¼ 0. This involves the forward
propagation of generalized velocities and accelerations
from the base of the manipulator to the end-effector—
the velocity of each link is the sum of velocities of
previous links and its own relative velocity. Then, the
reverse propagation of generalized forces from the end-
effector back to the base of the manipulator is
computed. Unlike the LE method which eliminates
constraint forces (unless Lagrange multipliers are used),
the NE technique allows explicit computation of the
constraint forces that are essential for robotic assembly
tasks which introduce interaction forces with the
environment. Furthermore, the recursive NE dynamic
formulation is readily extensible to flexible systems
through the spatial operator formalism [24]. The
recursive NE method is extremely efficient, with a linear
computational complexity of OðnÞ and a significant
improvement over LE approaches, particularly when
n5 3, which applies to robotic manipulators required
for on-orbit servicing [25]. A recursive formulation for
the Lagrangian dynamics method was derived which
reduced its complexity from Oðn4Þ to OðnÞ [26]. It was
shown through tensor methods that the NE and LE
recursive formulations were mathematically equivalent
since the nine-element time derivative of the 363
rotational matrix of the LE formulation equates to the
three-element angular velocity components of the NE
formulation [19]. However, the NE method remains 60
per cent more efficient than the recursive LE method,
and for this reason was adopted for dynamic simulation
of all Canadian space manipulators. Several dynamic
formulations for multi-body space systems have been
subject to comparison, and these analyses conclude that
recursive NE methods are much more efficient compu-
tationally than LE approaches [27], a conclusion
reiterated in its application to space-based manipulators
[28]. A derivative method of the NE technique—Kane’s
equations—numerically linearizes the kinematics to give
generalized velocities and enables the derivation of
generalized forces by serial approximation [27]. These
equations were adapted specifically for robotics applica-
tions [29] which formed the basis of an approach to the
analysis of a two-armed space robot [30]. This approach
exploited the purely closed-chain kinematic configura-
tion without considering the contact interaction forces
of the end-effectors.

For the dynamics of a robotic on-orbit servicer with
manipulators, there is a fairly specific multi-body
configuration, with the positioning of the end-effector
of a manipulator(s) to a target in Cartesian space being
of specific concern. This places a premium on under-
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standing the relative configuration of each link of the
multi-body system with a view to controlling that
configuration in order to position the end-effectors
correctly to perform on-orbit servicing tasks on a target
spacecraft. For instance, a six-degree-of-freedom manip-
ulator mounted onto a six-degree-of-freedom spacecraft
platform generates a twelve-degree-of-freedom system
controlled by only six motor joint inputs, assuming that
there is no independent attitude actuation. The system is
redundant since both vehicle and manipulator have
more controllable states than are necessary to specify
the motion of the end-effector (this is characterized by a
non-square Jacobian matrix). The kinematics and
dynamics do not generate closed-form solutions for
generalized position owing to their inherent redundancy.
This form of generalized position control of a satellite
mounted with a three-degree-of-freedom manipulator
was found to have an infinite number of solutions to the
inverse kinematics due to this redundancy [31]. The
solutions are a function of the history of manipulator
motion rather than joint angle configuration alone.
Solutions can be obtained but usually involve the
introduction of selective cyclic ‘coning’ motions super-
imposed on the desired manipulator trajectory to
maintain constant spacecraft attitude without employ-
ing dedicated attitude control actuators [31–34]. Re-
orientation of spacecraft attitude using such coning
motions requires that the dynamic parameters be well
known, but the inertias and masses of the system will be
subject to change owing to unknown payloads. In
addition, propellant usage throughout the mission
results in variable inertia properties of the servicer
platform. Such coning motions may introduce possible
collision hazards with target satellite appendages which
would require complex path planning to avoid, and
maintenance of stabilized attitude is essential for similar
reasons. Overcoming these issues by using small cyclic
motions to eliminate non-negligible non-linear terms
introduces the requirement for many cycles for even
small changes in spacecraft attitude. The virtual
manipulator approach may be used to derive the
conservation of angular momentum in relative joint
coordinates [32, 33]. Only the end-effector trajectory was
controlled while the satellite attitude was allowed to be
arbitrary. Clearly this is not desirable since the space-
craft bus will have components and subsystems that
have their own specific pointing requirements. Another
formulation is to find the generalized Jacobian matrix J�

by applying applied momentum constraints to a
complete freefloating spacecraft/manipulator to account
for platform translation and rotation by relating end-
effector velocities to joint and platform velocities [35–
38]. Such freefloating systems are defined by their lack of
a dedicated spacecraft attitude control system. The
generalized Jacobian, owing to its dynamic nature, is
complex to compute with a complexity of Oðn2Þ and so
not conducive to real-time operation onboard space-

rated processors [39]. A dynamic coupling coefficient
may be defined to quantify the relation between the end-
effector velocity and base velocity [40]

v0
w0

� �
¼ P

vn
wn

� �
ð3Þ

This dynamic factor P is similar to the generalized
Jacobian and may be reduced to a single value, C ¼
detðPTPÞ to quantify the coupling effect. The Japanese
ETS (Engineering Test Satellite) VII spacecraft (1998),
which sported a 2m long six-degree-of-freedom manip-
ulator, tested many of the technologies required for
rendezvous, docking and on-orbit servicing and found
that the dynamic coupling between the manipulator and
the spacecraft base imposed significant control difficul-
ties [41]. ETS VII comprised two satellites, a 2.5 t chaser
spacecraft with a 0.15 t six-degree-of-freedom manipu-
lator and a 0.4 t target spacecraft. Evidently, dedicated
attitude control would reduce this coupling effect by
making w0¼ 0. However, this was only an analytical
factor to characterize the coupling rather than having
any application for control purposes. The generalized
Jacobian comprises the conventional Jacobian of
computational complexity OðnÞ with additional terms
dependent on the masses, inertias and geometric
structures of each link which generate the additional
complexity [39]. The conventional Jacobian could be
used to derive a transposed Jacobian which yielded
satisfactory results when the platform–manipulator
mass ratios were in excess of *5. This, however, limits
the applicability of the formulation where it is con-
ceivable that freeflyer robotic systems will have mass
ratios (particularly owing to large payloads) signifi-
cantly less than this.

