
73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 1 of 17

IAC-22-D4.5.x68581

NEURAL COMPUTATIONAL ARCHITECTURES FROM IN-SITU RESOURCES FOR PLANETARY

EXPLORATION

Alex Ellery

Carleton University, Canada, aellery@mae.carleton.ca

We explore the prospect for leveraging analogue electronic circuitry from lunar resources and determine its

utility for controlling production on the Moon. Since solid-state transistor-based electronics cannot be feasibly

manufactured on the Moon in-situ, vacuum tube-based active electronics may be configured into neural network

circuitry. Recent developments in Artificial Intelligence suggest an evolution of terrestrial computing towards special

neural network hardware. We show that a wide range of algorithms can be implemented on analogue neural

networks emphasising algorithms required to implement advanced robotics including bio-inspired approaches. The

Nakamura-Yamashita analogue neuron circuit is one possibility that we have explored and show that two cross-

strapped neurons can implement obstacle avoidance behaviours in rovers. We explore the use of RatSLAM for rover

navigation and neural fields for path planning respectively that are uniquely suited to neural network

implementation. Rovers will be crucial for production as mining and transport vehicles. For online learning,

backpropagation is a simplification of the Kalman filter algorithm that has broad applications in optimal state

estimation under stochastic conditions. Challenging process control required for electrochemical throughput may be

implemented with neural networks. We finally examine neural network algorithms for complex manipulator

controllers which constitute the final phase of production - assembly.

I. INTRODUCTION

The next stage for lunar exploration is consolidation

through the establishment of a Moon Village. It would

be advantageous to construct the Moon Village from

lunar resources as far as is feasible. The crux is to

construct the kinematic machines of production

themselves from local resources, i.e. robotic machines.

In constructing a lunar infrastructure leveraged from in-

situ resources, it is apparent that traditional solid-state

electronics such as transistors for constructing

computing machines would be challenging to

manufacture from lunar resources [1]. Although silicon

is widely available, dopants are not (Table 1) nor are the

reagents.

Element Average

concentration in lunar

regolith

H 50 μg/g

C 124 μg/g

Au 9 ng/g

Fe 15% (mare basalt)

Ni 250 μg/g

Co 35 μg/g

W 370 ng/g

Ti 7% (mare basalt)

Al 18% (anorthite)

K 0.8% (KREEP)

P 0.6% (KREEP)

Table 1. Lunar element concentrations (adapted from

[2])

However, lunar resources may be deployed to

construct vacuum tube-based amplifiers/switches –

lunar materials suffice to construct vacuum tubes [3].

Nevertheless, implementation of CPU-based computing

would require very large computers that are impractical.

An alternative is to employ analogue neural network

architectures which are Turing complete (Appendix).

We show that the physical neural network as a

computational architecture is ideally suited to the range

of applications required for robotic manufacturing

systems on the Moon.

II. ARTIFICIAL NEURAL NETWORKS

We have adopted a simple neural network approach

based on analogue electronics hardware. Neurons are

finite state machines - the Elman simple recurrent neural

net is a Moore machine with an output function of the

form [4]:














+= 

=

i

n

j

jiji wtxwftxy
1

)())(([1]

where y=output, x=input, wij=connection weight,

wi=threshold, f(.)=nonlinear activation function.

Electrical representation of neural networks is based on

the neuron as a weighted sum computation implemented

as a multiply-and-accumulate operation. Hardware

neural nets perform multiply (weights) and accumulate

(summation) operations with forward propagation of

voltages through a series of layers:

 [2]

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 2 of 17

where =activation function

implemented through piecewise linear approximation,

Vin(0)=input threshold. Fixed weight neural networks

cannot learn so the backpropagation algorithm requires

computation of the mean squared error at the output

layer:

 [3]

The chain rule provides the partial derivative of the

error required for weight update at the output layer:

= [4]

For the hidden layers, is a more complex

expression derived from the chain rule. From this,

backpropagation (generalised delta) circuitry may be

implemented as a gradient descent on the error:

 [5]

Neural networks are limited in size by their speed of

learning convergence and generalization capability. This

suggests that multiple neural networks may be

employed in ensembles to improve their performance

[5]. Each expert network learns a subset of training

cases and a separate gating network determines which

network is adopted for each training pair according to

the one that gives the smallest output error [6]. The final

output constitutes a linear combination of the outputs of

the local expert networks. Alternatively, the gating

network may select local experts in a hierarchical

architecture [7]. This suggests that neural networks have

a scalability characteristic for dealing with more

complex problems. One of the simplest biological

neural networks in a non-aquatic free-living animal is

that of the nematode worm C elegans: it comprises 959

cells in total as a hermaphrodite (of which 302 are

neurons) or 1031 cells in total (of which 381 are

neurons) as a male with approximately 5000 synapses.

This potentially gives us a minimum neural network

size for adaptive behaviour though an engineered

version would be subdivided into subnetworks of more

modest dimension. For example, the SpiNNaker project

is based on combining a large number of digital ARM

processors within a grid of switches to emulate a vast

neural network representing a small brain of ~106

neurons [8] but SpiNNaker is not energy efficient.

III. HARDWARE NEURAL NETWORKS

Neural network computing offers an alternative to

the von Neumann architecture [9]. Here, we consider

hardware implementations of neural networks.

Neuromorphic circuits are brain-inspired non-von

Neumann architectures. In spiking neurons, a

summation of action potentials from presynaptic inputs

generates a postsynaptic pulse (action potential) [10].

Spiking neurons may employ rate coding in which the

mean firing rate transmits information or time coding in

which the time to first spike or interspike interval

transmits information.

Hardware spiking neurons promise the temporal

dynamics of biological neurons that combine memory

with processing such as leaky integrate-and-fire neurons

with the high capacitance of cell membranes:

 [6]

with

where Vi=internal potential for neuron i,

Ci=membrane capacitance, Vth=neuron threshold,

sj=output of neuron j, I0=leakage current, wij=synaptic

weight between neuron j and neuron i. Integrate-and-fire

neurons are dependent on membrane potential with

leakage coefficients offer a more biologically plausible

neuron model [11,12]. They are sensitive to specific

input frequencies due to stochastic resonance whereby

they output spikes with high signal-to-noise ratio [13].

Spiking neuron hardware is preferably analogue which

offers much higher energy and areal footprint efficiency

than digital forms for the same spiking rate [14].

The more complex Izhikevich spiking neuron

balances biological emulation with computational

complexity based on two differential equations [15]:

 [7]

Spike reset conditions are given by:

if V≥30 mV then

A spike-based leaky McCulloch-Pitts neural network

with large layer sizes learned autonomous obstacle

avoidance and navigation in a simulated grid

environment using reinforcement learning [16]. A single

optimised Izhikevich neuron model has been

implemented on an FPGA [17]. Silicon spiking neurons

as analogue/digital VLSI chips range from axon-hillock

neurons to Izhikevich integrate-and-fire neurons to

Hodgkin-Huxley conductance-based neurons with

increasing hardware footprint and consequent richer

dynamics [18]. Learning is challenging in spiking neural

networks due to non-differentiable discontinuous

spiking states. Spike timing dependent plasticity

(STDP) is a Hebbian learning rule depending on relative

timing of presynaptic and postsynaptic spikes. There are

neuron models that can implement greater biological

fidelity that may be explored [19]. This includes

implementing a neural firing rate that is proportional to

the product instead of the sum of weighted inputs – this

constitutes a higher order neural net. These

microtechnology-based hardware neurons are not

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 3 of 17

feasible on the Moon. Analogue spiking neurons

however are feasible [20].

An all-optical neural network offers speed and

energy advantages over electronic media. Optical neural

networks offer rapid highly parallel processing but must

implement matrix multiplication, summation, nonlinear

activation, convolution and learning algorithms.

Hardware negative weights may be implemented using

inhibitory neurons into the hidden layer [21]. Crucial to

optical neural nets is the representation of weight and

matrix multiplication optically [22]. Spatial light

modulator arrays representing a weight matrix

sandwiched between LED and photodetector arrays

offer inferior nonlinear processing performance and

limits in weight array size. Holographic optical arrays

and phase mask arrays are diffractive approaches that

are immature. The most mature approach is to exploit

light interference using arrays of Mach-Zehnder

interferometers. Optical interconnects (lenses) can

implement convolution and Fourier (inverse) transform

optics in hardware. Optical fibres are doped with erbium

to amplify light transmission near 1550 nm by up to 26

dB. Optical processing with optical switches can reduce

power consumption where Fourier transforms exploit

light’s interference properties implemented as a 2D

array of Mach-Zehnder interferometers but its N2 matrix

representation imposes scaling limits. Basic analogue

optical components include an optical gate which may

be implemented as a Mach-Zehnder interferometer

amongst other options [23,24]. Optoelectronic

approaches are necessary to implement nonlinear

activation - integrated on-chip photonic deep neural

networks require opto-electronic nonlinear processing

through a pn junction micro-ring modulator [25]. In

optical neural networks, error gradients may be

computed from intensity measurements [26].

Implementation of backpropagation in optical neural

networks is particularly challenging as it requires error

derivatives [27]. An all-optical neural network has been

implemented based on optical spiking neurons [28,29].

Micro-ring resonators can modulate optical waveguides

through phase change materials that switch between

crystalline states to implement adjustable synaptic

weights. A photodiode imaging array sensor may be

integrated with the neural network processor through

tunable photoresponsive synaptic weights between the

photodiodes [30]. A 3D printed optical diffractive deep

neural network with a high neuron count can perform

complex computations at light speed [31]. It comprised

of multiple transmissive/reflective layers on which

spatial light modulators represent neurons connected

through the layers via optical diffraction. The network

was trained as an imaging lens to implement a physical

autoencoder network. In general, optical neural

networks are immature, suffering from optical precision

limits of error backpropagation and energy dissipation

in nonlinear optics limiting their scalability. To

compensate for limitations in all-optical neural

networks, hybrid optoelectronics integrates electronic

and photonic circuits onto silicon through lasers,

photodetectors, optical waveguides, electro-optical

modulators, etc [32]. However, these approaches require

microtechnology fabrication which are not currently

feasible on the Moon.

