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Preamble

Y VYV
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| do not discuss human astronauts for interstellar flight — robotic missions only
Interstellar flight will require autonomous operations (humans asleep anyway)

Lubin approach — extreme redundancy scattershot approach with minimal cost per
nanospacecraft to permit millions

This makes sense for today...
We assume a targetted approach....

There are 3 types of interstellar mission:

(i) flyby, e.g. Breakthrough Starshot — BIS Daedalus

(if) in-situ exploration of extrasolar system to search for life — deceleration stage
e.g. Forward-type laser-propelled sail

(iia) biological ETI encounter

(iiib) artificial ETI encounter

ALL involve 50-100 year transit phase

We assume interstellar spacecraft that encapsulate significant engineering investment with
extensive payload instrumentation, i.e. high cost, e.g. Daedalus-type starship
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Be Careful — It’s Dangerous Out There

| assume that Kuiper belt/Oort cloud icy bodies of solar/extrasolar system are diffusely
distributed and are not collision hazards

High particle flux from ISM gas and dust - mitigated through an eroding shield

Radiation — high energy galactic cosmic rays — onboard electronics based on vacuum tube
technology

Random stuff — long-duration components exhibit a bathtub failure rate distribution over time
- infant mortality and senility flank background finite probability of failure ~constant
Spacecraft can fail — software workarounds can reconfigure mission, EXOSAT (1983)
- hardware failures require redundant systems, Galileo Jupiter mission (1989)
3 modern fault diagnosis methods, e.g. EKF, PCA, ANFIS
50-100 year interstellar transit introduces the problem of AVAILABILITY

100 year starship study advocated multiple redundancy, high reliability components and
evolutionary hardware (FPGA programmed by GA)

MTBF

There are diminishing returns to redundancy: A =
MTBF+MTTR+MTFS

MTBF—< is a measure of reliability (traditional approach)
MTTR—O0 is a measure of maintainability (onboard servicing)
M, : _y
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Bare Necessities for Interstellar

Flight

robots similar to robotic freeflying servicer concepts

= Lessons from space servicing:

» (i) standard interfacing of modules

— mechanical/electrical/optical/thermal

» (i) robotic handling is challenging

= Modularity simplifies robotic handling

= |t assumes that 3 stockroom of pre-manufactured modules for
replacement

= This is not realistic for a starship

= Corollary: Full availability requires that starship is designed for
self-repair

= We need full self-manufacturing facility onboard to replace ANY
component on-demand from a limited set of feedstock

= Even though a structured environment, onboard manufacture will require some onboard
intelligence to plan manufacturing schedules including conflict resolution, Bayesian
interpretation of data in relation to hypotheses, pattern recognition, etc
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Minimalist Demandite Concept

= Itis CRUCIAL to minimise the range and amount of feedstock required to maintain and repair
the starship

= Our DEMANDITE concept maps functional material requirements with a fixed set of feedstock

resources Electrical Power Subsystem Structure Subsystem Temperature Control
= There 7 basic subsystems onboard a spacecratft: N [ R, i e ) e
»  Propulsion system — —L é’ﬁ;j', [S:“: {%::’:W [ |[ e |
>  Attitude/orbit control including sensors/actuators [ ‘ .D'S'ﬂiﬁ"m} —— L
>  Structure & mechanisms 75355;’5?;12%5 ' [ D)
»  Thermal control Command, Data & Data Storage Subsystem R p—
> Power - . || . :
» Onboard computing including sensor nets i L+ essuemonts o oS |
» Communications (microwave or optical) il X'“""“””ﬂ*
ST .
= ~10 basic materials can supply full functionality for Attude & Ariculation e | g
all the subsystems of a generic robotic spacecraft oo || o2 | ) (85
- Onboard FabLab must manufacture feedstock into roouoa—| S 'vﬁm;ﬁner;‘ oMb
replacement components including itself R — *} zZn

Rocket Engines
& Thrusters
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Multifunctional Alumina

Consider feedstock of alumina (Al,Oj):
Physical properties are second only to diamond:
Refractory and chemically inert
High hardness for tooling applications (including drilling)
Additive to composites, e.g. cermet (Al,O4 in Ni binder) for high strength and high
temperature tolerance
Alumina may be reduced directly to >99% Al metal through FFC molten salt electrolysis