It has been found that freefloating systems are subject
to unpredictable dynamic singularities in their manip-
ulator workspaces owing to the attitude motion of the
platform at which point they become unstable [42, 43].
Kinematic singularity occurs in terrestrial manipulators
when two or more axes align, resulting in the loss of one
or more degrees of freedom, i.e. when the determinant of
the Jacobian matrix becomes zero: jJðyÞj ¼ 0. For a
spacecraft-mounted manipulator, singularities are no
longer purely kinematic. Dynamic singularities are a
function of both robotic kinematics and the dynamic
properties of both the manipulator and the spacecraft.
Spacecraft attitude is a function of path history owing to
its non-holonomic nature (defined later). If spacecraft
attitude is not controlled, the ‘path independent work-
space’ reachable by the manipulator is much smaller
than the ‘constrained workspace’ available to the
manipulator mounted onto a spacecraft employing
attitude control. Dynamic singularities are characteristic
of the ‘path dependent workspace’ (which is much larger
than the path independent workspace) reachable by a
manipulator mounted onto a non-attitude-controlled
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spacecraft. Indeed, dynamic singularities are character-
istic of freefloating systems and are functions of the
mass and inertia of the composite spacecraft/manip-
ulator system. These singular joint configurations
cannot be mapped into unique points in the workspace
since the generalized Jacobian is a dynamic function
rather than being purely kinematic, and spacecraft
attitude coordinates do not map uniquely to end-
effector coordinates. Hence, these singularities cannot
be predicted from the kinematic configuration alone
since they are also functions of the history of the end-
effector path; i.e. points in a workspace may become
singular depending on the path taken to reach them. The
path independent workspace, however, does not suffer
from dynamic singularities and has its maximum extent
when attitude control is employed, i.e. when it coincides
with the constrained workspace. Any control system
that uses inverse generalized Jacobian techniques for
freefloating systems will encounter such singularities
within the workspace. Although the bidirectional
approach attempts to alleviate this problem of free-
floating systems, this method is computationally inten-
sive since the scheme relegates the problem to the path
planning algorithms higher up the control hierarchy by
using the extra degrees of freedom for path planning
[44]. The bidirectional search mapped between the
original state and final desired configuration using the
generalized Jacobian to avoid excessive joint torques,
for obstacle avoidance or for reorientation of attitude. A
Moore–Penrose pseudo-inverse version of the general-
ized Jacobian ðJ�Þþ ¼ J

�TðJ�J�TÞ� 1 was used to over-
come the dynamic singularities problem by using the
redundant degrees of freedom [45]. It allowed changes in
spacecraft attitude while keeping the generalized posi-
tion of the end-effector fixed with respect to the inertial
reference frame to provide greater flexibility of opera-
tion. However, this formulation is even more complex
than the generalized Jacobian technique. Excessive
spacecraft motions may occur which cannot be
accounted for in path planning, so standard robotic
minimum-time optimal trajectory generation may be
used to limit joint torques and attitude rates to within
specified bounds [46]. Control schemes have been
devised that switch between different coordinated modes
of control. This involves control of the platform/
manipulator being switched from the freefloating for-
mulation to a redundancy formulation for the control of
the platform alone whenever dynamic singularites are
encountered [42, 43, 47]. However, switching is charac-
teristic of variable-structure control schemes and these
tend to suffer from ‘chattering’ induced by rapid
switching. This can excite high-frequency dynamic
responses and is clearly undesirable for a space-borne
manipulator which operates in an undamped medium,
but a saturation function as used in sliding control can
be used in place of a switching function [48]. In
conclusion, then, freefloating systems are subject to

certain constraints not encountered in terrestrial
robotics [49]:

1. Spacecraft orientation is required to derive the
generalized Jacobian.

2. Dynamic properties affect the kinematics.
3. Dynamic singularities occur in the workspace.
4. Non-holonomic redundancy implies path depen-

dency of joint angle configuration.

All such schemes which leave spacecraft attitude
uncontrolled cannot cope with the input dynamics of
target acquisition in real time using present-day and
near-future space-rated computational hardware. The
alternative is to employ dedicated attitude actuation—
the fact that attitude control is specifically employed on
all spacecraft to date suggests the validity of this
approach. A single arm mounted onto a space robot
system with orthogonal reaction wheels for attitude
control has 15 degrees of freedom [50, 51]. Such a system
comprises a nine-degree-of-freedom invertible portion
including manipulator joint angles and base orientation
and a six-degree-of-freedom component including the
base position and reaction wheel positions. In this
analysis, the reaction wheel dynamics was incorporated
to eliminate reaction wheel position, and base transla-
tion was eliminated by application of the conservation
of linear momentum. By globalizing the dynamics and
control of the whole system, the inherent computational
advantages of utilizing such a distributed set of
actuations was lost. A similar problem to the free-
floating spacecraft mounting a number of simple
manipulators has been analysed in reference [52]. The
primary purpose of this analysis was to generate attitude
stabilization of the spacecraft using a distributed set of
reaction wheels and manipulator arms through ‘shape
control’. Each manipulator joint was treated dynami-
cally as a reaction wheel, and each manipulator was
restricted to a maximum of three degrees of freedom to
provide three-axis attitude stabilization (depending on
the number of reaction wheels employed). Shape control
was defined as the manipulator joint configuration
required to control attitude—it bears strong similarities
to the coning approach outlined above in exploiting the
redundancy in the system dynamics. However, the
present concern is with the specific use of manipulators
to perform useful manipulation functions rather than
merely attitude stabilization. Emphasis is on the
development of manipulator control in Cartesian space
for the purpose of on-orbit servicing tasks. The employ-
ment of simple manipulators for the purpose of pure
spacecraft attitude control is unlikely given the current
approaches to attitude control and the mechanical
complexity overhead of mounting manipulators onto
spacecraft unless they serve a specific and unique
function (such as for manipulation tasks).

Longman et al. have applied classical NE dynamics
techniques to the remote manipulator servicer (RMS)
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mounted onto the Space Shuttle [53, 54]. They used two
models of the manipulator: one with a prismatic elbow
joint and one with a revolute elbow joint. This marked
the first detailed analysis of the space robotics problem
in a practical sense. They decoupled the translation and
rotation components of the combined RMS/Shuttle
system and calculated the total reaction moment on the
Space Shuttle owing to the motion of the RMS.
Although the mass of the RMS is much smaller than
the mass of the Space Shuttle (of 90 t), it is rated for
large cargo-handling payloads of up to 30 t. Hence, the
payloads to be handled by a robotic on-orbit servicer
will not be insignificant fractions of the servicer system
mass. During RMS operation, it is controlled by the
onboard teleoperator, and the Shuttle reaction control
system (RCS) which provides attitude control is
switched off. These formulations were manipulator
geometry specific rather than generalized as presented
here.

Some workers have considered two-arm systems since
these offer more realistic models of future robotic
systems. The generalized Jacobian approach may be
extended to consider dual-arm coordination while
mounted onto a space platform [55]. This generalized
Jacobian was a composite 186 18 element matrix even
larger than the original 66 6 generalized Jacobian
required for a single arm. To provide coordinated
control, it was suggested that, while one arm was used
for task operations, the other arm should be moved in
compensatory mode to keep the satellite attitude stable
and minimize the total torques applied to the spacecraft
mount. Quite apart from the excessive computational
overhead of inverting a 186 18 Jacobian matrix at each
control cycle, the use of a manipulator as a dedicated
attitude stabilizer is wasteful of costly hardware since it
effectively reduces (operationally speaking) the dual-
arm system to a single-arm system as well as imposing
possible collision problems. The appropriateness of two
arms derives from its operational capabilities. A two-
armed robot mounted onto a satellite platform was
considered in reference [56] for which a set of closed-
form Newton–Euler equations for both manipulators
was derived. Once again, their formulation involved an
186 18 Jacobian transpose matrix precluding the
formulation from real-time operation. A number of
suggestions have been made to simplify the computa-
tions for such space-based manipulator control, includ-
ing assuming that the angular momentum is dominated
by the end-effector, wrist and payload [57].

Many of these approaches are computationally
demanding, particularly those associated with the
generalized Jacobian, and do not consider the limited
computational resources available within spacecraft. It
is suggested that a piecewise approach to the problem is
more suitable for a distributed implementation through
a dedicated attitude control system for the spacecraft
and a separate robot control system. The present

concern is to simplify the computations, allow a
distributed approach by employing dedicated attitude
control (a mature spacecraft technology) and exploit
heritage from pre-existing robotic control algorithms
such as the Robot Control C Library (RCCL). Dynamic
analysis algorithms should have the following desired
properties [58, 59]:

(a) versatility,
(b) adaptability,
(c) reliability,
(d) computational efficiency,
(e) user friendliness.