There have been several approaches to non-optical

hardware implementation of neural networks [33]. An

early approach to on-chip learning in VLSI

implementations of neural networks was using the

virtual targets algorithm with weights updated locally

and commonly for all layers [34]. A transconductance

multiplier generates a current pulse whose amplitude

and duration encodes a neuron’s weight and level of

state activation respectively which is integrated,

effectively computing . The sigmoid derivative is

approximated by a triangular pulse generated by an

integrator output from an EX-OR circuit square wave

generator. Weights were held as voltages on capacitors

with the midpoint voltage as zero weight to permit

negative weights. The backward passing of error signals

through the weight-encoding capacitors was not

addressed. Neuron weights may be implemented as a

MOSFET with output current proportional to the

difference in the positive and negative input lines

followed by nonlinear current-to-voltage conversion

[35].

There are several dedicated ASIC hardware chip

implementations of neural networks such as CNAPS

(connected network of 64 adaptive processors) based on

the N6400 neurochip connected by a broadcast bus in a

SIMD configuration. Digital neurochips have

traditionally been single instruction multiple data

(SIMD) architectures in which multiple processors form

systolic arrays, e.g. WARP. VLSI/ULSI implementation

of neural networks such as associative memories and

self-organising maps on CMOS circuitry is a costly

approach [36]. Such VLSI approaches are inflexible but

this can be overcome with the field programmable gate

array (FPGA) hardware which offers programmable

logic blocks with low power consumption. The

implementation of neural networks [37] on FPGA for

real time applications [38] have also been studied and

reviewed [33]. To compensate for hardware-intensive

multiplication operations in neural networks, time-

multiplexing of forward and backward computations

may be employed [39]. Fixed point representation in

neural networks yields more hardware efficient and

faster FPGA computation than floating point

representations [40]. However, the Xilinx ZU9CG

System on Chip FPGA can perform forward and

backward computations for deep neural networks [41].

VHDL-implemented Boolean logic functions on FPGAs

may be exploited to implement step activation

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 4 of 17

McCullough-Pitts neurons configured in neural

networks [42]. Each neuron implements a Boolean

function represented by its truth table. This involves a

two-step procedure. Neural inputs are encoded into 2-

complement binary representations with weights

followed by conversion of the resulting binary neuron

model into a logic gate structure. Replacement of

negative weights is implemented through application of

the modulus operator with reversal of affected inputs

using a NOT gate. The binary neurons are then mapped

onto the hardware structure through a decomposition

process with an inversion process to inputs with former

negative weights. The final step was to convert a netlist

of the circuit into VHDL code using a C++ program. A

fuzzy logic controller including fuzzifier, fuzzy learning

base, fuzzy inference engine and defuzzifier may also

be implemented on an FPGA [43] suggesting the

feasibility of implementing fuzzy neural networks on

FPGAs. The Tianjic chip is a multi-core, reconfigurable

architecture that can accommodate brain-inspired

circuits including spiking neurons and machine learning

algorithms [44]. Deep learning neural networks (DNN)

have been growing in capacity by an order of magnitude

per year since 2010. Deep learning-based AI has

induced a shift away from the CPU to the TPU (tensor

processing unit), an ASIC/DSP that enables rapid

parallel matrix multiplications required for neural

network processing. Training and operating DNNs

which require CPU, GPU or TPU-based platforms

consume exponentially growing amounts of energy. As

AI applications grow more pervasive, so energy demand

will grow, potentially without limit. The advantage of

hardware learning is considerable speed-up in training -

in 2020, OpenAI created GPT-3, a DNN of 175x109

parameters.

IV. ANALOGUE NEURAL NETWORKS

A hardware integrate-and-fire neuron based on

analogue components has been presented in which

resistor-weighted input currents were summed and

integrated through a simple parallel RC circuit by

Kirchoff’s laws [45]. This was fed into a transistor that

acted as a thresholded pulse generator. The transistor

may be substituted with a triode-based Schmitt trigger.

We consider fully analogue neural networks. There

may be some interesting implications in extending

analogue forward neural circuit model into a recurrent

neural network circuit in the future. A finite analogue

representation of a recurrent neural network with

sigmoidal neurons represents a model of analogue

computation and can simulate a universal Turing

machine [46]. A recurrent neural network with rational

weights is computationally equivalent to a Turing

machine computer model. When the weights are rational

numbers, the addition of stochastic properties (i.e.

unreliable components) extends the power of their

computation to that of a probabilistic Turing machine

[47]. However, the computational abilities of analogue

recurrent neural networks may be enhanced beyond that

of the Turing machine using real-valued weights which

offer the infinite precision of analogue information [48].

This allows them to compute non-recursive functions

that cannot be computed by Turing machines. An

example is Rado’s construction)(n as a non-

computable function of n [49]. Analogue recurrent

neural networks thus constitute super-Turing machines.

Theoretically therefore, analogue implementations of

neural networks offer a more powerful methodology

than traditional computing architectures. This is an

interesting prospect that has yet to be explored.

Analogue recurrent neural networks are equivalent

to oracle Turing machines that consults an oracle, a

special tape [50]. The oracle introduces the possibility

of inputting new non-deterministic or non-computable

data to the machine. It may be regarded as a hardware

upgrade through which the Turing machine gain

computational advantages by interacting with the more

powerful oracle. These interactive machines may be

capable of super-Turing computations [51]. Reservoir

computing shows that recurrent neural networks with

large hidden layers can perform computation efficiently

by exploiting the rich dynamics of nonlinear neurons

with delayed feedback [52]. Analogue recurrent neural

networks where the synaptic weights evolve over time

(i.e. learning) are equivalent to interactive Turing

machines with advice, i.e. they are capable of super-

Turing computations – this is the case for both rational

and real weights [53]. In rational-weighted recurrent

neural networks, these super-Turing capabilities can

only be realized if the synaptic weights evolve in a non-

recursive manner – recursive learning limits such

networks to Turing-computable functions. However, in

real-weighted recurrent neural networks, there are no

such requirements for learning to achieve super-Turing

capacities. For example, two interconnected sub-

threshold CMOS invertor circuits, each comprised of

two triodes operating in tandem, can implement a

Maxwell’s demon-type of rectification and

amplification of voltages generated by thermal

fluctuations without contravening the second law [54].

Thus, learning from environmental cues imposes

enhanced capacities to neural computation. This

establishes the importance of physical interaction with

the environment as a key element in the behavioural

capacities of robotic vehicles [55,56].

Fully analogue neural circuits offer rapid

computation with some biological fidelity in reducing

specific energy consumption (energy/neuron) but at the

cost of a fixed neural architecture (without learning).

Neural networks per se are energy efficient as their

processing and memory hardware are the same.

Training neural networks however requires large

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 5 of 17

amounts of data processing while neural network

inferencing relies on synaptic memory. Through the

denial of online learning, it may be that we lose super-

Turing capabilities but retain Turing machine

capabilities. We consider this an acceptable cost. Fixed

weights prevent runaway growth in computer footprint

restricting the output of our Turing machine to an

analogue neural network that encodes a specific

algorithm in hardware form. The complexity of a neural

network increases only as the logarithm of the task

complexity unlike the exponential increase in circuit

complexity of digital architectures [57]. Neural synaptic

weights may be represented as a network of resistors

which we assume are fixed in a pre-trained network.

The simplest model of the neuron is a passive low-pass

filter comprising a resistor in parallel with a

capacitance.

Analogue circuits primarily based on operational

amplifiers for general computation has been examined,

e.g. the Yamashita-Nakamura neuron [58]. It comprises

four operational amplifiers, two diodes, seven resistors

and one capacitor in a three-stage circuit comprising a

summing weighted input amplifier, a time delay circuit

and an output amplifier with nonlinear diode feedback

for the sigmoid response. Analogue implementation of

the sigmoid function is difficult to achieve reliably

however due to non-uniformity of components, so our

version adopted a simplified McCulloch-Pitts signum

function implemented with a comparator circuit (Fig 1).

Fig. 1. Modified Yamashita-Nakamura neuron

The weights of each neuron are pre-trained offline to

implement its desired behaviour.

To test the efficacy of fixed weight hardware neural

networks in different tasks required for in-situ resource

utilisation on the Moon, neural networks have been

demonstrated for a wide range of sophisticated tasks.

These include nervous nets for central pattern generation

[59], Buffon’s needle algorithm (for areal surveying)

[60], autonomous online measurement of soil parameters

(for geotechnic surveying) [61], autonomous drilling

control (for subsurface mining) [62,63], symbolic

artificial intelligence [64], etc. Indeed, some tasks are

inherently suited to neural networks - a bio-inspired

approach to image processing implements optic flow

navigation which is implementable on neural networks

[65]. A correlation algorithm to locate motion peaks

between images can be implemented using AND-NOT

gates [66]. There are three steps to the implementation of

such a correlation algorithm in a neural network: (i)

shift-and-comparison of velocity measurements; (ii)

local summation that implements spatial averaging of an

image region; (iii) winner-take-all scheme that

suppresses all non-maximum matches selects the highest

matching strength velocity. Of course, image processing

has been the main application of deep learning neural

networks exploiting in particular convolutional neural

networks [67].

