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ABSTRACT
Self-replication technology is a little known technology that is

currently under development and that has enormous implica-

tions for affordable space exploration. In particular, the prospect

of 3D printing of actuators and electronics offers the prospect of

realizing a universal constructor, which is the basis of a self-

replicating machine. The universal constructor is a general-

purpose automated factory that is supported by a number of

robotic devices. If programmed appropriately, it can manufacture

a copy of itself (as well as other products). We present an

overview of self-replication research and its application to col-

onization of the Moon at very low cost—it offers a means to

overcome the high cost of launch through exponential exploi-

tation of in situ resources. Combined with in situ resource uti-

lization, a universal constructor can construct (in theory) almost

any product within certain constraints. Indeed, its productivity

dwarfs any potential cost reductions in launch costs. We shall

focus on defining several critical technological developments. It

has potential commercial applications in extremely low-cost

manufacturing of solar power satellites for clean energy pro-

duction for the Earth. Self-replication capability offers a mech-

anism for offsetting discounting of future revenue (as computed

by net present value cost-benefit analysis) by generating expo-

nentially increasing revenue over time. It represents a ‘‘Bold’’ (as

advocated by Peter Diamandis) approach for a start-up company,

toward which steps are being taken. These steps will be dis-

cussed in detail. However, the revolutionary economics will make

it challenging to attract capital investment despite eliminating

the discounting effect. Nevertheless, a business case can be

made despite a long-time horizon of investment due to nu-

merous progressive spin-off applications. Over the long term,

self-replication technology could revolutionize space exploration

by providing for remote construction of complete (although

simple) spacecraft in large numbers from in situ resources. By

virtue of this massive productive capacity offered by self-

replication technology, missions that are currently considered

too expensive or impractical become feasible, for example,

space-based geoengineering, asteroid exploitation and/or miti-

gation, and difficult outer planet locations such as Enceladus,

interstellar precursor missions, etc.

Keywords: self-replicating machines, in situ resource utili-

zation, universal constructor, robotic planetary infrastructure

INTRODUCTION

I
believe that the space sector is mired in a rut that it has

inherited from its historical origins in the Cold War space

race. Its philosophy is based on racing—its race to the

Moon has colored its subsequent mission goals such as

racing to Mars or racing to the Moon on steroids. Only recently

has the landscape included major commercial players. En-

trepreneurial space activities have been very active of late, the

most visible of which is SpaceX—SpaceX’s main customer is,

of course, NASA. Other players include Virgin Galactic, As-

trobotic, Planetary Resources, Made-in-Space, etc. In fact,

such entrepreneurial ventures were discouraged by NASA in

earlier days. Further, the racing philosophy has failed to open

up the space environment to ordinary folk who might wish to

exploit it as a business opportunity—we live in a world of

shopkeepers, after all, who seek only opportunities to improve

their lot. According to the British Government, space is one of

the ‘‘Eight Great Technologies’’ (David Willetts MP, Policy

Exchange, London, 2013). As such it should contribute to the

human condition in a substantial way. I am not referring to

the dreaming spires of pioneering rockets in space or the

self-conscious ‘‘overview effect’’ described by Frank White.
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Although I am sympathetic to these notions, they have been a

hindrance by elevating space exploration for the preservation

of the technological and scientific priesthood. I wish to

transform space exploration into something totally unrecog-

nizable by opening up the space environment with near-zero

cost access for ordinary folk with ideas on how to make a

buck. In situ resource utilization avoids the requirement for

the expensive launch of such resources from the Earth’s sur-

face. However, it is only a modest step—a fully manufactured

infrastructure requires considerable capital delivery and in-

stallation. Self-replication technology is an entirely disruptive

technology that offers the opportunity to revolutionize all

industrial and domestic activity, especially in the space en-

vironment. Inherent in self-replication technology is the idea

that there are no fundamental limits on upward human

progress and growth. Self-replication effectively amortizes

initial capital costs over an effectively infinite productive

capacity ceteris paribus. Its exponential increase in productive

capacity provides enormous opportunities for the construc-

tion of infrastructure in space to drive business opportunity.

The construction of infrastructure is the key to the robust

development of the space environment to enable both com-

mercial and government activity at low cost.

THE POWER OF SELF-REPLICATION
Net present value (NPV) cost-benefit analysis is an oft-used

analytical tool for assessing the relative merits of competing

investment projects in terms of the return on investment. It

typically has an S shape representing the initial costs of in-

vestment followed by the gradual accumulation of revenue

until pure profit is realized. By projecting into the future, the

discount rate ensures the approach to saturation, which also

reflects future obsolescence (Fig. 1). NPV is given by:

N = +
n

i = 0

Ni

(1 + r)i
, (1)

where N = B-C, B = revenue, C = cost, r = discount rate,

i = discrete time (years), and n = project duration. This assumes

that the benefits and costs can be measured. NPV cost-benefit

analysis penalizes long-term projects whose benefits are dif-

ficult to measure by using the accountant’s limited set of tools,

that is, investment decisions are made on the basis of igno-

rance. All else are lumped as externalities. This is the assertion

of the cynic over the sentimentalist in Oscar Wilde’s play Lady

Windermere’s Fan who knows the price of everything but the

value of nothing. It has now become more fashionable to

incorporate harmful effects such as pollution into cost-benefit

analysis. NPV cost-benefit analysis stands as the primary tool

of the bean-counter.