Most dynamic analysis approaches possess the first three
properties but computational efficiency is essential for
real-time control implementation, and user friendliness
is essential for transparency and inheritability. It is these
last two considerations that are essential for space
application—the ‘engineering approach’ (as opposed to
a mathematically aesthetic approach) presented here is
explicitly pragmatic and achievable within these con-
straints.

3 FREEFLYING ROBOTIC KINEMATIC-

DYNAMIC PROBLEM FORMULATION

The robotic freeflyer spacecraft system under considera-
tion here comprises a spacecraft bus mount and one or
more robotic manipulators. The introduction of manip-
ulators into space creates a major problem as the
kinematic and dynamic analysis requires the definition
of reference frames—firstly, a base reference frame and
then subsequent reference frames whose origins coincide
with each robotic joint. For a six-degree-of-freedom
robotic manipulator, this means six reference frames.
For a terrestrial robot, the base reference frame is the
point at which the robot is grounded—this is the inertial
reference frame of world coordinates. In space, of
course, this inertial reference frame no longer exists—
any motion of the manipulators generates a reaction
effect on the robot mounting platform which is free to
move, so the base reference frame moves and cannot be
considered an inertial frame of reference. The emplace-
ment of relative coordinate frames of the space-based
robotic system is no longer described by purely
kinematic considerations as in a terrestrial manipulator
but must be described in terms of combined kinematic
and dynamic properties. The manipulator configuration
is determined by its kinematic structure but also requires
inclusion of the inertial properties of the system. An
inertial reference frame from which the external world
can be described must thus be defined alternatively [60].
This problem was for a number of years considered to
be one of the major stumbling blocks in the development
of robotic freeflyer servicers. There have been other
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solutions proposed such as the generalized Jacobian for
resolved rate control, but this imposes prohibitive
computational requirements far in excess of the compu-
tational processing speeds achievable by space-rated
hardware [32]. Most research into this problem has
concentrated on further developments of the generalized
Jacobian to ever more fanciful control laws that cannot
be readily implemented on space-rated hardware.
Furthermore, there are severe disadvantages of such
methods which are outlined in the previous section and
the conclusions [36–38]. It has been suggested that
spacecraft attitude might be maintained by generating
coning motions of the robotic manipulators (analagous
to the use of spinning wheels), but such an approach
presents problems for collision avoidance with on-orbit
target satellites which are generally complex and
extended in shape [31, 34].

There are two possible reference frames that may be
used: an inertial reference frame fixed at the centre of the
Earth, and an orbital reference frame whose origin lies
at the orbit altitude, or the system reference frame with
its origin at the system centre of mass. The geocentric
reference frame is unnecessary as the motions of the
robotic spacecraft are much smaller than the character-
istic distance to the centre of the Earth. The orbital
reference frame is in fact defined by the system centre of
mass which moves in orbit around the Earth and may be
represented by classical Keplerian elements

R cm ¼ H2

GMEð1þ [ cos yÞ

where

R cm ¼ RE þ h,

RE ¼ radius of the Earth

h ¼ orbital altitude

H ¼ angular momentum

G ¼ universal gravitation constant

ME ¼ mass of the Earth

[ ¼ orbital eccentricity

y ¼ orbital true anomaly

The orbit is similarly much larger than the local motions
of the robotic spacecraft. The system centre of mass is
thus adopted as the inertial reference frame [61].
Initially, an arbitrary robotic spacecraft is considered
with a single manipulator arm composed of n manipu-
lator links, plus a rigid body spacecraft mounting
platform (referred to as rigid body i¼ 0). Each rigid
body is referred to as a rigid link and the formulation is
readily generalized to deal with m manipulators. The
origin of each link represents the origin of each
consecutive reference frame propagated from the base
of the robotic manipulator out to the end-effector of the
manipulator. The total system is treated as a kinematic

chain (multiple robot arms may be treated as branched
kinematic chains). The linear momentum conservation
law states that the total linear momentum of the system
is conserved

P ¼
Xnþ1

i¼0

mi _rri ¼ constant ¼ 0 ð4Þ

This is arbitrarily true since

_PP ¼
Xnþ1

i¼0

Fext ¼ 0

As a holomonic constraint, this is integrable to the
equilibrium of moments principle

$t
0

Xnþ1

i¼0

mi _rri dt ¼
Xnþ1

i¼0

miri

" #t
0

¼ 0 ð5Þ

Similarly, angular momentum conservation states that

L ¼
Xnþ1

i¼0

Iiwi þmi _rri6ri ¼ constant ¼ 0 ð6Þ

This is arbitrarily true since

_LL ¼
Xnþ1

i¼0

N ext þ
Xnþ1

i¼0

r6Fext ¼ 0

As a non-holonomic constraint, this is not integrable—
integration of rotational velocity does not yield a unique
vectorial representation of orientation since rotational
motion is path dependent owing to the non-commu-
tativity of rotations. There are thus an infinite number
of paths yielding a particular orientation; i.e. orientation
depends on the time history of motion [44]. This derives
from the definition of holonomy [39]:

A system is holonomic if and only if its motion is

constrained by a set of algebraic equations involving only

general angular coordinates and time. This implies that a

system is holonomic if and only if a set of vector fields

defining the linear space of possible velocities is completely

integrable everywhere in general coordinates. Otherwise, it is

nonholonomic.

Hence, in this case there are more controllable states
than are necessary to specify the motion of the end-
effector.

Most of the formulations in section 2 treat the linear
and angular aspects of the space-based manipulator
problem together in a unified framework that is readily
cast into LE form which, although attractive from a
mathematical viewpoint, suffers from Oðn4Þ complexity
compared with the NE formulation which has OðnÞ
complexity [23]. Such a unified treatment of linear and
angular momentum/energy does not correlate well with
the nature of spacecraft design. Spacecraft generally
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employ dedicated orbit control systems (i.e. orbit
maneouvring thrusters) and dedicated attitude control
systems (be they thrusters, wheels or control moment
gyroscopes) which are controlled separately. A dedi-
cated attitude control system is essential for any
spacecraft that has pointing requirements. As the
spacecraft engineering implementation separates the
orbit and attitude control hardware, so the control
should also be separate. This considerably eases the
computational burden of coping with non-holonomy.

By decoupling the system such that linear and angular
motions are treated separately, real-time control is
possible and straightforward by considerably reducing
the complexity of the problem. The translation effects
are holonomic constraints as outlined above, so linear
momentum constraints may be integrated and be
applied to the system through the equilibrium of
moments. This accounts for the translational motion
of the satellite in inertial space. The system centre of
mass remains invariant in inertial space, providing
unique closed-form solutions for translation motion
control by incorporating linear compensation into the
robot kinematics formulation. These translational kine-
matic equations have the same form as those for a
terrestrial manipulator. Hence, the linear component of
the reaction effect is compensated for automatically
within the linear portion of the controller without the
use of fuel.

