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Abstract 

A technique based on the employment of a suite of onboard manipulators has been used to automatically adjust the 
configuration of free-flying telescopes, in order to maintain the constellation as a virtual optical bench. The goal was 
to simulate a sufficiently stable and accurate platforms for interferometric imaging. A mapping algorithm has been 
developed demonstrating the relationship between the robotic manipulators’ configuration such that joint-level 
trajectories are deduced to move or re-position the robotic arm, resulting in a successful approach to accurately 
control the relative spacing between the interferometric platforms. Each interferometric platform represents a 
spacecraft bus mount to which one or more manipulators are mounted. No fuel is expended except for the initial 
configuration maneuvers. The imaging resolution of Proxima Centauri b was assessed and the types of features that 
could be detected. 
Keywords: extrasolar planet, interferometric, robotic manipulator, resolution, constellation, telescope. 
 

 

1. Introduction 

Direct imaging of extrasolar planets is the holy grail of 
extrasolar planet exploration. Although current 
astronomical techniques are improving in leaps and 
bounds, systematic direct imaging of extrasolar planets, 
particularly terrestrial-type planets, has not yet been 
possible. Previous proposals such as the European 
Darwin interferometer faltered on the lack of 
technological maturity at the time. A technique is hereby 
introduced that permits the control of relative position of 
a Darwin-type constellation to submicron/micron 
accuracies. With submicron relative positioning 
accuracy, interferometric methods offer extremely high-
resolution imaging. With the implementation of near-
infrared interferometric constellations, free-flying 
telescopes can combine into a ’virtual telescope’ with a 
much larger diameter represented by the utmost-
separated apertures.  The idea introduced here is to use 
the robotic manipulator’s movement to control the base 
reactions and translational motion at the spacecraft 
platform. The path and motion of the robotic arm has 
been mapped to dictate the coupling reaction effect at the 
spacecraft platform [1]. The benefit of this is that, for 
such relative fine positioning movement, no fuel or 
traditional ion engine technology is utilized or required 
in space. This approach is explored here in the study of 
interferometric imaging of terrestrial extrasolar planets, 
using a constellation of space robots (telescopes) acting 
in formation flying as stable and accurate optical bench. 
The aim is to control the position of the space telescopes 

such that their center of mass remains invariant relative 
to one another, in the event of perturbation and 
disturbance. 

 

2. Astronomical Optics 
 

In classical (physical) optics, light is propagated as a 
wave. The speed of light wave in air is given as 
3.0 × 10଼ m/s approximately. The wavelength of visible 
light waves varies between 400 nm and 700 nm, but the 
term “light” is often used for near-infrared as well 
(wavelength above 700 nm to 1 mm). The wave model 
can be used to infer how an optical system will behave 
without requiring an explanation of what is transmitting 
in the medium. 
For different light sources, there are factors that limit the 
ability of an optical aperture (or detector) to optically 
resolve an image. One of such is the diffraction effects. 
In general, light that is passing through an aperture will 
experience diffraction. According to diffraction-limited 
optics, the best images that can be created will appear as 
a central spot with surrounding bright rings in a pattern 
known as the Airy pattern, and the central bright lobe 
referred to as the Airy disk. The size of the airy disk is 

given by 𝜃 = 1.22
ఒ

஽
, where 𝜃 is the angular resolution, 𝜆 

is the wavelength of the light, and D is the diameter of 
the lens aperture. In physical optics, if the angular 
separation of two points is significantly less than the Airy 
disk angular radius, then the two points cannot be 
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resolved in the image. Going by the Rayleigh criterion, 
it is stipulated that two points whose angular separation 
is equal to the Airy disk radius measured to first null (the 
first place where no light is seen) can be taken as fully 
resolved. With this, it can be deduced that the greater the 
diameter of the lens or its aperture, the finer the 
resolution. This brings us to the importance of 
interferometry, and why we have adopted interferometric 
platforms in this study. Interferometry, with its ability to 
mimic extremely large baseline apertures, allows for 
greater lens diameter, and hence offers the possibility for 
much greater angular resolution. For astronomical 
imaging, the atmosphere prevents optimal resolution 
from being achieved in the visible (light) spectrum due 
to scattering and dispersion. Hence, the infrared 
spectrum was adopted for this study to reduce disruption 
of images and achieve results that approach the 
diffraction limit. Conversely, the infrared offered us a 
much greater wavelength to achieve a required angular 
resolution up to 1 milliarcseconds needed to resolve the 
Proxima Centauri, for instance, using an aperture of 250 
m diameter in a single pixel. 
In physical optics, the process involved in setting 
tolerances begins with setting of the minimum level of 
acceptable image quality. This is usually expressed as the 
desired level of contrast at a specific spatial frequency as 
expressed by the modulation transfer function (MTF). 
The modulation transfer function is one of the main 
criteria for judging the image quality of an imaging 
system. Together with the well-known optical transfer 
function, the MTF can be regarded as an optical bench 
measurement used to evaluate the performance of a lens, 
or a lens system. Hence, the MTF is regarded as an 
objective basis reflecting the comprehensive 
performance of an imaging interferometer. In this study 
as it applies to free-formation flying of telescopes 
serving as interferometric platforms, the accuracy and 
precision of the separation distance between the 
optical/interferometric bench is a major factor in 
actualizing MTF and image quality; much like the case 
of keeping a fixed focal length, and precise diameter of 
the lens (aperture) to a submicron accuracy, so as to 
achieve the best modulation transfer function. 
Modulation is a ratio of image contrast to object contrast. 
Ideally, it would be one, or 100%. Similar studies have 
been carried out (or attempted) in the past. One is the 
suspended European Space Agency (ESA) Darwin 
mission which would have involved a constellation of 
four to nine spacecraft designed to directly detect Earth-
like planets orbiting nearby stars and search for evidence 
of life on these planets. The proposed design envisaged 
three free-flying space telescopes, each three to four 
metres in diameter, flying in formation as an 
astronomical interferometer. A fourth spacecraft would 
have contained the beam combiner, spectrometers, and 

cameras for the interferometer array. Another similar 
mission to Darwin was the NASA Terrestrial Planet 
Finder (TPF) which was a proposed project to construct 
a system of space telescopes for detecting extrasolar 
terrestrial planets. TPF was postponed several times and 
indefinitely suspended in 2011 by the US Senate due to 
spending limit and lack of fund. This paper has shown 
that this concept can be brought back (revived) in a more 
achievable and cost-effective approach. Similar to TPF, 
the approach proposed in this study involved infrared 
astronomical interferometer with multiple (4 or 5) small 
telescopes on separated spacecraft floating in precision 
formation simulating a much larger, very powerful 
telescope. It has been shown that robotic manipulators on 
board the telescopes can be used to maintain precision 
formation, which is the key to achieving high resolution 
image quality. 
 
