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We explore the prospect for leveraging analogue electronic circuitry from lunar resources and determine its 

utility for controlling production on the Moon. Since solid-state transistor-based electronics cannot be feasibly 

manufactured on the Moon in-situ, vacuum tube-based active electronics may be configured into neural network 

circuitry. Recent developments in Artificial Intelligence suggest an evolution of terrestrial computing towards special 

neural network hardware. We show that a wide range of algorithms can be implemented on analogue neural 

networks emphasising algorithms required to implement advanced robotics including bio-inspired approaches. The 

Nakamura-Yamashita analogue neuron circuit is one possibility that we have explored and show that two cross-

strapped neurons can implement obstacle avoidance behaviours in rovers. We explore the use of RatSLAM for rover 

navigation and neural fields for path planning respectively that are uniquely suited to neural network 

implementation. Rovers will be crucial for production as mining and transport vehicles. For online learning, 

backpropagation is a simplification of the Kalman filter algorithm that has broad applications in optimal state 

estimation under stochastic conditions. Challenging process control required for electrochemical throughput may be 

implemented with neural networks. We finally examine neural network algorithms for complex manipulator 

controllers which constitute the final phase of production - assembly.  

 

 

I. INTRODUCTION 

The next stage for lunar exploration is consolidation 

through the establishment of a Moon Village. It would 

be advantageous to construct the Moon Village from 

lunar resources as far as is feasible. The crux is to 

construct the kinematic machines of production 

themselves from local resources, i.e. robotic machines. 

In constructing a lunar infrastructure leveraged from in-

situ resources, it is apparent that traditional solid-state 

electronics such as transistors for constructing 

computing machines would be challenging to 

manufacture from lunar resources [1]. Although silicon 

is widely available, dopants are not (Table 1) nor are the 

reagents. 

 

Element Average 

concentration in lunar 

regolith 

H 50 μg/g 

C 124 μg/g 

Au 9 ng/g 

Fe 15% (mare basalt) 

Ni 250 μg/g 

Co 35 μg/g 

W 370 ng/g 

Ti 7% (mare basalt) 

Al 18% (anorthite) 

K 0.8% (KREEP) 

P  0.6% (KREEP) 

Table 1. Lunar element concentrations (adapted from 

[2]) 

However, lunar resources may be deployed to 

construct vacuum tube-based amplifiers/switches – 

lunar materials suffice to construct vacuum tubes [3]. 

Nevertheless, implementation of CPU-based computing 

would require very large computers that are impractical. 

An alternative is to employ analogue neural network 

architectures which are Turing complete (Appendix). 

We show that the physical neural network as a 

computational architecture is ideally suited to the range 

of applications required for robotic manufacturing 

systems on the Moon. 

 

II. ARTIFICIAL NEURAL NETWORKS 

We have adopted a simple neural network approach 

based on analogue electronics hardware. Neurons are 

finite state machines - the Elman simple recurrent neural 

net is a Moore machine with an output function of the 

form [4]: 
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where y=output, x=input, wij=connection weight, 

wi=threshold, f(.)=nonlinear activation function. 

Electrical representation of neural networks is based on 

the neuron as a weighted sum computation implemented 

as a multiply-and-accumulate operation. Hardware 

neural nets perform multiply (weights) and accumulate 

(summation) operations with forward propagation of 

voltages through a series of layers: 

                                [2] 
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where =activation function 

implemented through piecewise linear approximation, 

Vin(0)=input threshold. Fixed weight neural networks 

cannot learn so the backpropagation algorithm requires 

computation of the mean squared error at the output 

layer: 

                           [3] 

The chain rule provides the partial derivative of the 

error required for weight update at the output layer: 

  

=                     [4] 

For the hidden layers,  is a more complex 

expression derived from the chain rule. From this, 

backpropagation (generalised delta) circuitry may be 

implemented as a gradient descent on the error: 

                  [5] 

Neural networks are limited in size by their speed of 

learning convergence and generalization capability. This 

suggests that multiple neural networks may be 

employed in ensembles to improve their performance 

[5]. Each expert network learns a subset of training 

cases and a separate gating network determines which 

network is adopted for each training pair according to 

the one that gives the smallest output error [6]. The final 

output constitutes a linear combination of the outputs of 

the local expert networks. Alternatively, the gating 

network may select local experts in a hierarchical 

architecture [7]. This suggests that neural networks have 

a scalability characteristic for dealing with more 

complex problems. One of the simplest biological 

neural networks in a non-aquatic free-living animal is 

that of the nematode worm C elegans:  it comprises 959 

cells in total as a hermaphrodite (of which 302 are 

neurons) or 1031 cells in total (of which 381 are 

neurons) as a male with approximately 5000 synapses. 

This potentially gives us a minimum neural network 

size for adaptive behaviour though an engineered 

version would be subdivided into subnetworks of more 

modest dimension. For example, the SpiNNaker project 

is based on combining a large number of digital ARM 

processors within a grid of switches to emulate a vast 

neural network representing a small brain of ~106 

neurons [8] but SpiNNaker is not energy efficient. 

 

III. HARDWARE NEURAL NETWORKS 

Neural network computing offers an alternative to 

the von Neumann architecture [9]. Here, we consider 

hardware implementations of neural networks. 

Neuromorphic circuits are brain-inspired non-von 

Neumann architectures. In spiking neurons, a 

summation of action potentials from presynaptic inputs 

generates a postsynaptic pulse (action potential) [10]. 

Spiking neurons may employ rate coding in which the 

mean firing rate transmits information or time coding in 

which the time to first spike or interspike interval 

transmits information. 

Hardware spiking neurons promise the temporal 

dynamics of biological neurons that combine memory 

with processing such as leaky integrate-and-fire neurons 

with the high capacitance of cell membranes: 

                          [6] 

with  

where Vi=internal potential for neuron i, 

Ci=membrane capacitance, Vth=neuron threshold, 

sj=output of neuron j, I0=leakage current, wij=synaptic 

weight between neuron j and neuron i. Integrate-and-fire 

neurons are dependent on membrane potential with 

leakage coefficients offer a more biologically plausible 

neuron model [11,12]. They are sensitive to specific 

input frequencies due to stochastic resonance whereby 

they output spikes with high signal-to-noise ratio [13]. 

Spiking neuron hardware is preferably analogue which 

offers much higher energy and areal footprint efficiency 

than digital forms for the same spiking rate [14]. 