There is uncertainty associated with cost-benefit compu-

tations because the future is dark and unpredictable—this is

the purpose of discounting.2 Of course, much depends on the

numerical value of the discount rate r, which dramatically

affects the net benefit-cost computed. Much argumentation

revolves around the selection of the appropriate value. As a

benchmark, over the past 50 years, the average return on in-

vestments has been 10%. However, competition for invest-

ment such as hedge funds and other financial instruments

offers higher rates of return.

After World War II, national defense became heavily reliant

on advanced technology funded by government programs

(including the space program). This was supported by the

Keynesian economic model of economics—social security

payments cushion the fall in consumer spending, whereas

infrastructure investment stimulates economic growth. Si-

milarly, governments can alleviate the investment require-

ment of projects and increase profits to the private sector

by providing initial seed funding, particularly for basic

and applied research and development (Fig. 2). Apple received

a business development grant of $500,000 during its early

days (yet today, it pays marginal tax in return). Innovation

in the private sector has often been driven primarily by gov-

ernment support of infrastructure technology—both internet

and GPS were military research projects before being co-opted

for civil use.

However, the discount effect is still apparent, even with

initial government funding. Cost-benefit analysis generally

refers to a single project involving an initial investment fol-

lowed by a revenue stream that is progressively discountedFig. 1. Typical NPV curve1—$M versus years. NPV, net present value.
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into the future. The limitation is that a fixed capacity gener-

ates a fixed revenue stream. A self-replicating machine,

however, overcomes this limitation through its exponential

growth in capacity. The productive capacity of a self-

replicating population has a similar form to NPV cost-benefit

analysis and is given by:

P = +
m

i = 1

(1 + r)i, (2)

where r = number of offspring per generation, i = generation

number, and m = number of generations. The discount rate in

NPV cost-benefit analysis is typically 0 < r < 1; whereas in a

self-replicating machine, the number of offspring per gener-

ation, r ‡ 1. For instance, if r = 2 and m = 13, P > 2 · 106, that is,

the power of self-replication yields exponential growth in

production.

An initial capital outlay for the initial self-replicating ma-

chine yields a productive capacity that grows exponentially

(Fig. 3). This capacity growth of self-replication outpaces the

accumulated penalty in NPV cost-benefit analysis. The bean-

counter has finally been slain! Further, obsolescence is alien

to self-replicating systems in a very real sense. Modifications

or upgrades may simply be uploaded to old self-replicators

to produce the new upgraded versions—no upgraded machines

need be supplied, so no further capital costs are incurred.

SELF-REPLICATING MACHINES
Much of the theoretical background to self-replicating

machines is given in Ref.3 The self-replicating machine con-

cept as developed by John von Neumann was based on the

Universal Constructor, a machine that if given the appropriate

resources can construct anything (within the bounds of rea-

son). This includes a copy of itself, ergo, a self-replicating

machine. The self-replicating machine comprises two core

systems—a generalized robotic mechanism and a universal

computer to control it. Self-replication is a disruptive tech-

nology with many spin-offs on the way to its realization. The

most fundamental components for any robot are electric

motors and electronic controllers. Such robots include rovers

for mobility, 3D printers for manufacturing, manipulators for

assembly, or a combination thereof (such as Fig. 4).

Many of the technical issues involved in designing a self-

replicating machine using in situ lunar resources are outlined

in Ref.4 The Moon has almost all the extractable resources

required to build a self-replicating machine, including struc-

tures, electric motors, and electronics (Table 1).

Although much of the required material can be extracted

from surface lunar regolith, some require access to subsurface

NiFe asteroid material marked by mascons. Specific issues

related to lunar mining are addressed in Ref.5 The processing

and purification processes required are also addressed in these

papers. From these materials, a variety of 3D printing tech-

niques may be employed—fused deposition modeling (FDM)

for silicone plastic, electron beam freeform fabrication

(EBF3) for metals, and selective light sintering (SLS) for ce-

ramics. The focus of my work has been in 3D printing of

electric motors as a critical step toward self-replication. Early

work in 3D printing electric motors is described in Refs.6,7

Since then, several new motors have been developed that

incorporate 3D-printed features. A test setup has been built

to test direct current (DC) motors that incorporate 3D-printed

motor cores comprising magnetic iron particles impregnating

a plastic matrix extruded by FDM (Fig. 5).

Fig. 2. NPV curve with government seed funding1—$M versus
years.

Fig. 3. Exponential productive capacity of self-replication—
population versus generation.
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A pancake motor has been developed with a 3D-printed

support structure using wire coils on the armature (Fig. 6).

The wire coils of the pancake motors have been replaced by

photolithographically printed coils on the armature8 (Figs. 7

and 8).

The next stage involves sandwiching the photolithography

printed coils and incorporating them into the earlier DC motor

designs. This will yield the first, fully 3D-printed electric

motor. Then work can begin tackling reducing or eliminating

the manual assembly process by using new designs. Although

most of this work has concentrated on using FDM to print

metal-impregnated plastic, it is anticipated that this work will

be extended to metal printing, including EBF3 and SLS. Al-

though 3D-printed motors can be tailored to specific appli-

cations, competing with the traditional motor industry is

unlikely to be successful except in niche applications. In

particular, it is expected that their performance will initially

be inferior to traditional off-the-shelf motors that have

benefited from a century of accumulated wisdom. One niche

application would be incorporating 3D-printed reaction

wheels in 3D-printed cubesat-like spacecraft such as might

be inspired by the EyasSat spacecraft model (Fig. 9). One of

the products of the self-replicating machine is a spacecraft

and indeed, all the subsystems required for a spacecraft are

those required by a self-replicating machine. Such 3D-printed

spacecraft, including motors, may be printed on demand

on the International Space Station (ISS) from an inventory of

stored raw materials offering the capabilities of actively

controlled attitude control and slewing.