 
3. Constellation Theory 

 
The main approach adopted in this study is based on a 
mission that would involve a constellation of five 
spacecraft (telescopes) along with another separate 
spacecraft at the centre acting as the beam combiner and 
spectrometer. This constellation is similar in approach to 
ESA’s Darwin and NASA’s TPF proposed to directly 
detect Earth-like planets orbiting nearby stars and search 
for evidence of life on these planets – using the method 
of astronomical interferometer. Astronomical 
interferometer is an array of separate telescopes or mirror 
segments that work together as a single telescope to 
provide higher resolution images of astronomical objects 
such as stars and exoplanets by means of interferometry. 
The advantage of this technique is that it can 
theoretically produce images with the angular resolution 
of a huge telescope with an aperture equal to the 
separation between the component telescopes. The main 
drawback is that it does not collect as much light as the 
singular instrument’s mirror. Thus, it is mainly useful for 
fine resolution of more luminous astronomical objects, 
like binary stars and triple star systems such as Beta 
Centauri, Alpha Centauri A-B and stars in the southern 
constellation of Centaurus. Another drawback is that the 
maximum angular size of a detectable emission source is 
limited by the minimum gap between detectors in the 
collector array [2]. 
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Fig. 1. Proxima Centauri location in comparison to 
Earth/Sun [3]. 
 
Although Proxima Centauri (Alpha Centauri C) has a 
very low average luminosity, Proxima is a flare star that 
undergoes random dramatic increases in brightness 
because of magnetic activity [4]. The star’s magnetic 
field is created by convection throughout the stellar 
body, and the resulting flare activity generates a total X-
ray emission similar to that produced by the Sun. At the 
shorter wavelengths used in infrared astronomy and 
optical astronomy, it is more difficult to combine the 
light from separate telescopes, because the light must be 
kept coherent within a fraction of a wavelength over long 
optical paths, requiring very precise optics. Robotic 
manipulators can be explored to maintain this precision 
as required between the separated telescopes up to 
submicron accuracy. Once precision and accuracy can be 
guaranteed (as would be necessary during perturbation), 
then astronomical interferometers can produce higher 
resolution astronomical images than any other type of 
telescope. The approximate angular diameter 
(resolution) of any planet is given by 𝛿 = 2 𝑎𝑟𝑐𝑡𝑎𝑛(𝑑/
2𝐷), where 𝑑 is the diameter of the planet, and 𝐷 is the 
distance of the imaging constellation to the exoplanet. 
For Proxima Centuari, we will assume the constellation 
is just at Low-Earth orbit, simply using the approximate 
distance to the Sun (since the distance between low-Earth 
and the sun is quite insignificant compared to the 
Proxima distance to the Sun). Therefore, 𝐷, will be taken 
as approximately 4.2 light years (41.3 × 10ଵଶ Km); 
diameter (𝑑) of Proxima is 214,550 Km. Hence, 
 

𝛿 = 2 𝑎𝑟𝑐𝑡𝑎𝑛 ൬
214,550

2 × (41.3 × 10ଵଶ)
൰                     

𝛿 = 2.98 × 10ି଻∘

= 0.001 arcseconds (1 milliarcseconds)

 

 
As discussed in Section 2, image resolutions of a 
fractional milliarcseconds can been achieved at infrared 

wavelengths. Using the angular resolution (𝜃) formula of 
diffraction limit (Airy disk), 

𝜃 = 1.22 ൬
𝜆

𝐷
൰,                                                                  (1)

Using an infrared wavelength of about 1065 nm and
interferometric bench separation of 250 m aperture diameter,

𝜃 = 1.22(
1065 × 10ିଽ

250
)

= 5.2 × 10ିଽ radians (2.98 × 10ି଻∘
)

=  0.001 arcseconds (1 milliarcseconds)

 

 

The angular resolution (𝜃) of 1 milliarcseconds as gotten 
would have been sufficient to resolve the Proxima 
Centuari, with an infrared wavelength of about 1065 nm. 
The simple layout of an astronomical interferometer 
could be such of a pentagonal or rectangular arrangement 
of separated telescopes, giving a partially complete 
reflecting telescope, but with the need to ensure that the 
optical path lengths from the astronomical object to the 
beam combiner (focus) are the same as would be 
required by a complete (single) telescope case. 

 
4. Kinematics Analysis of Space-based Manipulator 

To control the positioning of space telescopes 
(spacecrafts), free-flying systems in which one or more 
manipulators are mounted on the spacecrafts have been 
explored. In this mode of operation, the attitude control 
is achieved by the reaction wheels and the spacecrafts are 
allowed to translate in response to their manipulators’ 
motions. Therefore, non-zero momentum are eliminated 
in the system. Reaction wheels (also called momentum 
wheels) are usually mounted on three orthogonal axes 
aboard the spacecraft. This study detailed the application 
of robotic manipulators for translational movement of 
the spacecraft such that the relative distance between a 
constellation of free-flying spacecrafts can be controlled. 
The primary differentiating characteristics of space 
robotics from terrestrial robotics is that the robot operates 
in a microgravity environment. The environmental 
disturbance torques (gravity gradient, aerodynamics and 
magnetic torques) imposed on the robot spacecraft are 
very small – within 10e-6 Nm [5]. While terrestrial 
robots are mounted onto a firm ground, in space, there is 
no such reaction force or torque cancellation to the 
motion of the robotic arms. This will induce translational 
motion on the satellite platform in response to the 
movement of the manipulator. 

In the consideration of a free-flying robotic manipulator 
with dedicated attitude control of the spacecraft bus, the 
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position kinematics of the space manipulator with 
respect to inertial space could be represented by [6, 7] 

𝑝∗ = 𝑟௖଴ + 𝑅଴𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝑙௜                                   (2) 

 

 
Fig. 1. Spacecraft-Manipulator Geometry 
 
 
For an attitude-controlled platform, 𝑅଴ = 𝐼ଷ (identity 
matrix). The center of mass of the complete system (the 
satellite bus mount, robotic manipulator and the payload) 
is given by [6, 7] 

𝑝௖௠
∗ =

∑ 𝑚௜
௡ାଵ
௜ୀ଴ 𝑝௖௜

∗

∑ 𝑚௜
௡ାଵ
௜ୀ଴

                                                (3) 

 
where 𝑝௖௠

∗  is the location of the centre of mass of the 
entire robot/spacecraft system with respect to the inertial 
coordinates; 𝑚௜ is the mass of each component rigid 
body links; 𝑛 is the number of serial rigid body links; 
𝑛 = 0 is the link representing the spacecraft body; 𝑖 link 
number from 0 to 𝑛; 𝑝௖௜

∗  is the position of link 𝑖 centre of 
mass with respect to the inertial coordinates; As it is for 
the case of terrestrial manipulator, it is equally necessary 
to find the location of the system centre of mass with 
respect to inertial coordinates (origin) where it remains 
invariant [6]. If no external forces act on the system, the 
location of the centre of mass will remain invariant in 
inertial space; 

෍ 𝐹௜

௡ାଵ

௜ୀ଴

= ෍ 𝑚௜

௡ାଵ

௜ୀ଴

𝑝̈௖௜
∗ = 0,  such that 𝑝௖௠

∗ = 0           (4) 

 
This will correspond to the ‘inertial ground’ defined of 
an ideal kinematic chain [8, 9]. The inertial (virtual) 
ground is the point in inertial space at which an ideal 
virtual kinematic chain manipulator has its base. The 
virtual ground point coincides with the centre of mass of 
the spacecraft-manipulator system. The system centre of 

mass is the point at which all the mass may be considered 
to be concentrated. Then, 