The more complex Izhikevich spiking neuron 

balances biological emulation with computational 

complexity based on two differential equations [15]: 

  

                                                   [7] 

Spike reset conditions are given by: 

if V≥30 mV then   

A spike-based leaky McCulloch-Pitts neural network 

with large layer sizes learned autonomous obstacle 

avoidance and navigation in a simulated grid 

environment using reinforcement learning [16]. A single 

optimised Izhikevich neuron model has been 

implemented on an FPGA [17]. Silicon spiking neurons 

as analogue/digital VLSI chips range from axon-hillock 

neurons to Izhikevich integrate-and-fire neurons to 

Hodgkin-Huxley conductance-based neurons with 

increasing hardware footprint and consequent richer 

dynamics [18]. Learning is challenging in spiking neural 

networks due to non-differentiable discontinuous 

spiking states. Spike timing dependent plasticity 

(STDP) is a Hebbian learning rule depending on relative 

timing of presynaptic and postsynaptic spikes. There are 

neuron models that can implement greater biological 

fidelity that may be explored [19]. This includes 

implementing a neural firing rate that is proportional to 

the product instead of the sum of weighted inputs – this 

constitutes a higher order neural net. These 

microtechnology-based hardware neurons are not 
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feasible on the Moon. Analogue spiking neurons 

however are feasible [20]. 

An all-optical neural network offers speed and 

energy advantages over electronic media. Optical neural 

networks offer rapid highly parallel processing but must 

implement matrix multiplication, summation, nonlinear 

activation, convolution and learning algorithms. 

Hardware negative weights may be implemented using 

inhibitory neurons into the hidden layer [21]. Crucial to 

optical neural nets is the representation of weight and 

matrix multiplication optically [22]. Spatial light 

modulator arrays representing a weight matrix 

sandwiched between LED and photodetector arrays 

offer inferior nonlinear processing performance and 

limits in weight array size. Holographic optical arrays 

and phase mask arrays are diffractive approaches that 

are immature. The most mature approach is to exploit 

light interference using arrays of Mach-Zehnder 

interferometers. Optical interconnects (lenses) can 

implement convolution and Fourier (inverse) transform 

optics in hardware. Optical fibres are doped with erbium 

to amplify light transmission near 1550 nm by up to 26 

dB. Optical processing with optical switches can reduce 

power consumption where Fourier transforms exploit 

light’s interference properties implemented as a 2D 

array of Mach-Zehnder interferometers but its N2 matrix 

representation imposes scaling limits. Basic analogue 

optical components include an optical gate which may 

be implemented as a Mach-Zehnder interferometer 

amongst other options [23,24]. Optoelectronic 

approaches are necessary to implement nonlinear 

activation - integrated on-chip photonic deep neural 

networks require opto-electronic nonlinear processing 

through a pn junction micro-ring modulator [25]. In 

optical neural networks, error gradients may be 

computed from intensity measurements [26]. 

Implementation of backpropagation in optical neural 

networks is particularly challenging as it requires error 

derivatives [27]. An all-optical neural network has been 

implemented based on optical spiking neurons [28,29]. 

Micro-ring resonators can modulate optical waveguides 

through phase change materials that switch between 

crystalline states to implement adjustable synaptic 

weights. A photodiode imaging array sensor may be 

integrated with the neural network processor through 

tunable photoresponsive synaptic weights between the 

photodiodes [30]. A 3D printed optical diffractive deep 

neural network with a high neuron count can perform 

complex computations at light speed [31]. It comprised 

of multiple transmissive/reflective layers on which 

spatial light modulators represent neurons connected 

through the layers via optical diffraction. The network 

was trained as an imaging lens to implement a physical 

autoencoder network. In general, optical neural 

networks are immature, suffering from optical precision 

limits of error backpropagation and energy dissipation 

in nonlinear optics limiting their scalability. To 

compensate for limitations in all-optical neural 

networks, hybrid optoelectronics integrates electronic 

and photonic circuits onto silicon through lasers, 

photodetectors, optical waveguides, electro-optical 

modulators, etc [32]. However, these approaches require 

microtechnology fabrication which are not currently 

feasible on the Moon. 

There have been several approaches to non-optical 

hardware implementation of neural networks [33]. An 

early approach to on-chip learning in VLSI 

implementations of neural networks was using the 

virtual targets algorithm with weights updated locally 

and commonly for all layers [34]. A transconductance 

multiplier generates a current pulse whose amplitude 

and duration encodes a neuron’s weight and level of 

state activation respectively which is integrated, 

effectively computing . The sigmoid derivative is 

approximated by a triangular pulse generated by an 

integrator output from an EX-OR circuit square wave 

generator. Weights were held as voltages on capacitors 

with the midpoint voltage as zero weight to permit 

negative weights. The backward passing of error signals 

through the weight-encoding capacitors was not 

addressed. Neuron weights may be implemented as a 

MOSFET with output current proportional to the 

difference in the positive and negative input lines 

followed by nonlinear current-to-voltage conversion 

[35]. 

There are several dedicated ASIC hardware chip 

implementations of neural networks such as CNAPS 

(connected network of 64 adaptive processors) based on 

the N6400 neurochip connected by a broadcast bus in a 

SIMD configuration. Digital neurochips have 

traditionally been single instruction multiple data 

(SIMD) architectures in which multiple processors form 

systolic arrays, e.g. WARP. VLSI/ULSI implementation 

of neural networks such as associative memories and 

self-organising maps on CMOS circuitry is a costly 

approach [36]. Such VLSI approaches are inflexible but 

this can be overcome with the field programmable gate 

array (FPGA) hardware which offers programmable 

logic blocks with low power consumption. The 

implementation of neural networks [37] on FPGA for 

real time applications [38] have also been studied and 

reviewed [33]. To compensate for hardware-intensive 

multiplication operations in neural networks, time-

multiplexing of forward and backward computations 

may be employed [39]. Fixed point representation in 

neural networks yields more hardware efficient and 

faster FPGA computation than floating point 

representations [40]. However, the Xilinx ZU9CG 

System on Chip FPGA can perform forward and 

backward computations for deep neural networks [41]. 