Aluminium is a multifunctional metal — its versatility suggests that it should be a high
priority target:

good thermal conductor at low temperature below 520°C

good thermal radiator for thermal louvres/radiators
good electrical conductor (pylon-mounted electrical cables) 1 g
lightweight structural metal ideal for spacecraft structures neovet< /1

Al powder combusted with Fe,O; acts as thermite weld r» I
alloyed with Si, silumin is wear resistant for tooling /

vV Vv v "

VvV V V V V V
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Functionality (mass fraction)

Tensile structures (25%)

Compressive structures (+50%)

Elastic structures (trace)

Hard structures (3%)

Thermal conductor straps (1%)

Thermal radiators (3%)
Thermal insulation (3%)

High thermal tolerance (4%)

Electrical conduction wire (7%)

Electrical insulation (1%)

Active electronics devices

(vacuum tubes) (12%)

W WINIVENDNSIL T

Lunar-Derived Material

'Wrought iron

Aluminium

Castiron

Regolith + binder
Steel springs/flexures
Silicone elastomers
Alumina

Fernico (e.g. kovar)
Nickel

Aluminum
Aluminium

Glass (SiO, fibre)
Ceramics such as SiO;
Tungsten

Alumina

Aluminium

Fernico (e.g. kovar)
Nickel

Glass fibre

Ceramics (SiO,, Al,0sand
TiOy)

Silicone plastics
Silicon steel for motors
Kovar

Nickel

Tungsten

Fused silica glass

Magnetic materials for
actuators (5%)

Ferrite
Silicon steel
Permalloy

Sensory transducers (5%)

Optical structures (11%)

Lubricants (trace)

Power system (20%)

Combustible fuels (+250%)

Resistance wire

Quartz

Selenium

Polished
nickel/aluminium
Fused silica glass lenses
Silicone oils

Water

Fresnel lens + thermionic

conversion
Flywheels
Oxygen
Hydrogen



Manufacturing & Assembly

= Manufacturing converts feedstock into parts and components

= There are many manufacturing machines for fashioning objects — casting, moulding,
lathe, milling station, drill press, bending press, laser cutter, electric discharge
machining, etc (e.g. FabLab) :

= There are many joining operations including parts assembly, u
friction stir welding, wire winder, etc

robot configuration — the 3 or 5 DOF CNC machine
= Subtractive manufacturing methods waste ~90% materiagg

= Additive manufacturing (3D printing) builds parts and components Iayer by layer
without wastage

= 3D printing is a versatile manufacturing method for constructing 3D structures
= There are many 3D printing technologies — FDM, SLA, LOM, SLS/M, EBAM, BJ, etc
= All 3D printers = cartesian robots
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3D Printing

EBAM is electron gun (high voltage vacuum tube) but restricted to
metals, e.g. NRC wire-fed EBAM — Al alloy printing

= FFC molten salt electrolysis yields >99% metal alloy sponge that can be crushed into
powder for powder metallurgy or 3D prlntlng SLS printing has been demonstrated with Ti
test parts -- o e e

TiO, powder — Ti powder — 3D printed Ti parts

= We are building rigid multi-material 3D printer to print in metals and plastics (potentially
ceramic)

= Selective solar sintering uses Fresnel lenses to generate thermal energy
= 3D printing by Fresnel lens for melting Al alloy powder on powderbed
= We have deposited molten Al wire tracks onto silicone plastic insulation
= Problem: coupling Fresnel lens focus into fibre optic cable
> integrate milling head (CNC machine) - integrate assembling wrist
» steels/silicone-derived ceramics (SiO,C, + (1-x+2y)O, — SiO, + yCO,)
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3D Printing = Universal Construction

Mechanism

RepRap FDM 3D printer can print many of its own plastic parts
= Full self-replication requires 3D printing:
() structural metal bars and components (SLS/M or EBAM)
(ii) electric motor drives
(ii) electronics boards
(iv) computer hardware/software
= Universal constructor is a kinematic machine that can manufacture
any other machine including a copy of itself
= We adapt UC to unstructured environments through a suite of kinematic e
machines . JL
= All machines of production are kinematic machines = ' EE

= 3D printer suite constitutes a Universal Constructor as a generalized kinematic machine that
can construct any other kinematic machine

= Kinematic machines are specific kinematic configurations of electric motor systems
=  From 3D printed electric motors, sensors and control electronics, omnia sequitur...

