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Panoramic camera tracking on planetary
rovers using feedforward control

Jordan Ross1 and Alex Ellery2

Abstract
Future rover missions will be enhanced with the opportunistic search of salient targets during the planetary traverse
phase. An essential component of the search is the locating and tracking of targets at the camera control level. The rover
visual system must be able to follow quantified information gradients for smooth tracking in the visual field with limited
information from images and delayed positional feedback caused by long communication delays inherent in planetary
exploration. We propose a control algorithm based on vestibulo-ocular reflexes employed by the human cerebellum. The
controller uses a feedback error learning model, which is able to track targets by compensating for the rover motion at
the pan–tilt using a network trained prediction of the pan–tilt dynamics. The feedforward controller proved capable in
tracking objects in the visual field as was demonstrated in both simulation and on the Barrett WAM.

Keywords
Feedforward control, manipulators

Date received: 20 July 2016; accepted: 23 March 2017

Topic: Special Issue - Biologically-Inspired Vision Systems in Robotics
Topic Editor: Antonio Fernández-Caballero

Introduction

Planetary mission objectives are selected using NASA’s

Follow the Water strategy, choosing scientific targets con-

tingent on geographical indicators for past or present

hydrological processes.1,2 The resulting rock formations

divulge volcanic activity, tectonic actions, and characterize

past and current climates.3

Rover missions occur in two phases: a traverse phase

and a scientific phase. The rover travels across the planet

surface during the traverse phase until it reaches a prese-

lected location where it then carries out the scientific

phase in accordance with goals of the mission. The tra-

verse consists of intervals in which the rover images the

surrounding area, generates a map of obstacles, and

designs a path through the imaged section. Future rover

missions will be enhanced through the opportunistic

search for new salient targets during this phase, which

will require some form of active vision.

Active vision is a paradigm that suggests that the inte-

gration of controlled actuation may convert a nonlinear

and unstable problem from passive observer to a stable

solution for an active observer using multiple information

sources.4,5 Its use in the future will reduce the com-

putational requirements and resources used in vision

algorithms by focusing the processing on relevant

concentrated areas of the visual field. This will require

capabilities to allow the sensory instruments to track tar-

gets in both the real world and the sensor output. The

real-world tracking occurs at the pan–tilt camera mount

and needs to ensure the camera is viewing targets as the

rover moves. Current tracking techniques track targets at

the image processing level and use proportional-integral-
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derivative (PID) control laws to move the camera accord-

ing to how the feature has moved in consecutive images.

Since feedback signals in space applications are slow, this

form of tracking quickly becomes unfeasible for rapid

corrective motions, and therefore, such a controller will

be without image feedback and will need to suffice with

delayed positional feedback. These algorithms can also

be computationally extensive, requiring simpler tech-

niques to be used. Mass is another constraint in these

missions, meaning hardware solutions are not viable.

A similarly constrained system occurs in the human

body and is solved using the vestibulo-ocular reflex (VOR).

VOR uses feedback from the vestibular system and the

neck muscles as well as a predictive feedforward correc-

tion. The predictive component is trained to estimate the

feedback error and compensate for it in the dynamics. We

propose a controller that tracks objects in the visual field

during the traverse phase of rover missions using a feedfor-

ward reactive controller similar to the visual reflex VOR.

This will act as the front end to the application of active

vision in rovers.

Background

The VORs maintain eye fixation during head rotations by

counterrotating the eyes with typically unity gain and very

low latency. Since feedback signals in the body travel

slowly, the cerebellum, which is where the control center

for VOR, uses a feedforward component to allow stable

tracking. The fashion that the cerebellum controls VOR

and other body motions is not well understood. Early

theoretical models of the cerebellum were derived by

Marr6 and Albus,7,8 inspired by the work done by Braiten-

berg and Atwood9 and Eccles et al.10 Barto et al. showed

that similar learning network models can be used to solve

a problem like the cart and pendulum.11 Albus proposed

an alternative cerebellar controller called cerebellar

model arithmetic computer (CMAC), later used by Miller

to control 5-degree of freedom (DOF) manipulators.12,13

Li and Leong applied the CMAC controller to a 5-DOF

redundant manipulator to solve the inverse kinematic

problem,14 as opposed to the control problem. Miall

et al.15 and Miall and Wolpert16 proposed a version of the

cerebellum in which it functions as a Smith predictor. The

Smith predictor is designed for use in systems with pure

time delay through the addition of a feedback loop with a

delay model to predict the outcome of the time-delayed

feedback.