We have not yet demonstrated

3D printing of electronics, but

we have been exploring a com-

putational architecture based

on analogue neural networks

(implementable using vacuum

tubes) that is potentially 3D

printable from the material set in

Table 19 (Fig. 10).

A two-analogue neuron circuit

has been demonstrated as im-

plementing obstacle avoidance

on a desktop rover. An analogue

neural network control circuit

has been developed as a backup

to a satellite control system to

automatically implement safe

mode.10 It uses sun sensor mea-

surements to activate the neuro-

control circuit independently of

the onboard computer to orient the spacecraft to a deadband

around the sun axis if the spacecraft veers away from it. Each

neuron is inhibitory, comprising a summing differentiator

amplifier with an input time delay followed by a bistable

Schmitt trigger comparator. The two-neuron network is

connected in series so that the output of one neuron feeds into

the input of the other, which is different to our parallel two-

neuron connection arrangement. Issues related to 3D printing

electronics in the form of analogue neural networks are ad-

dressed in Ref.11 Any neuron is characterized by a constant

probability of failure. To emulate n perfect neurons, we need

O(nlogn) redundancy in unreliable neurons to compute the

same function. Hence, there is low growth in circuit com-

plexity in implementing reliability in neural networks. The

leaky integrate-and-fire neuron offers the possibility of sto-

chastic resonance for the extraction of signals buried in

noise.12 Appendix considers the use of neural networks for

artificial intelligence requirements that are imposed by a

self-replicating machine. The implementation of artificial

intelligence in neural networks, in general, is reviewed in

Ref.13 The prospects for deep learning in hardware neural

networks are promising14—once learning is complete, the

neural network configuration and weights are fixed suitably

for implementation in hardware.

We have, thus, considered the two core components of

a self-replicating machine—actuators and electronics. The

ability to 3D print electric motors and electronics will repre-

sent a major leap toward realization of a self-replicating

machine. In a naı̈ve sense, this is obvious if we take the

Fig. 4. Mobile rovers 3D printing regolith on the Moon [credit European Space Agency].
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RepRap 3D printer as our representative model. It is capable of

printing its own plastic parts. To become fully self-replicating

(from feedstock), it must be imparted with the ability to print

its metal components (implementable through EBF3 based on

a high-power vacuum tube), its electric motors (it is essentially

a Cartesian robot), its electronics (vacuum tubes in neural net

configurations can realize general computing capabilities),

and its energy source (vacuum tube-based thermionic con-

version generates electrical energy from solar sources, and

motorized flywheels implement power storage). Manufacture

of feedstock from lunar resources is more challenging but

essentially requires rover vehicles with articulated manip-

ulator scoops and/or bucket wheels—these are essentially

robotic devices, again, configurations of motors controlled by

electronic circuits. We estimate 6 years to a working prototype

that is similar to the RepRap based on our 3D metal printer

under development. Development of a flight version over 2–3

years is typical for a planetary rover; our Kapvik micro-rover

(including its onboard intelligence using commercial off-the-

shelf systems) was developed from concept to pre-flight

version within 2.5 years, including its test campaign. The up-

coming lunar Resource Prospector mission will demonstrate

some of the basic in situ resource utilization techniques that are

required to extract feedstock from lunar resources. Once a

single fully self-replicating machine has been emplaced on the

Moon, the mathematics of self-replication (eq. 2) dictates that

within 6 years, the order of a million units will have been

manufactured assuming a generation time of 6 months.

IS THERE A BUSINESS CASE?
What are the prospects for success? Not all technological

investments have been successful. Research and development

Table 1. Lunar Material and Their Functionality

Functionality Traditional Earth Materials Lunar Substitutes Applications

Tensile structures Aluminum alloy, iron alloys (steel),

titanium alloy, plastic, composite materials

Wrought iron, cast iron, steel General structures, including vehicles

Compressive structures As above plus concrete/cement Wrought iron, cast iron, steel Buildings/fixed infrastructure

Elastic structures Metal springs/flexures, rubber Iron alloy springs/flexures,

silicone elastomers

Compliant structures

Thermal conductors Aluminum, copper, heat pipes Steel, fernico Thermal straps, radiator surfaces

Thermal insulation Glass (fiber), ceramic Glass (fiber), ceramic Thermal isolation

Thermal tolerance Tungsten, tantalum Tungsten Vacuum tube electrodes, high-temperature crucibles

Electrical conduction Aluminum, copper, nickel Fernico (e.g., kovar), nickel Electrical wiring, resistors, capacitors,

inductor coils, motor coils, electromagnet coils

Electrical insulation Glass, ceramic, plastic, silicon steel Glass, ceramic, silicone plastic

(to be minimized), silicon steel

Vacuum tube enclosures, ceramic plates

(motor cores and capacitors), plastic sheathing,

electric motor cores

Active electronics Solid state Vacuum tubes (kovar, nickel,

tungsten, glass)

Computer architectures

Magnetic materials Rare earth materials (permanent

magnets) supermalloy

Silicon steel/laminate

(electromagnets) permalloy

Magnetic flux generation (motors), magnetic shielding

Sensors and sensory

transduction

PVDF/PZT, PN junction semiconductors Quartz, selenium, thermionic conversion Radio-frequency oscillators, electricity generation,

optical vacuum tubes (photodiodes/photomultipliers)

Optical structures Polished aluminum glass Polished nickel, glass Mirrors, lenses, optical fibers

Liquids Hydrocarbon oils water Silicone oils, water (to be minimized) Lubricants, hydraulic force transmission (e.g.,

hot isostatic pressing), coolant

Gases Air—petrol/paraffin Oxygen—hydrogen Oxidant—propellant
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is the primary source of scientific and technological innova-

tion, but it is risky and expensive. The supersonic Concorde

aeroplane was enormously successful technologically but was

an abject failure financially. Early gene therapies were fail-

ures, and stem cell research has been plagued with scandals.