= |f we can 3D print motor systems, we can build any manufacturing machine onboard on-
demand
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Fully 3D Printed Motor

= 3D printed rotor (ProtoPasta)

= 3D printed permanent stator magnet (Oak Ridge National Laboratory)
= LOM-style copper tape wiring/commutator wound around rotor

= 3D printed shaft + bearings

= |tis asmall step from a self-repairing to self-replicating starship

,,.‘“_" |
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Stone-Weierstrauss theorem states that MLP can
approximate any nonlinear function —itis a
multidimensional curve-fitting algorithm similar to a
polynomial function

MLP comprises a minimum of 3 layers — input — hidden -output
Neural networks implement weighted svx(li%:hviung function determined by threshold:

X

Input layer

e

L » 7z, 4, Target

n R Vss =5V
y.(x(t)) =1 ZWin (O +w, ()= (Z\) -
j-L . O N
If w;>w;, neuron fires; otherwise, no output %—mﬁ?;}: AT 5 ws
C . : : : : ey § R B s A B SR
Activation function f() is a nonlinear squashing function. ™™ & - | rnd
(i) sigmoidal function is typical peic il e

(i) signum function in McCulloch-Pitts neuron yields discrete outputs (for logic gates)
(iif) Gaussian function to models neural tuning curves (e.g. RBF)
Neural networks are pattern recognition machines

Neural networks are opague to analysis — information is distributed across its connection
weights
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Neural Network Learning

g [here are many neural network learning rules
= MLP backpropagation supervised learning rule is the commonest:

- 2 .
wii(t+1) = wy; () — ”ZET? + alAw;;(t) where E = % * . (y% —y) =error function

2" term is least square steepest descent algorithm, 3™ term is momentum to smooth descent
= Alternatively, weight may be estimated by Kalman filter (BP is degenerate form of KF):
(e +1) = () + KO () — ()]
where [1%(s)—h(#(z))] = error between estimated and measured output
K(t)=P(HOI1/'mI +H(H) P(H()]™ = Kalman gain
n=[H@OPDOH () +R(N]"P() = adaptive learning rate
H(t) = observation model, P(t) = state covariance, R(t)=observation covariance
= We have implemented backpropagation in analogue circuitry p b

.ﬂ!w & TS




Reinforcement Learning

Bk Reinforcement learning (RL) offers continuous learning over time

= RL may be non-associative (habituation/sensitization) or associative (conditioning) — it
involves reward/punishment signals from the environment

= In classical conditioning (e.g. Pavlov’'s dogs), an innate US-UR reflex couple of US
(food) with UR (salivation) may become associated through training with a learned
conditioned CS-CR reflex — CS (bell) is predictive of US such that it invokes CR
(salivation) that mimics UR even if US does not occur

= Classical conditioning is described by a generalized (unsupervised) Hebbian learning rule
(Rescorla-Wagner theory of classical conditioning):

Aw; = neg; (A — y) where n=US-dependent learning rate, e=CS-dependent learning rate,
A=external reinforcement scalar, y = f(X; w; X¢s(;))=associative CS-CR strength

= There are more sophisticated RL algorithms

= Temporal difference (TD) algorithm predicts future rewards r(t):
r=At+ D+y2w;()x(t+ 1) — y(t) where y=discount rate

= Watkins Q-learning algorithm is simpler than TD(A) because it is model-free

= Reinforcement learning of deep neural networks in self-play was the basis of
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Deep Learning

Deep learning systems are multiple layered ANN — typically unsupervised frontend with
supervised backend

Unsupervised frontend is trained to perform data clustering on unlabelled input data —
each layer is trained sequentially from output of previous layer

Supervised backend is trained with unsupervised front end using labelled data using back
propagatlon Convolution Fully connected

. | NG L
For example, convolutional neural network N
(CNN) for image processing — linear filter
(translation invariance) — max-pooled |
(downsampling) - classification Lo (Input) L1 L2 5 La
. L. 512x512 256x256 128x128 64x64 32x32 (Output)
CNN require huge datasets for training by GPU

Despite high success rates, CNNs are vulnerable to humanly-obvious misclassification
errors

No significant CNN performance improvement in 25 years

Humans can learn pattern recognition in a few images — CNN requires enormous training
datasets yet make fundamental errors

C elegans worm possesses only 380 neurons yet is capable of adaptive behaviour
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Recurrent Neural Networks

= Recurrent neural networks exhibit feedback connections and are Turing-complete

= Feedback enables temporal sequences to be
stored, i.e. memory

= Linguistic sequences subject to neural processing,
using ElIman network, e.g. predict word sequences