The angular effects are non-holonomic constraints
since the attitude of the platform and the orientation of
the end-effector depends on the history of joint
displacements owing to the non-commutativity of finite
rotation sequences. Different trajectories of the manip-
ulator can end in the same orientation of the end-
effector but will result in different attitudes for the
spacecraft. Hence, angular momentum conservation
constraints are not integrable to unique values of
spacecraft attitude as a function of manipulator joint
angles. Angular momentum conservation constraints
must be applied directly. It is possible to do this
straightforwardly by employing active three-axis atti-
tude stabilization by non-fuel expending wheels—
momentum wheels (MWs), reaction wheels (RWs) or
control moment gyroscopes (CMGs) [62]—to compen-
sate for the dynamic attitude reactions based on
computations of the reaction forces and moments
applied at the base of the robotic manipulators. Such
spinning wheels effectively redistribute angular momen-
tum within the spacecraft. Computer simulations pre-
sented later suggest that reaction wheels and momentum
wheels cannot produce sufficient torque to compensate
for the reaction effects of the motion of the robot arms
[63]. The reaction forces and torques acting on the
spacecraft mounting owing to the manipulators may be
calculated directly from the manipulator dynamics and
be fed forward to the attitude control system. The
CMGs are then driven to counteract the reaction forces

and moments on the spacecraft mounting in conjunction
with standard attitude error control algorithms to
maintain spacecraft attitude. This method allows the
end-effector position and orientation to be formulated
as a unique function of joint angles independent of the
end-effector path.

4 SPACE-BASED KINEMATICS SOLUTION

For a freeflying robotic manipulator employing dedi-
cated attitude control of the spacecraft bus, the position
kinematics of a space manipulator with respect to
inertial space may be represented by (see Fig. 1)

p� ¼ rc0 þ R0s0 þ
Xn
i¼1

Ril i ð7Þ

For an attitude controlled platform, R0 ¼ I3. The centre
of mass of the complete system (including the satellite
bus mount, robotic manipulator and the payload) is
given by the equilibrium of moments [53, 54]

Xnþ1

i¼0

mi

 !
p�cm ¼

Xnþ1

i¼0

mip
�
ci ð8Þ

Hence

p�cm ¼
Pnþ1

i¼0 mip
�
ciPnþ1

i¼0 mi

ð9Þ

It is necessary to find the location of the system centre of
mass with respect to inertial coordinates where it
remains invariant [54]. The location of the centre of
mass will remain invariant in inertial space if no external
forces act on the system

Xnþ1

i¼0

Fi ¼
Xnþ1

mi
__p�ci ¼ 0 such that __p�cm ¼ 0 ð10Þ

This point corresponds to the ‘virtual ground’ defined

Fig. 1 Space freeflyer geometry
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by the virtual manipulator approach—the inertial
‘ground’ of an ideal kinematic chain [32, 33]. The virtual
ground is the point in inertial space at which an ideal
virtual kinematic chain manipulator has its base when
its end-effector coincides with the end-effector of the
actual manipulator. This virtual ground point coincides
with the centre of mass of the spacecraft–manipulator
system. This is to be expected since the constraints
applied were the equilibrium of moments for the
derivation of the kinematics of the virtual manipulator.
The system centre of mass is the point at which all the
mass may be considered to be concentrated (there is no
corresponding centre of inertia).

Now,

p�ci ¼
Xi
j¼0

rcj

Substitution into equation (9) yields

p�cm ¼ 1

mT

Xnþ1

i¼0

mi

Xi
j¼0

rcj

 !
¼ 1

mT

Xnþ1

i¼0

Xnþ1

j¼i

mjrci

 !

¼ rc0 þ
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjrci ð11Þ

Now, the vector to the centre of mass of each link and
the vectorial length of each link are defined as

rci ¼ Riri þ Ri�1si�1

l i ¼ ri þ si
ð12Þ

These definitions are substituted into equation (11)

p�cm ¼ rc0 þ
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjðRiri þ Ri�1si�1Þ

The following manipulations attempt to restructure
these equations to match terrestrial manipulator algo-
rithms of the form: pi ¼ Ril i

p�cm ¼ rc0 þ
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjRi�1ðri�1 þ si�1Þ

þ 1

mT

Xnþ1

i¼1

mRiri

¼ rc0 þ
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjRi�1l i�1 þ
1

mT

Xnþ1

i¼1

mRiri

The components of the equation that do not correspond
directly to the terrestrial manipulator kinematics (such
as the spacecraft defined as body 0 and the payload

defined as body nþ 1) are separated out

p�cm ¼ rc0 þ
1

mT

Xnþ1

i¼2

Xnþ1

j¼i

mjRi�1l i�1

þ 1

mT

Xnþ1

i¼1

mil0 þ
Xnþ1

i¼1

miRiri

" #

¼ rc0 þ
1

mT

Xnþ1

i¼1

mis0 þ
1

mT

Xn
i¼1

Xnþ1

j¼iþ1

mjRil i

þ 1

mT

Xn
i¼1

miRiri þ
mnþ1

mT
Rnþ1rnþ1

¼ rc0 þ 1� m0

mT

� �
s0 þ

1

mT

Xn
i¼1

Ri

Xnþ1

j¼iþ1

mjl i þmiri

 !
þmnþ1

mT
Rnþ1rnþ1

The equation has been separated out into three
components: components associated with body 0 (the
spacecraft), bodies 1 to n (the manipulator links) and
body nþ 1 (the payload).

This reduces to

p�cm ¼ rc0 þ 1� m0

mT

� �
s0 þ

Xn
i¼1

RiLi þ
mnþ1

mT

� �
rnþ1

ð13Þ

where

Li ¼
1

mT

Xnþ1

j¼iþ1

ðmj l i þmiriÞ

This completes the location of the centre of mass of the
system with respect to inertial space. It is assumed
arbitrarily that the local inertial reference frame initially
coincides with the satellite bus centre of mass, i.e.
rc0 ¼ 0, since any point fixed in the interceptor body
may be regarded as inertially fixed prior to any robotic
maneouvre. That point will remain fixed in inertial space
as long as the task execution time is short compared
with the orbital period of the satellite and it may be
regarded as an inertial reference for any particular
payload of mass mnþ1. This choice of inertial coordi-
nates is not strictly inertial (as indeed no truly inertial
reference frame exists within the universe) since it moves
along the orbital trajectory with the spacecraft at the
orbital velocity which causes a slow change in attitude
pitch angle of the spacecraft as it orbits the Earth,
typically *10� 3 rad/s. However, given that this change
in pitch attitude is much slower than local spacecraft
attitude manoeuvres, this pitch variation is decoupled
from the local spacecraft attitude which is defined from
the local nadir direction to the centre of the Earth [64].
The local frame of reference defined by the system centre
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of mass is thus sufficiently inertial such that spin angular
momentum and orbital angular momentum are
decoupled and may be considered independently [61].
This is similar to the assumptions used for relative
phasing orbits defined by the Clohessy–Wiltshire equa-
tions (see the Appendix) [65]. The system centre of mass
will then remain fixed in this local inertial space.