V. AUTONOMOUS NAVIGATION

The first generic task we examined was autonomous

navigation. As well as surveying and mining, mobile

rovers are used in manufacturing facilities to move

material between stations. In all cases, simultaneous

localisation and mapping (SLAM) is a fundamental

capability. We have demonstrated a pre-trained two-

neuron hardware circuit implementing a reactive

Braitenburg control architecture of BV2/BV3 class [68]

performing automatic obstacle avoidance on a desktop

mobile robot (Fig 2):

Fig. 2. (a) Two-neuron hardware controller circuit; (b)

desktop rover representation with frontal sensors

The simplest Braitenburg architecture (BV1) of one

sensor and one motor connected by an excitatory link

exhibits wandering behaviour. BV2 comprises two

sensors and two motors connected through excitatory

links – they may be ipsilateral with avoidance (fearful)

behaviour or contralateral with approach (aggressive)

behaviour. BV3 is similar to BV2 but with inhibitory

associations to implement approach (attraction) and

avoidance (repulsion) with opposing connections. Our

two-neuron circuit is of the BV2/BV3 type which

successfully performed multiple obstacle avoidance

tasks reactively along a curved obstacle field of posts. A

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 6 of 17

more sophisticated variant - BV3c – could be readily

implemented with all the previous connections (BV2a,b

and BV3a,b) linked the two motors to exhibit variable

speeds. BV4 builds on BV3c and implements

nonlinearities in the links which generates an approach

to objects with increasing speed until it reaches a

threshold beyond which it slows. BV5 implements

thresholding allowing it to implement logic gates

similar to McCulloch-Pitts neurons (our neurons are

McCulloch-Pitts neurons) with reciprocal thresholding

for memory storage. BV6 implements evolutionary

learning.

Now, BV7-14 networks exhibit sophisticated neural

network learning based on association with cognitive

properties, object detection, movement detection, map-

building and prediction through the introduction of

wires with special properties. It is these capacities that

we turned to next. To explore these more complex

neural networks, we initially trained a software neural

network to implement sophisticated tasks central to the

realisation of robust in-situ realisation in mining rovers.

Specifically, we implemented a multilayer perceptron

with goal-directed navigation trained offline in software

form to be subsequently constructed in hardware. We

consider only the training of the software

implementation here and used a rover model in Webots

(Fig 3).

Fig. 3. Webot model of a simple rover

Labelled data pairs were input to the network and

the weights adjusted through the backpropagation

learning algorithm. The error function implemented was

the softmax-loss function:

 [8]

The numbers of neurons in the input (sensors) and

output (motors) layers is defined by the problem to be

solved. The architecture of this network has a 5-4-4-4

topology with a sigmoidal activation function. The five-

neuron input layer corresponds to three normalised

distance sensor measurements to obstacles in the

forward environment field with flanking sensors angled

at , a normalised distance measurement to goal, and

a normalised polar angle measurement to goal.

Normalisation to the maximum sensor range distance

(100 cm) from the rover for the normalised obstacle

distances, initial distance to goal for the normalised goal

distance and for the normalised polar angle to goal.

Normalisation improved learning by eliminating zero

input sensor readings. The input data is projected

forward to the first hidden layer and then second hidden

layer both of four neurons.

In any hardware neural network, the hidden layer(s)

must be pre-defined. In a radial basis function, the

number of hidden neurons n (neural complexity)

equates to the number of training examples k

(information complexity):)()(eken  to approximate

a function f within an error e [69]. In reality, n<<k to

limit the network size. Upper and lower bounds on the

size N of a single hidden layer in a multilayer

perceptron network have been defined as [70]:

m+1≤N≤p(m.n) where 
=









=

n

i i

m
nmp

0

).(= number of

separate input-output pairs in the training set, n=number

of input neurons, m=number of network layers.

However, when the training set is much larger than the

number of neurons, two or more hidden layers may

require much fewer neurons collectively than a single

hidden layer, even though a single hidden layer suffices

for function approximation [71]. The number of hidden

neurons encapsulates a trade-off between the

complexity of the model and its approximation

accuracy: this occurs at its maximum (optimal)

generalization ability with the minimum predictive error

[72]: −=)()(0 juhuhe where

),(wxfyu njnj −= , h(.)=loss function, yn=target

outputs, j=number of hidden neurons, n=number of

output neurons. A Bayesian information criterion (BIC)

yields a test procedure defined by:




=

−

n

j

n

j

n

uh

uhuh

jp
)(

)()((0

 [9]

Hence, the number of hidden neurons can be

determined only with substantial a priori knowledge of

the learning environment. We adopted a simpler

approach for our small network - the number of neurons

in the hidden layers were selected to be less than the

input layer (for compression) and at least as high as the

output layer. Finally, the four-neuron output layer

determines the rover movement of its front castor wheel

and two differential wheels – forward, left, right and

stop. The simulated world comprised a randomly-

generated rock field of obstacles over 5 x 10 m (Fig 4)

corresponding to approximately to the visual field of

view of the ExoMars rover.

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 7 of 17

Fig. 4. Randomly generated rock field

Training data of goal position within 100 m and

sensor distance values within 100 cm were randomly

generated to prevent manual biasing. The human

operator showed the direction required to reach the goal.

1000 different training scenarios were used during

training. Although the environment was unchanged, the

end goal position was varied (input). The trained

network was tested with three different goals which it

successfully achieved each time, though some goals

took longer to reach due to the rover swaying during

transit. We expect that the trained network can cope

with any rockfield distribution as the process of varying

the goals presents a different rockfield perspective [73].

We have yet to test this though.

The goal is to train the network offline such that it

can be used to build an analogue neural circuit for the

rover and provide it with obstacle avoidance and

maneuvering capabilities without software computations

and simulations. The circuit for the multilayer neural net

based on the Yamashita-Nakamura neuron. However,

given the simulation-reality gap, it is necessary that

hardware neurons have the ability to be trained through

weight adaptability [74]. The use of potentiometers as

weight inputs in the form of voltages to the network aid

the process of training, such that over multiple iterations

and updates, the network can arrive at converged weight

values that provides minimum error to the desired

output. During the training phase, the circuit performing

forward propagation is adapts to the distance measuring

sensor inputs fed to the circuit. The output is

subsequently fed to a backpropagation circuitry

comprising of a threshold activation sub-circuit as well

as multipliers and summers. The potentiometers are

varied according to this output thereby completing the

process of training over the course of several iterations.

VI. KALMAN FILTERING

Kalman filtering is the basis for families of SLAM

algorithms as well as a host of other ubiquitous

applications. Simple filters may be implemented

directly in analogue op-amp circuitry. Self-tuning filters

are a special case of analogue electronic filters

comprising a voltage-controlled filter analogue filter

(with fixed resistances replaced with voltage-controlled

resistors) and an operational amplifier [75]. The Kalman

filter is a ubiquitous state estimation algorithm that

fuses noisy sensory data with a dynamic predictive

model, i.e, a Bayesian algorithm. The chief problem

with implementing the Kalman filter in a neural network

are matrix computations. A two neuron-based Kalman

filter can be based on a nonlinear autoregressive model

to predict variables of the Kalman filter but it is

complex in form [76]. Kalman filter is a model-based

state estimator while neural networks are model-free.

KalmanNet learns the Kalman filter gain

 from

labelled datasets of Kalman gain to state estimation

output [77]. The backpropagation algorithm can

implement a Bayesian classifier [78] and a degenerate

form of the extended Kalman filter [79]. This gradient

descent approximation to the Kalman filter through the

derivative of a loss function (error between predicted

and measured output) was the basis of the neural

Kalman filter [80]. A simplified EKF training algorithm

may be deployed for gradient descent for LSTM for

superior performance by [81]:

 [10]

where

Comparison between the multilayer perceptron and

the Kalman filter indicate the superiority of the former

in terms of computational requirements [82]. For

example, artificial neural networks may substitute for

Kalman filters for sensor fusion for vehicle navigation

[83]. We have implemented the backpropagation

algorithm as analogue circuitry so we have implemented

a simplified form of Kalman filter circuitry. A neural

attractor version of the Kalman filter can model head

direction cells [84]. Neural networks may be employed

to merge single EKF-generated maps from individual

robots to form multirobot SLAM [85]. The neural

networks perform map learning on Canny edge-

processed images using the unsupervised self-

organising map. Obstacles are learned through

clustering occupied cells of the occupancy grid which

are matched through cross correlation.

There are several intriguing possibilities for learning

circuitry including the backpropagation algorithm [86].

We have also been exploring the potential for

augmenting hardware neurons with online learning

circuitry [87,88]. We have described in detail our

analogue hardware backpropagation algorithm that

effectively implements a degenerate Kalman filter state

estimator [89].

VII. BIO-INSPIRED RATSLAM NAVIGATION

Biologically-inspired models of navigation in the

hippocampus are primarily based on a priori “place”

cells linked by synaptic weights which are learned

during exploration forming a topological map [90]. A

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 8 of 17

cognitive map must encode two types of information –

view-based place recognition (what information) and

spatial relationships between them (where information).

Cognitive maps may encode a temporal sequencing of

views [91]. In insects, a sequence of view-based

snapshots with vectors provide the basis for navigation

through familiar terrain. Honeybees use snapshot

images of landmarks adjacent to the target location to

determine its steering [92]. Only the local region and the

horizon are extracted from the images. Matching of the

stored snapshot image in memory and the retinal image

of the current view proceeds by pairing the snapshot

with the closest match to the current view, yielding a

vector to the target. Graded fusion on a local motor map

gives bearings of obstacles which are to be avoided

whilst pursuing the direction to the target. Obstacles are

avoided through this snapshot map of obstacles in polar

coordinates from the current heading. Their visual

memory of landmark snapshots is versatile and is

tolerant of mirror reversal and rotation of horizontal

patterns but not vertical patterns as might be expected

under natural conditions [93]. In insects such as flies,

heading is represented by compass neurons that activate

the ring-shaped ellipsoidal body forming a ring attractor

network in its brain that activate specific visual

snapshots [94]. Birds which require spatial memory of

food caches possess hippocampal place cells similar in

function to mammals [95].