=  ChatGPT is extension of this

= Elman and Jordan recurrent networks have limited
sequence memory

= Long short-term memory (LSTM) is RNN with

y(t)

I\ Outputs |

hit) hiy
| Hidden'\ [ Delay \

\ Unites \ Units /

it he1) x(t) yit)

| Inputs |

Elman Jordan

specialised memory neurons to store long linguistic sequences
= RNN trained using backpropagation-through-time (BPTT) or real-time recurrent learning

(RTRL) algorithms

= Transformer neural network is RNN that processes whole sentences rather than word-

by-word

= RNN showed that linguistic symbol sequences may be predicted using neural

networks
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Large Language Models

g Large language models are statistical models of language that encapsulate joint
probability function of word sequences — conditional probability of next word in a sequence
given the prior words: p(wy) = [T—; p(W; [w;_7)

= Statistical dependence between words increases with their proximity, p(w;|w;_r) =
p(W;|w;_,41) for n contexts

= Chat GPT is a transformer RNN model that processes sentences to maximise log-
likelihood of word sequences (wy,...,Wy)

= GPT-3 (2020) neural network for language processing comprises 175 B parameters
approximating number of neurons of the human brain

= MT-NLG neural network has 530 B parameters but with only marginal increase in
performance against a standard text processing benchmark

= GPT-3 was trained using 1.3 GWh electrical energy - GPT-4 was trained using 25-30 GWh

= GPT is a text processor (a grander version of ELIZA chatbot) that generates plausible text
— | queried ChatGPT-3 “How much energy is required to manufacture liquid oxygen and
liquid hydrogen rocket propellant?” — its response was that such propellant and oxidiser
yields high specific impulse performance, etc — even further qualification yielded the same
result

= |t has no understanding of reality....It is a deadend for Al

Carleton Piaget — motor learning (self) must precede symbol learning (environment)
W’ UNIVERSITY



Transfer Learning

% Transfer learning applies learned models from a prior domain to a new domain — it is a form of
analogous learning (meta-learning)

It is assumed that probability distribution of target domain data is similar to that of the source
domain p(y,|x;)= p(y:|x)

We used transfer learning methods apply a forward model of a manipulator trained on
Earth to same in space (modelling human cerebellum function)

Forward model: = D(8)™1(x — €(8,0) — G(8))

DH:q-> 6,6,8 .
| Integrated to predict 8 and 6 from 1
-t =D(0)9 +C(6,0) + 6(6) TL from p = [[iL, Ril;
T (desired) as the input Inverse model tO p k= C + H:l=1 Rlﬂ'l
and;he Zrediceted output 5 ad Feed(b_ack coptr;ller ( ) 1
as 075, O5f, 0. r0=60 +K,(0,—-6,) +K,(68, -6, _ i
NNet Model 4 4 where A =— }-=0(m}- l; — miri)
o v Predicted output ?nT
eff_[r] sensory states . . .
— e e Earth/space kinematics/dynamics possess the
ee .OI'WGI' : copy of input . .
Predicted outpu P motor torque same algorlthmlc form, ANN Cann()t transfer
Ir
o, learn between domains because i/o pairs cannot
] extract underlying algorithms

ANN cannot generalise beyond their training




Symbol Manipulation

Reasoning is an essential property of Al

=  Symbol manipulation (GOFAI) is based on logical rules of inference operating on internal model of the
world encoded as symbols

= Logic is the formalism that simulates events of the external world as world models
= Firstorder logic is based on single subject predicates with quantifiers (universal v and existential 3

expanding its expressiveness Anatomy of an expert system
= FOL statement has the form vx, y, z[give(x,y,z) - own(y, z)]

where x=giver, y=recipient, z=object

Horn clause logic has a single consequent (e.g. Prolog)

=  Expert system comprises knowledge base of production - w Inference engine
rules of form: “IF (conditions) THEN (action)” ————

SOAR is a cognitive model of symbol processing that agenda
implements subgoaling for problem-solving
=  CYC with 25 M rules attempted to encapsulate “tacit” knowledge

solution

= Large expert systems suffer from large computational footprint, consistency maintenance and brittleness

=  Non-monotonic logics — modal logic (possibility), temporal logic (time windows), situational calculus (local
restrictions), etc - weaken theorem proving validity of classical logic — RAX (DS1) and ASE (EO1) were
temporal logic implementations
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Semantic Networks