Paulin et al. on the other hand have theorized the cere-

bellum as a fundamentally simple sensory processing

organ.17 As such, he viewed the cerebellum as an analogue

to either a Bayesian state estimator18 or Kalman filter.19,20

This theory breaks what would normally be extended

smooth motions with many DOF into smaller subsections.

It would also suggest that models of the cerebellum could

be derived from adaptive arrays.21

Kawato later proposed a feedback error learning

(FEL) model of the cerebellum.22–24 The FEL model

proposes that the cerebellum learns actual internal mod-

els of the proprioskeleto-muscular structure as well as

the environment to be used in optimal control. Kawato

and Gomi also proposed a generalized model of the

cerebellum for each of its subsections. It differs from

the Smith predictor in that the FEL model predicts the

true model, where the Smith predictor predicts the error.

Both cases reduce the dependency on delayed feedback.

The FEL model has been used in a few robotic applica-

tions. Miyamoto et al. used the model for trajectory control

of a 3-DOF Programmable Universal Manipulation Arm

(PUMA) manipulator25 and Katayama and Kawato applied

the controller to a 5-DOF rubber-actuator-arm.26 Shibata and

Schaal later applied the FEL to a humanoid robot face to

emulate the VOR using a recursive least squares training

law.27 Some current investigations focus on using different

feedback learning algorithms to optimize the process,28 test-

ing different network structures,29 and applying the FEL

model to adaptive control.30 The natural progression is to

integrate forward Smith predictor model with the learned

internal model. Wolpert et al. proposed such a structure for

the cerebellum; however, since the internal model greatly

reduces the need for feedback, the structure did not result

in a great improvement over the simpler internal model pro-

posed by Wolpert et al.31 Attempts have been made to create

a pan–tilt visual tracking algorithms with some feedforward

control. Gilbert used adaptive statistical clustering and

projection-based classification algorithms to identify and

track objects in the visual field.32

Corke and Goods proposed a visual servoing controller

using a Kalman filter to approximate the motion of a

moving target,33 which was able to track better than using

PI control alone. Chaumette and Santos proposed a similar

control scheme using a Kalman filter-based estimation of

the moving target.34 Kobayashi and Shibata proposed a

method where the target’s position is estimated with a tech-

nique based on triangulation on stereo vision system which

again allows for the tracking of moving objects.35 In these

cases, the focus was on predicting the motion of a moving

target through image processing instead of predicting the

actual motion dynamics. Park et al. developed such a feed-

forward controller; however, the controller was not adaptive

and used visual information as feedback to correct the error.36

All of these cases require readily available images, pro-

cessing power, and motor feedback. Space missions create

unique challenges due to the long communication delays

making all three of these components either unavailable or

delayed. Our approach tracks stationary objects without

using images or a dependence on feedback error. Instead,

we use an artificial neural network to predict the dynamics

allowing for tracking without the images and reduced feed-

back. First step of the tracking algorithm is to determine the

required viewing direction of the pan–tilt as a function of

joint space trajectory.
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Kinematic model

The desired joint space trajectory is inferred based on the

motion of the rover body. The orientations of the base,

rover, and pan–tilt coordinate system are defined as shown

in Figure 1.

The desired orientation of the pan–tilt system can be

represented by a rotation matrix in real-world coordinates

R ¼
xx yx zx

xy yy zy

xz yz zz

2
64

3
75 (1)

This rotation matrix represents the orientation to the

camera in base coordinates, that is, the x, y, and z columns

of R represent the normalized vectors in base coordinates

that make up the axis in camera coordinates. Since the

x-axis of the camera orientation is defined to be the viewing

direction of the camera, then the normalized vector from

the camera to the target in base coordinates pt becomes the

x column of the rotation matrix R.

The vector pt can be found from three known vectors,

first from the origin to the target po, second from the origin

to the rover pr, and third from the rover to the camera pp; all

of these vectors are in base coordinates

pt ¼ po � pr � pp (2)

The pan–tilt tracks objects by controlling the final orien-

tation R at all times. If Rr
o is defined as the rotation matrix

of the rover body and Rp
r as the rotation matrix of the

camera in rover coordinates, the total rotation matrix R can

be found as

R ¼ Rr
oRp

r (3)

Pan–tilts are designed to be kinematically spherical, and

therefore, the two transformations, translation and rotation,

can be separated. Rr
o acts as a translation/rotation and Rp

r , a

function of the pan–tilt joint angles alone, acts to correct

the orientation change due to Rr
o. The rotation matrix Rp

r can

be isolated and used to solve the required joint angles � that

give the desired orientation

Rp
r ¼ RrT

o R (4)

The pan–tilt motion from the two joints �1 and �2 must

yield to a rotation matrix Rp
r , given by the Denavit–Harten-

berg (DH) notation of a 2-DOF manipulator.