RatSLAM is a biologically-inspired SLAM

algorithm implemented as neural networks based on the

function of the rat hippocampus (specifically CA1-CA3

regions) applicable to a changing rather than static

world [96-98]. The hippocampus (of the rat) implements

a topological (cognitive) map representation to support

self-navigation - place cells in its CA3 and CA1 regions

selectively fire when the rat is in specific absolute

locations of its environment and head-direction cells

that selectively fire only when the rat’s head is oriented

in specific absolute directions with respect to its

environment. Firing of these cells encode the state

(x,y,θ) of the rat within a 2D model of its environment.

Place cells are not strictly cartesian or topological

representations of the environment but they permit

interpolation between place cells. In bats which have

long ranges, place cells fire in different combinations

for different locations, i.e. multiscale coding with a

finite number of neurons [99]. There are, indeed, grid

cells within the entorhinal cortex that encode multiple

topographic rat locations arranged in a tessellated 2D

hexagonal grid over the global environment

supplemented by locally-ordered 3D grid cells [100].

The global lattice structure is crucial for odometric

measurement of self-motion. The entorhinal cortex

feeds into the hippocampus in which place cells are

more precise – the hippocampus loops through CA1 and

CA3 back into the entorhinal cortex. CA3 exhibits

recurrent links suggestive of auto-associative memory

implementing cognitive maps.

RatSLAM is a partial grid and topological

representation of the physical environment similar to

GraphSLAM – neighbouring locations are represented

as closely adjacent “pose” neurons connected by

excitatory links and inhibitory links to more distant

neurons. RatSLAM uses proprioceptive (odometry) and

external (landmark) sensors to create a semi-metric

spatial map of its environment with a competitive

attractor network to integrate its sensory data. A 3D

neural attractor network is comprised of pose cells, each

pose cell encoding an estimate of the robot’s pose in

(x,y,θ) space. Two representations are used – a global

world-referenced experience map of accumulated

odometry in conjunction with a local robot-centred

obstacle map of visual landmarks [101]. Each local

view is associated with a specific scene. Associations

are learned between sensory cues Vijk and pose

estimates Pijk with weights . Pose

cells are activated by local view cells along the

weighted connections if a familiar scene is encountered.

Pose cells are activated with a sensory firing rate that

indicates the fit to the specific location with firing

activity changing as where Pi=cell

activity, wi=connection weight, φ=global inhibition.

This association with global pose and local views

represents experience mapping [102]. Each pose cell is

connected to proximal cells through fixed

excitatory/inhibitory links. The distribution of excitatory

and inhibitory connections is weighted as a 3D Gaussian

function creating a Mexican hat function. RatSLAM

increases the association (connection strength) between

simultaneously active local view cells (encoding the

visual scene) and pose cells. Active pose cells create the

nodes of the global experience map thereby encoding

the interconnectivity of different places. The experience

map is a set of topologically linked locations (grid cells)

in a grid with associated metric local views to allow

navigation.

In biomimetic navigation, routes are defined as

sequences of recognition-triggered actions to form a

cognitive map [103]. Path planning between places is

achieved through steepest descent from the goal to the

current location. This bears some similarities to the

PerAc (perception-action) neural network architecture

that comprises a (reflex) action level and a (situation-

recognition) perception level linked together through an

associative reinforcement-based learning rule [104]. It is

capable of generalisation from prior learned situations.

The local view is compared with stored snapshot views

of landmarks using similarity measures which serve to

focus attention on the current view. Landmarks (“what”

information) is correlated with (x,y) position (“where”

information) represented by place cells. New place cells

are generated by landmarks when place cell activity is

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 9 of 17

below threshold. Place cells may be linked using

potential fields through gradient descent in which place

cells constitute potential minima. The potential field

constitutes the action vector as the derivative of the

potential function. This equates to the appetitive and

aversive stimulus response behaviours in which

avoidance gradient is steeper than the approach gradient

[105]. To prevent immobilisation in local minima,

orientation cells provide cues through winner-takes-all

competition for selecting directions to goals. Each place

cell forms a basin of attraction that can be modulated by

a motivation measure that encodes priority that selects

the preferred direction of movement. Similarly, a

motivational module (encoding curiosity for

information, hunger for energy and fear of harm) was

adopted to teach through reinforcement learning a

cognitive map implemented as a time growing neural

gas algorithm [106]. An extension of this is to include a

gating network to act as a meta-controller to switch

strategies based on context [107]. The linkage between

place cells may be implemented through hypothetical

transition cells to represent sensorimotor actions rather

than place locations to form a cognitive map [108]. One

possibility for such linkages is the potential field map.

Reinforcement learning of situation-action associations

(policy) pairs can incorporate a potential field gradient

[109] through

 [11]

where z(t+1)=reinforcement signal, bi=estimated

incremental cost, bj=estimated cumulative cost,

ej=eligibility factor incorporating gradient descent.

Indeed, it appears that the medial entorhinal cortex

encodes vector operations using distance and direction

from obstacles to determine self-location [110]. Deep

belief networks with three layers (convolution layer –

max-pooling unit – convolution layer) may be trained to

recognise visual features in a stereo-image pair to

classify and predict offroad terrainability for a

hyperbolic polar map [111].

VIII. NEURAL FIELDS

Potential field methods are a powerful mechanism

for path planning. Neural networks may be configured

to implement neural fields which define agent motion

with heading direction and velocity as control variables

while the environment is characterized by multiple goal

heading directions ψtgt and multiple obstacle heading

directions ψobs relative to allocentric reference

coordinates [112,113] extracted from vision sensors.

The rate of change of heading direction is given by:

 [12]

These define a total vector field with fixed points

defined by 0= . If the neighbourhood exhibits a

negative slope then the fixed point is an attractor.

Repellors may be defined similarly with positive slope.

These may be regarded as dynamic plannjng behaviours

ϕ(t) [114]. Behavioural dynamics are represented in

phase space with behaviours representing attractor

solutions. Attractors in the environment define

motivations which diffuse through the neural network.

The gradient of the slope around an attractor determines

the relaxation time:

 [13]

At larger distances, different attractors may

contribute to the motion of the robot due to fusion in the

vector field. At a critical distance, bifurcations occur

wherein one attractor becomes dominant. The heading

direction φ may be represented through a neural

activation function u(φ) which evolves over time:

)(),(uftu = defining the vector field u(φ,t). The

stimulus input may be excitatory (from attractors) or

inhibitory (from obstacles). The Amari neural field is

governed by:

 [14]

where φ=heading, ' −= =polar difference

between the two neurons, τ=dynamic timescale of

system, u(φ,t)=neural activation field to encoding

direction φ, I(ϕ,t)=external input stimulus encoding

direction φ, h=global inhibition or excitation,

w(.)=interaction kernel with Mexican hat-shaped

response fields, f(u)=local activation function (step

function):

1)(=uf for u≥0

 = 0 for u<0

The integral term describes a weighted summation

of activity including f(u) defining the neural firing rate.

The Mexican hat function shapes the neural field with

short-range excitatory connections and long-range

inhibitory connections. The sigmoid function may be

used rather than the Mexican hat function. The global

inhibition term ensures that there is neural activity in the

absence of inputs. If discretised, the synaptic weight

between two connected neurons is given by a Gaussian

function:

 [15]

where σ=excitation range, k=excitation amplitude,

win=global inhibition factor which localises the peak.

Localisation may be associated with sets of landmarks

and their bearings (emulating place/head direction

neurons of the mammalian hippocampus). Different

locations are defined in terms of their topological

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 10 of 17

relations on a cognitive map. Path planning is

implemented by gradient following as in the potential

field but this potential field includes frictional terms.

Coupled sets of neural fields representative of different

neuronal populations can implement goal-directed

behavior [115]. Recurrent interconnections amplify and

stabilize neural activity patterns and neural fields

exhibit complex dynamics including memory

characteristics of the prefrontal cortex. Neural fields are

essentially laterally coupled recurrent neural networks.

Motor primitives may also be represented by Amari

neural fields of neuronal populations characterized by

location x and time t with Cartesian motion defined by

integrating)(cos tvx = and)(sin tvy = :

= +

 [16]

where =neural relation time, u(x,t)=neural activity,

h=neural resting field, Si(x,t)=neural input,

=sigmoid function,

i=threshold, i=sigmoidal slope, w(x,x’)=connection

weights, winh=feedback inhibition weight. Saccade

initiation and targeting can be implemented in neural

fields emulating the superior colliculus [116]. Neural

fields of a competitive dynamical neural network may

be adopted to determine the next saccade target through

a winner-take-all strategy [117]. Similarly, visual

attention may be implemented in neural fields to target

salient locations in a visual map [118].

IX. ROBOTIC MANIPULATOR CONTROL

Neural networks have a long history in manipulator

robotics beginning with cerenellar model articulation

controller (CMAC) [119] diversifying into multilayer

perceptrons, Hopfield nets and Boltzmann machines for

kinematics, dynamics, trajectory generation and control

[120,121]. They have been adopted as nonlinear

compensation (of inertia matrix, coriolis/centrifugal and

unmodelled terms on the inverse dynamics) in the

computed torque control law [122] and identification of

parameters and model reference adaptive control [123]

of manipulators. Most commonly, they have been

adopted to compute the inverse kinematic

transformations [124,125] or learn the inverse dynamics

model [126] of manipulators. Neural net control

generally gives smoother performance than traditional

computed torque control with reduced oscillations.

Indeed, neural networks may be regarded as a form of

model reference adaptive control in which the neural net

approximates the nonlinear function [127].