𝑝௖௜
∗ = ෍ 𝑟௖௝

௜

௝ୀ଴

 

Substitution of the above into equation (2) yields 

𝑝௖௠
∗ =

1

𝑚்

(෍ 𝑚௜

௡ାଵ

௜ୀ଴

෍ 𝑟௖௝

௜

௝ୀ଴

) =
1

𝑚்

(෍ ෍ 𝑚௝

௡ା௜

௝ୀ௜

௡ାଵ

௜ୀ଴

𝑟௖௜)

= 𝑟௖଴ +
1

𝑚்

෍ ෍ 𝑚௝

௡ା௜

௝ୀ௜

௡ାଵ

௜ୀଵ

𝑟௖௜                                         (5)

 

Now, the vector of the centre of mass of each link and 
the vectoral length of each link are defined as 
𝑟௖௜ = 𝑅௜𝑟௜ + 𝑅௜ିଵ𝑠௜ିଵ

𝑙௜ = 𝑟௜ + 𝑠௜                                                                           (6)
 

These definitions are then substituted into equation (4) 

𝑝௖௠
∗ = 𝑟௖଴ +

1

𝑚்

෍ ෍ 𝑚௝

௡ାଵ

௝ୀଵ

௡ାଵ

௜ୀଵ

𝑅௜ିଵ(𝑟௜ିଵ + 𝑠௜ିଵ)

+
1

𝑚்

෍ 𝑚

௡ାଵ

௜ୀଵ

𝑅௜𝑟௜

= 𝑟௖଴ +
1

𝑚்

෍ ෍ 𝑚௝

௡ା௜

௝ୀ௜

௡ାଵ

௜ୀଵ

𝑅௜ିଵ𝑙௜ିଵ +
1

𝑚்

෍ 𝑚

௡ାଵ

௜ୀଵ

𝑅௜𝑟௜   (7)

 

The equation (6) was restructured to match the terrestrial 
manipulator algorithms of the form: 𝑝௜  = 𝑅௜𝑙௜, then we 
have [2] 

𝑝௖௠
∗ = 𝑟௖଴ + (1 −

𝑚଴

𝑚்

)𝑠଴ +
1

𝑚்

෍ 𝑅௜

௡

௜ୀଵ

( ෍ 𝑚௝

௡ାଵ

௝ୀ௜ାଵ

𝑙௜ + 𝑚௜𝑟௜)

+
𝑚௡ାଵ

𝑚்

𝑅௡ାଵ𝑟௡ାଵ

 

This above equation has been separated out into three 
components: components associated with body 0 (the 
spacecraft), bodies 1 to 𝑛 (the manipulator links) and 
body 𝑛 + 1 (the payload). This then reduces to 

𝑝௖௠
∗ = 𝑟௖଴ + (1 −

𝑚଴

𝑚்

)𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝐿௜ + (
𝑚௡ାଵ

𝑚்

)𝑟௡ାଵ

where 𝐿௜ =
1

𝑚்

ቌ ෍ 𝑚௝

௡ାଵ

௝ୀ௜ାଵ

𝑙௜ + 𝑚௜𝑟௜ቍ                  (8)

 

This completes the location of the center of mass of the 
system with respect to inertial space. It is assumed 
arbitrarily that the local inertial reference frame initially 
coincides with the spacecraft bus center of mass, that is, 
𝑟௖଴ = 0, since any point fixed in the interceptor body 
may be regarded as inertially fixed prior to any robotic 
maneuver [10]. To continue the generalized formulation, 
𝑟௖଴ is then substituted into equation (1), having defined 
𝑝௖௠

∗ ; 
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𝑝∗ = 𝑝௖௠
∗ + 𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝑙௜ −
1

𝑚்

෍ ෍ 𝑚௝

௡ାଵ

௝ୀ௜

௡ାଵ

௜ୀଵ

𝑟௖௜     (9) 

Similar to the procedure employed earlier for equation 
(4), the equation (5) is then substituted into equation (8); 

𝑝∗ = 𝑝௖௠
∗ + 𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝑙௜   −

1

𝑚்

෍ ෍ 𝑚௝

௡ାଵ

௝ୀ௜

௡ାଵ

௜ୀଵ

(𝑅௜𝑟௜ + 𝑅௜ିଵ𝑠௜ିଵ)                 (10)

 

An attempt was then made to separate out the 
components relating to the spacecraft mounting (body 0), 
the manipulator links (bodies 1 to n) and the payload 
(body n + 1) [2]. This gives 

𝑝∗ = 𝑝௖௠
∗ +

𝑚଴

𝑚்

𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝜆௜ −
𝑚௡ାଵ

𝑚்

𝑅௡ାଵ𝑟௡ାଵ

where 𝜆௜ =
1

𝑚்

෍(

௜

௝ୀ଴

𝑚௝𝑙௝ − 𝑚௜𝑟௜)                 (11)

 

Accordingly, 𝜆௜ is referred to as the lumped kinematic 
parameter for each manipulator link. This above 
equation of 𝑝∗ has the same form as that of Earth-based 
manipulator of the form 𝑝 = ∑ 𝑅௜

௡
௜ୀଵ 𝑙௜ with additional 

constants (𝑝௖௠
∗  is constant, and 𝜆௜ is constant as the 

lumped kinematic/dynamic parameter, replacing the 𝑙௜ 
in earth-based manipulator). 
 

5. Resolved Motion Control 

Resolved motion control commands the manipulator 
hand to move in a desired cartesian direction in a 
coordinated position and rate control; meaning the 
motions of the various joint motors are combined and 
resolved into separately controllable hand motions along 
the world coordinates axes. The kinematics of robotic 
manipulators are defined such that at each joint 𝑖 a 
reference frame is assigned to form a sequence of 
coordinates from the base (joint 𝑖 = 0) to the end-effector 
(joint 𝑖 = 𝑛). The Denavit-Hartenberg (DH) 4 𝑋 4 matrix 
formulation for manipulator kinematics is well 
developed and widely used in robotics [11, 12, 13]. The 
DH matrix connect each sequential coordinate frame 
from the base (𝑖 = 0) to the end-effector (𝑖 = 𝑛) to provide 
the basis for relating joint angles to the cartesian position 
of the end-effector as a sequence of rigid body motion 
[14]. The DH matrix formulation expresses the geometry 
of space manipulator as a non-linear mapping given by 
[14, 15] 