To continue the present generalized formulation, rc0 is
substituted into equation (7) having defined p�cm

p� ¼ p�cm þ s0 þ
Xn
i¼1

Ril i �
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjrci ð14Þ

Now, a similar procedure is followed to that employed
for locating the centre of mass by defining the vector to
the centre of mass of each link and the vectorial length
of each link

rci ¼ Riri þ Ri�1si�1

l i ¼ ri þ si

This is substituted into equation (14)

p� ¼ p�cm þ s0 þ
Xn
i¼1

Ril i

� 1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjðRiri þ Ri�1si�1Þ

Again, an attempt is made to separate out the
components relating to the spacecraft mounting (body
0), the manipulator links (bodies 1 to n) and the payload
(body nþ 1)

p� ¼ p�cm þ s0 þ
Xn
i¼1

Ril i �
1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjðRi�1ri�1 þ Ri�1si�1Þ þ
Xnþ1

i¼1

miRiri

" #

¼ p�cm þ s0 þ
Xn
i¼1

Ril i �
1

mT

Xnþ1

i¼2

Xnþ1

j¼i

mjRi�1ðri�1 þ si�1Þ
" #

� 1

mT

Xnþ1

i¼1

miR0ðr0 þ s0Þ þ
Xnþ1

i¼1

miRiri

" #

It is possible to begin to separate out and cluster the
contributions from the spacecraft, the manipulator and
the payload

p� ¼ p�cm þ m0

mT
s0 þ

Xn
i¼1

Ril i �
1

mT

Xnþ1

i¼1

Xnþ1

j¼iþ1

mjRiðri þ siÞ þ
Xnþ1

i¼1

miRiri

" #

¼ p�cm þ m0

mT
s0 þ

Xn
i¼1

Ril i �
1

mT

Xn
i¼1

Xnþ1

j¼iþ1

mjRil i þ
Xn
i¼1

miRiri

" #
� mnþ1

mT
Rnþ1rnþ1

� �

This gives the inertial position of the end-effector

p� ¼ p�cm þ m0

mT
s0 þ

1

mT

Xn
i¼1

Xi
j¼0

mj l i �miri

 !
Ri

�mnþ1

mT
Rnþ1rnþ1

More succinctly

p� ¼ p�cm þ m0

mT
s0 þ

Xn
i¼1

Rili �
mnþ1

mT
Rnþ1rnþ1

where li ¼
1

mT

Xi
j¼0

ðmjl i �miriÞ
ð15Þ

Here, li is defined as a lumped kinematic parameter for
each mamipulator link.

5 RESOLVED MOTION CONTROL

The kinematics of robotic manipulators are defined such
that at each joint i a reference frame is assigned to form
a sequence of coordinate frames from the base (joint
i¼ 0) to the end-effector (joint i¼ n). There are two
main approaches to kinematic description of robotic
manipulators. Chasles’ screw theorem describes the six-
degree-of-freedom displacement of a body as a transla-
tion along a unique axis with a rotation about that axis.
In this way, this approach bears some similarities to the
theory of quaternions used for rotational kinematics.
Neither of these formulations is used extensively in
spacecraft attitude or robotic manipulator operational
software, although both offer advantages in avoiding
the incidence of singularities. The Denavit–Hartenberg
(DH) 46 4 matrix formulation for robotic kinematics is
well developed and widely used in robotics [15, 16, 66],
while Lie groups are not [67]. The DH matrix relates
each sequential coordinate frame from the base ði ¼ 0Þ
to the end-effector ði ¼ nÞ to provide the basis for
relating joint angles to the Cartesian position of the end-
effector as a sequence of rigid body movements. The
DH matrix formulation expresses the geometry of a
space manipulator as a non-linear mapping given by
[63, 68]

q ¼ n s a p�

0 0 0 1

� �
¼ R p�

0 1

� �
ð16Þ

where R is a 36 3 direction cosine matrix equal to ðnsaÞ
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as for terrestrial manipulators

p� ¼ p�cm þ m0

mT

� �
s0 þ

Xn
i¼1

Rili �
mnþ1

mT

� �
Rnþ1rnþ1

is the inertial position of the end-effector and

li ¼
1

mT

Xi
j¼0

mjl i �miri

 !

is the lumped kinematic parameter of each link i.
The DH matrix of equation (16) may be described as

the Lie group SE(3) where each element is defined as a
twist of the form R [ SEð3Þ � R363 and p [R3. As each
element is a twist, SE(3) may be described by the theory
of screws. Forces may be represented by wrenches of
screw theory such that

F ¼ f
t

� �
[R363

However, Lie groups provide no additional insights into
the problem presented here.

Equation (16) has the same form as that for an Earth-
based manipulator of the form p ¼

Pn
i Ril i with

additional constants. Note that p�cm is constant, li is a
lumped kinematic/dynamic parameter constant and the
payload term is constant since the payload remains fixed
relative to the end-effector. No loss of generality ensues
by assuming that Rnþ1 ¼ I3 as the relative orientation of
the end-effector to the object will not change. The rnþ1

corresponds to a ‘virtual stick’ vector pointing from the
hand of the manipulator (the manipulator grasp point)
to the payload centre of mass which remains fixed in the
target object [69]—this centre of mass of the payload is
often referred to as the point of resolution (POR) for the
operation of space-based manipulators such as the
Shuttle RMS. The definition of this virtual stick vector
in the formulation provides for a simple extension of
this formulation to two manipulators forming a closed
kinematic chain grasping a single object [70].

The same algorithms based on the DH matrix used
for terrestrial manipulators can be used for computing
the position of the end-effector of the robot in inertial
space. This makes it possible to compute the inverse
kinematics problem of determining the joint angles of
the manipulator required to achieve that end-effector
position in Cartesian coordinates—resolved motion
control. The initialization must be recomputed on
payload acquisition or release to locate the new system
centre of mass in inertial coordinates, but this is a simple
recomputation of the link parameters Li in terms of the
total mass and fractional mass through adding or
deleting the payload mass mnþ1. Thus, the inverse
kinematics solution to the manipulator geometry can
be found with minor modifications to terrestrial algo-

rithms, providing the desirable property of control
software heritage.

Computation of end-effector velocity involves the use
of the Jacobian matrix which relates end-effector
velocity to joint angle rates—the Jacobian is defined
by the differential relation

JðyÞ ¼ qFðyÞ
qy

The Jacobian formulation follows from the above result
trivially by direct differentiation

v� ¼ _pp� ¼ _pp�cm þ m0

mT

_ss0 þ
Xn
i¼1

_RRili �
mnþ1

mT

_RRnþ1rnþ1

¼
Xn
i¼1

Xi
k¼1

qRi

qyk
li _yyi

since _pp�cm ¼ _ss0 ¼ _RRnþ1 ¼ 0:
Hence

J ¼
Xn
i¼1

Xi
k¼1

qRi

qyk
li ð18Þ

where

li ¼
1

mT

Xi
j¼0

ðmjl i �miriÞ

In this case, there is no requirement for an initialization
procedure. Thus, for a freeflying robotic manipulator
employing attitude control, the freeflyer Jacobian matrix
is given by [63, 68]

J ¼
Xn
i¼1

Xi
k¼1

qRi

qyk
li

The generalized Jacobian that is applicable to free-
floating systems which do not employ attitude control is
given by [36, 44]