Nevertheless, the neural network approach is superior in

terms of its robustness to noise and unmodelled

nonlinearities than adaptive control approaches as they

incorporate a form of memory [128]. Neural network

approaches can model learning of both arm kinematics

and dynamics by mapping joint torques to cartesian

kinematics [129]. Neural net learning involves the

building and refining of internal motor models as

lookup table representations encoded as neural network

weights of multilayer perceptrons [130]. Recurrent

neural networks such as the Hopfield network have been

applied to kinematic control by minimising the

weighted norm of joint velocity [131]. The

inverse kinematics problem lends itself to feedforward

neural network-based solutions [132] especially for

kinematically redundant manipulators which are ill-

conditioned. Two neural networks may be deployed in

conjunction with each other – an emulator learns the

manipulator dynamics while the controller learns to

control the emulator while both interact through the

actual manipulator [133]. Multiple neural networks can

model multiple finger Jacobians of a multifingered

robot hand for a hybrid position/force controller from

visual feedback in the presence of uncertainties [134].

Neural nets can learn the end effector positions of a

robotic manipulator from visual input from cameras

using the neural gas network [135]. A large number of

target objects were randomly chosen and the

manipulator configuration visually observed in pixel

coordinate. Data pairs of target position errors in pixel

coordinates mapped to the joint motor torque outputs

enabled learning using a Hebbian rule with neural gas

adaptation. A modified topographic Kohonen self-

organising neural network trained by a teacherless

Widrow-Hoff learning rule can learn visuomotor

mappings for a robotic manipulator from binocular

cameras [136]. The self-organising map has been

applied to self-calibration of space-based manipulators

to provide adaptability to the traditional inverse

kinematics approach in response to slow parameter

changes [137]. The radial basis function has also been

applied to space manipulators to approximate to an

optimal controller [138]. Neural networks have been

used for both identification of the plant and control of a

plant [139]. The commonest approach is to employ a

multilayer perceptron emulator to learn the system plant

dynamics and a separate multilayer perceptron

controller to learn to control the emulator [140]. The

emulator is trained to match the input-output

characteristics of the plant. The real plant cannot be

used as the error cannot be backpropagated through it –

hence the emulator. The emulator generates the error

between the emulator and controller to be

backpropagated through the controller to update the

controller weights. Neural networks are suited to

multiple robotic applications including task planning,

path planning and trajectory control [141].

X. CHEMICAL & MANUFACTURING

PROCESSING

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 11 of 17

Most traditional chemical process control systems

are based on conservation of momentum laws and mass

and energy conservation laws for which predictive

control, model-based control and adaptive control. A

continuously stirred tank reactor model of an

exothermic reaction includes product concentration C(t)

and mixture temperature T(t) [142]:

 [17]

where q=process flow rate, V=reactor volume,

qc=coolant flow rate, C(0)=inlet concentration,

T(0)=inlet temperature, Tc=coolant temperature. The six

reaction model parameters may be monitored for

progress of the chemical reaction [143]. Neural

networks learn empirical models of final outputs

correlated with input parameters without knowledge of

complex nonlinear physical and chemical laws. Neural

networks can substitute for specific aspects of inverse

model and predictive control [144], e.g. model

predictive control may utilise a predictive model

implemented as a feedforward neural network trained

using an online Levenberg-Marquardt algorithm

incorporated into the backpropagation algorithm such

that where J(w)=Jacobian matrix,

E(w)=error, η=adaptation parameter [142]. Artificial

neural networks may be applied for entire control of

chemical engineering applications especially multilayer

perceptron, radial basis function and support vector

machine regression for sensor processing, fault

detection, nonlinear control and process identification

[145,146]. Neural networks may implement

feedforward models trained by genetic algorithm for

nonlinear predictive control of a chemical process

yielding superior performance to a standard PI

controller [147]. A feedforward model may be

implemented with a neural network for controlling a

chemical reaction using an inverse neural model

controller yielding a more robust controller than a direct

neural network inverse model [148]. A neural network

nonlinear reference model trained online from

input/output data permits adaptive control of a chemical

process by a second neural network controller [149].

Chemical reaction optimisation neural networks may

also be trained using evolutionary algorithms to

simulate molecular populations and their interactions in

a chemical reaction towards a global minimum potential

energy state (fitness function) [150]. The knowledge-

based artificial neural network (KBANN) exploits

neural networks to refine propositional rules to control a

plant [151]. The neural network is initially trained to

implement a PID controller with tuned Ziegler-Nichols

parameters. Randomised weights are added to the

network which then trained by backpropagation to

improve its control performance yielding faster

learning.

Neural networks may be employed for autonomous

control of general manufacturing tasks [152,153]. The

potential field approach may be adapted for the control

of movement of material by attractors to specific

manufacturing machines [154]. Traditional automated

manufacturing involved subtractive processes and

assembly using expert systems [155] but more recent

approaches include neural network scheduling [156].

An analogue network has been developed for job-shop

scheduling [157] in which the number of neurons is mk

with mk+mk(k-k/n) interconnection weights which

grow linearly with the number of jobs. All

manufacturing machines comprise of tooling that

physically alter the shape of the product using rotating

machinery. All are characterised by vibration for which

turning is typical. Neural network models for process

identification of a self-tuning controller during turning

operations can measure self-excited vibration

measurements by accelerometer as a proxy for surface

finish friction to influence feed rate, tool speed and cut

depth [158]. Neural networks such as LSTM are ideal

for controlling additive manufacturing (AM) processes

due to uncertainties in modelling parameters such as

laser power, scan speed, hatch spacing and layer

thickness (energy density, where P=laser

power, v=scan speed, h=hatch spacing, d=layer

thickness) for selective laser melting [159].

Thermomechanical (finite element) analysis of the AM

process output and/or in-situ measured visual features

(melt pool, pluming and spattering) output from the

CAD model input is required to train the neural network

model which is subsequently converted into an STL file.

The chief challenges in neural network modelling are

small data sets (though generative models such as

autoencoders can synthetically augment data by

generating a Gaussian distribution for sampling), lack of

labelled data, lack of empirical guidelines for neural

network hyperparameter selection and lack of

knowledge of metallurgical quality to parameter

combinations.

XI. CONCLUSIONS

In implementing computational electronics built

from in-situ resources, there are major constraints:

(i) avoidance of the use of solid-state technology as

solid state electronics manufacturing requires enormous

infrastructure and complex processes

(ii) limitation on lunar material resources

(iii) emphasis on multi-use devices, i.e. vacuum tubes.

Our rationale inevitably leads to the adoption of

neural network controllers as our general computational

architecture. We have shown that the neural network is

thus a versatile approach to autonomous control systems

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 12 of 17

encountered in-situ resource utilisation applications –

surveying, mining, chemical processing and

manufacturing tasks – with a special emphasis on

autonomous rover navigation which is required for

mining and transport. The robustness of our resultant

neural network for goal-directed navigation must be

tested more fully. If successful, the neural network

architecture will be constructed in hardware and tested

in reality rather than simulation (subject to the transition

from simulation to reality requiring fine tuning), first in

transistor-based op-amp form then in vacuum tube-

based op-amp form. Thence, 3D printing of the circuitry

can be undertaken.

APPENDIX: TURING MACHINES

Computation involves transforming an input data

string into an output string using a finite set of steps –

this finite set of steps constitutes an algorithm. An

algorithm is thus a finite sequence of well-defined

procedures that transform an input into an output.

Equivalently, an algorithm is computable by a Turing

machine. A Turing machine is a general computational

model based on an automaton – it comprises an

infinitely long tape divided into discrete cells, each cell

containing one input symbol from a finite alphabet.

More formally, the Turing machine is a finite-state

machine comprising a read/write head mounted onto an

infinitely long tape divided into discrete squares. Turing

machine may be codified as a finite state automaton on

the form: TM=(Q,X,A,D,q0, B,F) where Q=finite set of

states, X=input alphabet, A=tape alphabet,

},{: RLAQAQD → =output function,

Qq 0 =initial state,)(XBAB  =blank

symbol, QF  =finite set of final states. The Turing

machine sequentially reads an infinitely long digital

tape of cells. Symbols from a finite alphabet may be

inscribed on the tape which are read in sequence by the

read/write head. The initial tape encodes a set of input

data. The read/write head scans the tape, reading each

symbol and over-writing with an output symbol. It can

move left or right, reading and writing a symbol at each

move. The read/write head incorporates a finite memory

of internal state transitions constituting the specific

program of the Turing machine. The motion of the

read/write head – the behaviour of the Turing machine -

is determined by the symbol inscribed on each cell of

the tape and the internal state of the machine. The

Turing machine’s behaviour is determined by the

current state of the machine, the input symbol being

read on the tape, and a table of instructions (program).

The program determines the output symbol to be

written, the movement direction of the head to read the

next input, and the next machine state. The tape’s

symbol is overwritten with a new output symbol and the

read/write head moves to the next scanning position left

or right according to the Turing machine’s state

transition function. The resulting tape encodes a set of

output data. The unproven Turing-Church thesis asserts

that the mechanical computations of a Turing machine

define an algorithm (program). Different Turing

machines are specified by different state transition

functions. This simple machine implements a

mathematical function that converts its input into an

output – the Turing machine’s mechanical procedure

encapsulates the algorithm concept as a finite sequence

of simple operations. Any specific Turing machine may

be encoded as an input tape so a universal Turing

machine can emulate any specific Turing machine, i.e. a

universal Turing machine can compute any computable

function given the appropriate algorithm:

UTM={Q,{0,1},{0,1,B},D,q0,B,{q’}).