[𝑞] = ቂ
𝑛 𝑠 𝑎 𝑝∗

0 0 0 1
ቃ = ൤

𝑅 𝑝∗

0 1
൨ 

where 𝑅 is a 3 x 3 direction cosine matrix represented as 
(𝑛𝑠𝑎) as for terrestrial manipulators, and 𝑝∗ is as defined 

in equation (10). The 𝑞 = (𝑛𝑠𝑎𝑝) is the generalized 
Cartesian position of the end-effector with respect to the 
base coordinates; 𝑛 is the normal vector; 𝑠 is the slide 
vector parallel to the end-effector finger grip, 𝑎 is the 
approach vector; and 𝑝 is the cartesian position vector of 
the end-effector with respect to the base coordinates. The 
same algorithms based on the DH matrix used for 
terrestrial manipulators can be used for computing the 
position of the end-effector of the robot in the inertial 
space. This makes it possible to compute the inverse 
kinematics problem of determining the joint angles of the 
position in the Cartesian coordinates for resolved motion 
control. Therefore, the inverse kinematics solution to the 
manipulator geometry can be found with little 
modifications to the terrestrial algorithms. Calculation of 
end-effector velocity involves the use of Jacobians 
(matrix) which relates the end-effector’s velocity to joint 
angle rates. For a free-flying robotic manipulator 
employing attitude control, the manipulator Jacobian 
matrix is given by [14, 15] 

𝐽 = ෍ ෍
𝜕𝑅௜

𝜕𝜃௞

௜

௞ୀଵ

௡

௜ୀଵ

𝜆௜                                                  (12) 

where 𝑅௜ and 𝜆௜ are same as represented in equation (10); 
𝜃 represents the joint angles. The space manipulator 
Jacobian requires only the replacement of kinematic link 
parameters with those of the kinematic-dynamic 
parameters (𝜆௜), and the positional constrains 
differenciated to zero. Therefore, the Jacobian maybe 
inverted as normally done for the terrestrial 
manipulators. The Jacobian matrix could also be 
calculated as the by-product of the Newton-Euler 
dynamic analysis through the vectoral representation of 
the velocities and angular velocities of each manipulator 
link [16]. From the Jacobian matrix, it is equally possible 
to compute resolution of acceleration between the end-
effector and the manipulator joints in the form 𝑞̈ = 𝐽𝜃̈ + 
𝐽𝜃̇̇ [17]. 
 

6. Space Manipulator Dynamics and Controller 

For a space manipulator with multiple joints, one of the 
basic control schemes that has been recommended is the 
computed torque technique based on the Lagrange-Euler 
(L-E) or Newton-Euler (N-E) dynamics - equations of 
motion [18]. However, the N-E method remains far more 
efficient than the recursive L-E method, and for this 
reason was adopted for dynamic simulation of most 
space manipulators. Several dynamic formulations for 
multi-body space systems have been subjected to 
comparison, and these studies concluded that the 
recursive N-E methods are much more efficient 
computationally than the L-E approaches [19], a 
conclusion reiterated in its application to space-based 
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manipulators [20]. The Newton-Euler equations of 
motion consist of a set of forward and backward 
recursive equations. These equations are: 
 
Forward recursive equations: 𝑖 = 1, 2, . . . , 𝑛 

𝜔௜ = ൜
𝜔௜ିଵ + 𝑧௜ିଵ𝑞̇௜  if link 𝑖 is rotational
𝜔௜ିଵ               if link 𝑖 is translational

 

𝜔̇௜ = ൝
𝜔̇௜ିଵ + 𝑧௜ିଵ𝑞̈௜ + 𝜔௜ିଵ × (𝑧௜ିଵ𝑞̇௜)
          if link 𝑖 is rotational
𝜔̇௜ିଵ   if link 𝑖 is translational

 

𝑣̇௜ =

⎩
⎪
⎨

⎪
⎧

𝜔̇௜ × 𝑝௜ + 𝜔௜ × (𝜔௜ × 𝑝௜) + 𝑣̇௜ିଵ

         if link 𝑖 is rotational
𝑧௜ିଵ𝑞̈௜ + 𝜔̇௜ × 𝑝௜ + 2𝜔௜ × (𝑧௜ିଵ𝑞̇௜)   +

𝜔௜ × (𝜔௜ × 𝑝௜) + 𝑣̇௜ିଵ

          if link 𝑖 is translational

 

𝑣௜ = 𝜔௜ × 𝑠௜ + 𝑣௜

𝑎௜ = 𝜔̇௜ × 𝑠௜ + 𝜔௜ × (𝜔௜ × 𝑠௜) + 𝑣̇௜
 

 
Backward recursive equations: 𝑖 = 𝑛, 𝑛-1, . . . , 1 

𝐹௜ = 𝑚௜𝑎௜

𝑁௜ = 𝐼௜𝜔̇௜ + 𝜔௜ × (𝐼௜𝜔௜)

𝑓௜ = 𝐹௜ + 𝑓௜ାଵ

𝑛௜ = 𝑛௜ାଵ + 𝑝௜ × 𝑓௜ାଵ + (𝑝௜ + 𝑠௜) × 𝐹௜ + 𝑁௜

 

𝜏௜ = ቊ
𝑛௜

்𝑧௜ିଵ + 𝑏௜𝑞̇௜  if link 𝑖 is rotational

𝑓௜
்𝑧௜ିଵ + 𝑏௜𝑞̇௜  if link 𝑖 is translational

 

where 𝑏௜ is the viscous damping coefficient for joint 𝑖; 
𝑚௜ is the total mass of link 𝑖; 𝑠௜ is the position of the 
center of mass of link 𝑖 from the origin of the coordinate 
system (𝑥௜ , 𝑦௜ , 𝑧௜); 𝑝௜  is the origin of the 𝑖th coordinate 
frame with respect to the (𝑖 − 1)th coordinate frame; 𝑟௜ 
is the position of the center of mass of link 𝑖 from the 
origin of the base reference frame; 𝑣௜ is the linear 
velocity of the center of mass of link 𝑖 (𝑑𝑟௜/𝑑𝑡); 𝑎௜ is the 
linear acceleration of the center of mass of link 𝑖 
(𝑑𝑣௜/𝑑𝑡); 𝐹௜ is the total external force exerted on link 𝑖 
at the center of mass; 𝑁௜ is the total external moment 
exerted on link 𝑖 at the center of mass; 𝐼௜  is the inertia 
matrix of link 𝑖 about its center of mass with reference to 
the coordinates system (𝑥଴, 𝑦଴ , 𝑧଴); 𝑓௜ is the force exerted 
on link 𝑖 by link 𝑖 − 1 at the coordinate frame 
(𝑥௜ିଵ, 𝑦௜ିଵ, 𝑧௜ିଵ) to support link 𝑖 and the links above it; 
𝑛௜ is the moment exerted on link 𝑖 by link 𝑖 − 1 at the 
coordinate frame (𝑥௜ିଵ, 𝑦௜ିଵ, 𝑧௜ିଵ). The recursive 
equations were implemented with respect to individual 
link about its own coordinate frame, such that we have 
forward recursive equations as: 

௜𝑅଴𝜔௜ = ቐ

௜𝑅௜ିଵ(௜ିଵ𝑅଴𝜔௜ିଵ + 𝑧଴𝑞̇௜)
 if link 𝑖 is rotational
௜𝑅௜ିଵ(௜ିଵ𝑅଴𝜔௜ିଵ)  if link 𝑖 is translational

 

௜𝑅଴𝜔̇௜ = ቐ

௜𝑅௜ିଵ[௜ିଵ𝑅଴𝜔̇௜ିଵ + 𝑧଴𝑞̈௜ + (௜ିଵ𝑅଴𝜔௜ିଵ) ×

𝑧଴𝑞̇௜] if link 𝑖 is rotational
௜𝑅௜ିଵ(௜ିଵ𝑅଴𝜔̇௜ିଵ)  if link 𝑖 is translational

 