J� ¼ ðJm � J0I
� 1
0 DikÞ

where

Jm ¼ fixed base manipulator Jacobian

J0 ¼ spacecraft Jacobian matrix

I0 ¼ spacecraft body inertia matrix

Dik ¼ inertia matrix of the manipulator

The spacecraft Jacobian matrix includes both attitude
and translation components so the generalized Jacobian
reduces to the freeflyer Jacobian J when dedicated
attitude control is employed. While the generalized
Jacobian is complex to compute, the freeflyer Jacobian
requires only the replacement of kinematic link para-
meters with kinematic-dynamic parameters, and the
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positional constants differentiate to zero. Hence, the
Jacobian may be inverted normally as with terrestrial
manipulators. This freeflyer Jacobian is much simpler to
compute than the generalized Jacobian for a freefloating
system without attitude control. All these new ‘lumped’
dynamic parameters may be precalculated offline and
stored in memory, with the exception of the payload
parameters which involve negligible online calculation.
Furthermore, the Jacobian matrix can be determined as
a byproduct of Newton–Euler dynamic analysis through
the vectorial representation of velocities and angular
velocities of each manipulator link [71]. From the
Jacobian matrix it is also possible to compute resolution
of acceleration between the end-effector and the
manipulator joints of the form €qq ¼ J€yyþ _JJ _yy [72].
Resolution of end-effector forces/torques to joint
torques of the form t ¼ JTFext may also be computed,
allowing the implementation of a hybrid position/force
control algorithm in conjunction with a Cartesian force/
torque sensor (typically mounted in the manipulator
wrist) which are essential for complex on-orbit servicing
tasks [73–75]. The hybrid position/force control scheme
divides the manipulation task into two orthogonal
subspaces defined by physical motion (position) and
virtual motion (force) of the end-effector through a
selection matrix. The selection matrix ensures that the
position and force subcontrollers do not interact. It is
also possible to define a manipulability index w ¼ffiffiffiffiffiffiffiffiffiffiffi

jJJTj
q

from the quality of the workspace at any point
which can be determined from w � 1=2 [76, 77]. Finally,
for a closed kinematic chain of two manipulators
grasping a common payload, the grasp matrix can be
defined on the basis of the Jacobian defined by
Inþ1 _vvnþ1 ¼ �JJTF , where �JJT is the grasp matrix.

6 SPACE-BASED DYNAMICS FORMULATION

The problem of computing position, velocity, accelera-
tion and static force of the end-effector in space with
respect to the manipulator joint angles, rates, accelera-
tions and torques has been considered. It is now
necessary to consider the angular component of the
Denavit–Hartenburg matrix. For an attitude-controlled
platform with a space manipulator, the dynamic
formulation includes a moving platform with a finite
translational velocity

v0 ¼ � 1

mT

Xn
j¼1

Xn
i¼1

mjnci

and this motion is compensated for within the formula-
tions given in the previous section. When attitude
control is employed, w0 ¼ _ww0 ¼ 0, but v0 and _vv0 are
finite. This requires that the robot dynamics are
calculated with respect to base coordinates at the

manipulator/spacecraft mounting point. The translation
effects on the spacecraft mounting platform owing to
the movement of manipulator have been considered. It
is now necessary to consider the angular effects which
we regard as the moments exerted on the spacecraft by
the movement of the manipulator. The reaction
moments may be fed forward to the dedicated attitude
control system to compensate for and cancel these
moments applied to the robotic servicer. The computa-
tion of reaction moments Nr on the spacecraft may be
determined from the generalized Jacobian formulation
and the manipulator inertia matrix [36]

Nr ¼ �DikðJ�Þ� 1v�

where

J� ¼ generalized Jacobian

v� ¼ inertial Cartesian velocity of the end-effector

However, this computation has a complexity Oðn2Þ
owing to the computation of the manipulator inertia
matrix. The moments on the spacecraft that are due to
manipulator movements about the coupling point at the
manipulator base may alternatively be determined from
the NE formulation and are given by [54]

NT ¼
Xnþ1

i¼1

$pci6 €pcipci dm ð19Þ

Now, the moment about the coupling point is referred
to inertial coordinates pci ¼ p�ci � rc0 � s0.

Hence

N0 ¼
Xnþ1

i¼1

$pci6ð €p�cip�ci � €rc0rc0 � €s0s0Þ dm ð20Þ

Now, €s0s0 ¼ 0 since s0 is invariant

N0 ¼
Xnþ1

i¼1

$pci6 €p�cip�ci dm�
Xnþ1

i¼1

$pci6 €rc0rc0 dm

For any inertially fixed frame of reference

$pci6 €p�cip�ci dm ¼ pci6dF

This may be substituted into equation (20)

N0 ¼
Xnþ1

i¼1

pci6dF �
Xnþ1

i¼1

$pci6 €rc0rc0 dm ð21Þ

Now, the total moments on each link of the manipulator
are given by

NT ¼
Xnþ1

i¼1

Nci ¼
Xnþ1

i¼1

pci6dF
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Substitution of this into equation (21) yields

N0 ¼ NT �
Xnþ1

i¼1

mipci6€rc0rc0 ð22Þ

Now, the location of the system centre of mass is defined
by

p�cm ¼ 1

mT

Xnþ1

i¼0

mip
�
ci ¼

1

mT

Xnþ1

i¼0

Xnþ1

j¼i

mjrci

¼ 1

mT

Xnþ1

i¼0

mirc0 þ
Xnþ1

i¼1

mis0 þ
Xnþ1

i¼1

mipci

 !

¼ rc0 þ
1

mT
ðmT �m0Þs0 þ

Xnþ1

i¼1

mipci

" #

Hence

Xnþ1

i¼1

mipci ¼ mTð p�cm � rc0Þ � ðmT �m0Þs0 ð23Þ

where

rc0 ¼ p�cm � 1

mT

Xnþ1

i¼1

Xnþ1

j¼i

mjrci

from equation (10).
Substitution of the summation of equation (23) yields

N0 ¼ NT � ½mTð p�cm � rc0Þ � ðmT �m0Þs0�6€rc0rc0 ð24Þ

Similarly, since no external forces are acting, it is
possible to sum the forces acting at each link of the
manipulator

FT ¼
Xnþ1

i¼0

Fci ¼
Xnþ1

i¼0

mi
€p�cip�ci ¼ 0 ¼

Xnþ1

i¼0

Xnþ1

j¼i

mj €rcirci

¼
Xnþ1

i¼0

mi €rc0rc0 þ
Xnþ1

i¼0

mi€s0s0 þ
Xnþ1

i¼0

mi €pcipci

¼ mT €rc0rc0 þ
Xnþ1

i¼1

mi €pcipci ¼ 0 ð25Þ

Hence

€rc0rc0 ¼ � 1

mT

Xnþ1

i¼1

mi €pcipci ð26Þ

Now, the total reaction force on the base of the
manipulator is given by

FT ¼
Xnþ1

i¼1

mi €pcipci?€rc0rc0 ¼ � 1

mT
FT ð27Þ

Now

F0 ¼ m0 €rc0rc0 ¼ � m0

mT

� �
FT ð28Þ

Substitution into equation (24) yields

N0 ¼NT þ ½mTð p�cm � rc0Þ

� ðmT �m0Þs0�6
FT

mT
ð29Þ

This model provides the basis for a feedforward signal
from the robot controller to the spacecraft attitude
control system. The feedforward component by itself is
unstable to disturbances as it is highly dependent on the
accuracy of the predictive model, but the attitude
control system provides the feedback component to
counteract disturbances. This enables the attitude
control system to compensate for the applied moments
to the spacecraft such that the total moments about the
satellite centre of mass sum to zero. The feedforward
dynamics component with respect to local inertial
coordinates is given by the reaction moments on the
mounting point [63, 68]:

Nr ¼ NT þ ð p�cm � rc0 � s0Þ6FT ð30Þ

where

FT ¼
Xnþ1

i¼1

Fci ¼
Xnþ1

i¼1

mi _vcivci

NT ¼
Xnþ1

i¼1

Nci ¼
Xnþ1

i¼1

Ii _wiwi þ wi6Iiwi

This gives the moments and forces on the spacecraft at
the manipulator base with respect to inertial coordi-
nates. The sum of moments about the spacecraft bus
centre of mass which must be compensated for by the
attitude controller is

Nr ¼ N0 þ s06F0

¼ NT þ ½mTð p�cm � rc0Þ � ðmT �m0Þs0�

6
FT

mT
� s06

m0

mT

� �
FT

¼ NT þ ð p�cm � rc0 � s0Þ6FT

The dynamics of the spacecraft platform for the attitude
control system itself is given by the Euler equations

Nr ¼ I0 _w0w0 þ w06I0w0 ð31Þ

The values of N0 and F0 are computed as a byproduct of
the NE formulation of the manipulator dynamics in
computing the required joint motor torques [23]. The
employment of feedforward compensation to the
attitude control system to stabilize the attitude of the
spacecraft improves the stability of spacecraft attitude
by an order of magnitude over uncontrolled attitude.
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The Japanese ETS VII (1998) on-orbit servicing robotics
experiment indicated that lack of attitude control while
controlling the manipulator on the chaser spacecraft was
subject to many problems—without compensating for
attitude reaction torques, the attitude error became large
[78]. This was primarily because the spacecraft is not
symmetric owing to the robotic configuration, so gravity
gradient torques generated by the products of inertia
were non-negligible which in turn depended on the
attitude error of the system. Hence, active dedicated
attitude control of the platform is essential.

This completes the present approach to simplifying
the dynamic equations enabling control of the robot
manipulator in space with marginal increases in
computational complexity over terrestrial manipulator
systems. Indeed, the same algorithms such as the RCCL
may be used with marginal modification—a simple
subroutine to compute the link parameters and their
masses as lumped parameters.

7 SIMULATION RESULTS

The case study that has been selected is the ATLAS
(Advanced TeLerobotic Actuation System) servicer
concept which represents a realistic robotic servicer
concept (Fig. 2) [60, 63]. ATLAS has the physical
properties shown in Table 1 (assuming a single six-
degree-of-freedom manipulator) [60, 63].

The manipulator on ATLAS has a PUMA 560/600
kinematic configuration. All on-orbit servicing tasks
involve a complex sequence of basic movements
(primitives), e.g. move, approach, grapple, yield, insert
and extract (the last four primitives require force

control) which may be assembled into more generic
tasks such as open hatch, close hatch, install ORU,
remove ORU, etc. The ATLAS servicer is modelled
grappling a 200 kg orbital replacement unit (ORU)—
this models the attitude control module (ACM) of the
multimodular spacecraft (MMU). The Solar Maximum
spacecraft was based on the MMU, and the Solar
Maximum repair mission of 1984 is considered a
‘textbook’ servicing mission which comprised two
fundamental tasks performed by astronauts of the
STS-41C mission. The first task for the Solar Maximum
repair mission, which is of interest here, was the ACM
replacement which was a well-defined and well-char-
acterized task eminently suited to simple servicing tasks.
The second task, which was much more complex, was
the main electronics box (MEB) replacement, which is
not considered further—indeed, it has never been
replicated robotically. It is not of present concern to
model the complete servicing task as this is highly
complex and many of the tasks are variations on the
‘peg-in-hole’ operation which can be broken down into
force and position controlled subtasks [79]. The concern
here is to determine the torques imposed on the
spacecraft by the movements of the manipulator arms
during two phases of the manipulator deployment
during the acquisition of the ACM:

1. Manipulator movement to acquire the ACM. The
manipulator is position controlled and has no pay-
load.

2. Manipulator grappling of the ACM on acquisition.
The manipulator is force controlled to passivate the
ACM.

These types of maneouvre are fundamental to on-orbit
servicing. DLR (Deutschen Zentrum für Luft- und
Raumfahrt), the German Space Agency, has also
developed a specialized capture for this purpose [80].
The DLR capture tool comprises six laser rangefinders,
a force–torque sensor and a stereocamera pair to
provide the sensor component to their teleprogramming
approach to autonomous insertion and capture of the
apogee kick motor of a geostationary satellite platform.
The reaction torques were modelled as a torque
trajectory over time through a series of knot points
which represent control points. The computed torqueFig. 2 ATLAS robotic servicer (courtesy Praxis Publishers)

Table 1 Physical properties of ATLAS

Kinematic chain Mass (kg)

Link 0 (spacecraft bus) 1000
Link 1 (manipulator shoulder) 8
Link 2 6
Link 3 (manipulator elbow) 6
Link 4 0
Link 5 (manipulator wrist) 12
Link 6 (manipulator end effector) 8
Link 7 (payload) 200
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control law, a linearized feedforward model-based PD
feedback control system based on inverse dynamics, was
adopted for the manipulator position control [81]

€yyi ¼ €ydiy
d
i þ

Xn
j¼1

Kij
v

_ydjy
d
j � _yyj

� �
þ
Xn
j¼1

Kij
p ydj � yj
� �

ð31Þ

Although flexural dynamics is not of specific concern
here, it is worth pointing out that rigid body control
schemes such as the computed torque method will
actively damp out vibrations to some extent through the
proper adjustment of rate feedback gains and the
control of manoeuvre speed [12, 82, 83]. Alternative
methods of manipulator control may be adaptive
techniques [84, 85] or optimal controllers [86], but the
computed torque method does provide robust [87] and
adaptive properties [88] to compensate for unmodelled
aspects of the system. The end-effector trajectory can be
divided up into N segments of equal time ts ¼ T=N,
where T is the total manoeuvre time. Each segment can
be approximated by a cubic polynomial interpolation
function such that control is linear across each segment.
The control algorithm here was computed at six knot
points defined by a start position (initial configuration,
zero velocity, maximum acceleration) to a final position
(final configuration, zero velocity, maximum decelera-
tion) in a bang-bang manoeuvre (no coasting phase).
The force control law adopted was a linearized PI
feedback control system of the form

tf ¼ JTf dext þ KF f dext � fext
� �

þ KFi$ f dext � fext
� �

dt

The external forces were generated by the impact
dynamics. Such impacts may range from fully plastic to
fully elastic [88]. A plastic impact involves two bodies
becoming rigidly attached to eachother after impactwhile
conserving momentum. An elastic impact involves two
bodies rebounding without the loss of energy. The impact
duration was modelled as 10� 3 s which is much less than
the period of the fundamental mode of vibration of the
manipulator links, so deflection of the manipulator from
its nominal configuration was assumed to be negligible.
Assuming that impact occurs at a single point on the end-
effector, and that momentum is conserved before the
impact at time t and after impact at time tþ 1, a plastic
impact has the following force and torque

Fext ¼ Fnþ1 ¼ mnþ1 _vvnþ1 ¼ mnþ1
vtþ1 � vt

dt

� �
N ext ¼ Inþ1 _wwnþ1 ¼ rnþ16Fnþ1 ¼ Inþ1 _wwnþ1

¼ Inþ1
wtþ1 � wt

dt

� �
where

Fnþ1 ¼ impact force exerted by the payload

rnþ1 ¼ lever arm between the end-effector and the
centre of mass of the payload (‘virtual stick’)

Passivation of the final configuration to zero relative
velocity is determined by the external forces and torques
on the end-effector imposed by the payload. The force
control phase for passivationwas computedwith asmany
knot points as required to reach a passivation level of
near-zero reaction torques—this was dependent on the
force control gains which may be adjusted to yield any
desired torque trajectory, but present interest is primarily
in the initial reaction torques imposed at impact. An
analysis was made of the reaction moments generated on
the spacecraft platform for relative end-effector collision
velocities of 0.1 and 1m/s to simulate a bias rotational
velocity of the target (spin). The lower end of collision
velocities is similar to the closing velocities for US and
Russian impact docking manoeuvres of 0.05–0.1m/s.