VHDL-implemented Boolean logic functions on FPGAs 

may be exploited to implement step activation 
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McCullough-Pitts neurons configured in neural 

networks [42]. Each neuron implements a Boolean 

function represented by its truth table. This involves a 

two-step procedure. Neural inputs are encoded into 2-

complement binary representations with weights 

followed by conversion of the resulting binary neuron 

model into a logic gate structure. Replacement of 

negative weights is implemented through application of 

the modulus operator with reversal of affected inputs 

using a NOT gate. The binary neurons are then mapped 

onto the hardware structure through a decomposition 

process with an inversion process to inputs with former 

negative weights. The final step was to convert a netlist 

of the circuit into VHDL code using a C++ program. A 

fuzzy logic controller including fuzzifier, fuzzy learning 

base, fuzzy inference engine and defuzzifier may also 

be implemented on an FPGA [43] suggesting the 

feasibility of implementing fuzzy neural networks on 

FPGAs. The Tianjic chip is a multi-core, reconfigurable 

architecture that can accommodate brain-inspired 

circuits including spiking neurons and machine learning 

algorithms [44]. Deep learning neural networks (DNN) 

have been growing in capacity by an order of magnitude 

per year since 2010. Deep learning-based AI has 

induced a shift away from the CPU to the TPU (tensor 

processing unit), an ASIC/DSP that enables rapid 

parallel matrix multiplications required for neural 

network processing. Training and operating DNNs 

which require CPU, GPU or TPU-based platforms 

consume exponentially growing amounts of energy. As 

AI applications grow more pervasive, so energy demand 

will grow, potentially without limit. The advantage of 

hardware learning is considerable speed-up in training - 

in 2020, OpenAI created GPT-3, a DNN of 175x109 

parameters. 

 

IV. ANALOGUE NEURAL NETWORKS 

A hardware integrate-and-fire neuron based on 

analogue components has been presented in which 

resistor-weighted input currents were summed and 

integrated through a simple parallel RC circuit by 

Kirchoff’s laws [45]. This was fed into a transistor that 

acted as a thresholded pulse generator. The transistor 

may be substituted with a triode-based Schmitt trigger. 

We consider fully analogue neural networks. There 

may be some interesting implications in extending 

analogue forward neural circuit model into a recurrent 

neural network circuit in the future. A finite analogue 

representation of a recurrent neural network with 

sigmoidal neurons represents a model of analogue 

computation and can simulate a universal Turing 

machine [46]. A recurrent neural network with rational 

weights is computationally equivalent to a Turing 

machine computer model. When the weights are rational 

numbers, the addition of stochastic properties (i.e. 

unreliable components) extends the power of their 

computation to that of a probabilistic Turing machine 

[47]. However, the computational abilities of analogue 

recurrent neural networks may be enhanced beyond that 

of the Turing machine using real-valued weights which 

offer the infinite precision of analogue information [48]. 

This allows them to compute non-recursive functions 

that cannot be computed by Turing machines. An 

example is Rado’s construction )(n  as a non-

computable function of n [49]. Analogue recurrent 

neural networks thus constitute super-Turing machines. 

Theoretically therefore, analogue implementations of 

neural networks offer a more powerful methodology 

than traditional computing architectures. This is an 

interesting prospect that has yet to be explored. 

Analogue recurrent neural networks are equivalent 

to oracle Turing machines that consults an oracle, a 

special tape [50]. The oracle introduces the possibility 

of inputting new non-deterministic or non-computable 

data to the machine. It may be regarded as a hardware 

upgrade through which the Turing machine gain 

computational advantages by interacting with the more 

powerful oracle. These interactive machines may be 

capable of super-Turing computations [51]. Reservoir 

computing shows that recurrent neural networks with 

large hidden layers can perform computation efficiently 

by exploiting the rich dynamics of nonlinear neurons 

with delayed feedback [52]. Analogue recurrent neural 

networks where the synaptic weights evolve over time 

(i.e. learning) are equivalent to interactive Turing 

machines with advice, i.e. they are capable of super-

Turing computations – this is the case for both rational 

and real weights [53]. In rational-weighted recurrent 

neural networks, these super-Turing capabilities can 

only be realized if the synaptic weights evolve in a non-

recursive manner – recursive learning limits such 

networks to Turing-computable functions. However, in 

real-weighted recurrent neural networks, there are no 

such requirements for learning to achieve super-Turing 

capacities. For example, two interconnected sub-

threshold CMOS invertor circuits, each comprised of 

two triodes operating in tandem, can implement a 

Maxwell’s demon-type of rectification and 

amplification of voltages generated by thermal 

fluctuations without contravening the second law [54]. 

Thus, learning from environmental cues imposes 

enhanced capacities to neural computation. This 

establishes the importance of physical interaction with 

the environment as a key element in the behavioural 

capacities of robotic vehicles [55,56]. 

Fully analogue neural circuits offer rapid 

computation with some biological fidelity in reducing 

specific energy consumption (energy/neuron) but at the 

cost of a fixed neural architecture (without learning). 

Neural networks per se are energy efficient as their 

processing and memory hardware are the same. 

Training neural networks however requires large 
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amounts of data processing while neural network 

inferencing relies on synaptic memory. Through the 

denial of online learning, it may be that we lose super-

Turing capabilities but retain Turing machine 

capabilities. We consider this an acceptable cost. Fixed 

weights prevent runaway growth in computer footprint 

restricting the output of our Turing machine to an 

analogue neural network that encodes a specific 

algorithm in hardware form. The complexity of a neural 

network increases only as the logarithm of the task 

complexity unlike the exponential increase in circuit 

complexity of digital architectures [57]. Neural synaptic 

weights may be represented as a network of resistors 

which we assume are fixed in a pre-trained network. 

The simplest model of the neuron is a passive low-pass 

filter comprising a resistor in parallel with a 

capacitance. 

Analogue circuits primarily based on operational 

amplifiers for general computation has been examined, 

e.g. the Yamashita-Nakamura neuron [58]. It comprises 

four operational amplifiers, two diodes, seven resistors 

and one capacitor in a three-stage circuit comprising a 

summing weighted input amplifier, a time delay circuit 

and an output amplifier with nonlinear diode feedback 

for the sigmoid response. Analogue implementation of 

the sigmoid function is difficult to achieve reliably 

however due to non-uniformity of components, so our 

version adopted a simplified McCulloch-Pitts signum 

function implemented with a comparator circuit (Fig 1). 

 
Fig. 1. Modified Yamashita-Nakamura neuron 

 

The weights of each neuron are pre-trained offline to 

implement its desired behaviour. 

To test the efficacy of fixed weight hardware neural 

networks in different tasks required for in-situ resource 

utilisation on the Moon, neural networks have been 

demonstrated for a wide range of sophisticated tasks.  