௜𝑅଴𝑣௜ =
௜

𝑅଴(𝜔௜ × 𝑠௜ + 𝑣௜) . . .and so on 

The steps were completed for all the forward and 
backward recursive equations for link-based (each link’s 
own coordinate). 
Under the computed torque control law implemented for 
the controller of the multi-joint space manipulator, the 
comparative control law in the joint-variable space has 
been derived from the N-E equations of motion [16]. The 
control law is computed recursively, and the resulting 
control law can be obtained by substituting 𝑞̈௜(𝑡) into the 
N-E equations to obtain the necessary joint torque for 
each actuator: 

𝑞̈௜(𝑡) = 𝑞̈௜
ௗ(𝑡) + ෍ 𝐾௩

௜௝

௡

௝ୀଵ

[𝑞̇௝
ௗ(𝑡) − 𝑞̇௝(𝑡)] +

෍ 𝐾௣
௜௝

௡

௝ୀଵ

ൣ𝑞௝
ௗ(𝑡) − 𝑞௝(𝑡)൧                                  (13)

 

where 𝐾௩
௜௝ and 𝐾௣

௜௝ are the derivative (velocity) and 
position feedback gains for joint 𝑖 respectively and 
𝑒௝(𝑡) = 𝑞௝

ௗ(𝑡) − 𝑞௝(𝑡) is the position error for joint 𝑗. 
The physical meaning of putting the equation (12) into 
the N-E recursive equations can be interpreted that the 
first term will generate the desired torque for each joint 
if there is no modelling error and the physical system 
parameters are known [16]. The remaining terms will 
generate the correction torque to compensate for the 
deviations from the desired joint trajectory. The 
recursive control law is a proportional plus derivative 
(PD) control law and has the effect of compensating for 
inertial loading and coupling effects of the links; there is 
no gravity loading. The computed control law is a 
linearized feedforward model-based PD feedback 
control system based on inverse dynamics. 
 

7. Simulations and Results 

7A.  Simulation - Stabilization of a Single Platform 

To demonstrate the use of the robotic manipulator in 
keeping the optical bench stable, a single platform 
space robot has been simulated. Figure 1 as shown in 
section 4 is a representation of a single robot-spacecraft 
system. Recall equation (8) in section 4 where the 
robot-spacecraft center of mass (𝑝௖௠

∗ ) was given by: 

𝑝௖௠
∗ = 𝑟௖଴ + (1 −

𝑚଴

𝑚்

)𝑠଴ + ෍ 𝑅௜

௡

௜ୀଵ

𝐿௜ + (
𝑚௡ାଵ

𝑚்

)𝑟௡ାଵ

where 𝐿௜ =
1

𝑚்

( ෍ 𝑚௝

௡ାଵ

௝ୀ௜ାଵ

𝑙௜ + 𝑚௜𝑟௜)

 

It can be deduced that the system center of mass with 
respect to the inertial space is determined by vector 𝑟௖଴ 
from the inertial origin to the spacecraft center of mass 
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and the fixed lever arm distance 𝑠଴ from the spacecraft 
center of mass to the base of the robotic manipulator. 
Since the lever arm distance (𝑠଴) would always be fixed 
and the link masses would always be predetermined, the 
parameter 𝑟௖଴ provides a way to manipulate and adjust 
the position of the spacecraft center of mass. If an 
algorithm could be developed to keep 𝑟௖଴ stable or 
adjustable, it means the center of mass of the spacecraft 
can be kept at a desired position in relation to another 
fixed reference (for example, another stable spacecraft 
platform). It has been shown that the movement of the 
robotic arm directly induces a reaction force on the 
spacecraft at the manipulator base, thereby changing the 
position of the vector 𝑟௖଴ [10]. In such instance, in order 
to find the system center of mass with respect to inertial 
space, it is first assumed arbitrarily that the local inertial 
reference frame initially coincides with the center of 
mass of the spacecraft bus, that is, 𝑟௖଴ = 0, – since any 
point fixed in the interceptor body may be regarded as 
inertially fixed prior to any robotic maneuver. With 𝑟௖଴ 
taken as zero, to find 𝑝௖௠

∗ , initialization may be 
performed for any arbitrary robot configuration, e.g. 
‘tucked’ (stowed) position – by implementing equation 
(7). Once the starting 𝑝௖௠

∗  is known, subsequent 𝑟௖଴ is 
defined with respect to the inertial origin for any further 
configuration as shown below: 

 𝑟௖଴ = 𝑝௖௠
∗ −

1

𝑚்

෍ ෍ 𝑚௝

௡ାଵ

௝ୀଵ

௡ାଵ

௜ୀଵ

𝑟௖௜                        (14) 

where 𝑝௖௠
∗  = initialised barycentric location, 

𝑚் = total mass of all links including spacecraft mount, 
𝑟௖௜  = link vector from joint 𝑖 − 1 to link 𝑖 centre of mass, 
𝑚௝ = mass of link 𝑗, 𝑛 = number of manipulator links. 
For this study, the problem is contrarywise and different. 
Here, the goal is to ensure that 𝑟௖଴ is kept adjustable, such 
that the center of mass of the spacecraft remains invariant 
as much as possible. For instance, when there is 
perturbation or any kind of disturbance, and 𝑟௖଴ has 
moved from the desired position, we could use the 
movement of robotic arm to adjust it back to the desired 
position, so as to keep the spacecraft’s center of mass 
invariant. Since the initial position (𝑟௖଴ vector) of the 
spacecraft would be known before any perturbation, a     
    

 
 Fig. 3. Simulation of single space robotic 
interferometric platform. 
 
mapping algorithm has been developed, such that, given 
the new position vector of 𝑟௖଴ of the spacecraft after an 
effect of perturbation, it is possible to map out the robotic 
joint-based solution required by the manipulator to return 
the spacecraft to its initial center of mass by adjusting 𝑟௖଴ 
back to its initial vector position. If this could be 
achieved to submicron accuracy, it means the spacecraft 
center of mass can be kept invariant to a very high 
precision, as required for interferometric constellation. 
As shown in equation (14), under robotic analysis, 𝑟௖଴ is 
only deduced from the configuration maneuver of the 
arm, where 𝑝௖௠

∗  has to be calculated at first (with 𝑟௖଴ 
initialized as zero). Then, subsequent 𝑟௖଴ are calculated 
as the arm moves. Perturbation do not account for such; 
the whole spacecraft is perturbed with no correlation to 
the movement of the robotic arm (no correlation with the 
inertial space). Since 𝑟௖଴ is a position vector in 3-D, there 
are three known quantities of the vector in inertial space. 
To determine the post-perturbation 𝑝௖௠