A magnetic tape is one physical instantiation of the

Turing machine tape comprising a polymer tape coated

with a thin magnetic ferrite forming narrow tracks. It

uses an electromagnetic write head to magnetise the

tape to encode binary data. The key to increasing the

data density is shrinking the magnetic grains and the use

of signal processing/servocontrol algorithms for the

write head. Magnetic tape as a data storage medium has

progressed enormously from a density of 225 bits/cm2

in the first IBM tape drive (1952) and has reached 30

Gb/cm2 today. Tape storage, although slow to retrieve,

is highly reliable (error rate ~10-5 that of hard drives).

AKNOWLEDGEMENTS

The author would like to thank his student Liam

Gritters for the Webot modelling.

REFERENCES

[1] Ellery A (2022) “Is electronics fabrication feasible

on the Moon?” in press with Proc ASCE Earth & Space

Conf, Colorado School of Mines, Denver

[2] Taylor G & Martel L (2003) “Lunar prospecting”

Advances in Space Research 31 (11), 2403-2412

[3] Ellery A (2020) “Sustainable in-situ resource

utilisation on the Moon” Planetary & Space Science

184, 104870

[4] Kock C (1997) “Computation and the single neuron”

Nature 385, 207-210

[5] Hansen L & Salamon P (1990) “Neural network

ensembles” IEEE Trans Pattern Analysis & Machine

Intelligence 12 (10), 993-1001

[6] Jacobs R, Jordan M, Nowlan S, Hinton G (1991)

“Adaptive mixtures of local experts” Neural

Computation 3, 79-87

[7] Jordan M & Jacobs R (1993) “Hierarchical mixtures

of experts and the EM algorithm” MIT AI Memo No

1440

[8] Furber S, Galluppi F, Temple S, Plana L (2014)

“Spinnaker project” Proc IEEE 102(5), 652-665

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 13 of 17

[9] Rhodes O (2020) “Brain-inspired computing

becomes complete” Nature 586 (Oct), 364-366

[10] Bouvier M, Valentian A, Mesquida T, Rummens F,

Reyboz M, Vianello E, Beigne E (2019) “Spiking neural

networks hardware implementations and challenges: a

survey” ACM J Emerging Technologies in Computing

Systems 15 (2), article no 22

[11] Feng J (2001) “Is the integrate-and-fire model good

enough? – a review” Neural Networks 14, 955-975

[12] Feng J & Brown D (2000) “Integrate-and-fire

models with nonlinear leakage” Bulletin Mathematical

Biology 62, 467-481

[13] Plesser H & Geisel T (2001) “Signal processing by

means of noise” Neurocomputing 38-40, 307-312

[14] Joubert A, Belhadj B, Temam O, Heliot R (2012)

“Hardware spiking neuron design: analogue or digital?”

Proc IEEE World Congress on Computational

Intelligence, Brisbane, Australia

[15] Izhikevich E (2000) “Simple model of spiking

neurons” IEEE Trans Neural Networks 14 (6), 1569-

1572

[16] Aitkenhead M, McDonald A (2002) “Neural

network-based obstacle navigation animat in a virtual

environment” Engineering Applications of Artificial

Intelligence 15, 229-239

[17] Sapounaki M, Kakarountas A (2019) “High

performance neuron for artificial neural network based

on Izhikevich model” Proc 29th Int Symp on Power &

Timing Modelling, Optimisation & Simulation, Rhodes,

Greece, 29-34

[18] Indiveri G, Linares-Barranco B, Hamilton T, van

Schaik A, Etienne-Cummings R, Delbruck T, Liu S-C.

Dudek P, Hafliger P, Renaud S, Schemmel J,

Cauwenberghs G, Arthur J, Hynna K, Folowosele F,

Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y,

Boahen K (2011) “Neuromorphic silicon neuron

circuits” Fronters in Neuroscience 5, article 73

[19] Siegelmann H (1999) “Stochastic analog networks

and computational complexity” J Complexity 15, 451-

475

[20] Langlois N, Miche P, Benshair A (2000)

“Analogue circuits of a learning spiking neuron model”

Proc IEEE Int Joint Conf Neural Networks 4, 485-489

[21] Bradley W, Mears R (1996) “Backpropagation

learning using positive weights for multilayer

optoelectronic neural networks” Proc 9th Annual

Meeting IEEE Lasers & Electro-Optics Society, 294-

295

[22] Xu R, Lv P, Xu F, Shi Y (2021) “Survey of

approaches for implementing optical neural networks”

Optics & Laser Technology 136, 106787

[23] Bogaerts W, Perez D, Capmany J, Miller D, Poon

J, Englund D, Morichetti F, Melloni A (2020)

“Programmable photonic circuits” Nature 586 (Oct),

207-216

[24] Wertstein G, Ozcan A, Gigan S, Fan S, Englund D,

Soljacic M, Denz C, Miller D, Psaltis D (2020)

“Inference in artificial intelligence with deep optics and

photonics” Nature 588 (Dec), 39-47

[25] Ashtiani F, Geers A. Aflarouni F (2022) “On-chip

photonic deep neural network for image classification”

Nature 606 (Jun), 501-506

[26] Hughes T, Minkov M, Shi Y, Fan S (2018)

“Training of photonic neural networks through in situ

backpropagation and gradient measurement” Optica 5

(7), 864-871

[27] Neftci E (2018) “Data and power efficient

intelligence with neuromorphic learning machines”

iScience 5 (Jul), 52-68

[28] Burr G (2019) “Role for optics in AI hardware”

Nature 569 (May), 199-200

[29] Feldmann J, Youngblood N, Wright C, Bhaskaran

H, Pernicke W (2019) “All-optical spiking

neurosynaptic networks with self-learning capabilities”

Nature 569 (May), 208-214

[30] Mennel L, Symonowicz J, Wachter S, Polyushkin

D, Molina-Mendoza A, Mueller T (2020) “Ultrafast

machine vision with 2D material neural network image

sensors” Nature 579 (Mar), 62-66

[31] Lin X, Rivenson Y, Yardimci N, Veli M, Jarrahi

M, Ozcan A (2018) “All optical machine learning using

diffractive deep neural networks” Science 361, 1004-

1008

[32] Nashanovich D (2018) “Electronics and photonics

combined” Nature 536 (Apr), 316-317

[33] Misra J & Saha I (2010) “Artificial neural networks

in hardware: a survey of two decades of progress”

Neurocomputing 74, 239-250

[34] Woodburn R, Reekie M, Murray A (1994) “Pulse

stream circuits for on-chip learning in analogue VLSI

neural networks” Proc IEEE Int Symp Circuits &

Systems, 103-106

[35] Soda K, Pack D (2004) “Simple hardware

implementation of neural networks for instruction in

analogue electronics” Proc American Society for

Engineering Education Annual Conf & Exposition,

paper 1096

[36] Ruckert U (2002) “ULSI architectures for artificial

neural networks” IEEE Micro (May/Jun), 10-18

[37] Omondi A, Rajapakse J (eds) (2006) “FPGA

Implementations of Neural Networks” Springer

Publishers

[38] Krips M, Lammert T, Kummert A (n.d.) (2002)

“FPGA implementation of a neural network for a real-

time hand tracking system” Proc 1st IEEE Int Workshop

Electronic Design, Test and Applications

[39] Zhu J, Sutton P (2003) “FPGA implementations of

neural networks – a survey of a decade of progress”

Lecture Notes in Computer Science 2778, 1062-1066

[40] Savich A, Moussa M, Areibi S (2007) “Impact of

arithmetic representation on implementing MLP-BP on

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 14 of 17

FPGAs: a study” IEEE Trans Neural Networks 18(1),

240-252

[41] Hao V (2017) “General neural network hardware

architecture on FPGA” arXiv:1711.05850 [cs.CV]

[42] Dinu A, Cirstea M, Cirstea S (2009) “Direct neural

networks hardware implementation algorithm” IEEE

Trans Industrial Electronics 57(5), 1845-1848

[43] Kim D (2000) “Implementation of fuzzy logic

controller on the reconfigurable system” IEEE Trans

Industrial Electronics 47(3), 703-715

[44] Pei J, Deng L, Song S, Zhao M, Zhang Y, Wu S,

Wang G, Zou Z, Wu Z, He W, Chen F, Seng N, Wu S,

Wang Y, Wu Y, Yang Z, Ma C, Li G, Han W, Li H. Wu

H, Zhao R, Xie Y, Shi L (2019) “Towards artificial

general intelligence with hybrid Tianjic chip

architecture” Nature 572 (Aug), 106-111

[45] Siegelmann H & Sontag E (1991) “Turing

computability with neural nets” Applied Mathematical

Letters 4, 77-80

[46] Siegelmann H & Sontag E (1993) “Analogue

computation via neural networks” Proc 2nd Israel Symp

on Theory & Computing Systems, 98-107

[47] Balcazar J, Gavalda R, Siegelmann H (1997)

“Computational power of neural networks: a

characterization in terms of Kolmogorov complexity”

IEEE Trans Information Theory 43 (4), 1175-1183

[48] Siegelmann H (1995) “Computation beyond the

Turing limit” Science 268, 545-458

[49] Rado T (1962) “On non-computable functions”

Bell Systems Technical J 41, 877-884

[50] Van Leeuwen J & Wiedermann J (2000) “Turing

machine paradigm in contemporary computing” in

Mathematics Unlimited – 2001 & Beyond, Lecture

Notes in Computer Science, 1139-1159

[51] Wegner P, Eberbach E & Burgin M (2012)

“Computational completeness of interaction machines

and Turing machines” in Turing-100 (ed. Voronkov A),

EPiC series, EasyChair Publishing, 10, 405-414

[52] Appeltant L, Soriano M, van der Sande G,

Danckaert J, Massar S, Dambre J, Schrauwen B,

Mirasso C, Fischer I (2011) “Information processing

using a single dynamical node as complex system”

