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Abstract: Robotic astrobiology involves the remote projection of intelligent capabilities to planetary
missions in the search for life, preferably with human-level intelligence. Planetary rovers would be true
human surrogates capable of sophisticated decision-making to enhance their scientific productivity. We
explore several key aspects of this capability: (i) visual texture analysis of rocks to enable their geological
classification and so, astrobiological potential; (ii) serendipitous target acquisition whilst on the move; (iii)
continuous extraction of regolith properties, including water ice whilst on the move; and (iv) deep learning-
capable Bayesian net expert systems. Individually, these capabilities will provide enhanced scientific return
for astrobiology missions, but together, they will provide full autonomous science capability.
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Introduction

All planetary rovers are mobile scientific instrument platforms
– scientific investigation is their raison d’etre. Robotics has
much to contribute to the pursuit of planetary science, includ-
ing astrobiology in the context of planetary exploration.
However, robotic astrobiology is still nascent and underdevel-
oped despite its promise. This review of the current
state-of-the-art and discussion of the prospects and future di-
rections of robotic astrobiology is focused on Mars rover mis-
sions. It is neither comprehensive nor objective, but it is hoped
that it will stimulate further developments. The primary object-
ive of robotic astrobiology is to marshal techniques of robotics
to serve the astrobiology quest by enhancing the scientific
productivity of Mars rover missions. The long-term objective
is to create a ‘robotic astrobiologist’ facility on board future
planetary rovers that can match or exceed the capabilities of
human astrobiologists on Earth. This will enormously increase
the scientific productivity of rover missions by allowing the
rover to make decisions on selecting high priority targets and
the appropriate methods of interrogation of the target using a
judiciously selected set of scientific instruments onboard. This
constitutes the back-engine of this facility to implement
decision-making based on scientific classifications equivalent
to the combined expertise of human scientists. Of course, the
human scientist at the Earth station will remain the overseer.
The short-term objective is to focus on the front end of such
a facility – signal processing of camera images in order to clas-
sify rocks. Our principal tool for these investigations is the 30
kg Kapvik microrover designed from an earlier concept for a
Mars microrover as part of a low-cost Mars mission (Ellery
et al. 2004a, b, 2006) (Fig. 1).

Kapvik (Inuit word for wolverine, a rather ferocious small
mammal native to the Canadian north) was developed for
the CSA (Canadian Space Agency) by an industry–academia
consortium, the mechanical design of which is described in
Setterfield et al. (2014), while aspects of its electronics architec-
ture is described in Cross et al. (2013). There are several novel
features in its design. It implements an instrumented rocker-
bogie chassis permitting online traction analysis during
traverse (Setterfield & Ellery 2013). Furthermore, it adopts
an integrated manipulator-scoop/camera mast system (Liu
et al. 2015a, b). FPGAs are the primary computing platform
to implement stereovision and LIDAR processing with cuba-
ture Kalman filter and FastSLAM algorithms for autonomous
navigation (Hewitt et al. 2017). It is a fully functional
end-to-end demonstrator rover platform with a clear path to
flight qualification and is still operating successfully. It was
deployed to investigate multiple scientific instrument-based
operations in Mars-like geological sites pertinent to serpentine
rock (Qadi et al. 2015), which has potential astrobiological
significance (Parnell et al. 2010). It has been deployed with a
magnetometer to investigate rover-deployed magnetic mea-
surements (Hay et al. 2017).
Martian geology is diverse and complex. For instance, jaro-

site detected by Spirit in the Gusev crater indicates past aque-
ous acidic weathering conditions (preventing the deposition of
carbonate minerals) (Hurowitz et al. 2006). Martian soils have
high concentrations of S and Cl suggesting sulphate and chlor-
ide evaporite salts over widely space geographical locations.
Such sites are attractive as astrobiological targets – a viable
sample of a Bacillus bacterial strain was reportedly recovered
and cultured from a brine inclusion within a 250 million year
old halite crystal of Salado NewMexico (Vreeland et al. 2000).
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However, 16 s rDNA sequencing revealed that the bacteria
closely resemble modern Salibacillus marismortui and was
thus a contaminant (Maugham et al. 2002; Nickle et al.
2002; Willersley & Hebsgaard 2005). Nevertheless, evaporite
deposits remain attractive as a source of palaeobiotic signa-
tures. The Gale crater indicates neutral pH conditions – the
Curiosity rover has detected fluvial–lacustrine mudstones as
evidence of ancient lakes in theGale crater that could have sup-
ported chemolithoautrophic life especially iron and sulphur
species (Grotzinger & The MSL Science Team 2014). This
Mars geological complexity has persisted over geological time-
scales. It has been determined from evidence of shoreline pat-
terns that an ocean may have covered the northern plains of
Mars (constituting one-third of the Martian surface) at least
2 Gy ago (Perron et al. 2007). These are all potential astrobio-
logical targets of great variety. Hydrothermal regions onMars
with characteristic carbonate, sulphate, sulphide and metal hy-
droxide/oxide deposits elicit high astrobiological potential
(Schultze-Makuch et al. 2007) – Tharsis region, impact craters
such as Gusev (visited by Spirit) and Gale (visited by
Curiosity), and gullies such as at the Hale crater. At close quar-
ters, the identification of phyllosilicates, jarosite and haematite
can be detected as evidence of aqueous activity from rovers.
The ‘follow the water’ strategy adopted by NASA favours a
search for such potentially habitable environments. Implicit
in this strategy is the complex geological history and geography
of Mars, which makes such a strategy a challenge to Martian
rover missions. Our goal is to employ an exploration strategy
that maximizes the scientific return of these missions that at-
tempts – eventually – to incorporate sophisticated geological
and astrobiological knowledge.