Rp
r ¼

c1c2 �s1 c1s2

s1c2 c1 s1s2

�s2 0 c2

2
64

3
75 (5)

Joint angles �1 and �2 can be solved for using only the x

column of matrix Rp
r . This means that the orientation of the

camera cannot be controlled, only the viewing direction

�1 ¼ arctan
xy

xx

� �
(6)

�2 ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x þ x2
y

q

�xz

0
@

1
A (7)

The solution forces the joint angle �1 to remain between

[�p : p] and joint angle �2 to remain between [0 : p]. The

joint angular velocity _� and acceleration €� are found by

differentiating the joint position and velocity.

Feedforward controller

Our feedforward controller is based on the cerebellar model

proposed by Kawato. A neural network composes the pre-

dictive term while a PD feedback control law is used for

stability and for training as shown in Figure 2. As the

network adapts to its environment and the arm dynamics,

the dependence on the feedback terms reduces.

Neural networks make suitable predictive controllers as it

can adapt to complex systems assuming there are enough

neurons present in the network.37 Growing and pruning an

multilayer perceptron (MLP) neural network has previously

been explored,38 and as such, multiple structures were tested

until the addition of more neurons no longer improve the

network accuracy. As a rover operates in dynamic environ-

ments, the controller must also be able to adapt, and there-

fore, online learning structures have been proposed, namely

a backpropagation with momentum (BPM) training law,

which was the law used by other researchers in the applica-

tions of Kawato’s model.39 A neural network is defined as

b ¼ w2 tan hðw1xþ w0
1Þ þ w0

2 (8)

where w1 is the weights acting from the input layer to the

hidden layer, w0
1 is the biases of the hidden layer, w2 is the

weights acting from the hidden layer to the output layer,

and w0
2 is the bias of the output layer. The input to the

network is defined as x.

Backpropagation with momentum

The BPM updates the network weights using a gradient

method while showing some biasing toward previous

training using a momentum vector. The algorithm begins

Figure 1. Rover orientations and reference frames.
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by defining the sum square error E to evaluate the train-

ing process

Eðxk ;wkÞ ¼
1

2

XN

n�1

XM
m�1

�
yn;k � bðxn;m;wn;mÞ

�2

(9)

where N is the number of training samples (1 for online

training), M is the number of network outputs, yn;k is the

desired output, and bðxn;m;wn;mÞ is the current output. The

gradient vector g is the first-order derivative of the total

error E with respect to the current network weights wk

g ¼ @Eðxk ;wkÞ
@wk

(10)

The training law is then defined by the following error

gradient

wkþ1 ¼ wk � �g þ �dwk (11)

where � is the learning rate and � is the momentum factor.

This structure was found to have problems adjusting to

the dynamic environment and so an extended Kalman filter

(EKF) training law,40–43 which has been showed to work

well with online training, was also tested. Neural networks

trained online using EKFs have not been used in feedfor-

ward control applications.

EKF training algorithm

An EKF combines noisy model and measurements into a

weighted estimate of the state. For a neural network, the

state is the vector of network weights and the network

output is the measurement of the state. The general form

of the process equation or the state of an EKF is defined as

wk
k�1 ¼ f ðwk�1

k�1; uk�1Þ þ qk (12)

where wk
k�1 is the predicted weights at time k, uk�1 is the

user input to the system, and qk is the model noise normally

distributed about 0 with covariance Q. The function f is the

process equation that transforms the weights from time step

k � 1 to time step k denoted by wk
k�1. Since the weights of a

neural network are not a function of time, nor is it affected

by user input, the process equation can be simplified

wk
k�1 ¼ wk�1

k�1 þ qk (13)

The general form of the EKF measurement equation is

defined as

yk ¼ bðwk
k�1Þ þ rk (14)

where yk is the state measurement at time k and rk is the

measurement noise normally distributed about 0 with cov-

ariance R.