These include nervous nets for central pattern generation 

[59], Buffon’s needle algorithm (for areal surveying) 

[60], autonomous online measurement of soil parameters 

(for geotechnic surveying) [61], autonomous drilling 

control (for subsurface mining) [62,63], symbolic 

artificial intelligence [64], etc. Indeed, some tasks are 

inherently suited to neural networks - a bio-inspired 

approach to image processing implements optic flow 

navigation which is implementable on neural networks 

[65]. A correlation algorithm to locate motion peaks 

between images can be implemented using AND-NOT 

gates [66]. There are three steps to the implementation of 

such a correlation algorithm in a neural network: (i) 

shift-and-comparison of velocity measurements; (ii) 

local summation that implements spatial averaging of an 

image region; (iii) winner-take-all scheme that 

suppresses all non-maximum matches selects the highest 

matching strength velocity. Of course, image processing 

has been the main application of deep learning neural 

networks exploiting in particular convolutional neural 

networks [67]. 

 

V. AUTONOMOUS NAVIGATION 

The first generic task we examined was autonomous 

navigation. As well as surveying and mining, mobile 

rovers are used in manufacturing facilities to move 

material between stations. In all cases, simultaneous 

localisation and mapping (SLAM) is a fundamental 

capability. We have demonstrated a pre-trained two-

neuron hardware circuit implementing a reactive 

Braitenburg control architecture of BV2/BV3 class [68] 

performing automatic obstacle avoidance on a desktop 

mobile robot (Fig 2): 

 

 
Fig. 2. (a) Two-neuron hardware controller circuit; (b) 

desktop rover representation with frontal sensors 

The simplest Braitenburg architecture (BV1) of one 

sensor and one motor connected by an excitatory link 

exhibits wandering behaviour. BV2 comprises two 

sensors and two motors connected through excitatory 

links – they may be ipsilateral with avoidance (fearful) 

behaviour or contralateral with approach (aggressive) 

behaviour. BV3 is similar to BV2 but with inhibitory 

associations to implement approach (attraction) and 

avoidance (repulsion) with opposing connections. Our 

two-neuron circuit is of the BV2/BV3 type which 

successfully performed multiple obstacle avoidance 

tasks reactively along a curved obstacle field of posts. A 
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more sophisticated variant - BV3c – could be readily 

implemented with all the previous connections (BV2a,b 

and BV3a,b) linked the two motors to exhibit variable 

speeds. BV4 builds on BV3c and implements 

nonlinearities in the links which generates an approach 

to objects with increasing speed until it reaches a 

threshold beyond which it slows. BV5 implements 

thresholding allowing it to implement logic gates 

similar to McCulloch-Pitts neurons (our neurons are 

McCulloch-Pitts neurons) with reciprocal thresholding 

for memory storage. BV6 implements evolutionary 

learning. 

Now, BV7-14 networks exhibit sophisticated neural 

network learning based on association with cognitive 

properties, object detection, movement detection, map-

building and prediction through the introduction of 

wires with special properties. It is these capacities that 

we turned to next. To explore these more complex 

neural networks, we initially trained a software neural 

network to implement sophisticated tasks central to the 

realisation of robust in-situ realisation in mining rovers. 

Specifically, we implemented a multilayer perceptron 

with goal-directed navigation trained offline in software 

form to be subsequently constructed in hardware. We 

consider only the training of the software 

implementation here and used a rover model in Webots 

(Fig 3). 

 
Fig. 3. Webot model of a simple rover 

 

Labelled data pairs were input to the network and 

the weights adjusted through the backpropagation 

learning algorithm. The error function implemented was 

the softmax-loss function: 

                     [8] 

The numbers of neurons in the input (sensors) and 

output (motors) layers is defined by the problem to be 

solved. The architecture of this network has a 5-4-4-4 

topology with a sigmoidal activation function. The five-

neuron input layer corresponds to three normalised 

distance sensor measurements to obstacles in the 

forward environment field with flanking sensors angled 

at , a normalised distance measurement to goal, and 

a normalised polar angle measurement to goal. 

Normalisation to the maximum sensor range distance 

(100 cm) from the rover for the normalised obstacle 

distances, initial distance to goal for the normalised goal 

distance and  for the normalised polar angle to goal. 

Normalisation improved learning by eliminating zero 

input sensor readings. The input data is projected 

forward to the first hidden layer and then second hidden 

layer both of four neurons. 

In any hardware neural network, the hidden layer(s) 

must be pre-defined. In a radial basis function, the 

number of hidden neurons n (neural complexity) 

equates to the number of training examples k 

(information complexity): )()( eken   to approximate 

a function f within an error e [69]. In reality, n<<k to 

limit the network size. Upper and lower bounds on the 

size N of a single hidden layer in a multilayer 

perceptron network have been defined as [70]: 
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separate input-output pairs in the training set, n=number 

of input neurons, m=number of network layers. 

However, when the training set is much larger than the 

number of neurons, two or more hidden layers may 

require much fewer neurons collectively than a single 

hidden layer, even though a single hidden layer suffices 

for function approximation [71]. The number of hidden 

neurons encapsulates a trade-off between the 

complexity of the model and its approximation 

accuracy: this occurs at its maximum (optimal) 

generalization ability with the minimum predictive error 

[72]: −= )()( 0 juhuhe  where 

),( wxfyu njnj −= , h(.)=loss function, yn=target 

outputs, j=number of hidden neurons, n=number of 

output neurons. A Bayesian information criterion (BIC) 

yields a test procedure defined by: 
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Hence, the number of hidden neurons can be 

determined only with substantial a priori knowledge of 

the learning environment. We adopted a simpler 

approach for our small network - the number of neurons 

in the hidden layers were selected to be less than the 

input layer (for compression) and at least as high as the 

output layer. Finally, the four-neuron output layer 

determines the rover movement of its front castor wheel 

and two differential wheels – forward, left, right and 

stop. The simulated world comprised a randomly-

generated rock field of obstacles over 5 x 10 m (Fig 4) 

corresponding to approximately to the visual field of 

view of the ExoMars rover. 
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Fig. 4. Randomly generated rock field 

Training data of goal position within 100 m and 

sensor distance values within 100 cm were randomly 

generated to prevent manual biasing. The human 

operator showed the direction required to reach the goal. 

1000 different training scenarios were used during 

training. Although the environment was unchanged, the 

end goal position was varied (input). The trained 

network was tested with three different goals which it 

successfully achieved each time, though some goals 

took longer to reach due to the rover swaying during 

transit. We expect that the trained network can cope 

with any rockfield distribution as the process of varying 

the goals presents a different rockfield perspective [73]. 

We have yet to test this though. 