∗  position vector 
corresponding to the 𝑟௖଴, a minimum of three robotic 
joint angles will be required to determine this unknown - 
see equation (15). On the other hand, we do not know the 
joint angles that would have resulted from a normal 
maneuver of the robotic arm, if it was meant to be a 
normal or predefined motion. This was a perturbation; 
we do not know the resulting robotic joint angles at this 
post-perturbation position. An algorithm has been 
developed to map out the robotic joint angles that would 
have corresponded to the 𝑟௖଴ of the perturbed state, if the 
robotic arms were to have had a predefined motion or 
normal maneuver. It was started by initializing the post-
perturbation joint angles of at least three arms/links to 
zero. For the case of our simulation, the PUMA 560/600 
was adopted, which has six joint angles. The first three 
joints angles were initialized as zero, while the last three 
joint angles from the wrist were taken simply as same as 
the terrestrial manipulation – this formulation has been 
established earlier [10]. The simulation started by 
assuming the space manipulator to be in the stowed 
position (before any perturbation), and 𝑝௖௠

∗  was first 
calculated with respect to an inertial origin – see equation 
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(7), 𝑟௖଴ defined as zero. Then the space manipulator arm 
was moved to a randomly chosen position of [0.015, 
0.015, 0.015] m with respect to the inertial origin, and 
the 𝑟௖଴ was calculated for this configuration according to 
equation (14). This was used to simulate the effect of 
perturbation, change in 𝑟௖଴ from [0, 0, 0] at the initial 
stowed state to some randomly chosen 𝑟௖଴ for the 
perturbed state. This completes the simulation of 
perturbation; now the problem is adjusting the 𝑟௖଴ back 
to its initial state. 
Before the adjustment procedure, at first, a simple 
algorithm was written to determine the first three joint 
angles of the space manipulator in inertial space as at the 
time the 𝑝௖௠

∗  was calculated in relation to the initialized 
𝑟௖଴ of [0, 0, 0] - before perturbation. This simple 
algorithm follows as below: 
𝑅௜𝐿௜ is first calculated with respect to each link joint (𝑖), 
in accordance to equation (8), also see reference [10]. 
This 𝑅௜𝐿௜ was calculated with these first three joint 
angles 𝑥௨(1), 𝑥௨(2), and 𝑥௨(3) initialized as zeros at 
first, and joint angles for links 4, 5, and 6 of the 
manipulator taken as that of the initial terrestrial robot as 
established earlier [10]. A solver was used to solve the 
system of non-linear equation (derived as below) after 
𝑅௜𝐿௜ has been initialized with the above stated joint 
angles: 
𝑥௨(1) = 𝑝௖௠

∗ (𝑖) − ቀ1 −
௠బ

௠೅
ቁ 𝑠଴(𝑖) − 𝑅௜𝐿௜(: , : , 𝑖) − 𝑟௖଴(𝑖, : , 𝑢)

𝑥௨(2) = 𝑝௖௠
∗ (𝑗) − (1 −

௠బ

௠೅
)𝑠଴(𝑗) − 𝑅௜𝐿௜(: , : , 𝑗) − 𝑟௖଴(𝑗, : , 𝑢)

𝑥௨(3) = 𝑝௖௠
∗ (𝑘) − ቀ1 −

௠బ

௠೅
 ቁ 𝑠଴(𝑘) − 𝑅௜𝐿௜(: , : , 𝑘) − 𝑟௖଴(𝑘, : , 𝑢)

     

                                                                                                 (15) 

Here, 𝑟௖଴(𝑖, : , 𝑢) means ″𝑖″ vector of 𝑟௖଴ at the initial 
unperturbed state denoted with ″𝑢″; meaning spacecraft 
(telescope) at initial launched position in inertial space 
before any maneuver or perturbation. Vector position in 
3-D is represented by the 𝑖 − 𝑗 − 𝑘 in parentheses. 
These equations were set as a Function 𝑥௨(1: 3) 
corresponding to the three joint-angles at initial state. 
The non-linear solver was implemented in iteration to 
map out the actual joint angles 𝑥௨(1), 𝑥௨(2) and 𝑥௨(3) 
corresponding to the initially calculated 𝑝௖௠

∗  (system 
center of mass) with respect to the defined inertial 
coordinates. This concludes the pre-perturbation 
simulation. Initial state 𝑟௖଴, 𝑝௖௠

∗ , and joint angles all 
calculated and defined. 
A mapping algorithm was written to deduce the 
manipulators joint angles now at the perturbed state 
configuration (remember it won’t be the stowed state 
joint angles anymore). The algorithm was developed to 
map out the robotic joint angles that would have 
corresponded to the 𝑟௖଴ of the perturbed state, if the 
robotic arms were to have had a predefined motion or 
normal maneuver. 

This started by initializing the post-perturbation joint 
angles of the first three links to zero. For the PUMA 
manipulator, the first three joints angles are initialized as 
zero, while the last three joint angles from the wrist were 
taken as same as the terrestrial manipulator as previously 
mentioned [10]. The joint angles were represented by 
𝑥௣(1), 𝑥௣(2) and 𝑥௣(3) for the perturbed state. Then the 
non-linear solver was implemented as described above in 
equation (15), but note that in this case, 𝑟௖଴ is assumed 
random and the exact position of the spacecraft center of 
mass (𝑝௖௠

∗ ) is not initially known in the perturbed state. 
A loop was programmed to account for this as below: 
𝑅௜𝐿௜ in the perturbed state was calculated with initialized 
zero joint angles 𝑥௣(1), 𝑥௣(2) and 𝑥௣(3) 
Then implement 

𝑝௖௠
∗ = 𝑧𝑒𝑟𝑜𝑠(3,1) + (1 −

𝑚଴

𝑚்

)𝑠଴ + ∑𝑅௜𝐿௜+. . .

൬
𝑚௡ାଵ

𝑚்

൰ 𝑅௡ାଵ𝑟௡ାଵ;                                             (16)
 

 
The above 𝑝௖௠

∗  here now is the system center of mass in 
the perturbed state relative to the inertial coordinate, but 
the 𝑟௖଴ is initialized as zeros(3,1) just to get the 
computational loop started. The actual 𝑝௖௠

∗  will be 
mapped out from the loop for the solution of what the 
joint angles will be to match this 𝑝௖௠

∗  when 𝑟௖଴ takes the 
value of the perturbed state. 
 

7B.  Simulation - Constellation Platform 

For the purpose of interferometric imaging as described 
in section 3, a constellation of five free-flying spacecraft 
(telescopes) flying in formation as an astronomical 
interferometer was designed. The five spacecraft will act 
as chasers while there would be a target spacecraft acting 
as the beam combiner of the constellation to generate 
interferometric imaging. This simulation could be 
deployed to directly detect Earth-like planets orbiting 
nearby stars and possibly search for evidence of life on 
these planets. Interferometric method as presented here 
offers extremely high-resolution imaging, because each 
interferometric platform can be maintained stable to 
submicron accuracy by keeping the 𝑟௖଴ adjustable to the 
initial set position. The relative distance or separation 
between two neighboring spacecrafts is affected by the 
change in 𝑟௖଴  of either of the spacecraft during 
perturbation. The correction algorithm works in such a 
way that each spacecraft could be able to detect a change 
or shift in its 𝑟௖଴ and the manipulator is able to quickly 
respond to that change, adjusting it back to the desired 
set position. The same scenario is obtained by the 
neighboring spacecraft’s 𝑟௖଴ experiencing any change or 
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shift, and as such, the relative distance between them is 
always kept as invariant as possible. 
The mapping procedure was implemented in iterative 
computational loop using the Levenberg–Marquardt 
algorithm for the solver [21, 22] while making sure the 
trust-region size is adjusted accordingly at each iteration, 
with a tolerance value up to the order of 1e-9. With this, 
the robotic joint angles at the perturbed state can be 
successfully mapped out for the solution required for the 
𝑝௖௠

∗  and the 𝑟௖଴ to be satisfied at the specified 
perturbation state, up to submicron accuracy. 
These perturbed state robotic joint angles are the required 
parameters to achieve the adjustment of 𝑟௖଴ back to what 
it was at the initial spacecraft center of mass which we 
wanted to maintain invariant. The robotic manipulator is 
then operated by performing joint-level trajectory 
motion (using the joint angles) from the perturbed state 
to the initial state.  
 