We takeMars sample return as our baseline mission concept
for the deployment of a robotic astrobiology capability
(MEPAD 2008). However, any Mars rover mission such as
ExoMars can exploit the methods presented here. Certain
types of high-resolution scientific measurement are more read-
ily performed in laboratories rather than in situ – radiometric
dating, isotopic analysis and life detection experiments, all of
which require high stability and multiple samples. This favours
the return of samples fromMars for laboratory analysis to sup-
plement in situ measurements undertaken by Mars lander and
rover missions to date. The question of the size of returned
sample is debated ranging from 50 to 200 g as the minimum
useful quantity, but larger samples of 1 kg are considered to
be optimal. We can thus assume a baseline of 5–20 × 50–200 g
samples for return. This allows a trade of sample diversity
against sample size. In either case, site selection for the recov-
ery of these samples will be paramount. Furthermore, the qual-
ity of the samples is more important than quantity. Samples
returned from known explored locations provide geological
context unlike meteorite samples – grab-and-go missions di-
minish the scientific value of returned samples. This favours
the employment of in situ measurements and analysis to select
samples to be returned and their context over a 6–12-month
surface sortie. Non-destructive testing can be performed on
samples prior to their return to Earth – camera imaging, micro-
scopic imaging and mineralogical analysis (infrared and
Raman spectroscopy). Destructive analysis may be formed
on contextual samples – high-resolution imaging (scanning
electron microscopy), mineralogy (X-ray reflectance and/or
diffraction spectrometry), chemical/elemental analysis (gas
chromatography and/or laser plasma spectroscopy), isotopic
analysis (mass spectrometry), DNA extraction (electrophor-
esis), DNA sequencing (polymerase chain reaction), etc.
Each returned sample will involve an enormous investment
of exploration effort. It is essential that the samples are selected
judiciously and that time and energy are not wasted wantonly
by the current strategy of sample everything and deploy the en-
tire suite of scientific instruments on all recovered samples.
Judicious sampling requires prioritization of potential astro-
biological targets (e.g. aqueous deposited sedimentary rock
as potential repositories of fossils) over pure geological targets
(e.g. igneous rock), favouring the deployment of non-
destructive astrobiological analysis, e.g. infrared Raman
spectroscopy could potentially detect biomolecules in fossils.
Instruments with discrete count rates and low signal-to-noise
ratio, which suffer from peak spreading by smoothing algo-
rithms may benefit from Kalman filtering, e.g. Mossbauer
spectroscopy (Albrecht et al. 2015). A Gaussian smoothing
function of the form g(x) = (1/ ����

sp
√ )e−(x−m)2/s was passed

through theKalman filter as a processmodel. Raman spectros-
copy would be a suitable instrument for such signal processing
to enhance its response. Furthermore, the covariance matrix of
theKalman filter with its O(n3) computational complexity may
be compressed using an orthonormal wavelet transform with
only O(n) coefficients reducing both the processing and storage
requirements for the Kalman filter (Chin & Mariano 1994).
The Kalman filter is a predictor–corrector algorithm that
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Fig. 1. Kapvik micro-rover at the Canadian Space Agency’s Mars
Yard.
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estimates noise from measurements and models (in the form of
covariance matrices) to optimize estimates of the system dy-
namics and how it evolves over time. It is widely used in
both aerospace and robotic control systems. Dynamic equa-
tions of a system denote a process model and measurements
given by:

xi = Axi−1 + Bi + wi,

yi = Cxi + vi,

whereA = dynamic matrix, C=measurement matrix, wi and vi
are zero-mean Gaussian random noise vectors with covar-
iances of Qi and Ri, respectively. The Kalman filter iteratively
computes a statistically optimal estimate of xi. It computes in
two stages:
Prediction stage:

�xi = Ax̂i−1 + Bi,

�Pi = A(AP̂i−1)T +Qi.

Update stage:

Ki = �PiCT
i (Ci �PiCT

i + Ri)−1,

x̂i = �xi + Ki(yi − Ci�xi),
P̂i = �Pi − KiCi �Pi,

where Pi= covariance matrix of error between the predicted
and measured process states Ki=Kalman filter gain.
The prediction is based on the process model and previous fil-

ter estimates; the prediction is corrected by the error between the
predicted and themeasured states modified by theKalman gain.
The Kalman gain is calculated from the predicted state covari-
ance and the noise covariances – it minimizes the difference be-
tween predicted and measured states of the system. The
covariance matrix P and Kalman gain K should converge in a
few steps under certain assumptions. The power of the Kalman
filter lies in its ability to estimate a state in the presence of noise in
both process and measurements. The selected samples to be re-
turned should be preferably maintained below −20°C though
maintenance below +20°C, which is considered acceptable.
Heat sterilization of returned samples would seriously damage
the scientific value of the samples, negating the endowment in-
vested in their recovery (Fairen & Schulze-Makuch 2013).

Science phases of rover missions

Current Mars rover operations are hampered by the 3–4-day
command cycle imposed by limited communication windows
between Earth and Mars. Rover operations are traditionally
divided into alternating traverse phases in which the rover tra-
verses the Martian terrain between sites of scientific interest
and science phases in which the rover is static whilst deploying
its scientific instruments at rocks beginning with the onboard
panoramic camera. The implementation of autonomy during
the science phase would enhance the scientific productivity of
Mars rovermissions. This would relieve the rover of fallow per-
iods waiting for instructions from Earth (which typically oc-
curs only twice per day). There is also a need for selection of
data to be return to Earth fromMars imposed by communica-
tions bandwidth limits (especially for sequences of images