The goal is to train the network offline such that it 

can be used to build an analogue neural circuit for the 

rover and provide it with obstacle avoidance and 

maneuvering capabilities without software computations 

and simulations. The circuit for the multilayer neural net 

based on the Yamashita-Nakamura neuron. However, 

given the simulation-reality gap, it is necessary that 

hardware neurons have the ability to be trained through 

weight adaptability [74]. The use of potentiometers as 

weight inputs in the form of voltages to the network aid 

the process of training, such that over multiple iterations 

and updates, the network can arrive at converged weight 

values that provides minimum error to the desired 

output. During the training phase, the circuit performing 

forward propagation is adapts to the distance measuring 

sensor inputs fed to the circuit. The output is 

subsequently fed to a backpropagation circuitry 

comprising of a threshold activation sub-circuit as well 

as multipliers and summers. The potentiometers are 

varied according to this output thereby completing the 

process of training over the course of several iterations. 

 

VI. KALMAN FILTERING 

Kalman filtering is the basis for families of SLAM 

algorithms as well as a host of other ubiquitous 

applications. Simple filters may be implemented 

directly in analogue op-amp circuitry. Self-tuning filters 

are a special case of analogue electronic filters 

comprising a voltage-controlled filter analogue filter 

(with fixed resistances replaced with voltage-controlled 

resistors) and an operational amplifier [75]. The Kalman 

filter is a ubiquitous state estimation algorithm that 

fuses noisy sensory data with a dynamic predictive 

model, i.e, a Bayesian algorithm. The chief problem 

with implementing the Kalman filter in a neural network 

are matrix computations. A two neuron-based Kalman 

filter can be based on a nonlinear autoregressive model 

to predict variables of the Kalman filter but it is 

complex in form [76]. Kalman filter is a model-based 

state estimator while neural networks are model-free. 

KalmanNet learns the Kalman filter gain 

 from 

labelled datasets of Kalman gain to state estimation 

output [77]. The backpropagation algorithm can 

implement a Bayesian classifier [78] and a degenerate 

form of the extended Kalman filter [79]. This gradient 

descent approximation to the Kalman filter through the 

derivative of a loss function (error between predicted 

and measured output) was the basis of the neural 

Kalman filter [80]. A simplified EKF training algorithm 

may be deployed for gradient descent for LSTM for 

superior performance by [81]: 

      [10] 

where  

 
Comparison between the multilayer perceptron and 

the Kalman filter indicate the superiority of the former 

in terms of computational requirements [82]. For 

example, artificial neural networks may substitute for 

Kalman filters for sensor fusion for vehicle navigation 

[83]. We have implemented the backpropagation 

algorithm as analogue circuitry so we have implemented 

a simplified form of Kalman filter circuitry. A neural 

attractor version of the Kalman filter can model head 

direction cells [84]. Neural networks may be employed 

to merge single EKF-generated maps from individual 

robots to form multirobot SLAM [85]. The neural 

networks perform map learning on Canny edge-

processed images using the unsupervised self-

organising map. Obstacles are learned through 

clustering occupied cells of the occupancy grid which 

are matched through cross correlation. 

There are several intriguing possibilities for learning 

circuitry including the backpropagation algorithm [86]. 

We have also been exploring the potential for 

augmenting hardware neurons with online learning 

circuitry [87,88]. We have described in detail our 

analogue hardware backpropagation algorithm that 

effectively implements a degenerate Kalman filter state 

estimator [89]. 

 

VII. BIO-INSPIRED RATSLAM NAVIGATION 

Biologically-inspired models of navigation in the 

hippocampus are primarily based on a priori “place” 

cells linked by synaptic weights which are learned 

during exploration forming a topological map [90]. A 
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cognitive map must encode two types of information – 

view-based place recognition (what information) and 

spatial relationships between them (where information). 

Cognitive maps may encode a temporal sequencing of 

views [91]. In insects, a sequence of view-based 

snapshots with vectors provide the basis for navigation 

through familiar terrain. Honeybees use snapshot 

images of landmarks adjacent to the target location to 

determine its steering [92]. Only the local region and the 

horizon are extracted from the images. Matching of the 

stored snapshot image in memory and the retinal image 

of the current view proceeds by pairing the snapshot 

with the closest match to the current view, yielding a 

vector to the target. Graded fusion on a local motor map 

gives bearings of obstacles which are to be avoided 

whilst pursuing the direction to the target. Obstacles are 

avoided through this snapshot map of obstacles in polar 

coordinates from the current heading. Their visual 

memory of landmark snapshots is versatile and is 

tolerant of mirror reversal and rotation of horizontal 

patterns but not vertical patterns as might be expected 

under natural conditions [93]. In insects such as flies, 

heading is represented by compass neurons that activate 

the ring-shaped ellipsoidal body forming a ring attractor 

network in its brain that activate specific visual 

snapshots [94]. Birds which require spatial memory of 

food caches possess hippocampal place cells similar in 

function to mammals [95]. 

RatSLAM is a biologically-inspired SLAM 

algorithm implemented as neural networks based on the 

function of the rat hippocampus (specifically CA1-CA3 

regions) applicable to a changing rather than static 

world [96-98]. The hippocampus (of the rat) implements 

a topological (cognitive) map representation to support 

self-navigation - place cells in its CA3 and CA1 regions 

selectively fire when the rat is in specific absolute 

locations of its environment and head-direction cells 

that selectively fire only when the rat’s head is oriented 

in specific absolute directions with respect to its 

environment. Firing of these cells encode the state 

(x,y,θ) of the rat within a 2D model of its environment. 

Place cells are not strictly cartesian or topological 

representations of the environment but they permit 

interpolation between place cells. In bats which have 

long ranges, place cells fire in different combinations 

for different locations, i.e. multiscale coding with a 

finite number of neurons [99]. There are, indeed, grid 

cells within the entorhinal cortex that encode multiple 

topographic rat locations arranged in a tessellated 2D 

hexagonal grid over the global environment 

supplemented by locally-ordered 3D grid cells [100]. 

The global lattice structure is crucial for odometric 

measurement of self-motion. The entorhinal cortex 

feeds into the hippocampus in which place cells are 

more precise – the hippocampus loops through CA1 and 

CA3 back into the entorhinal cortex. CA3 exhibits 

recurrent links suggestive of auto-associative memory 

implementing cognitive maps. 