= Semantic networks are symbolic systems that organize knowledge into taxonomic trees

that define relationships between concepts _has
. . .. Vertebra > Fur

= They are hierarchically structured categorisations A

through “is-a” links hes has//
= Properties are inherited for compact representation
= They permit exceptions to inherited properties Animal <————— Boar
= Modular semantic networks may be sparsely .s

connected e Whale

= Spreading activation between concepts provides a —— %
. . Fish —————= water
measure of their semantic relatedness

= Searle’s Chinese Room argument asserts that syntactic manipulation alone cannot impart
semantic content

= This is so if symbols are not grounded in the real world (e.g. ChatGPT)

=  Symbol grounding imparts semantic properties to symbols suggesting that sensors and
actuators that directly interact with the real world is essential

s e Carleton
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Neurosymbolic Processing

= There is little dispute that human intelligence implements symbol processing on a neural
substrate (there is neurophysiological as well as cognitive evidence)

= Neurosymbolic approaches map symbol representations such as logical inferences
into neural networks — neural network learns new data — new logical rules are extracted

= There are three major approaches:
» (i) logical rules mapped into the i/o function of neural networks, e.g. KBANN

> (ii) weighted logical rules mapped to energy function-based neural networks, e.g. restricted
Boltzmann machine

> (iii) logical rules embedded into tensor representation (vectors), e.g. logic tensor networks

= Recursive auto-associative memory (RAAM) can represent compositional structure
of symbolic tree representations as tensors

= Fuzzy neural networks (FNN) map fuzzy rules into neural networks

= Fuzzy if-then rules are characterized by membership functions [0,1] quantifying degree of
linguistic accuracy — they are universal approximators

= ANFIS is a 5-layer feedforward FNN — input layer — fuzzification layer — AND rule layer —
weight normalization layer — defuzzification layer — output inferencing layer
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Knowledge-Based Artificial Neural

Network (KBANN)

= Knowledge-based artificial neural networks (KBANN) inserts symbolic Prolog rules
into the weights of a neural network as prior knowledge (Towell & Shavlik)

= Rules-to-network translator involves several steps:
() disjunctions are expressed as multiple rules to create AND/OR tree mapped into the
neural network;
(i) neural weight is determined by the number of positive antecedents;
(iif) add hidden neurons to accommodate more complex rules;
(iv) add input neurons to extend input range;
(v) add small random weight connections for full connectivity;
= Neural network can be trained using BP to accommodate new datasets

= There are three approaches to extraction of new rules (incl non-monotonic rules with prior
pruning) but decomposition such as M-of-N algorithm is suited to KBANN — certainty
factors may be computed from squashed connection weights

= KBANN is particularly promising because pre-programming shapes its future learning
within boundaries — this ensures its future behaviour
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Bayesian Approach

n Bayes rule defines posterior probability of cause H based on data E:
p(H|E) = p(HNE) _ p(E|H)p(H)

p(E) p(E)
p(H)=prior
p(E|H)=likelihood function
p(E)=p(E|H)+p(E|~H)=probability of evidence regardless of cause

= Bayesian brain hypothesis posits that the brain is a Bayesian inferencing machine
that mediates between top-down (prior) and bottom-up (evidence) processing

= Only prediction error (difference between predicted and actual input) is
propagated neurally — predicted input is generated by feedforward models

= Bayesian network learning may be implemented
through Rescorla-Wagner associative learning of
causal relations between objects and events in the
environment

> Carleton

4y UNIVERSITY



Bayesian Networks

Bayesian networks (BN) encode conditional probabilistic rules to represent
dependencies (association) between symbols

Prolog rules can form Bayesian network as structured expert system with inheritance
links

For large BN, Bayes rule is intractable - approximation through expectation maximization
or Markov chain Monte Carlo algorithms (MCMC Gibbs sampling is most common)

Bayes rule may be deployed to determine causal relations between hypotheses and
evidence — likelihood ratio LR=p(E|H)/p(E|~H): .
() if LR>1, evidence E increases p(H)

(il) if LR<1, evidence E decreases p(H)

(i) if LR=1, evidence is irrelevant to p(H)

Example: Appeal (2007) of Regina v Barry George
conviction of murder of Jill Dando was overturned on
the basis that gunpowder residue evidence had LR~1
because p(E|G)=p(E|~G) and only p(E|~G) was presented g <o se.
at original trial.