generated during rover traverses). Much work has been under-
taken in the topic of autonomous navigation during rover tra-
verses involving vision processing and self-localization and
mapping (SLAM). Little consideration has been given to im-
plementing autonomy during the science phase of rover mis-
sions in comparison with autonomous navigation (Ellery
2016). For example, ESA’s SPARTAN (SPAring Robotics
Technologies for Autonomous Navigation) vision system for
ESA’s future Mars rovers is devoted only to visual navigation
– three-dimensional (3D) stereovision, visual odometry, visual
object detection and SLAM (Kostevelis et al. 2011). There exist
a number of open source software libraries for computer vision
such as VLFeat, which comprises a package of algorithms in-
cluding SIFT (scale invariant feature transform),MSER (max-
imally stable extremal regions) k-means clustering and
randomized kd-trees for feature detection and clustering,
which support navigation functions (Vedaldi & Fulkerson
2010). Vision processing for scientific analysis is a different
problem reflecting the difference between object localization
(implemented by SLAM) and object recognition but both are
necessary components of object detection (Vershae &
Ruiz-del-Solar 2015). There have been a handful of approaches
to autonomous science, primarily devoted to architectural con-
siderations. Early algorithms include the horizon detector to
separate ground from sky, the rock detector based on the
Canny/Sobel edge detector to extract rock boundaries from
the background, and the stratigraphic/mineral layer detector
(restricted to horizontal layers) that acts as an interest param-
eter as layering reflects geological change (Gulick et al. 2001).
These algorithms have evolved to include a cloud detector and
dust devil detector in the form of OASIS (Onboard
Autonomous Science Investigation System), a closed-loop au-
tonomous science system. OASIS is an autonomous science
software architecture for directing imaging sequences of
rocks of interest within the constraints of rover resources
(Castano et al. 2006, 2007a, b). For rock detection, OASIS
adopted reflectance imaging andGabor filters for textural ana-
lysis with an 85% rock detection rate (distinct from geological
classification rate outlined later). Novelty detection was imple-
mented through k-means clustering based on previous rock
data. OASIS is integrated into the Continuous Activity
Scheduling Planning and Replanning (CASPER) rover plan-
ning software to implement opportunistic science targeting
during the nominal rover trajectory. This allows science oppor-
tunities to be integrated into rover planning with opportunistic
reactivity to scientific events. It permits replanning to accom-
modate new science tasks within the limits of rover resources
such as fixed communications sessions, power availability,
computational demand, etc. An independent example of re-
activity to scientific targets and trajectory replanning is de-
scribed in Gallant et al. (2013). A similar measure to the
ExoMars SVS (science value system) was employed in this
work. The cyborg astrobiologist was a wearable video/com-
puter system capable of geomorphological image segmentation
for field geology that was deployed at Rio Tinto in Spain
(McGuire et al. 2004). The ASTIA autonomous science system
is under development for the ExoMars rover but focuses on
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geomorphological segmentation rather than performing de-
tailed visual rock or mineral classification (Woods et al.
2009). The central feature is the SVS, which cumulatively but
arbitrarily quantifies the value of geological features, but it was
not well developed. Geological features of interest include size/
shape, colour/albedo, texture and configuration of rocks and
geomorphology. It is to be supported by a knowledge-based
fuzzy expert system of geological and biological attributes.
The Bayesian network is a more explicit representation than
any ad hoc scoring system. The Bayesian classification ap-
proach was first developed for the Nomad rover for deploy-
ment in Elephant Moraine, Antarctica to detect dark
meteorites against the white surface of snow (Wagner et al.
2001). It successfully classified 42 samples from IR spectrom-
etry with a 79% success rate. Image texture analysis (using the
MaximumResponse 8 filter bank with k-means clustering into
texton classes) followed by hidden Markov model (HMM) re-
presentation of scientific value has been trialled on the Zoe
rover in the Atacama desert Chile (Thompson et al. 2008).
The Viterbi algorithm generated a maximum-likelihood
image sequence that maximizes the posterior probabilities of
scientific value (quantified as an information metric). The
most comprehensive experiments in autonomous science (in
astrobiology) have been conducted in the Atacama Desert
using the Zoe rover test platform (Smith et al. 2007). It used
spectral signatures (such as chlorophyll) detected during tra-
verse classified by a Bayesian net to trigger the rover to stop
to collect further sample data. It has an embryonic onboard
science system to make simple decisions on the selection of in-
struments to be deployed but this facility is currently limited.
Autonomous rover science is a highly underdeveloped research
topic. Nevertheless, a bio-inspired approach to the problem by
learning through nature’s solutions to generic problems ap-
pears promising (Menon et al. 2006).

Autonomous visual classification of rocks during
science phases

It will be extremely challenging to determine visually at range
the most promising astrobiology targets to select for examin-
ation. Biologically mediated mineralization offers a potential
biomarker target for the analysis of Martian rocks on the
basis of different crystallographic features from abiotic min-
eralization (Schwartz et al. 1992). However, this requires
microscopic examination and cannot be determined visually
at normal scales. The rover panoramic camera (PanCam) is
the first instrument of the rover scientific payload deployed
on scientific targets, e.g. ExoMars PanCam (Griffiths & The
Camera Team 2006). Automating such routine scientific data
acquisition can be achieved by roboticizing rover camera im-
aging and interpretation. On Mars, astrobiologically-relevant
aqueously-deposited sedimentary rocks are of higher scientific
interest than igneous intrusions ceteris paribus. The primary
problem with automated classification is to trade-off between
false positives (such as the ALH84001 ‘bugs’) with false nega-
tives (such as Martian ‘blueberries’ as background material).
Rocks may be geologically classified on the basis of size,

shape, albedo, colour and texture, which may be extracted
visually. Edge-based imaging processing extracts rocks from
the background based on the Canny edge detection algorithm
(Thompson & Castano 2007). Rock shape may be extracted
using ellipsoid fitting or B-splines (Fox et al. 2002).
However, size and shape are not particularly revealing proper-
ties for the classification of rocks. Successful geological feature
recognition and classification may be incorporated into au-
tonomous decision-making regarding the selection of instru-
ment deployment for further analysis. This reduces the
requirement for command uplinks during the science acquisi-
tion phase of rover missions.
Our initial approach has been to concentrate on squeezing as

much information as we can using visual texture without col-
our. To eliminate colour, the images are grey-scaled fromRGB
to grey Y = 0.2989R + 0.5870G+ 0.1140R according to the
standard colour cube convention. Rock varnish on Martian
rocks due to dust distorts the spectral signature including col-
our from the underlying rock minerals making visible colour
unreliable. However, an artificial neural network has been
trained as a carbonate detector to identify carbonate minerals
covered in dust from visible/NIR spectra (Bornstein et al.
2005). A generative model was created to provide the large
number of training reflectance spectra required for implement-
ing a backpropagation algorithm. Texture analysis represents a
promising approach to geological classification of rocks. We
are exploring texture as a source of scientific information as
to the origins and evolution of rocks and a possible means to
differentiate between igneous and sedimentary rocks. There are
several algorithmic approaches to texture feature extraction
(Randen & Husay 1999): (i) co-occurrence statistics
(Haralick parameters), (ii) Markov random fields (MRF),
(iii) Gabor filters and (iv) wavelet transforms. MRF are
based on the principle that pixel brightness is dependent on
the brightness of its neighbouring pixels such as consistent
layering rather than random noise (Cross & Jain 1983).
MRF as models of texture are not suited to regular features,
so we discarded them from consideration (Materka &
Strzelcki 1998). The Haralick co-occurrence method is based
on 14 probabilistic features, including angular secondmoment,
contrast, correlation and entropy being commonly used
(g= number of grey levels):

ASM =
∑g−1

i=0

∑g−1

j=0

p2ij; Con =
∑g−1

n−0

n2
∑

|i−j|=n

pij ;

Cor = 1
sxsy

∑g−1

i=0

∑g−1

j=0

ijpij − mxmy;

Ent =
∑g−1

i

∑g−1

j

pij log pij .