Nature Communications 2, 468

[53] Cabessa J (2014) “Interactive evolving recurrent

neural networks are super-Turing” Lecture Notes in

Computer Science 8681 (ed. Wermter S et al), 57-64

[54] Freitas N, Esposito M (2022) “Maxwell demon that

can work at macroroscopic scales” arXiv:2204.09466v1

[cond-mat.stat-mech] 20 Apr 2022

[55] Brooks R (1991) “Intelligence without

representation” Artificial Intelligence 47 (1-3), 139-159

[56] Ellery A (2005) “Robot-environment interaction –

the basis for mobility in planetary micro-rovers”

Robotics & Autonomous Systems 51 (1), 29-39

[57] Parberry I (1994) Circuit Complexity and Neural

Networks, MIT Press Foundations of Computing,

Cambridge, MA

[58] Yamashita Y, Nakamura Y (2007) “Neuron circuit

model with smooth nonlinear output function” Proc Int

Symp Nonlinear Theory & its Applications, Vancouver,

pp. 11-14

[59] Hasslacher B & Tilden M (1995) “Living

machines” Robotics & Autonomous Systems 15, 143-

169

[60] Sahin E & Franks N (2002) “Measurement of

space: from ants to robots” EPSRC/BBRC Proc Int

Workshop Biologically Inspired Robotics: Legacy of W

Grey Walter, Bristol, 241-247

[61] Cross M, Ellery A, Qadi A (2013) “Estimating

terrain parameters for a rigid wheeled rover using neural

networks” J Terramechanics 50 (3), 165-174

[62] Gharbi R & Mansoori G (2005) “Introduction to

artificial intelligence applications in petroleum

exploration and production” J Petroleum Science &

Engineering 49, 93-96

[63] Mohaghegh S (2005) “Recent developments in the

application of artificial intelligence in petroleum

engineering” J Petroleum Technology 57 (4), SPE-

89033

[64] Ellery A (2014) “Artificial intelligence through

symbolic connectionism – a biomimetic

rapprochement” in Biomimetic Technologies Vol II:

Actuators, Robotics & Integrated Systems (ed. Ngo D),

Woodhead Publishing

[65] Srinivasan M (1992) “How bees exploit optic flow:

behavioural experiments and neural network models”

Philosophical Transactions Royal Society B337, 253-

258

[66] Mallot H, Bulthoff H, Little J, Bohrer S (1991)

“Inverse perspective mapping simplifies optical flow

computation and obstacle detection” Biological

Cybernetics 64, 177-185

[67] Schmidhuber J (2015) “Deep learning in neural

networks: an overview” Neural Networks 61, 85-117

[68] Braitenburg V (1984) “Vehicles: Experiments in

Synthetic Psychology” MIT Press

[69] Kon M & Plaskota L (2000) “Information

complexity of neural networks” Neural Networks 13 (3),

365-375

[70] Huang S-C & Huang Y-F (1991) “Bounds on the

number of hidden neurons in multilayer perceptrons”

IEEE Trans Neural Networks 2 (1), 47-55

[71] Andonie R (2012) “Psychological limits of neural

computation” in Dealing with Complexity: A Neural

Network Approach, Springer Publishers, 252-263

[72] La Rocca M & Perna C (2014) “Designing neural

networks for modelling biological data: a statistical

perspective” Mathematical Biosciences & Engineering

11 (2), 331-342

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 15 of 17

[73] Golombek M and Rapp D (1997) “Size-frequency

distributions of rocks on Mars and Earth analogue sites:

implications for future landed missions,” J Geophysical

Research 102 (E2), 4117-4129

[74] Ellery A (2022) “Bootstrapping neural electronics

from lunar resources for in-situ artificial intelligence

applications” submitted to British Computer Society

Special Group on Artificial intelligence Conf,

Cambridge, UK

[75] Sasikala K, Ganesh E, Kumar P (2019) “Design of

adaptive analogue self-tuning filters” J Architecture &

Technology 11 (6), 74-81

[76] Bai Y-T, Wang X-Y, Jin X-B, Zhao Z-Y, Zhao B-

H (2020) “Neuron-based Kalman filter with nonlinear

autoregressive model” Sensors 20, paper no 299

[77] Revach G, Shlezinger N, Ni X, Escoriza L, van

Sloun R, Eldar Y (2022) “KalmanNet: neural network

aided Kalman filtering for partially known dynamics”

IEEE Trans Signal Processing 70 (Mar), 1532-1547

[78] Ruck D, Rogers S, Kabrisky M, Oxley M, Suter B

(1990) “Multilayer perceptron as an approximation to a

Bayes optimal discriminant function” IEEE Trans

Neural Networks 1 (4), 296-298

[79] Ruck D, Rogers S, Kabrisky M, Maybeck P, Oxley

M (1992) “Comparative analysis of backpropagation

and the extended Kalman filter for training multilayer

perceptrons” IEEE Trans Pattern Analysis & Machine

Intelligence 14 (6), 686-691

[80] Millidge B, Tschankz A, Seth A, Buckley C (2021)

“Neural Kalman filtering” arXiv:2102.10021c2 [cs.NE]

29 Apr 2021

[81] Perez-Ortiz A, Gere F, Eck D, Schmidhuber J

(2003) “Kalman filters improve LSTM network

performance in problems unsolvable by traditional

recurrent nets” Neural Networks 16 (2), 241-250

[82] Shareef A, Zhu Y, Musavi M, Shen B (2007)

“Comparison of MLP neural networks and Kalman

filter for localisation in wireless sensor networks” Proc

19th IASTED Int Conf Parallel & Distributed

Computing & Systems, 323-330

[83] St-Pierre M, Gingras D (2004) “Neural network-

based data fusion for vehicle positioning in land

navigation system” SAE Technical paper 2004-01-0752

[84] Wilson R, Finkel L (2009) “Neural implementation

of the Kalman filter” Proc 22nd Int Conf on Neural

Information Processing Systems, Vancouver, 2062-2070

[85] Saeedi S, Paull L, Trentini M, Li H (2011) “Neural

network-based multiple robot simultaneous localization

and mapping” IEEE Trans Neural Networks 22(12),

2376-2387

[86] Martinelli G & Perfetti R (1991) “Circuit theoretic

approach to the backpropagation learning algorithm”

IEEE Int Symp Circuits & Systems 3, 1481-1484

[87] Larson S & Ellery A (2015) “Trainable analogue

neural network with application to lunar in-situ resource

utilisation” Proc Int Astronautics Federation Congress,

Jerusalem, IAC-15-D3.3.6

[88] Prasad V, Ellery A (2020) “Analogue neural

network architecture for in-situ resourced computing

hardware on the Moon” Proc Int Symp Artificial

Intelligence, Robotics and Automation in Space

(iSAIRAS), paper no 5005

[89] Ellery A (2022) “Bootstrapping neural electronics

from lunar resources for in-situ artificial intelligence

applications” submitted to British Computer Society

Special Group on Artificial intelligence Conf,

Cambridge, UK

[90] Trullier O, Meyer J-A (1997) “Biomimetic

navigation models and strategies in animats” AI

Communications 10 (2), 79-92

[91] Scholkopf B, Mallot H (1995) “View-based

cognitive mapping and path planning” Adaptive

Behaviour 3 (3), 311-348

[92] Moller R, Maris M, Lambrinos D (1999) “Neural

model of landmark navigation in insects”

Neurocomputing 26 (2), 801-808

[93] Gould J (1990) “Honeybee cognition” Cognition

37, 83-103

[94] Kim S, Hermundstad A, Romani S, Abbott L,

Jayaraman V (2018) “Generation of stable heading

representations in diverse visual scenes” Nature 576

(Dec), 126-131

[95] Payne H, Lynch G, Aronov D (2021) “Neural

representations of space in the hippocampus of a food-

caching bird” Science 373 (Jul), 343-347

[96] Milford M & Wyeth G (2009) “Persistent

navigation and mapping using a biologically inspired

SLAM system” Int J Robotics Research 29 (9), 1131-

1153

[97] Wyeth G & Milford M (2009) “Spatial cognition

for robots” IEEE Trans Robotics & Automation

Magazine (Sep), 24-32

[98] Milford M, Wyeth G, Prasser D (2004)

“RatSLAM: a hippocampal model for simultaneous

localisation and mapping” Proc IEEE Int Conf Robotics

& Automation, 403-408

[99] Wood E, Dudchenko P (2021) “Navigating space

in the mammalian brain” Science 372 (May), 913-914

[100] Ginosar G, Aljadeff J, Burak Y, Sompolinsky H,

Las L, Ulanovsky N (2021) “Locally ordered

representation of 3D space in the entorhinal cortex”

Nature 596 (Aug), 404-409

[101] Milford M, Wyeth G (2010) “Hybrid robot

control and SLAM for persistent navigation and

mapping” Robotics & Autonomous Systems 58, 1096-

1104

[102] Milford M, Schulz R, Prasser D, Wyeth J, Wiles J

(2007) “Learning spatial concepts from RatSLAM

representations” Robotics & Autonomous Systems 55,

403-410

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 16 of 17

[103] Franz M, Mallot H (2000) “Biomimetic robot

navigation” Robotics & Autonomous Systems 30, 133-

153

[104] Gaussier P, Joulain C, Banquet J, Lepretre S,

Revel A (2000) “Visual homing problem: an example of

robotics/biology cross fertilisation” Robotics &

Autonomous Systems 30, 155-180

[105] Schmajuk B, Blair H (1993) “Place learning and

the dynamics of spatial navigation: a neural network

approach” Adaptive Behaviour 1 (5), 353-385

[106] Butz M, Shirinov E, Reif K (2010) “Self-

organising sensorimotor maps plus internal motivations

yield animal-like behaviour” Adaptive Behaviour 18 (3-

4), 315-337

[107] Caluwaerts K, Staffa M, N’Guyen S, Grand C,

Dolle L, Facre-Felix A, Girard B, Khamassi M (2012)