Prosecutor assumed fallacy that p(H|E)=p(E|H)

P(T|A) = 0.05 P(L|S)=0.1
P(T|~A) =001 P(L|~5)=0.01

P(B|S) =06
P(B|~5) =03

PEILT) =1
P(EIL, ~T)=1
PE|I~L. T)=1
P(E|~L. ~T)=0

P(DIEB) =079
P(DIE~B) =07
F(D|~EB) =08
P(D|~E.~B)=0.1
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Bayesian Neural Networks

» Bayesian neural networks (BNN) incorporate a Bayesian treatment to neural
networks — they do not integrate Bayesian networks with neural networks

= BNN are stochastic neural networks that introduce an additional term to the error
function to accommodate weight uncertainty

E =aE, + BE,;
where E;=mean square error in outputs, E,=mean square error in weights

= This prevents overfitting (poor generalisation) in network learning by imposing
prior (desired) weights

= Prioris assumed a Gaussian function of the weight normalized across all the
weights of the network

= Optimal weights maximise the posterior probability distribution

> Carleton
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Markov Logic Networks

» BN may be represented as Markov logic networks (MLN)

= MLN comprise a set of F first order logic (FOL) rules subject to
probabilistic weights (f;,w;) where f,=FOL formula, w; = fﬂfﬁm

=weight representing joint probability distribution over possible worlds

(degree of certainty)

=  Weights permit contradictory formulae — if w=1, we have pure knowledge
base

= MLN inferencing (weight update) involves computing ratio p(H|E) =

p;({;) using approximate MCMC solutions such as Gibbs sampling

= MLN structure is learned through inductive logic programming
= Neural MLN represents rules at potential functions

> Carleton
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Genetic Learning

= Job-shop scheduling of multiple manufacturing jobs across multiple machines is NP-hard
=  Multi-agent coordination may be implemented through genetic algorithms (GA)

= GA simulates biological evolution through random search with direction imposed by a
fitness function

= Solutions are represented as a population of binary strings (e.g. machine code) subject to
mutation and crossover

= Genetic program implements high-level computer algorithms
(e.g. Prolog) represented as hierarchical decision trees

= Genetic operations include crossover — swapping subtrees

= Programs are subject a fitness function evolved from
generation to generation

= Learning classifier systems (LCS) have condition-action
(if-then) rule format with weights representing fitness

= Bucket-brigade learning algorithm is based on reinforcement
learning to allocate credit and update weights
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Discussion

i Multiple problems with Al

» (1) ANN neurons are simple switches that have highly diminished capabilities
compared with biological neurons - though neural networks based on spiking
neurons have been implemented, they are for small networks.

» (i) A biological neuron has a response time of ~1 ms and human cognitive
reaction speed ~100 ms — this suggests that cognitive tasks require <100
neuronal steps....

= Symbol manipulation assumes the human inferencing is logical — there is much
evidence that it is not (e.g. Wason selection rule)

= Any symbolic program will be error-prone - average released software has 11
bugs/1000 lines of code (Space Agencies reduce this to 0.11 bugs/1000 lines of
code through extensive V&V methods)

= Until recently, it was assumed that human level intelligence would be achieved
through scaling to permit brute force computation....

= \We have achieved brute force computation — human-level intelligence has not
been achieved

> Carleton
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Conclusions

We have several tools but they are deficient....

» We can employ learning classifier systems to learn if-then rules

» Bayesian versions of Markov Logic Networks require structuring of these learned rules

»  Symbolic rules must mapped into a structured neural network

» Probabilistic representations may be into the weights of neural networks

» How to represent symbols in switching neurons is not clear...though RAAM can incorporate symbol trees,
they cannot be manipulated

» LSTM backend provides sequential processing capability

= We are missing a deep understanding of the mechanism of intelligence....

= |tis plausible that Al might be good enough for flyby missions

= |tis unclear if class (ii) robotic astrobiological investigations of extrasolar planet encounters
are achievable which require scientific hypothesis generation and testing under unknown
environments

= Encounters with biological ETI cannot be supported - current Al does not emulate human
value reasoning especially human risk-aversion (loss outweighs equivalent gain of same
magnitude) - such non-Bayesian asymmetry has sound evolutionary rationale (Darwin
awards)

= Al-to-Al encounters will be explored at the next Interstellar Symposium...
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