 
 
Fig. 4. Representation of four space robotic 
interferometric platforms in formation flying around the 
cantered beam combiner. 

Each interferometric platform represents a spacecraft bus 
mount to which one or more manipulators are mounted 
as depicted in Figure 4. For the purpose of simulation, 
two different sizes of PUMA 560/600 manipulator 
configuration were considered. One was the original size 
of the manipulator, and the other was a smaller model of 
the manipulator, which was scaled down by an order 
(ratio) of 4. The original larger size was used simply for 
better visual representation as shown in Figure 5. For the 
purpose of real-life deployment, the smaller size 
manipulator would be ideal. It was evident from the 
simulation that smaller size manipulator allows for larger 

range of joint angle movement for an infinitely small 𝑟௖଴ 
adjustment, giving room for higher order accuracy. With 
the large arm manipulator, it would be required to move 
very small joint angles to correct the change in 𝑟௖଴, 
resulting in lower order accuracy because the joint angle 
movement range is quite small. It is also possible that 
there are fewer motors available to provide such minimal 
angular movement. The space robot’s design needs to be 
able to accommodate sizeable angular rotation that can 
be readily attainable by most commercial motors 
deployed at the joints. Although both large and small 
manipulators will be mounted unto the spacecraft, the 
magnitude of perturbation in Jupiter or Moon-L2 for 
instance, are of quite small magnitude [5]. For such order 
of perturbation, there would be tiny fraction of change in 
the 𝑟௖଴, it would require a small-sized manipulator to 
deploy its arm with large joint angle movement so as to 
correct the 𝑟௖଴ with high degree of accuracy.   

The key to this approach is providing submicron/micron 
accuracies in the control of the relative positioning with 
respect to the barycentric centre of mass without using 
fuel [1]. The position relative to the barycentre (𝑟௖଴) is 
controlled by the configuration of the manipulator(s) as 
shown earlier in section 7A, equation (16). This may be 
generalized to multiple manipulators. This suite of 
onboard manipulators automatically adjusts their 
configuration to maintain the constellation as a virtual 
optical bench. With reference to the Rayleigh criterion, 

the angular resolution, 𝜃, is given by 𝜃 = 1.22
ఒ

஽
, where 

𝜆 is the wavelength and D is the diameter of the aperture 
(telescope). 

 
Fig. 5. MATLAB [24] simulation of five 
interferometric platforms, stable optical bench achieved 
against perturbation (larger manipulators) 

 
With the implementation of near-infrared interferometric 
constellations, the free-flying telescopes combine into a 
“virtual optical bench” with diameter, D, of the utmost-
separated apertures. With the apertures separated about 
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250 m apart, it would be possible to resolve an exoplanet 
with an angular diameter of up to 1 milliarcsecond – as 
the case for Alpha Centauri C (Proxima Centauri). The 
developed mapping algorithm demonstrates the 
relationship between the robotic manipulators’ 
configuration such that joint-level trajectories are 
deduced to move or re-position the arm, resulting in a 
successful approach to accurately control the relative 
position between the interferometric platforms. Most 
importantly, no fuel is expended except for the initial 
configuration maneuvers. This simulation provides a 
robotic constellation approach to achieving 
interferometric imaging of terrestrial extrasolar planets. 
 

8. Conclusions 

With the algorithms and simulations carried out, it is 
possible to accurately control the relative positioning of 
spacecraft bus with a mounted manipulator by inducing 
base reactions at the mounted platform owing to its arm 
motion. Depending on the magnitude of perturbation and 
the change in 𝑟௖଴, the manipulator joint angles need a 
motor rotation of the appropriate range. For the control 
and adjustment of relative position occurring within 10e-
6 Nm of disturbance torque as considered in this study, a 
joint rotation of at least 3⁰ up to about 32⁰ was calculated 
to be required within the scale of the small and large 
manipulators described. Appropriate motors are 
available and can be selected within this required range, 
ultimately relying on the magnitude of disturbance or 
perturbation under consideration. The possibility of 
building these manipulators provides for useful and 
diverse application as being currently explored in the 
field of space robotics. It has been shown in this study 
that the manipulator-mounted spacecraft could exist as a 
single one, while there could be multiple spacecraft in 
free-flying formation with one or more manipulators 
mounted. Such constellations have been demonstrated as 
a matter of research interest for interferometric imaging 
in space. The mounted manipulators are deployed to 
control the relative positioning of the spacecraft as 
optical bench in free-flying formation. This has shown a 
viable way to revive the ESA’s Darwin project or the 
NASA’s Terrestrial Planet Finder (TPF) project. Beyond 
that, this ground-breaking approach can also be of 
interesting application in on-orbit servicing with two 
spacecraft’s relative positioning adequately controlled. 
Spacing and rendezvous can also be controlled with the 
aid of the manipulator arm movement as mounted on the 
spacecraft. In general terms, it can be concluded from 
this study that: for any space telescope, given a desired 
translational motion (or the base reactions required for 
that), a mapping algorithm has been developed to deduce 
the joint-level trajectory needed to move the robotic arm 

from its present position to the required position in 
cartesian-space, corresponding to the desired platform 
reaction. As demonstrated, this validation provides 
grounds for accurate control of the spacecraft position, 
resulting in stable optical bench for interferometric 
imaging. With this, other viable and daunting 
applications could also be explored. 
 