The reaction moments on the spacecraft bus using the
computed torque control law prior to acquisition of the
target are fairly low < 5N m (Fig. 3). This correlates
reasonably well with the peak angular momentum of
10N m/s due to manipulator motions experienced by
ETS VII [78]. These reaction torques are large, however,
in comparison with the typical attitude disturbance
torques experienced by spacecraft in microgravity
*10� 6��10� 3 N m from orbit perturbations. Further-
more, these moments are barely within the bounds of
the capabilities of reaction wheels which are generally
limited to *0:1��1N m torques typically [57].

The reaction torques on the spacecraft bus while
implementing force control of the manipulator during
target acquisition and subsequent passivation are high
*1��10 kN m (Fig. 4). This correlates well with com-
monly experienced in-space docking forces of *1��5 kN
(depending on the lever arm from the centre of mass).
These torques are far in excess of the capabilities of
reaction wheels to compensate, but control moment
gyroscopes (CMGs) do have sufficient torque capability
(for example, the ISS CMGs have maximum torque
capabilities of 27 kN m). Clearly, force control is a

Fig. 3 Reaction moments for the computed torque control
law prior to target acquisition
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critical capability in robotic on-orbit servicing. The
results from simulation studies indicate that the exerted
reaction torques on the spacecraft platform will require
the implementation of control moment gyroscopes, as
reaction wheels cannot provide sufficient moment
compensation to the spacecraft platform [63].

8 CONCLUSIONS

This completes the kinematics and dynamics of a single-
manipulator spacecraft treated as a kinematic chain.
The further advantage is that this formulation repre-
sents a natural approach from the spacecraft engineer-
ing viewpoint—the separate treatment of linear and
angular momentum is fundamentally achieved in the
design of spacecraft subsystems such that the orbit
manoeuvres and attitude of the spacecraft are engi-
neered separately through a dedicated orbital transfer
subsystem and attitude control subsystem. Furthermore,
this formulation does not suffer from the problems of
unpredictable dynamic singularities in the manipulator
workspaces as a direct result of the non-holonomy of
attitude control [37, 42]. Control becomes unstable in
these regions which, unlike in their terrestrial counter-
part, cannot be predicted as they are functions of both
kinematic geometry and the dynamics of the robotic
manipulator. Such freefloating systems do not employ
dedicated attitude control systems (which nonetheless
would be required onboard a spacecraft for station-
keeping) but utilize a ‘coning’ motion to control attitude
[31, 34]—a hazardous notion for on-orbit servicing
proximity operations at best.

The formulation may be readily extended to more
than one manipulator which would be modelled as a
branched kinematic chain [63]. This formulation can
also be extended to account for closed-chain configura-

tions of two manipulators holding a single payload
which defines a common reference frame. This simple
model encapsulates the most important aspects in
deriving real-time control laws for a robotic freeflyer
spacecraft. This enables the onboard control system to
compensate for manipulation of objects and targets in
zero gravity, automatically compensating for reaction
effects on itself. Furthermore, computer simulation
suggests that the implementation of force control will
require the use of powerful attitude actuators, namely
control moment gyroscopes, as only these devices have
torque outputs sufficient to stabilize the spacecraft
platform against the high reaction disturbance torques.

This work has considerable implications for the
design of robotic on-orbit servicing freeflyer platforms
that are currently envisaged for servicing of current and
future space assets [90, 60].
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APPENDIX

Clohessy–Wiltshire equations

The Clohessy–Wiltshire equations for phasing orbit
manoeuvres are computed with respect to local inertial
coordinates. The relative position vector representing
the separation of a target spacecraft T and a chaser
spacecraft C (typically within 100 km of each other) is
small in comparison with the target orbit radius R,
where R¼REþ h, RE¼Earth’s radius¼ 6378 km and
h¼ orbital altitude¼ 200–500 km for low Earth orbit. It
is thus acceptable to use a moving coordinate frame of
reference located at the target spacecraft. The rendez-
vous phase prior to docking of the robotic servicer
spacecraft (the chaser) and the target satellite is
described by the Clohessy–Wiltshire equations which
determine the relative motion of the two spacecraft in
close proximity. Closed-form solutions give the velo-
cities required to coast to rendezvous within a specified
time for circular orbits [65].

Horizontal acceleration,

ax ¼ €xx� 2w0 _zz

Vertical acceleration

az ¼ €zz� 3w2
0zþ 2w0 _xx

where the orbital velocity w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GME=R3

p
.

Closed-form solutions exist for ax¼ az¼ 0

xðtÞ ¼ � 2
_z0z0
w0

� �
cosw0tþ 4

_x0x0
w0

� �
� 6z0

� 	
sinw0t

þ 6z0 � 3
_x0x0
w

� �� 	
w0tþ x0 þ 2

_z0z0
w0

� �

zðtÞ ¼ 2
_z0z0
w0

� �
� 3z0

� 	
cosw0tþ

_z0z0
w0

� �
sinw0tþ 4z0

� 2
_xz0xz0

w0

� �

where ðx0, z0Þ is the initial orbital position with respect
to the target.

The Clohessy–Wiltshire equations provided the basis
for the Japanese Engineering Test Satellite VII (1998)
mission [41] and these may be incorporated into
potential field formulations that provide for orbit
manoeuvres in close proximity to other space vehicles
[91]. ETS VII comprised two satellites—a chaser and a
target—to demonstrate rendezvous, docking and on-
orbit servicing tasks in a 550 km altitude orbit inclined
at 358. The chaser approached the target in order to
dock with it from a separation distance of 12 km using
GPS navigation for coarse navigation and laser radar
and video cameras for proximity navigation. The
docking process was cooperative, involving manoeuvres
from both spacecraft—this would in general not be the
case for robotic on-orbit servicers. TDRSS was used for
the communications relay to the ground. There were
three navigation phases: a relative approach phase from
12 km to 500m using GPS, the final approach phase
from 500 to 2m using laser radar and the docking phase
from 2m to contact using the cameras. Low closing
velocities of 0.01m/s were adopted which required high
control effort. Orbit control was performed by thrusters
and the high control effort required many thruster
firings at intervals of 1–3 s. Three reaction wheels were
used to provide spacecraft attitude control augmented
by thrusters for angular momentum dumping of
saturated wheels. In the relative approach phase, the
chaser used the Clohessy–Wiltshire equations for
guidance. On grappling of the target, the chaser’s
manipulator captured the target latching port at a top
speed of 0.02m/s for low impact docking which
generated peak accelerations of < 9mm/s2—these are
much lower than those described in the simulation as the
ETS VII demonstrator mission involved a cooperative
target.
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