RatSLAM is a partial grid and topological 

representation of the physical environment similar to 

GraphSLAM – neighbouring locations are represented 

as closely adjacent “pose” neurons connected by 

excitatory links and inhibitory links to more distant 

neurons. RatSLAM uses proprioceptive (odometry) and 

external (landmark) sensors to create a semi-metric 

spatial map of its environment with a competitive 

attractor network to integrate its sensory data. A 3D 

neural attractor network is comprised of pose cells, each 

pose cell encoding an estimate of the robot’s pose in 

(x,y,θ) space. Two representations are used – a global 

world-referenced experience map of accumulated 

odometry in conjunction with a local robot-centred 

obstacle map of visual landmarks [101]. Each local 

view is associated with a specific scene. Associations 

are learned between sensory cues Vijk and pose 

estimates Pijk with weights . Pose 

cells are activated by local view cells along the 

weighted connections if a familiar scene is encountered. 

Pose cells are activated with a sensory firing rate that 

indicates the fit to the specific location with firing 

activity changing as  where Pi=cell 

activity, wi=connection weight, φ=global inhibition. 

This association with global pose and local views 

represents experience mapping [102]. Each pose cell is 

connected to proximal cells through fixed 

excitatory/inhibitory links. The distribution of excitatory 

and inhibitory connections is weighted as a 3D Gaussian 

function creating a Mexican hat function. RatSLAM 

increases the association (connection strength) between 

simultaneously active local view cells (encoding the 

visual scene) and pose cells. Active pose cells create the 

nodes of the global experience map thereby encoding 

the interconnectivity of different places. The experience 

map is a set of topologically linked locations (grid cells) 

in a grid with associated metric local views to allow 

navigation. 

In biomimetic navigation, routes are defined as 

sequences of recognition-triggered actions to form a 

cognitive map [103]. Path planning between places is 

achieved through steepest descent from the goal to the 

current location. This bears some similarities to the 

PerAc (perception-action) neural network architecture 

that comprises a (reflex) action level and a (situation-

recognition) perception level linked together through an 

associative reinforcement-based learning rule [104]. It is 

capable of generalisation from prior learned situations. 

The local view is compared with stored snapshot views 

of landmarks using similarity measures which serve to 

focus attention on the current view. Landmarks (“what” 

information) is correlated with (x,y) position (“where” 

information) represented by place cells. New place cells 

are generated by landmarks when place cell activity is 
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below threshold. Place cells may be linked using 

potential fields through gradient descent in which place 

cells constitute potential minima. The potential field 

constitutes the action vector as the derivative of the 

potential function. This equates to the appetitive and 

aversive stimulus response behaviours in which 

avoidance gradient is steeper than the approach gradient 

[105]. To prevent immobilisation in local minima, 

orientation cells provide cues through winner-takes-all 

competition for selecting directions to goals. Each place 

cell forms a basin of attraction that can be modulated by 

a motivation measure that encodes priority that selects 

the preferred direction of movement. Similarly, a 

motivational module (encoding curiosity for 

information, hunger for energy and fear of harm) was 

adopted to teach through reinforcement learning a 

cognitive map implemented as a time growing neural 

gas algorithm [106]. An extension of this is to include a 

gating network to act as a meta-controller to switch 

strategies based on context [107]. The linkage between 

place cells may be implemented through hypothetical 

transition cells to represent sensorimotor actions rather 

than place locations to form a cognitive map [108]. One 

possibility for such linkages is the potential field map. 

Reinforcement learning of situation-action associations 

(policy) pairs can incorporate a potential field gradient 

[109] through 

 
                                                                             [11] 

where z(t+1)=reinforcement signal, bi=estimated 

incremental cost, bj=estimated cumulative cost, 

ej=eligibility factor incorporating gradient descent. 

Indeed, it appears that the medial entorhinal cortex 

encodes vector operations using distance and direction 

from obstacles to determine self-location [110]. Deep 

belief networks with three layers (convolution layer – 

max-pooling unit – convolution layer) may be trained to 

recognise visual features in a stereo-image pair to 

classify and predict offroad terrainability for a 

hyperbolic polar map [111]. 

 

VIII. NEURAL FIELDS 

Potential field methods are a powerful mechanism 

for path planning. Neural networks may be configured 

to implement neural fields which define agent motion 

with heading direction and velocity as control variables 

while the environment is characterized by multiple goal 

heading directions ψtgt and multiple obstacle heading 

directions ψobs relative to allocentric reference 

coordinates [112,113] extracted from vision sensors. 

The rate of change of heading direction is given by: 

              [12] 

These define a total vector field with fixed points 

defined by 0= . If the neighbourhood exhibits a 

negative slope then the fixed point is an attractor. 

Repellors may be defined similarly with positive slope. 

These may be regarded as dynamic plannjng behaviours 

ϕ(t) [114]. Behavioural dynamics are represented in 

phase space with behaviours representing attractor 

solutions. Attractors in the environment define 

motivations which diffuse through the neural network. 

The gradient of the slope around an attractor determines 

the relaxation time: 

                                       [13] 

At larger distances, different attractors may 

contribute to the motion of the robot due to fusion in the 

vector field. At a critical distance, bifurcations occur 

wherein one attractor becomes dominant. The heading 

direction φ may be represented through a neural 

activation function u(φ) which evolves over time: 

)(),( uftu =  defining the vector field u(φ,t). The 

stimulus input may be excitatory (from attractors) or 

inhibitory (from obstacles). The Amari neural field is 

governed by: 

 

                                  [14] 

where φ=heading, ' −= =polar difference 

between the two neurons, τ=dynamic timescale of 

system, u(φ,t)=neural activation field to encoding 

direction φ, I(ϕ,t)=external input stimulus encoding 

direction φ, h=global inhibition or excitation, 

w(.)=interaction kernel with Mexican hat-shaped 

response fields, f(u)=local activation function (step 

function): 

1)( =uf  for u≥0 

            = 0 for u<0 

The integral term describes a weighted summation 

of activity including f(u) defining the neural firing rate. 

The Mexican hat function shapes the neural field with 

short-range excitatory connections and long-range 

inhibitory connections. The sigmoid function may be 

used rather than the Mexican hat function. The global 

inhibition term ensures that there is neural activity in the 

absence of inputs. If discretised, the synaptic weight 

between two connected neurons is given by a Gaussian 

function: 

            [15] 

where σ=excitation range, k=excitation amplitude, 

win=global inhibition factor which localises the peak. 

Localisation may be associated with sets of landmarks 

and their bearings (emulating place/head direction 

neurons of the mammalian hippocampus). Different 

locations are defined in terms of their topological 
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relations on a cognitive map. Path planning is 

implemented by gradient following as in the potential 

field but this potential field includes frictional terms. 