More recently, the Human Brain Project has been a fiasco.

Self-replicating machine development does not suffer from

the ambiguity and the complexities that are inherent in bio-

logical research. Self-replication technology is a general-

purpose technology that is characterized by its potential for

pervasiveness in downstream industries such as manufactur-

ing and energy generation.15 The closest historical analogy

was the electrification of factories in the 1920s and the in-

troduction of electric motors throughout manufacturing that

led to rapid increases in productivity.16 Is there sufficient

innovation for success? To the economist Ronald Coase, in-

novation is built into a company to perform tasks that cannot

be accomplished by individuals through a market mechanism.

To the great economist Joseph Schumpeter, innovation may

be likened to the dance of Shiva creating waves of creative

destruction, with vibrant new technologies laying waste to

tired old industries. This is an evolutionary process of con-

tinuous innovation and culling. Self-replication technology

corresponds to one of the two Schumpeterian fundamental

technological innovations (new product and new means of

production). New means of production was highlighted as the

most important technological innovation—self-replication is

Fig. 5. Direct current motors with 3D-printed motor cores of plastic
impregnated with iron particles.

Fig. 6. Three-dimensional printed pancake motor structural sup-
port.

Fig. 7. Photolithographically printed coils for the pancake motor.

Fig. 8. Printed coil armature in 3D-printed pancake motor.
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such (and simultaneously a new product also). To the phi-

losopher of science Thomas Kuhn, there are two types of

scientific innovation—small, incremental innovations that

progress scientific advance in small steps, and the rarer but

more devastating paradigm shifts that radically alter entire

scientific viewpoints. Self-replication technology is the latter.

There are three economic cycles—the well-known short-

term business cycle of 3–5 years, the long-wave Kondratiev

cycle of 40–60 years, and the medium-wave Kuznets cycle of

15–25 years.17 The Kuznets cycle corresponds to the life-

cycle of replacement of capital equipment through major

investments—self-replication technology will eliminate this

cycle entirely by providing continuous upgrading at low cost.

The Kondratiev cycle comprises economic peaks that are

separated by periods of slow growth, with peaks correspond-

ing to technological revolutions that then diffuse as infra-

structure developments—1771 (industrial revolution of textile

production), 1829 (age of steam and railways), 1875 (age of

steel and heavy engineering), 1908 (age of oil, automobile,

electricity, and mass production), and 1971 (age of informa-

tion and telecommunications). We postulate a sixth inno-

vation cluster of post-information and communication

technologies (post-ICT) robotics and self-replicating machines

in the 2020s. Self-replication technology has the potential

to be a revolutionary technological paradigm change that is

associated with long-wave Kondratiev cycles. Such long-term

technologies create both wealth and more new jobs than they

destroy in expanding markets by creating new products and

services.

To the business theorist Clayton Christensen, innovation is

something altogether more ethereal—it cannot be ensnared,

surgically investigated, or controlled. Innovation is crushed

by bureaucratic attempts to harness it. Is novelty an indis-

pensable component of innovation? Sir Isaac Newton, argu-

ably the greatest scientist who has ever lived, whose output

of novel scientific ideas was prodigious, in a rare moment of

modesty, wrote ‘‘if I have seen further, it is because I have

stood on the shoulders of giants.’’ Here, we have the admission

that any new, innovative ideas are never really truly new, but

are derived in some fashion from one’s previous learning and

experience—so-called ‘‘prior art.’’

These definitions of innovation are all true, of course,

making the quest for understanding innovation ever more

mysterious. But here, there are two aspects to innovations of

importance—the technically creative aspect and the entre-

preneurial aspect that brings the technical creation to the

market. Indeed, the entrepreneurial aspect may not even need

technical novelty as it may involve identifying new markets

by adapting an existing technology or product. Conversely,

there are many technical crea-

tions that never make it to the

market, or do but fail to catch, or

do but are subsequently sup-

planted. Or, the technical novelty

may be just too innovative and

must wait for the market to catch

up. Evidently, technical creativity

is no guarantee of success—this is

the source of the ethereal quality

of innovation. Celebration of the

entrepreneurial aspect was em-

phasized by Peter Diamandis in

his best-selling book Abundance:

Fig. 9. EyasSat spacecraft model with central reaction wheel.

Fig. 10. Modified Yamashida-Nakaruma hardware analog neuron circuit used on a desktop rover.
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The Future is Better Than You Think but the work presented here

is on technical innovation. Most innovations begin in a primi-

tive state—our 3D-printed motors will not compete with tradi-

tional motors initially. They may appeal to early adopters in

niche markets but crossing the chasm to the majority market will

require superior qualities such as price, performance, or ease of

use. This penetration into the majority market often takes con-

siderable time, for example, aeroplane (1903–1935+) and mobile

phone (1983–1995+).

An important facet of innovation is the requirement for

education, particularly university education.18 Universities

perform research and development as they form research

groups of skilled and educated people whom they have trained.

Their research is often funded by public and private investors.

Universities are the repository of human capital, which it

educates with human knowledge. This is the origin of the work

on self-replicating machines presented here—it is unlikely that

corporate industry could have spawned such a child.