Using all 14 Haralick parameters and a Bayesian network
representation, we have classified of a series of rocks of differ-
ent types (Fig. 2) with 80% success rate using Bayesian net-
works under well-controlled laboratory conditions (Sharif
et al. 2015). It is important to note that these laboratory
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conditions included fixed illumination and camera–rock
distance – it is expected that deviations would severely hamper
these results. Haralick parameters are suitable for micro-
features, but are poor at extracting macro-features.
We are currently exploring two additional more powerful

techniques – Gabor and wavelet filtering in conjunction with
Bayesian networks. We have demonstrated that Gabor filters

can be employed to detect geomorphological features like stra-
ta – we have successfully tracked and extracted angles and dis-
placements of both folds and faults in strata automatically
(unpublished data) [Fig. 3(a) and (b)].
These techniques can be applied to rocks and scaled with dis-

tance, offering greater flexibility and options than Haralick
parameters, though at the cost of greater computational
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Fig. 2. Subset of grey-scale image rock library.
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complexity. It should enable us to remove the artificiality of la-
boratory conditions. The Gabor filter is a biologically-inspired
approach to visual analysis that is relatively insensitive to vari-
ation on lighting, contrast and noise. The simple receptive field
of the cat striate cortex is well-modelled by 2D Gabor filters
(Jones & Palmer 1987). Gabor filters are based on a
Gaussian function of frequency modulated by a sinusoid that
localizes its duration and are well suited to general purpose ob-
ject detection and texture analysis (Casasent et al. 1992).

G(x, y) = exp − (x′−xm)2
s2
x

+ (y′−ym)2
s2
y

( )( )
cos 2p(x′−x′m)

l
+ w

( )
,

where (xm, ym) = Gaussian envelope centre, x′= xcosθ+ ysinθ,
y′=−xsinθ+ ycosθ, λ= sinusoid wavelength, f= 2π/λ= radial
frequency, θ= orientation, w = phase shift = 0 in mammalian
receptive fields, σ= bandwidth of Gaussian envelope. The
Gabor filter has four adjustable parameters – wavelength,
bandwidth, orientation and phase. Each Gabor filter has

a computational complexity of O(m2n2) where m=mask size,
n= image size. The even-symmetric Gabor filter is a simpler
Gaussian-shaped bandpass filter, which is often used as the
basis of the Gabor wavelet:

h(x, y) = exp −1
2

x2
s2
x
+ y2

s2
y

( )
cos(2pf0x)

( )
,

where f0 = radial frequency at 0o, σx,y=Gaussian envelope di-
mensions. This may be cast as a Fourier transform as:

H(u, v) = A exp −1
2

(u−u0)2
s2
u

+ v2
s2
v

( )( )
+ exp −1

2
(u+u0)2

s2
u

+ v2
s2
v

( )( )( )
,

where σu = 1/2πσx, σv= 1/2πσy and A= 1/2πσxσy. The reso-
lution of the filter is determined by the discretization of fre-
quency bandwidth and orientations. Half-peak radial
bandwidth and orientation is given by:

B = log2
u0+

����
2 ln 2

√
su

u0−
����
2 ln 2

√
su

( )
and u = 2 tan−1

����
2 ln 2

√
sv

u0

( )
.

The number of Gabor filters in the filter set determines the
sensitivity to textures and is determined by the bandwidth and
orientation resolutions. Given that features appear at multiple
scales and orientations, a filter bank is required to extract fea-
tures at a cost in computational processing. The Gabor filter
bankmodels the early stages of human visual processing by de-
composing an image into a number of filtered intensities, each
bounded by a narrow range of frequencies and orientations.
The Gabor filter bank is similar to the Laplacian
(difference-of-Gaussian) pyramid used in multiscale edge de-
tection. It offers optimal resolution in both spatial and fre-
quency domains when convolved with the image. Gabor
filters have been used extensively in face recognition such as
(Khatan & Bhuiyan 2011). For Mars geological textures,
Gabor filter parameters that emulate human perceptual cap-
abilities are not optimal (Castano et al. 1999). We found a rea-
sonable compromise for a set of rocks was to use a bank of 12
filters with a 30° orientation resolution at two scales (unpub-
lished data). However, we have currently achieved a maximum
70% classification accuracy using Bayesian networks. This sug-
gests that even increasing resolutions yields no further gains in
the Gabor filter performance – it is unclear at present if this is a
real effect or the source of error, but we are veering towards the
former. This is the rationale for exploring the use of wavelet
transforms.
The multiresolution facility of the Gabor bank relates it to

wavelets. Wavelet theory is the unifying framework for multi-
resolution signal processing with subband coding applicable to
non-stationary signals (Rioul &Vetterli 1991; Vitterli &Herley
1992). The Fourier transform converts a time-domain signal
into its frequency components forming the frequency ampli-
tude spectrum because most useful information resides in the
frequency content. The Fourier transform generates the fre-
quency components of a signal, but not the time localization
of those spectral components. The sines and cosines of the
Fourier transform are non-local stretching to infinite limits.
It is therefore unsuitable for signals whose frequencies vary
in time, i.e. non-stationary signals such as sharp spikes.
A short-time Fourier transform imposes time localization
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Fig. 3. (a) Layering and faulting detected and measured including
offset; (b) fold angles of layers detected and measured.
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through a window of finite length to overcome this deficiency.
The short-time Fourier transform is given by:

STFT(t, f ) =
∫
x(t)w∗(t− t)e−2jpftdt.

Short-time Fourier transform implements a bandpass filter
with the Fourier transform of the window function defining
the bandwidth of the filter:

Df 2 =
	
f 2|W ( f )|2df	
|W ( f )|2df .

The equivalent time window is given by:

Dt2 =
	
t2|w(t)|2dt	
|w(t)|2dt .