 

Appendix - Proof of Concept for Relative Position 
Control 

In this case study, the smaller PUMA-like manipulator 
was adopted for the space manipulator. The parameters 
of the manipulator at the initial (stowed) position are 
shown below as used in the simulation: 

Table 1. D-H Table and Initial Configuration (Smaller 
Manipulator) 

Joint  
 

Variable(⁰) 𝛼௜(⁰) 𝑎௜(𝑚) 𝑑௜(𝑚) 

1  𝜃ଵ -90 0 0 
2 𝜃ଶ 0 0.1080 0.0373 
3 𝜃ଷ 90 0 0 
4 𝜃ସ -90 0 0.1083 
5 𝜃ହ 90 0 0 
6 𝜃଺ 0 0 0.0141 

 
Table 2. D-H Table and Initial Configuration (Larger 
Manipulator) 

Joint  
 

Variable(⁰) 𝛼௜(⁰) 𝑎௜(𝑚) 𝑑௜(𝑚) 

1  𝜃ଵ -90 0 0 
2 𝜃ଶ 0 0.432 0.1492 
3 𝜃ଷ 90 0 0 
4 𝜃ସ -90 0 0.4332 
5 𝜃ହ 90 0 0 
6 𝜃଺ 0 0 0.0564 

 
 
 The initial joint angles used for stowed position were 𝜃ଵ 
= -90⁰, 𝜃ଶ = -90⁰, 𝜃ଷ = 90⁰, while 𝜃ସ = 𝜃ହ = 𝜃଺ = 0. The 
parameters of the inertia moments (𝐼௖௠) were also chosen 
as used in the MATLAB code accordingly [23]. 
For the kinematic chain and the link masses, the 
following physical properties have been chosen [10]: 
 
 
Table 3. Physical Properties of Manipulator and 
Spacecraft (Smaller Manipulator) 

 



70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019.  
Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. 

 

 
 

IAC-19,A7,3,4,x50556                          Page 11 of 12 
 

Kinematic Chain Mass(kg) 
Link 0 (spacecraft bus) 250 
Link 1 (manipulator shoulder) 2 
Link 2 1.5 
Link 3 (manipulator elbow) 1.5 
Link 4 0 
Link 5 (manipulator wrist) 3 
Link 6 (manipulator end-effector) 2 
Link 7 (payload) 0 

 
Table 4. Physical Properties of Manipulator and 
Spacecraft (Larger Manipulator) 

Kinematic Chain Mass(kg) 
Link 0 (spacecraft bus) 250 
Link 1 (manipulator shoulder) 8 
Link 2 6 
Link 3 (manipulator elbow) 6 
Link 4 0 
Link 5 (manipulator wrist) 12 
Link 6 (manipulator end-effector) 8 
Link 7 (payload) 0 

 
For the kinematic solution, the procedure discussed and 
presented in Section 4 (Kinematic Analysis of Space-
based Manipulator) was implemented for the smaller 
space manipulator. The position kinematic with respect 
to the inertial space as described in equation (10) was 
implemented in MATLAB. At first, the simulation of the 
manipulator was implemented in the terrestrial case with 
the specified D-H parameters. The forward kinematics of 
the manipulator in terrestrial-based application was 
calculated and the position of the end effector 
determined. To make sure and verify that the code was 
working correctly, the inverse kinematics was then 
calculated for the resulting position using the kinematic 
configuration of the manipulator, in an attempt to 
recalculate back the initial joint angle of the manipulator. 
It was confirmed that the inverse kinematics resulted 
back into the exact joint angles the manipulator was 
initialized with (prior to the forward kinematics 
calculation). The key to the space application approach 
is to replace the terrestrial parameters of 𝑎௜ and 𝑑௜ with 
the spaced-based equivalence [10], taking into account 
the lumped kinematic parameters as described in Section 
4. 
This procedure was implemented in the MATLAB code. 
Having implemented the space-based kinematic/lumped 
parameters, the position of the end-effector in space with 
respect to the inertial base (𝑝∗) is then calculated through 
the forward kinematics; the corresponding space-based 
joint angles for this were calculated through the inverse 
kinematics. This concludes the space-based forward 
position and inverse joint angles at the initial position of 
the manipulator. It is to be noted that the manipulator’s 

arm position is considered only to the wrist level in the 
cartesian space position, as it is customarily done [10], 
and the manipulator cartesian position is represented by 
𝑃𝑎𝑟𝑚 at this level. In the MATLAB code, also the 
parameters 𝑃𝑎𝑟𝑚 and 𝑅௜𝜆௜ were calculated and 
implemented. 𝑃𝑎𝑟𝑚 was calculated to be 
(0.2105, 0, 0.036) for the space manipulator. The 𝑠଴ was 
chosen arbitrarily as [0.00075; 0.0015; −0.002] in 
metres, an assumption made for the position vector of the 
manipulator base with respect to the spacecraft body 
center of mass – this would have to be given in reality. 
Now to simulate trajectory, a desired end point (final 
position) was specified for the space manipulator; this 
was represented by 𝑃௘௡ௗ = [0.015; 0.015; 0.015] in the 
MATLAB code. A cartesian trajectory "knot points" 
generation was carried out using five segment 
trajectories, and a 6-point knot points were generated 
between the initial position of the manipulator in space 
and the given desired final position. The six knot points 
are represented in cartesian space (up to the wrist) level, 
and the corresponding joint angles (𝜃ଵ − 𝜃଺) were 
calculated (for each knot point) by the inverse 
kinematics. 
The inverse kinematics joint angles for the knot points 
were obtained and Jacobians were also obtained for the 
required resolved motion control formulation. For the 
resolved motion control, the Bang-Bang approach was 
adopted for the velocity and acceleration rate profile. 
Generation of joint-level trajectory in between the knot 
points was carried out with the so-called patching 
procedure, patching the knot points together using five 
segments cubic spline polynomial [12]. With this, it was 
possible to fully describe the forward trajectory motion 
of the space manipulator arm, simulating the movement 
of the arm from the initial position to the specified 
desired position. Figure 5 shows what is seen in the 
simulation (five interferometric platforms), with 
manipulators shown up to the wrist. Lastly, the Newton-
Euler dynamic formulation was carried out for the 
calculation of joint torques at each link. The procedure 
follows the steps and equations described in Section 6. 
For the purpose of relative positioning application, the 
base-referenced torque is required to be calculated and 
the resulting reactions at the base of the spacecraft owing 
to the movement of the mounted manipulator arm. This 
trivially follows the same Newton-Euler dynamics as 
presented but with the simulation done with respect to 
inertial base. The program can be easily modified, and 
every link-referenced equation is transformed or returned 
as base-referenced [12]. The relationship to calculate the 
moments and forces on the spacecraft at the manipulator 
base (𝑥଴𝑦଴𝑧଴) with respect to inertial coordinates has 
been derived and given as [10]: 
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𝑁଴ = 𝑁் + [𝑚்(𝑝௖௠
∗ − 𝑟௖଴) − (𝑚் − 𝑚଴)𝑠଴]

  × 𝐹்/𝑚்

where

𝐹் = ෍ 𝐹௖௜

௡ାଵ

௜ୀଵ

= ෍ 𝑚௜

௡ାଵ

௜ୀଵ

𝑣̇௖௜  (total force at base)

𝑁் = ෍ 𝑁௖௜

௡ାଵ

௜ୀଵ

= ෍ 𝐼௜

௡ାଵ

௜ୀଵ

𝜔̇௜ + 𝜔௜ × 𝐼௜𝜔௜ (moment)

 

𝐹௖௜ is the total force on the link 𝑖 center of mass, 𝑁௖௜ is 
the total moment about the link 𝑖 center of mass, while 
𝑣̇௖௜ is the linear acceleration of the link 𝑖 center of mass. 
The resulting summed torque at the base of the 
spacecraft, as the arm moved along the knot points can 
be calculated, with an assumption made for the position 
vector of the manipulator base with respect to the 
spacecraft body center of mass (𝑠଴) – this would have to 
be given in reality for accurate simulation. 
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