We have adopted an open innovations approach in order

not to be shackled by patent designs (our designs are con-

stantly evolving)—evidence suggests that it is more efficient

and productive than patenting. Patents can act as straitjackets

to accelerating innovation. Patent trolls do not engage in

innovative activity but serve to block it. They do business by

suing for patent infringement of their own typically vague,

generalized, and speculative patents. Between 40% and 90%

of patents are never exploited. It is questionable as to whether

patents offer any real protection. Inter partes review (IPR),

designed to combat patent trolls, can invalidate patents (with

an average 70% invalidation rate), but smallholders are par-

ticularly vulnerable when IPR is petitioned by powerful cor-

porations.19 Open innovation provides the prospect for

attracting external contributions. Publishing developments

should prevent parasitism by patent trolls. This presents a

challenge to any business model. Could this project become a

unicorn? Unicorns are startups that have an evaluation ex-

ceeding $1B within a year or two of starting but have yet to be

floated on the stock market. Many have negligible revenues

that do not reflect these high valuations that are inflated by

the investors. When floated on the stock market, they often

cannot command such valuations. Investors are offered

guaranteed returns if valuations drop when floated on the

stock market. As a consequence, common stocks such as

those held by employees are diluted. Notwithstanding that

caveat, we have been unsuccessful in attracting investment.

Despite our stepping stones, we are too far away from the

market and must rely on government sources to bring us

closer to the market.

ARE THERE LEGAL SHOWSTOPPERS?
The Outer Space Treaty (1967) (and the unratified and

therefore irrelevant Moon Treaty of 1979) forbids the appro-

priation of natural resources on the Moon or other celestial

bodies by any nation. Further, occupation by emplaced

structures does not imply property rights. This, of course, does

not refer to the structure itself that retains its ownership in-

terests. Further, it does not pass comments on manufactured

products that are created from mined raw materials. Given the

failure of the Bogota Declaration (1976) to secure the geos-

tationary orbit as subject to national appropriation by equa-

torial nation states, it is unlikely that freedom of use of

extraterrestrial resources will be successfully challenged. The

geostationary orbit is a scarce and finite resource of physical

space that is exploited by communications satellites and is

being degraded by such use when end-of-life geostationary

satellites are not inserted into a graveyard orbit. Currently,

this constitutes a customary (though undesirable) practice

that may be directly applicable to lunar exploitation of raw

materials that are similarly degraded by use. Nevertheless, in

reality, the law generally implements a form of ‘‘wait-and-

see’’ policy to ensure that desirable commercial development

is not curtailed by premature legislation. The unratified Moon

Treaty (1979) exemplifies this.

Legal positivism holds that economic analysis may be ap-

plied to tort, contract, and criminal law to increase economic

efficiency in a Pareto sense.20,21 The goal is to minimize all

costs, including the costs of legal error and incurred financial

costs. In a criminal case, the probability of guilt and deterrent

to criminality must be balanced against the probability of

wrongful punishment (price) of the innocent based on the

social cost of criminal behavior. The legal positivist approach,

however, has been disputed by the Hayekian view that law as

order emerges spontaneously to mediate consistent interper-

sonal relations.22 This argument is weak—bordering on the

mystical—in comparison with the legal positivist argument

that imposes a utilitarian principle to the conduct of inter-

national law. There are, nevertheless, weaknesses in the market

mechanism (imperfect information, transaction costs, and ex-

ternalities in particular) requiring additional mechanisms such

as welfare economics to compensate.23 These, of course, must

be considered in the economic approach to legal judgment. This

suggests that in situ resource utilization should be supported

legally if economic principles are observed.

There are further legal issues introduced by self-replication

technology. The most relevant legal precedent regarding self-

replicating entities concerns seeds.24,25 The case of Monsanto

versus Bowman concerned a dispute over patent exhaustion
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on Monsanto’s Roundup-Ready soyabeans that were geneti-

cally engineered to be herbicide resistant. It was argued that

the patent on the bean did not extend to second-generation

beans that were grown from the purchased first generation.

The sale of the product was considered to have exhausted the

patent on the product, permitting it to be used or resold. With

self-replicating entities however, using and copying are the

same thing. The patent right was, thus, upheld as applicable to

subsequent generations of seeds. This implies that the owner

of the original self-replicating machine will retain rights on all

subsequent generations according to the precedent of Mon-

santo versus Bowman. This is a worrisome prospect.

CONCLUSIONS
It is estimated that a self-replicator prototype could be de-

veloped within 6 years with a cumulative budget of $12–15 M.

A flight version would take a further 2–3 years to enhance the

self-replicator reliability and its applicability to the Moon.

Hence, a self-replicator could be delivered to the lunar surface

within a decade. Assuming a 6-month replication time, it

would take just 6 years to populate the Moon with 2 million

self-replicating factories. Necessity is not the mother of in-

vention as commonly espoused26—invention is directed to

create necessity. This productive capacity on the Moon en-

abled by self-replicating machines may be exploited by the

private sector in ways that are currently unimagined as the

space sector opens to private ingenuity.