A commonly adopted window is the Gaussian function of
the form:

w(t) = e−(At2/2),

where A =window length, t= time.
However, there is a trade imposed by the Heisenberg uncer-

tainty principle in the time resolution of the window and the
frequency resolution: ΔtΔf≥ 1/4π. It excludes the possibility
of simultaneous high resolution in both time and frequency.
Gaussian windows approach the bound of equality. Unlike
Fourier transforms, wavelets are localized in both frequency
and time. The wavelet transform provides a time–frequency re-
presentation by specifying what frequency exists at what time.
Wavelets are a type of filter bank with similarities to window
Fourier transforms. Unlike the window Fourier transform
which has a fixed window size, the wavelet transform function
varies with frequency. Different resolutions characterize differ-
ent time-frequency signals – the impulse response of the filter
bank ψ(t− τ/s) varies with scale s (dilated or compressed).
Wavelets implement short windows at high frequencies and
long windows at low frequencies. Low frequency (large scales)
corresponds to global information, while high frequencies
(small scale) correspond to detailed information. The varying
scale size allows wideness for low frequencies and narrowness
for high frequencies acting as a bandpass filter. In the sameway
as sine and cosine functions in the Fourier transform, wavelets
are used as the basis for representing other functions. The basis
function is themother wavelet, which is contracted, dilated and
shifted to produce the wavelet transform. The wavelet func-
tions are generated from the mother wavelet by translations
(in time) and dilations (in frequency):

c(t, s) = 1��|s|√
∫
x(t)c∗ t−t

s

( )
dt,

where s= 2−j and τ= k.2−j commonly.
Scale is the inverse of frequency and it dilates (large scale

with s> 1) or compresses (small scale with s< 1) the signal.
Multiresolution analysis analyses the signal at different fre-
quencies with different resolutions. Low frequencies have
high resolution in frequency but poor resolution in time;
high frequencies have high resolution in time but poor reso-
lution in frequency. There are many different candidate basis

wavelets ψ(t), which can be any bandpass function. Although
the Haar wavelet is the simplest [ψ(x) = 1 for 0 < x < 0.5, ψ(x)
=−1 for 0.5≤ x< 1 and ψ(x) = 0, otherwise], it is not continu-
ous and does not form an orthogonal basis set, which limits
its applicability. A commonly adopted mother wavelet is
the Mexican hat wavelet (second derivative of the Gaussian
function):

w(t) = 1���
2p

√
s
e−t2/2s2

.

Hence, c(t) = 1/
����
2p

√
s3(e−t2/2s2 (t2/s2 − 1)).

The Daubechies mother wavelet ψ(x) = 2−s/2ψ(2−sx− τ) is
self-similar at different scales (fractal). Natural textures may
be modelled with random Brownian fractal noise in which
local variations have a Gaussian probability distribution.
This random process is self-similar at any scale and any reso-
lution. This property of natural textures may be exploited for
data compression. Fractal image coding is such a compression
technique by approximating an original image through a finite
number of iterations of fractal transforms (Jacquin 1993).
Discrete wavelet transform is the basis of the multiresolution
pyramid in which we iteratively double scale by low-pass filter-
ing with half-band filters (subsampling by dropping every
other sample) according to Nyquist’s rule. Each resolution 2j

is computed by filtering with the difference of two low-pass fil-
ters and by subsampling the resultant image by 2j (Mallat
1989). This approximates the Laplacian of the Gaussian oper-
ator. Successively, this allows coarse-to-fine approximation to
the Laplacian pyramid. TheGabor wavelet family consists of a
set of scaled and rotated but self-similar versions of the mother
wavelet, i.e. a multiresolution capability for texture discrimin-
ation closely related to the Gabor filter (Lee 1996). Their com-
putational complexity however is significantly reduced
compared with the Gabor filter bank. A bank of even-
symmetric Gabor filters implements a Gabor function as the
wavelet transform (Jain & Farrokinia 1991). The wavelet
transform is computed by continuously shifting the scalable
window over the signal and determining the correlation be-
tween the two. The wavelet transform is implemented as a fil-
tering operation followed by compression (such as
thresholding). The signal is split into different frequency
bands and passed through a low/high-pass filters. The scaling
function and its limited bandwidth acts a bandpass filter. The
fast wavelet has a computational complexity of only O(n) com-
pared with the fast Fourier transform’s computational com-
plexity of O(nlog2n). JPEG 2000 replaced the discrete cosine
transform of JPEG with the superior wavelet transform for
compression giving compression ratios of 20:1 (Usevitch
2001). A wavelet Karhunen–Loeve transform has been pro-
posed as a robust method with which to remove noise by dec-
orrelating data in the spatial domain using the wavelet
transform followed by the Karhunen–Loeve transform in the
frequency domain (Starc & Querre 2001). Wavelets offer
much promise for image processing, for example
(Sahoolizadeh et al. 2008; Sengar 2009). It is our intention to
explore the use of wavelet transforms to ascertain their per-
formance in rock texture analysis. We shall be comparing the
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relative merits of Gabor filter banks and wavelets, and in par-
ticular, to determine whether the wavelet overcomes the appar-
ent limitations of Gabor filter banks.
Once textural analysis has been achieved, we shall add col-

our to our texture analysis and then add near infrared channels
useful for mineralogy. The traditional use of red–green–blue
colour filters for rover navigation can be converted into the
more useful HSI (hue-saturation-intensity):

I = 1
3(R+ G + B), S = 1− 1

I(R,G,B)max

and H = tan−1
�
3

√ (G−B)
2R−G−B

( )
.

The six geology filter pairs of the ExoMars PanCam were
selected to optimize detection of such geological signatures
of astrobiological significance – (i) sulphates, (ii) phyllosili-
cates, (iii) mafic silicates, (iv) ferric oxides, (v) all iron minerals
and (vi) all hydrated minerals (Cousins et al. 2012). This
should provide a means to autonomously classify rocks
based on visual analysis in order to prioritize different rock tar-
gets and select the most appropriate scientific instruments to be
deployed for further more detailed analysis. The use of mul-
tiple scientific instruments in conjunction with imaging may
permit autonomous processing using a Kalman filter to
allow the merging of disparate sources of scientific data in a
principled manner.
Once texture analysis has been conducted, the texture data

must be classified using clustering algorithms or Bayesian net-
works. The Bayesian network models the causal structure of
the world as directed graphs of production rules (hypotheses)
with conditional probabilities (Glymour 2003).Modelling cau-
sal relations is enabled by determining, which variables depend
on other variables. Probabilistic fusion of multisensory data to
perform geological classification may be implemented through
training a Bayesian belief network (Thompson et al. 2005). The
Bayesian network reflects probabilistic dependencies between
variables and can be constructed automatically from data
sets based on assumptions about prior probabilistic knowledge
(Cooper & Herskovits 1992). The Bayesian network computes
posterior probabilities p(C|D) based on prior information p(C)
and multisensory data Di:

p(C|D) = p(C)p(D1|C)p(D2C) · · · p(Dn|C),
where p(C) = prior probability of class C.
We had used a Bayesian classifier network to classify rocks

on the basis of co-occurrence Haralick processing of texture
and shall continue to use Bayesian classifiers. The use of
FPGA hardware for texture analysis promises rapid computa-
tion (Thompson et al. 2012). The Kapvik microrover imple-
ments two FPGA processors to implement high performance
computation.
These visual analysis methods may potentially be exploited

in analysing drilled subsurface samples from close-up images
of high astrobiological value samples. The delivery of organic
material to the surface of Mars by asteroid, cometary and
interplanetary cosmic particle influx should have accumulated
to 0.8–1.3% of surface regolith by weight (Kolb et al. 2004).
The lack of organic detection has been attributed to high

reactivity of oxidants (average H2O2 concentration of
*104–105 ppbv) in the surface soils and that organics may
survive deeper in the regolith below 3 m (Zent 1998; Kolb
et al. 2002). More recent instrument analysis however sug-
gests the incidence of the oxidant perchlorates (ClO4

−) in
Martian soil (Hecht et al. 2009). A number of indigenous or-
ganics have been detected in drilled mudstones in the form of
chlorinated hydrocarbons – (di)chloromethane (CH3Cl/
CH2Cl2), dichloroalkanes and chlorobenzene (Glavin et al.
2014). These are a side reaction of pyrolytic heating perchlo-
rates with organics, which yield primarily CO2 and H2O, i.e.
oven heating required for organics analysis destroys any indi-
genous organic material (Navarro-Gonzalez et al. 2010). It is
estimated that the Viking results thus indicated <0.1% per-
chlorate with 1.5–6.5 ppm organic carbon at VL1 and
<0.1% perchlorate with 0.7–2.6 ppm organic carbon at
VL2. Nevertheless, drilling can recover subsurface samples
protected from UV radiation at the surface (Stoker &
Bullock 1997) – the drill tools are mounted onto the rover
via a three degree-of-freedom drill box. For example, the
DeeDri drill tool incorporates a central coring chamber
with a central piston and shutters originally developed for
the Rosetta mission (Magnani et al. 2003). The ExoMars
variant is based on multiple drill extension rods mounted
within a drill box onto a carousel, which rotates to assemble
the drill string incrementally as it drills to 2 m depth (still too
shallow to penetrate below estimated oxidant contamination).
Enhancement possibilities include the incorporation of high-
frequency percussive vibration. There exists a biomimetic
alternative percussive drill design based on the woodwasp
ovipositor that eliminates the requirement for drill assembly
(Gao et al. 2007, 2015). Alternatively, a microwave drill is a
coaxial waveguide-monopole antenna that concentrates
microwave energy into rock or soil to generate local hotspots
sufficient to melt certain minerals (Jerby et al. 2002). Such
heating would destroy any astrobiological value of the recov-
ered samples, however. Nevertheless, there are several options
for accessing the Martian subsurface to recover high-value
samples for return which can be analysed visually.

Autonomous visual search for science targets during
traverse phases

To maximize scientific return, we wish to introduce scientific
productivity to the rover traverse phase which traditionally
has been restricted to the science phases. Currently, during
rover traverse, the mast cameras are used periodically to gen-
erate image frames for navigation but also occasionally to sup-
port visual odometry to measure wheel slip. To improve the
accuracy of SLAM, optic flowmay be employed betweenmap-
pings using wide-field imaging if imaging camera movements
are known. This allows the cameras to be deployed in search
of scientific targets whilst permitting wide-field optic flowmea-
surements. Optic flow emulates insect vision allowing extrac-
tion of visual motion features for autonomous reactive
navigation (Srinivasan et al. 1999). It permits a centring re-
sponse to be implemented by balancing lateral image velocities
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on each eye. Forward object expansion and divergence of optic
flow permits time-to-contact with obstacles to be estimated.
We have demonstrated that slip can be measured using very
low overhead downward pointing cameras, freeing up the
mast cameras for scientific applications (unpublished data).
We are exploring active vision to pan the camera during the
rover traverse to search for novel and opportunistic scientific
targets. We have thus far demonstrated two aspects of the ac-
tive vision approach. We have developed rover path planning
algorithms that can adjust to new opportunistic targets on the
basis of primitive novelty parameters during rover traverse
(Gallant et al. 2013). As new visual features emerge as the op-
portunistic target is approached, we can continuously update
the ‘interest’ parameter scaled with distance to the target.
The second aspect we have demonstrated is the camera and
mast control problem.
Active vision emulates how the human eye functions in

searching the visual field in its early processing stages
(Henderson 2003). Human eyes are constantly moving around
the visual field in search of information by shifting our gaze to
targets of interest. Eye movements involve several interacting
neural subsystems – saccades, smooth pursuit, VOR
(vestibular-ocular response), optokinetic response (OKR),
and binocular vergence. Saccades are fast ballistic movements
to direct gaze to different locations. Cognitive attention is a
key feature in visual search in which eye movements are goal-
directed. Attention involves the integration of pre-attentive
sensory (bottom-up filtering) data based on basic visual fea-
tures and attentional (top-down) expectations to control visual
search (feature integration theory) (Muller & Krummenacher
2006). In the brain, the bottom-up processes are implemented
in the V1 and MT region of the extrastriate cortex to form a
saliency map of visual features based on luminance, colour,
motion and basic form and their topology. Top-down pro-
cesses are mediated by working memory to select the most im-
portant types of features to be attended for full recognition
processing. The feature cue generates the ‘pop-out’ character-
istic of selected targets in the saliency map. The saliency map
may be used to implement a form of visual attention in planet-
ary rovers (Itti et al. 1996). Multiscale feature maps are com-
puted using Laplacian pyramids over coarse-to-fine scales to
prioritorize features on the basis of their conspicuity or novelty
(Gabor filter banks would also be suitable). Novelty can
be modelled simply as (1-similarity) where similarity is
quantified as a correlation between successive images. It is a
computationally complex approach that is more appropriate
to complex analysis rather than a more reactive approach
appropriate to constrained computational capacity onboard
rovers.
Using only the narrow field-of-view of the fovea, our eyes

scan the visual field using a superposition of high contrast gra-
dients (edges) superposed with random saccades that prevent
fixation on local minima. However, we wish to employ mea-
sures of interest that go beyond mere edges in the image.
Maximization of Shannon’s mutual information measure
may be used to incrementally incorporate a priori probabilities
estimated as the a posteriori probability in the previous

iteration (Denzler & Brown 2002). Mutual information has
the form:

I (xt, ot|at) = H(xt) −H(xt|ot, at)

=
∫
xt

∫
ot

p(xt)p(ot|xt, at) log p(ot|xt,at)
p(ot|at)

( )
dotdxt,

where p(ot|xt, at) = likelihood function. Mutual information
characterizes the utility of a particular viewpoint for classifica-
tion of the observation. A Bayesian approach of using global
statistical features of the scene may be combined with salient
features to predict eye movements (Torralba et al. 2006).
Contextual global (holistic) features do not require parsing of
the scene and may be computed in parallel with local features
prior to object recognition. Posterior probability of detecting a
target object o at the visual location x given local features l and
global features g:

p(o, x|l, g) = p(l|o,x,g)p(x|o,g)p(o|g)
p(l|g) ,

where 1/p(l|g) = bottom-up data-driven saliency, p(l|o, x, g) =
top-down knowledge of object features, p(x|o, g) = contextual
prior based on previous experience; p(o|g) = object probability.
On the basis of a number of assumptions, a location predictor
map is reduced to salience integrated with task-based priors:

S(x) = p(x|o,g)
p(l|g) .

The highest expected value of the cost of not attending to the
feature is selected, i.e. reward maximization/loss minimization
(Sprague & Ballard 2003). We are currently exploring the pos-
sibility of using the Gabor filter bank or wavelet transform to
extract local texture features with the co-occurrence Haralick
feature approach for computing global features of the scene
in a Bayesian framework. The Haralick parameters include en-
tropy and information theoretic metrics that may correlate well
to ‘interestingness’. The detection of novelty over normality is
an important facet to searching for opportunistic targets rather
than expected ones. One approach is the use of incremental
principal components analysis (Neto & Nehmzow 2005).
Alternatively, an unsupervised neural network may be used
to model habituation of the form (Nehmzow & Neto 2004):

tdhi(t)dt = l(h0 − hi(t)) − s(t),
where τ= habituation time constant, λ= recovery time con-
stant, h0 = initial habituation value, hi(t) = habituation func-
tion as measure of novelty, s(t) = external stimulus > 0 (no
dishabituation). The network may be trained in a winner-
take-all approach using the learning rule: Δwi= η(x−wi)
where η= learning rate, wi=weight, x = input vector. This
latter approach is an interesting one but by its online learning
nature, its behaviour cannot be predicted in advance, rendering
it an unlikely choice for planetary rover implementation.
The camera is mounted onto a mast with a pan-tilt assembly

commonly (such as the ExoMars PanCam). The addition of
further degrees of freedom may be envisaged such as the cam-
era mast on the Kapvik microrover, which constitutes a five
degree-of-freedom manipulator (Liu et al. 2015a, b). In such
cases, the additional degrees of freedom such as the elbow
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(which on theMars Exploration Rovers was fixed in place after
deployment) can be used for peering. This visual servo control
involves closed-loop control of such manipulator-mounted
cameras (eye-in-hand) to control the manipulator state by
tracking image features in sequential images (Hutchinson
et al. 1996). This requires definition and calibration of coord-
inate transformations between the camera and the world. The
image Jacobian J relates 2D image feature velocity ẋ to 6D
camera velocity v (Chaumette & Hutchinson 2006, 2007):

ẋ = Jv.

This in turn can be related tomanipulator joint rates through
the manipulator Jacobian. Camera slewing in determining se-
quential gaze movements should reduce uncertainty in
task-relevant environmental cues.We have demonstrated slew-
ing a manipulator mast-mounted camera at moving targets
without employing attitude measuring gyroscopes for feed-
back (Ross & Ellery 2017). This was accomplished by aug-
menting the low-fidelity feedback loop from the manipulator
joints with a feedforward model of the manipulator dynamics
implemented as a neural network representation similar to that
employed in the human cerebellum [Fig. 4(a) and (b)]. This al-
lowed the mast-mounted camera to implement a form of
smooth pursuit similar to that human eyes use to track moving
targets.
This forward modelling to control a rover-mounted camera

mast to perform camera peering allows the rover to acquire op-
portunistic science during its traverse phases.

Search for water ice during traverse phases

Our final example of robotic astrobiology is based on neural
network-based models of Bekker–Wong terramechanics to
measure soil cohesion and soil friction angle (the two main
physical soil parameters) through wheel–soil interaction as the
rover traverses the soil (Cross et al. 2013) (Fig. 5). This would
enable a continuous stream of physical measurements of the
soil to be implemented during rover traverses, and in
particular, water ice particles in the soil and vacated voids
and ‘fluffy’ regolith left by evaporated or sublimed water ice.
During field trials of the Kapvik microrover at Petrie Island
Ottawa, we used wheel motor torque measurements and load
sensor data above each wheel station to ‘feel’ the soil as inputs
to the model to output soil cohesion and friction angle.
Applied to the measurement of surface and near-surface

water ice or vacated voids impregnating soil, such a facility
could augment other water ice detection instruments to deter-
mine prime sites for drilling.We are developing this facility fur-
ther. In order to make this technique suitable to the ExoMars
and other future rovers such as theMars SampleReturnRover,
we are investigating elimination of the wheel load sensors im-
plemented onKapvik by using an averaging approach. This fa-
cility may be tied into the Gabor filtering/wavelet technique by
correlating visual texture analysis of soils with the terramecha-
nics measurements. This could be implemented as a delayed
Kalman filter with the visual analysis to provide the predictive
model aspect and the terramechanics providing the

measurement step. This could be used by planetary rovers to
both reactively veer towards promising water ice locations
whilst avoiding soil hazards (such as loose drift soil).