“Biologically inspired meta-control navigation system

for the Psikharpax rat robot” Bioinspiration &

Biomimetics 7, 025009

[108] Cuperlier N, Quoy M, Gaussier P (2007)

“Neurobiologically inspired mobile robot navigation

and planning” Frontiers in Neurorobotics 1 (3), 1-15

[109] Millan J (1995) “Reinforcement learning of goal-

directed obstacle-avoiding reaction strategies in an

autonomous mobile robot” Robotics & Autonomous

Systems 15, 275-299

[110] Hoydal O, Skytoen R, Andersson O, Moser M-B,

Moser E (2019) “Object-vector coding in the medial

entorhinal cortex” Nature 568 (Apr), 400-404

[111] Hadsell R, Erkin A, Sermanet P, Scoffier M,

Muller U, LeCun Y (2008) “Deep belief net learning in

a long-range vision system for autonomous off-road

driving” Proc IEEE/RSJ Int Conf Intelligent Robots &

Systems, paper no 4651217

[112] Schoner G, Dose M, Engels C (1995) “Dynamics

of behaviour: theory and applications for autonomous

robot architectures” Robotics & Autonomous Systems

16, 213-245

[113] Quoy M, Moga S, Gaussier P (2003) “Dynamical

neural networks for planning and low-level robot

control” IEEE Trans Systems Man & Cybernetics A:

Systems & Humans 33 (4), 523-532

[114] Schoner G, Dose M (1992) “Dynamical systems

approach to task-level system integration used to plan

and control autonomous vehicle motion” Robotics &

Autonomous Systems 10, 253-267

[115] Erlhagen W & Bicho E (2006) “Dynamic neural

field approach to cognitive robotics” J Neural

Engineering 3, R36-R54

[116] Wilimzig C, Schneider S, Schoner G (2006)

“Time course of saccadic decision-making: dynamic

field theory” Neural Networks 19, 1059-1074

[117] Shibata T, Vijayakumar S, Conradt J, Schaal S

(2001) “Biomimetic oculomotor control” Adaptive

Behaviour 9 (3/4), 189-207

[118] Vitay J, Rougier N (2005) “Using neural

dynamics to switch attention” IEEE Int Conf Neural

Networks, paper no 1556384

[119] Albus J (1975) “New approach to manipulator

control: the cerebellar model articulation controller

(CMAC)” Trans AMS J Dynamic Systems,

Measurement & Control 97, 220-233

[120] Horne B, Jamshidi M, Vaduee N (1990) “Neural

networks in robotics: a survey” J Intelligent & Robotic

Systems 3, 51-66

[121] Kung S-Y, Hwang J-N (1989) “Neural network

architectures for robotic applications” IEEE Trans

Robotics & Automation 5 (3), 641-657

[122] Ozaki T, Suzuki T, Furuhashi T, Okuma S (1991)

“Trajectory control of robotic manipulators using neural

networks” IEEE Trans Industrial Electronics 38 (3),

195-202

[123] Narendra K, Parthasarathy K (1990)

“Identification and control of dynamical systems using

neural networks” IEEE Trans Neural Networks 1 (1), 4-

27

[124] Rao D (1995) “Neural networks in robotics and

control: some perspectives” Proc IEEE/IAS Int Conf

Industrial Automation & Control, Hyderabad, India,

451-456

[125] Alsina P & Gehlot N (1996) “Robot inverse

kinematics: a modular neural network approach” Proc

IEEE Circuits & Systems, 631-634

[126] Miller T, Glanz F, Kraft G (1987) “Application of

a general learning algorithm to the control of robotic

manipulators” Int J Robotics Research 6 (2), 84-97

[127] Patino H & Liu D (2000) “Neural network-based

model reference adaptive control system” IEEE Trans

Systems Man & Cybernetics B: Cybernetics 30 (1), 198-

204

[128] Kraft L & Campagna D (1990) “Comparison

between CMAC naural network control and two

traditional adaptive control systems” IEEE Control

Systems Magazine (April), 36-43

[129] Atkeson C (1989) “Learning arm kinematics and

dynamics” Annual Reviews Neuroscience 12, 157-183

[130] Morris A & Mansor A (1997) “Finding the

inverse kinematics of manipulator arm using artificial

neural network with lookup table” Robotica 15, 617-625

[131] Wang J, Hu Q, Jiang D (1999) “Lagrangian

network for kinematic control of redundant robot

manipulators” IEEE Trans Neural Networks 10 (5),

1123-1131

[132] Dermatas E, Nearchou A, Aspragathos N (1996)

“Error-back-propagation solution to the inverse

kinematic problem of redundant manipulators” Robotics

& CIM 12 (4), 303-310

[133] Nguyen D, Widrow B (1990) “Neural networks

for self-learning control systems” IEEE Control Systems

Magazine (Apr), 18-23

73rd International Astronautical Congress, Paris, France. Copyright ©2022 by the International Astronautical Federation. All rights reserved.

IAC-22-D4.5.x68581 Page 17 of 17

[134] Zhao Y, Cheah C (2009) “Neural network control

of multifingered robot hands using visual feedback”

IEEE Trans Neural Networks 20 (5), 758-767

[135] Martinetz T & Schulten K (1993) “Neural

network with Hebbian-like adaptation rules learning

visuomotor coordination of a PUMA robot” Proc IEEE

Int Conf Neural Networks 2, 820-822

[136] Martinetz T, Ritter H, Schulten K (1990) “Three-

dimensional neural net for learning visuomotor

coordination of a robotic arm” IEEE Trans Neural

Networks 1 (1), 131-136

[137] De Angulo V & Torras C (1997) “Self-calibration

of a space robot” IEEE Trans Neural Networks 8 (4),

951-963

[138] Gorinevsky A, Kapitanovsky A, Goldenberg A

(1996) “Radial basis function network architecture for

nonholonomic motion planning and control of free-

flying manipulators” IEEE Trans Robotics &

Automation 12 (3), 491-496

[139] Narendra K & Parthasarathy K (1990)

“Identification and control of dynamical systems using

neural networks” IEEE Trans Neural Networks 1 (1), 4-

27

[140] Nguyen D & Widrow B (1990) “Neural networks

for self-learning control systems” IEEE Control Systems

Magazine (Apr), 18-23

[141] Kung A-Y & Hwang J-N (1989) “Neural network

architectures for robotic applications” IEEE Trans

Robotics & Automation 5 (5), 641-657

[142] Yu H, Zhang Z (2006) “Predictive control based

on neural networks of the chemical process” Proc 25th

Chinese Control Conf, Harbin, 1143-1147

[143] Gasteiger J, Zupan J (1993) “Neural networks in

chemistry” Angewandte Chemie International Edition in

English 32, 503-527

[144] Hussain A (1999) “Review of the applications of

neural networks in chemical process control –

simulation and online implementation” Artificial

Intelligence in Engineering 13, 55-68

[145] Himmelbrau D (2000) “Applications of artificial

neural networks in chemical engineering” Korean J

Chemical Engineering 17 (4), 373-392

[146] Pirdashti M, Curteanu S, Kamangar H, Hassim M,

Khatami A (2013) “Artificial neural networks:

applications in chemical engineering” Reviews in

Chemical Engineering 29 (4), 205-239

[147] Draeger A, Engell S, Ranke H (1995) “Model

predictive control using neural networks” IEEE Control

Systems (Oct), 61-66

[148] Hussain A, Kittisupakorn P, Daosud W (2001)

“Implementation of neural network-based inverse model

control strategies on an exothermic reactor” ScienceAsia

27, 41-50

[149] Douratsos I, Gomm B (2006) “Neural network

based model reference adaptive control for processes

with time delay” Int J Information & Systems Sciences 3

(1), 161-179

[150] Yu J, Lam A, Li V (2015) “Evolutionary artificial

neural network based on chemical reaction

optimisation” arXiv: 1502.00193v1 [cs.NE] 1 Feb 2015

[151] Scott G, Shavlik J, Ray H (1992) “Refining PID

controllers using neural networks” Neural Computation

4, 746-757

[152] Huang S & Zhang H-C (1994) “Artificial neural

networks in manufacturing: concepts, applications and

perspectives” IEEE Trans Components, Packaging &

Manufacturing Technology – Part A 17 (2), 212-228

[153] Abdelhameed M & Tolbah F (2002) “Recurrent

neural network-based sequential controller for

manufacturing automated systems” Mechatronics 12,

617-633

[154] Ueda K, Hatono I, Fujii N, Vaario J (2000)

“Reinforcement learning approaches to biological

manufacturing systems” CIRP Annals – Manufacturing

Technology 49 (1), 343-346

[155] Gupta S, Regli W, Das D, Nau D (1997)

“Automated manufacturability analysis: a survey”

Research in Engineering & Design 9, 168-190

[156] Arzi Y, Iaroslavitz L (1999) “Neural network-

based adaptive production control system for a flexible

manufacturing cell under a random environment” IIE

Trans 31, 217-230

[157] Zhou D, Cherkassky V, Baldwin T, Olson D

(1991) “Neural network approach to job-shop

scheduling” IEEE Trans Neural Networks 2 (1), 175-

179

[158] Kazeem I, Zangana N (2007) “Neural network

based real time controller for turning process” Jordan J

Mechanical & Industrial Engineering 1 (1), 43-55

[159] Qi X, Chen G, Li Y, Cheng X, Li C (2019)

“Applying neural network-based machine learning to

additive manufacturing: current applications, challenges

and future perspectives” Engineering 5, 721-729