It has been contended that social progress, being subject to

political whim, is random; whereas technological progress is

directional, dictated by its own scientific logic. A utopian

society may, thus, be defined as that which provides the po-

litical will to focus technological progress toward industrial

sustainability and safeguarding the natural environment.27

Perhaps this is so. According to this logic, space exploration

can contribute to this utopian vision. The primary argument

against the use of space resources for human utility is that the

market (humans) is physically separated by considerable

barriers from the resource locations on the Moon or aster-

oids.28 However, this is true for material resources but does

not apply to resources that can be delivered remotely—energy

is one such commodity. The application of self-replicating

machines on the Moon to the construction of swarms of Earth-

orbiting solar power satellites is given in Ref.29 This concept is

based on 3D printing of the energy transduction chain from

solar energy to the magnetron to generate beamed microwave

energy transmission to the Earth. The transmission of clean

energy from space to the Earth is both feasible and desirable.

In general, an economy that leads an innovation will

maintain an economic lead over an economy that copies and

adopts the innovation. The production function of an econ-

omy is defined by the relationship between the productive

output and the deployment of resource inputs. It defines

the efficiency of the economy in the allocation of resources.

There are two ways to foster economic growth—either increase

the amount of labor and capital in the economy or increase the

productivity of the economic actors. There are diminishing

returns to labor and capital investments. The Solow model

declared that sustained economic growth is dominated by per

capita increases in productive capacity due to technological

advancement.30 Such technological innovation accounted for

85% of economic growth in the United States in the period

1870–1950. Scientific and technological innovation has had a

primary role in enhancing economic productivity in Organi-

sation for Economic Cooperation & Development (OECD)

countries driven by ICT.31 Similarly, the self-replicating ma-

chine offers the prospect for an internet of manufactures as a

development of the internet of things enabled by a networked

society. Such a vision would require robust user interfaces to

cross the chasm from early adopters to the majority market.

The future is pregnant with possibilities. But technological

innovation requires entrepreneurial innovation—for self-

replicating machines, the former is flourishing whereas the

latter is floundering. The entrepreneurial world appears not up

to the task in quite the way described by Peter Diamandis.
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APPENDIX: ARTIFICIAL
INTELLIGENCE REQUIREMENTS
FOR SELF-REPLICATING MACHINES

Remote teleoperation of ISS-board microgravity experi-

ments (telescience) from the Earth are simple with few ex-

ternal perturbation events and with tolerable time constraints.

Lunar activities monitored from the Earth, however, will in-

volve time delays as well as more complex operations. Tele-

operation on the Moon involves signal propagation and

network time delays imposing inefficient move-and-wait

protocols in performing tasks remotely. Such time delays in-

troduce instabilities, particularly in interaction forces between

tools and the environment. To compensate for this time delay,

the local simulation at the ground operator must predict de-

layed events at the remote robot. This is typically achieved

through predictive displays to simulate the remote robot and

its environment. There a number of mechanisms for im-

plementing predictive dynamics—Smith predictor, neural

network controller, fuzzy logic, or a combination of these.32

An alternative approach is to employ time and position clut-

ches that allow control between the local simulation and the

remote robot to be desynchronized.33 The ultimate expression

of such desynchronization is to implement greater autonomy

at the remote robot. This allows supervisory control where the

remote robot operates autonomously and invokes human

operator interaction only during exceptional states. Ulti-

mately, the goal is to implement full autonomy without the

requirement for human intervention even under fault condi-

tions.

We first consider approaches to spacecraft autonomy.

Current spacecraft operations are based on uploaded scripts

with time-tagged sequences of commands. If off-nominal

conditions occur, the spacecraft is entered into safe mode until

the problem is resolved by human interaction from the

ground. Spacecraft autonomy involves imparting the space-

craft with the capacity to generate its own plans and to re-plan

if necessary based on theorem-proving methods. The plan

constitutes a set of actions that will transform the current state

of the world into a goal state. This involves applying logical

operators that have conditions defining their applicability and

actions that dictate their effects: IF (c1.cn) THEN ai. Condi-

tions can invoke multiple actions that must be prioritized with

respect to constraints on available resources such as time,

energy, or conflicts. This is the deliberative component.
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Execution of those plans is monitored to detect plan failure—

this is where the reactivity component is implemented. Plan

failure invokes fault detection, isolation, and recovery tech-

niques. It typically results in adding further subgoals to the

original plan to solve the current problem before pursuing the

original goals. Some advanced artificial intelligence tech-

niques applied to advanced spacecraft are reviewed in Ref.34

Robotic operations on the Moon will involve the control of

rover vehicles and attached robotic devices. Reactive control

methods can accomplish sophisticated capabilities. Blind

bulldozing by swarms of robotic excavator vehicles can be

exploited for worksite preparation such as leveling and/or

paving operations.35 Blind bulldozing may be based on simple

ant-like behaviors that plough material outward until a force

threshold is measured. Stigmergy controls the construction

process in that ploughed material creates walls of increasing

strength determined by the distance along which the accu-

mulating material has been pushed. Hence, current/final nest

size is determined by:

rn = FT +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
T + (Fiqbr0)2

p
Fiqb , (3)