Cognitive back engine for robotic astrobiology

We have described front-end aspects of the robotic astrobiolo-
gist. The back enginewould comprise an expert system to inter-
pret scientific instrument data to determine further instrument
deployments in an optimal fashion rather than the current
blind approach of deploying all instruments at all targets.
This will become particularly important as scientific instru-
ments become furtherminiaturized to enablemore comprehen-
sive instrument suites to be deployed. Furthermore, the data
from one instrument may constitute a factor in the deployment
of the next. Some scientific instruments will require consider-
able expertise for interpretation such as Raman spectroscopy
(Ellery & Wynn-Williams 2003; Ellery et al. 2004a, b). For
the ExoMars rover, time-line validation and control allocates
planned resources according to science requests in a similar
ways as temporal logic reasoning within time windows in
Remote Agent and its successors. Such logics however are
cumbersome. For deep space operations, agile science predicts
future imaging targets and plans spacecraft trajectories accord-
ingly to accommodate the short encounter times for narrow
field instruments during flybys, e.g. plumes (Chien et al.
2014). Agility implies adaptability and the Bayesian network
is a robust and adaptable means to incorporate expert knowl-
edge whilst implementing uncertainty. We have the rudiments
of such an expert system in the format of a Bayesian network
used for the Haralick parameter and Gabor filter bank. In a
Bayesian network, the conditional probability represents the
degree of belief in a proposition in the form p(H|E^B).
Assuming background knowledgeB is implicit, Bayesian infer-
ence uses Bayes theorem to compute the posterior probability
of expert system rule H (hypothesis) given empirical data D
(evidence) (Eddy 2004):

p(H|D) = p(D|H)p(H)
p(D) ,

where p(H) = (prior) probability of hypothesis H, p(D|
H) = probability of evidence D if hypothesis H is true (likeli-
hood that trades between model complexity and data fitting),
p(D) = probability of evidence D. By incorporating appropri-
ate prior knowledge, the Bayesian network acts as an
accurate predictor of posterior knowledge in updating with
new data (Heckerman et al. 1995). As the number of rules n
increases, dynamic Bayesian network complexity grows as
O(n!2n!/(2!(n−2!)), which is not computationally tractable.
Hence, this is not an efficient representation scheme but must
be compressed for implementation on computationally-
resource bound planetary rovers. NETTalk – a linguistic
neural network – effectively compressed 2 × 106 bits of symbol-
ic information into 8 × 104 bits within the connection weights
of the neural network, a 100-fold compression rate (Sejnowski
& Rosenberg 1987). Bayesian networks may be inserted and
extracted from neural networks for reduced storage
footprint – such techniques are reviewed in Ellery (2015).
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The extraction of formal if-then rules of the Bayesian network
from neural networks offers an approach to verification and
validation of neural network methods associated with formal
symbolic programs (Taylor & Darrah 2005). This should go
far in permitting the use of neural networks in planetary
rover applications with confidence. The Bayesian network
can bemapped into neural networks readily – a neural network
outputs a maximum a posteriori (MAP) output from training
data p(w|D) through maximum-likelihood estimation of the
Gaussian p(D|w) by minimizing least-square error (Penny &
Roberts 1999):

e = 1
2

∑n
i=1

w2
i .

Hence,

p(w|D) = p(D|w)p(w)
p(D) ,

where p(w) =Gaussian prior, p(D|w) = exp (−G(D|w)) =
Gaussian likelihood, G(D|w) = cross-entropy error function.
This provides a mechanism for algorithmic analysis of the
neural network. The neural network representation may be de-
veloped further. Deep learning involves supplementing

supervised learning in feedforward or recurrent neural net-
works (nominally back propagation) with preceding unsuper-
vised learning (Schmidhuber 2015). The unsupervised learning
pre-processor compresses sequential data prior to the super-
vised learning stages. A Gabor filter would be a suitable gen-
eral purpose feature detector for the unsupervised stages.
Neural networks have also been used for visual classification
in which the Gabor filter features feed into the input layer,
for example (Kwolek 2015). In the supervised learning stages,
a Kalman filter-based learning parameter can incorporate
noise models exploited for automatic adjustment in the back-
propagation algorithm (Ellery 2010):

h = [H(t)P(t)H(t)T + R(t)]−1P(t),
where P(t) = state covariance, H(t) = measurement function
Jacobian, R(t) = measurement noise covariance. Recurrent
deep learning neural nets are a variation based on reinforce-
ment learning and deep learning. The hybrid use of different
neural learning methods in deep learning resembles the basal
ganglia implementing reinforcement learning with the cerebel-
lum implementing supervised learning (Doya 2010). Deep
learning in neural networks requires massive datasets enabled
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Fig. 4. Deviation of camera from a desired pointing trajectory during smooth pursuit using (a) feedback control only (b) both feedforward and
feedback controls.
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by graphics processors but, for planetary environments, such
datasets are not available – yet. Current datasets can of course
be supplemented with terrestrial sources that are available.
Deep learning neural networks offer much promise for the im-
plementation of high degrees of scientific intelligence onboard
future generations of planetary rovers.

Conclusions

These techniques will enhance both the quantity and quality of
scientific productivity of future rover missions and the

astrobiology quest in particular. Furthermore, they could po-
tentially be uploaded as softwareparches for the secondarymis-
sion of the ExoMars rover vision system with no hardware
requirements. Most research effort in planetary rovers to date
has been expended on automating the traverse phases of rover
missions.Thiswork seeks to impart a degreeof autonomy to the
science acquisition phase of rover missions. Initially, this must
be through the camera system, which performs the first scientif-
ic survey before any other instruments are brought to bear. This
is the perception side of the robotic astrobiologist. The selection
of further analytical instruments will be undertaken by the
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Fig. 5. Kapvik wheel 3 soil terramechanics parameters during traverse at Petrie Island Ottawa (a) soil cohesion; (b) soil friction angle.
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cognitive side of the robotic geologist/astrobiologist implemen-
ted as a neural network.Together, they constitute an intelligent,
perceptive, decision-making facility to enhance the task of the
astrobiologists on Earth – indeed, with deep learning training,
the robotic astrobiologist could exceed the capabilities of
human astrobiologists (much as the AI Watson has been dem-
onstrating superior diagnostic capabilities to human physi-
cians). Further, we seek to incorporate opportunistic science
acquisition during the traverse phases of rover missions. This
will further exploit active vision to scan the environment as
the rover traverses. Planetary rover missions are expensive
and any capability that enhances their scientific productivity
will be highly valuable. There are broader implications – this
work will demonstrate an end-to-end intelligent capability
from raw imaging to deep learning expert system. This may
be broadened to similar application areas such as geological
prospecting using remote sensing data in conjunction with in
situ sensors. This will be the advent of planetary ‘big data’ sci-
ence. The prospects for robotic astrobiology are thus rich.
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