Coupled sets of neural fields representative of different 

neuronal populations can implement goal-directed 

behavior [115]. Recurrent interconnections amplify and 

stabilize neural activity patterns and neural fields 

exhibit complex dynamics including memory 

characteristics of the prefrontal cortex. Neural fields are 

essentially laterally coupled recurrent neural networks. 

Motor primitives may also be represented by Amari 

neural fields of neuronal populations characterized by 

location x and time t with Cartesian motion defined by 

integrating )(cos tvx =  and )(sin tvy = : 

= + 

 
                                                                            [16] 

where =neural relation time, u(x,t)=neural activity, 

h=neural resting field, Si(x,t)=neural input, 

=sigmoid function, 

i=threshold, i=sigmoidal slope, w(x,x’)=connection 

weights, winh=feedback inhibition weight. Saccade 

initiation and targeting can be implemented in neural 

fields emulating the superior colliculus [116]. Neural 

fields of a competitive dynamical neural network may 

be adopted to determine the next saccade target through 

a winner-take-all strategy [117]. Similarly, visual 

attention may be implemented in neural fields to target 

salient locations in a visual map [118]. 

 

IX. ROBOTIC MANIPULATOR CONTROL 

Neural networks have a long history in manipulator 

robotics beginning with cerenellar model articulation 

controller (CMAC) [119] diversifying into multilayer 

perceptrons, Hopfield nets and Boltzmann machines for 

kinematics, dynamics, trajectory generation and control 

[120,121]. They have been adopted as nonlinear 

compensation (of inertia matrix, coriolis/centrifugal and 

unmodelled terms on the inverse dynamics) in the 

computed torque control law [122] and identification of 

parameters and model reference adaptive control [123] 

of manipulators. Most commonly, they have been 

adopted to compute the inverse kinematic 

transformations [124,125] or learn the inverse dynamics 

model [126] of manipulators. Neural net control 

generally gives smoother performance than traditional 

computed torque control with reduced oscillations. 

Indeed, neural networks may be regarded as a form of 

model reference adaptive control in which the neural net 

approximates the nonlinear function [127]. 

Nevertheless, the neural network approach is superior in 

terms of its robustness to noise and unmodelled 

nonlinearities than adaptive control approaches as they 

incorporate a form of memory [128]. Neural network 

approaches can model learning of both arm kinematics 

and dynamics by mapping joint torques to cartesian 

kinematics [129]. Neural net learning involves the 

building and refining of internal motor models as 

lookup table representations encoded as neural network 

weights of multilayer perceptrons [130]. Recurrent 

neural networks such as the Hopfield network have been 

applied to kinematic control by minimising the 

weighted norm of joint velocity  [131]. The 

inverse kinematics problem lends itself to feedforward 

neural network-based solutions [132] especially for 

kinematically redundant manipulators which are ill-

conditioned. Two neural networks may be deployed in 

conjunction with each other – an emulator learns the 

manipulator dynamics while the controller learns to 

control the emulator while both interact through the 

actual manipulator [133]. Multiple neural networks can 

model multiple finger Jacobians of a multifingered 

robot hand for a hybrid position/force controller from 

visual feedback in the presence of uncertainties [134]. 

Neural nets can learn the end effector positions of a 

robotic manipulator from visual input from cameras 

using the neural gas network [135]. A large number of 

target objects were randomly chosen and the 

manipulator configuration visually observed in pixel 

coordinate. Data pairs of target position errors in pixel 

coordinates mapped to the joint motor torque outputs 

enabled learning using a Hebbian rule with neural gas 

adaptation. A modified topographic Kohonen self-

organising neural network trained by a teacherless 

Widrow-Hoff learning rule can learn visuomotor 

mappings for a robotic manipulator from binocular 

cameras [136]. The self-organising map has been 

applied to self-calibration of space-based manipulators 

to provide adaptability to the traditional inverse 

kinematics approach in response to slow parameter 

changes [137]. The radial basis function has also been 

applied to space manipulators to approximate to an 

optimal controller [138]. Neural networks have been 

used for both identification of the plant and control of a 

plant [139]. The commonest approach is to employ a 

multilayer perceptron emulator to learn the system plant 

dynamics and a separate multilayer perceptron 

controller to learn to control the emulator [140]. The 

emulator is trained to match the input-output 

characteristics of the plant. The real plant cannot be 

used as the error cannot be backpropagated through it – 

hence the emulator. The emulator generates the error 

between the emulator and controller to be 

backpropagated through the controller to update the 

controller weights. Neural networks are suited to 

multiple robotic applications including task planning, 

path planning and trajectory control [141]. 

 

X. CHEMICAL & MANUFACTURING 

PROCESSING 
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Most traditional chemical process control systems 

are based on conservation of momentum laws and mass 

and energy conservation laws for which predictive 

control, model-based control and adaptive control. A 

continuously stirred tank reactor model of an 

exothermic reaction includes product concentration C(t) 

and mixture temperature T(t) [142]: 

 

 

                       [17] 

where q=process flow rate, V=reactor volume, 

qc=coolant flow rate, C(0)=inlet concentration, 

T(0)=inlet temperature, Tc=coolant temperature. The six 

reaction model parameters may be monitored for 

progress of the chemical reaction [143]. Neural 

networks learn empirical models of final outputs 

correlated with input parameters without knowledge of 

complex nonlinear physical and chemical laws. Neural 

networks can substitute for specific aspects of inverse 

model and predictive control [144], e.g. model 

predictive control may utilise a predictive model 

implemented as a feedforward neural network trained 

using an online Levenberg-Marquardt algorithm 

incorporated into the backpropagation algorithm such 

that  where J(w)=Jacobian matrix, 

E(w)=error, η=adaptation parameter [142].  Artificial 

neural networks may be applied for entire control of 

chemical engineering applications especially multilayer 

perceptron, radial basis function and support vector 

machine regression for sensor processing, fault 

detection, nonlinear control and process identification 

[145,146]. Neural networks may implement 

feedforward models trained by genetic algorithm for 

nonlinear predictive control of a chemical process 

yielding superior performance to a standard PI 

controller [147]. A feedforward model may be 

implemented with a neural network for controlling a 

chemical reaction using an inverse neural model 

controller yielding a more robust controller than a direct 

neural network inverse model [148]. A neural network 

nonlinear reference model trained online from 

input/output data permits adaptive control of a chemical 

process by a second neural network controller [149]. 