where FT = threshold force, Fi = current push force, q = soil

density, b = tool width, and r0 = initial nest radius. Braitenberg-

style neurocontrollers can generate action sequences to build

walls, corridors, intersections, and briar patches.36 For more

sophisticated goal-directed rover capabilities, mapbuilding is

necessary. Self-location and mapping are well established in

mobile robotics. The Kapvik micro-rover is a representative

general-purpose end-to-end prototype that is designed for the

Moon and Mars37 and that employs a Kalman filter-based au-

tonomous navigation system.38 Bayesian methods have also

been applied to planetary micro-rover applications to represent

the properties of the cells of an occupancy grid for map-based

navigation.39 Similarly, load-haul-dump mining vehicles re-

quire terrain maps to navigate effectively within tunnels.40

They are similar to indoor environments by being highly

constrained where no GPS signal is available. Similar to un-

derground mining, automated guided vehicles are commonly

adopted in flexible manufacturing systems (FMS) to transport

material within the factory.41 They also require planning so that

scheduling is in real time and routing occurs without collision

with other vehicles to ensure the timely delivery of material at

the appropriate locations. They must maximize throughput

while minimizing waiting times. Within such constrained en-

vironments, potential field techniques are well suited.42 Online

measurement of soil properties may aid tractive performance

of such vehicles, especially slippage.43 For the coordination of

multiple robots, robot motion must be synchronized in coop-

erative tasks such as in the maintenance of fixed kinematic

relations between robots (e.g., two robots grasping a common

payload).44 More loosely, soccer robotics is a culmination of the

problem of multi-robot cooperation toward a specific goal

while coping with static and dynamic constraints. One possible

approach (among many) is to treat each robot as a knowledge-

based agent that cooperates through a distributed blackboard

(shared virtual global memory).45 Multiple knowledge-based

expert systems operate in their own specialized domains but

communicate with each other through the blackboard to co-

operate to solve global problems beyond individual capacities.

Excavation is a control process that involves sensors to

detect the current configuration of the local terrain compared

with a goal configuration of the terrain, and it uses the dif-

ference to generate a stepped sequence of robotic actions to

progressively reduce that difference to zero subject to con-

straints such as minimum energy costs. Manipulator actions

are digging trajectories—a dig may be characterized para-

metrically by three parameters that determine the excavated

volume (action space): approach angle of the blade from

horizontal a, height of blade entry into the terrain above

datum h, and dig distance from entry into the terrain d.46

Candidate action spaces (similar to configuration spaces in

manipulators) are defined as feasible but suboptimal, feasible

and optimal, and infeasible (similar to cells in grid-based

mapbuilding in mobile robots). Once an action space has been

selected, a bucket trajectory may be defined in joint space by

using standard inverse kinematics. The force required to ex-

cavate is given by:

F = Vq + As, (4)

where s = c + r tan u = soil shear strength, c = soil cohesion,

j = soil friction angle, s = normal soil stress, A = blade-soil

interaction area, q = soil density, and V = excavated soil vol-

ume. The resistive forces on a flat excavation blade as the

robot scoops and overcomes shear stresses in soil may be

modeled by the fundamental equation of earthmoving. The

equation requires physical parameter inputs that may be a

priori unknown and certain assumptions such as flat blade

may be inaccurate, rendering reliable predictions extremely

difficult. Soil has elastic, plastic, and damping properties—soil

stiffness is nonlinear in that it is subject to saturation followed

by dynamic shearing failure that is repeatedly applied (like

earthquake dynamics). Soil properties and their responses to

applied shearing forces are difficult to predict—for instance,

prior applied shearing and normal forces will alter soil com-

paction. These models are simplistic, but stochastic methods

such as Kalman filter estimation can be employed to enhance

robustness. A number of methods may be used to learn to
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predict resistive forces, but all are improved by using a me-

chanical model as their basis.47 Fuzzy if-then rules may im-

plement sequences of excavation tasks that are derived from

human operator experience.48 Neural networks may be em-

ployed to learn these fuzzy rules based on force/torque and

other sensory inputs with weight outputs.

Once the desired materials have been extracted, manufactur-

ing is the next stage. Flexible manufacturing permits variations in

time regarding the manufacture of multiple parts. There are

several generic problems associated with flexible manufacturing:

(i) part selection, (ii) machine grouping, (iii) part ratio production,

(iv) resource allocation, and (v) line loading.49 Scheduling prob-

lems form a common theme in many of these tasks from job-shop

scheduling to assembly-line balancing. Petri nets constitute a

graphical method to represent events and their relations that can

graphically model, analyze, and synchronize the execution of

complex parallel and serial manufacturing procedures. They

comprise directed arcs that are a link between two different types

of nodes—place and transitions. Petri nets can be integrated into

complementary techniques such as the structured analysis and

design technique.50 There are many different varieties of Petri

nets, including colored timed object-oriented Petri nets that are

suitable for representing the dynamics, time duration, and

scheduling aspects of flexible manufacturing, including auto-

mated guided vehicle routing.51 In particular, deadlock detection

and recovery through resource re-allocation is essential. Hybrid

Petri net-automata promise a unified approach to modeling

and analyzing workshop flow.52 Neural networks may be used to

model complex manufacturing processes.53 Neural nets have

been used as process models for manufacturing, particularly

because the input-output training compensates for any ill-posed

underlying mechanisms.54 A neural network-based production

system offers superior performance to decision trees (ID3) for

material scheduling and routing in a flexible manufacturing cell

of several machine tools.55 Job-shop scheduling must allocate

jobs to machines: A number of jobs n comprising a number of

subjobs k (sequence constraint) are allocated to m machines

(resource constraint). The scheduler must specify a start time for

subjobs to achieve a desired result based on the processing time

for each subjob. The expert system with if-then production rules

(fuzzy or crisp) in conjunction with the genetic algorithm search

for the shortest time solutions is suited to job-shop schedul-

ing.56,57 Neural networks have been applied to stringent real-time

job scheduling and planning problems. Job scheduling to mini-

mize job completion time for n jobs subject to resource con-

straints such as m machines is an non-deterministic polynomial-

time (NP)-hard schedule optimization problem. The Hopfield net

is an example of a neural network that is suited to the job-shop

scheduling problem.58 It involves determining the sequences of

jobs according to the resources available and performance cri-

teria. Mathematically, performance may be defined as59:

C = +
n

i = 1

wi · max (0,Dt - tf )=n, (5)

where wi = delay penalty/time (weighting), Dt = completion

time, tf = delivery date, and n = number of jobs. The solution is

given by the minimum quadratic energy configuration of the

Hopfield net of mn(mn +1)/2 neurons corresponding to min-

imizing the job start times. Neural networks can select rules for

scheduling jobs and machines for FMS according to input

patterns, whereas expert systems can interpret constraints im-

posed such as timing.60 Any work piece undergoes a number of

operations where the output of one operation feeds into the

input of another. Machine selection is dependent on the input

parameters such as workpiece material and geometry, jigging,

and machining cutting (force, power, and roughness of finish).

A neural net scheduler has been used to schedule job shops by

optimizing start times.61 A genetic algorithm was used to

generate optimal schedules of job sequences. Recurrent neural

networks have also been used to minimize the cycle time of job-

shop schedules.62 The constraints include the number of ma-

chines, number of jobs, set of operations, and precedence

constraints. The recurrent neural network was input with start

time and schedules and used an energy function to perform a

steepest descent of the form s(t + 1) = s(t) - gqe(s)qs where

s(t) = schedule time, E(s) = energy function. This work indicates

that neural networks can be applied to scheduling and planning

problems. A production rule-based scheduler may be extracted

from a neural net.63 An analogue network has been developed

for job-shop scheduling64 in which the number of neurons is

mk with mk+mk(k-k/n) interconnection weights that grow

linearly with the number of jobs. Decentralized swarm-based

routing in job-shop allocation (specifically a wasp colony) is

both adaptive and robust, despite being based on simple

rules.65 The potential field approach allows control of the

movement of material by specific attraction to machines.66

Hence, there are a multitude of techniques for job-shop

scheduling with different advantages, but hybrid techniques

built around neural networks offer multiple advantages.

Once parts have been manufactured, individual parts must

be assembled through a sequence of operations into a final

product with well-defined geometric relations between the

parts. Assembly plans are ordered sequences of operations

that transform one configuration of parts into another. The

parts are defined by their relative positions, which are bound

in an assembly. A relational model of assembly may be de-

fined as (P, C, A, R, a) where P = part, C = contact surface be-

tween pairs of parts, A = attachment between pairs of parts,
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R = (P U C U A) = relationship between pairs of parts, and

a = (P [ C [ A [ R) = attribute function. An assembly is a

complex process involving identifying the matings of the

parts to be assembled, defining a sequence of gravity-based

assembly part ordering, identifying grips on each part and the

part orientation, the stability of parts and their relationships,

and the final product position. The starting point of the parts

and the assembly is a set of CAD/CAM files.67 AND/OR graphs

are commonly used to represent and search for feasible

assembly plans exhaustively by using the AO* search algo-

rithm.68,69 The nodes represent subassemblies or parts,

whereas the arcs between nodes define the relative difficulty

of the operation between configurations. Backward search

implies that disassembling the desired final assembly can be

inverted into an assembly sequence. Assembly sequence plans

may also be searched for by using genetic algorithms for large

AND/OR graphs.70 The SOMASS assembly system was a

backtracking Prolog-based hierarchical assembly planner

with a reactive behavior-based plan execution system.71

Neural networks can generate assembly sequences that are

subject to constraints such as cost defined by an expert sys-

tem.72 Neural networks have been applied to optimal assembly

sequence planning.73 Input to the neural net was an assembly

connection graph (such as AND/OR graph or Petri net) re-

presenting parts and their relations, whereas its output was an

optimal assembly sequence. The neural network was trained

on sets of assembly sequences using back propagation

learning. As the number of parts increases, there is an expo-

nential increase in the number of combinations—like job shop

scheduling, it is an NP-hard problem. Genetic algorithms have

been applied to concurrent assembly planning to stochasti-

cally search for globally optimal solutions.74 Assembly plans

comprising AND/OR graphs were encoded into genomes and

subjected to fitness scores based on plan execution time. A

related issue is the automated design of jigs and fixtures,

particularly for milling and assembly operations. Although

the remote center compliance end effector mechanism can

perform insertion operations with positioning errors, jigs and

fixtures are still necessary for assembly. Fixtures include

clamping, positioning/guiding, and supporting jigs that set

the position/orientation of the workpiece to the tool. The

fixture design is based on workpiece geometry and size, its

surfaces and tolerances, and tooling geometry and perfor-

mance. This requires data on the geometry and topographic

relations of workpieces—fixtures may support from beneath

(e.g., mounting plate), top (e.g., hold-down clamp), or side

(e.g., side clamp). An adaptive, reconfigurable fixturing sys-

tem for a wide range of workpieces has been demonstrated.75

A group of fixture elements can be relocated in different

combinations to immobilize any workpiece geometry. The

four fixture elements were vertical clamps, horizontal clamps,

horizontal guides, and vertical supports for immobilizing

exterior cases. This kind of information can be stored in an

expert system as if-then rules and/or frames.76–78 Critical for

this capability is the integration of the pattern recognition

capability of neural networks with workpiece and fixture

knowledge.79 The basic artificial intelligence requirements for

mining, processing, manufacturing, and assembly of physical

products and parts are understood and there exist piecemeal

solutions that may be assembled into a coherent framework

that is required for a self-replicating machine. The general

conclusion is that neural networks (including deep learning

systems) can implement much, and potentially all, of the

artificial intelligence required for a lunar self-replicating

machine. Of course, the devil will be in the detail but there is

no fundamental showstopper.
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