Chemical reaction optimisation neural networks may 

also be trained using evolutionary algorithms to 

simulate molecular populations and their interactions in 

a chemical reaction towards a global minimum potential 

energy state (fitness function) [150]. The knowledge-

based artificial neural network (KBANN) exploits 

neural networks to refine propositional rules to control a 

plant [151]. The neural network is initially trained to 

implement a PID controller with tuned Ziegler-Nichols 

parameters. Randomised weights are added to the 

network which then trained by backpropagation to 

improve its control performance yielding faster 

learning. 

Neural networks may be employed for autonomous 

control of general manufacturing tasks [152,153]. The 

potential field approach may be adapted for the control 

of movement of material by attractors to specific 

manufacturing machines [154]. Traditional automated 

manufacturing involved subtractive processes and 

assembly using expert systems [155] but more recent 

approaches include neural network scheduling [156]. 

An analogue network has been developed for job-shop 

scheduling [157] in which the number of neurons is mk 

with mk+mk(k-k/n) interconnection weights which 

grow linearly with the number of jobs. All 

manufacturing machines comprise of tooling that 

physically alter the shape of the product using rotating 

machinery. All are characterised by vibration for which 

turning is typical. Neural network models for process 

identification of a self-tuning controller during turning 

operations can measure self-excited vibration 

measurements by accelerometer as a proxy for surface 

finish friction to influence feed rate, tool speed and cut 

depth [158]. Neural networks such as LSTM are ideal 

for controlling additive manufacturing (AM) processes 

due to uncertainties in modelling parameters such as 

laser power, scan speed, hatch spacing and layer 

thickness (energy density,  where P=laser 

power, v=scan speed, h=hatch spacing, d=layer 

thickness) for selective laser melting [159]. 

Thermomechanical (finite element) analysis of the AM 

process output and/or in-situ measured visual features 

(melt pool, pluming and spattering) output from the 

CAD model input is required to train the neural network 

model which is subsequently converted into an STL file. 

The chief challenges in neural network modelling are 

small data sets (though generative models such as 

autoencoders can synthetically augment data by 

generating a Gaussian distribution for sampling), lack of 

labelled data, lack of empirical guidelines for neural 

network hyperparameter selection and lack of 

knowledge of metallurgical quality to parameter 

combinations. 

 

XI. CONCLUSIONS 

In implementing computational electronics built 

from in-situ resources, there are major constraints:   

(i) avoidance of the use of solid-state technology as 

solid state electronics manufacturing requires enormous 

infrastructure and complex processes  

(ii) limitation on lunar material resources  

(iii) emphasis on multi-use devices, i.e. vacuum tubes.    

Our rationale inevitably leads to the adoption of 

neural network controllers as our general computational 

architecture. We have shown that the neural network is 

thus a versatile approach to autonomous control systems 
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encountered in-situ resource utilisation applications – 

surveying, mining, chemical processing and 

manufacturing tasks – with a special emphasis on 

autonomous rover navigation which is required for 

mining and transport. The robustness of our resultant 

neural network for goal-directed navigation must be 

tested more fully. If successful, the neural network 

architecture will be constructed in hardware and tested 

in reality rather than simulation (subject to the transition 

from simulation to reality requiring fine tuning), first in 

transistor-based op-amp form then in vacuum tube-

based op-amp form. Thence, 3D printing of the circuitry 

can be undertaken. 

 

APPENDIX: TURING MACHINES 

Computation involves transforming an input data 

string into an output string using a finite set of steps – 

this finite set of steps constitutes an algorithm. An 

algorithm is thus a finite sequence of well-defined 

procedures that transform an input into an output. 

Equivalently, an algorithm is computable by a Turing 

machine. A Turing machine is a general computational 

model based on an automaton – it comprises an 

infinitely long tape divided into discrete cells, each cell 

containing one input symbol from a finite alphabet. 

More formally, the Turing machine is a finite-state 

machine comprising a read/write head mounted onto an 

infinitely long tape divided into discrete squares. Turing 

machine may be codified as a finite state automaton on 

the form: TM=(Q,X,A,D,q0, B,F) where Q=finite set of 

states, X=input alphabet, A=tape alphabet, 

},{: RLAQAQD → =output function, 

Qq 0  =initial state, )( XBAB  =blank 

symbol, QF  =finite set of final states. The Turing 

machine sequentially reads an infinitely long digital 

tape of cells. Symbols from a finite alphabet may be 

inscribed on the tape which are read in sequence by the 

read/write head. The initial tape encodes a set of input 

data. The read/write head scans the tape, reading each 

symbol and over-writing with an output symbol. It can 

move left or right, reading and writing a symbol at each 

move. The read/write head incorporates a finite memory 

of internal state transitions constituting the specific 

program of the Turing machine. The motion of the 

read/write head – the behaviour of the Turing machine - 

is determined by the symbol inscribed on each cell of 

the tape and the internal state of the machine. The 

Turing machine’s behaviour is determined by the 

current state of the machine, the input symbol being 

read on the tape, and a table of instructions (program). 

The program determines the output symbol to be 

written, the movement direction of the head to read the 

next input, and the next machine state. The tape’s 

symbol is overwritten with a new output symbol and the 

read/write head moves to the next scanning position left 

or right according to the Turing machine’s state 

transition function. The resulting tape encodes a set of 

output data. The unproven Turing-Church thesis asserts 

that the mechanical computations of a Turing machine 

define an algorithm (program). Different Turing 

machines are specified by different state transition 

functions. This simple machine implements a 

mathematical function that converts its input into an 

output – the Turing machine’s mechanical procedure 

encapsulates the algorithm concept as a finite sequence 

of simple operations. Any specific Turing machine may 

be encoded as an input tape so a universal Turing 

machine can emulate any specific Turing machine, i.e. a 

universal Turing machine can compute any computable 

function given the appropriate algorithm: 

UTM={Q,{0,1},{0,1,B},D,q0,B,{q’}). 

A magnetic tape is one physical instantiation of the 

Turing machine tape comprising a polymer tape coated 

with a thin magnetic ferrite forming narrow tracks. It 

uses an electromagnetic write head to magnetise the 

tape to encode binary data. The key to increasing the 

data density is shrinking the magnetic grains and the use 

of signal processing/servocontrol algorithms for the 

write head. Magnetic tape as a data storage medium has 

progressed enormously from a density of 225 bits/cm2 

in the first IBM tape drive (1952) and has reached 30 

Gb/cm2 today. Tape storage, although slow to retrieve, 

is highly reliable (error rate ~10-5 that of hard drives). 
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