The EKF law first predicts the current state wk
k�1 and

covariance Pk
k�1

wk
k�1 ¼ Fk�1

k�1 wk�1
k�1 (15)

Pk
k�1 ¼ Fk�1

k�1 Pk�1
k�1F

k�1;T
k�1 þ Q (16)

Since the process function is linear, its Jacobian Fk�1
k�1

can be found by differentiating the state vector by itself,

giving the identity matrix I. The state and covariance pre-

diction simplify to

wk
k�1 ¼ wk�1

k�1 (17)

Pk
k�1 ¼ Pk�1

k�1 þ Q (18)

The EKF then updates the prediction using the taken

measurements. First the Kalman gain is computed

Kk ¼ Pk
k�1BT

k ðBkPk
k�1BT

k þ RÞ�1
(19)

Figure 2. Linear regression of the neural network taught by batch backpropagation.
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The Jacobian of the neural network Bk , with respect to

the weights w, can be broken into four parts

@b

@w1

¼ w2x
�

1� tanh2ðw1xþ w0
1Þ
�

(20)

@b

@w2

¼ tan hðw1xþ w0
1Þ (21)

@b

@w0
1

¼ w2

�
1� tan h2ðw1xþ w0

1Þ
�

(22)

@b

@w0
2

¼ 1 (23)

The updated weights wk
k and covariance Pk

k can be deter-

mined based on the desired output yk and current output

bðwk
k�1Þ of the neural network

wk
k ¼ wk

k�1 þ Kk

�
yk � bðwk

k�1Þ
�

(24)

Pk
k ¼ Pk

k�1 � KkPk
k�1BT

k (25)

Model verification

Feedforward controllers cannot be analyzed using the typ-

ical stability techniques. Neural networks performance is

quantified using two parameters, the coefficient of deter-

mination (R2)44 and the mean square error (MSE).45 The

coefficient of determination indicates how well data points

fit a statistical model. In the case of the neural network, the

R2 value relates how well the output of the neural network

maps to the desired output. The R2 value is a measure of the

accuracy of the neural network. It can be described as

R2 ¼ 1�

Xn

i�1
ðyi � ŷiÞ

2

Xn

i�1
ðyi � �yiÞ

2
(26)

where yi is the output of the neural network, ŷi is the desired

response, �yi is the mean value yi, and n is the number of

data points used. The best possible fit has a R2 value of 1,

and a very poor fit has a R2 value of 0.

The other neural network analysis technique is the net-

work MSE. The MSE is a measure of the precision of the

network output and describes how close the network output

values are to the desired values. It can be described as

MSE ¼ 1

n

Xn

i�1

ðyi � ŷiÞ
2

(27)

Simulation results

A simulated version of a 3-DOF pan–tilt unit was con-

structed in MATLAB. While most pan–tilts are by defi-

nition 2-DOF, the hardware used in testing had 3-DOF

available, so the decision was made to use a more

complex system; the theory being the results should only

improve with the reduction in system complexity from

3-DOF to 2-DOF. Feedforward controllers were tested

using different network structures and training algorithms

to determine whether:

1. A neural network can adequately predict the

dynamics of a 3-DOF pan–tilt camera.

2. An online training algorithm can be used to adapt a

trained network to a dynamic environment.

3. An online algorithm remains stable while the

weights fluctuate during training.

First, to determine whether a neural network could

mimic the dynamic equation of a manipulator, a single

batch trained network was generated using the Newton–

Euler dynamic equations. The output of the trained network

versus the desired output is shown in Figure 2.

The network itself had a R2 value of 0.980 and an MSE

of 5.319 � 10�8. The near 1 R2 and relatively small MSE

both indicate a strong correlation between the network and

the desired output. They show that the network not only

correlates with the statistical data but it is also precise, and

it can be concluded that a neural network is capable of

mimicking the dynamics of a pan–tilt camera. It should

be noted that the fit is not flawless, meaning that the net-

work can never truly be independent of some form of feed-

back. It can however improve the initial estimation given

by the dynamic equations, which will reduce the drift and

errors that are being corrected by the feedback signals and

allow for greater feedback time delays. Since the batch

trained networks are unable to adapt to dynamic environ-

ments, an online network was built and tested using the

BPM algorithm. The training data set was feed to the net-

work a single point at a time for the entire set. These results

are shown in Figure 3.

The BPM network had an R2 of �0.636 and an MSE of

1.127 � 10�4. This training algorithm failed to build a

usable network. The negative R2 means that simply using

a mean torque for the entire move would give a better esti-

mate than the neural network. The reason for the poor result

is due to the BPM algorithms inability to keep track of past

training data, instead biasing the new information over all of

the previous training samples. The solution to this problem is

to instead use an EKF training algorithm. The EKF algo-

rithm keeps a measure of confidence in the current weights

when adding new data points using the covariance matrix.

This algorithm was tested using the same method as the

BPM algorithm, and the results are shown in Figure 4.

This structure gave an R2 value of 0.978 and an MSE of

7.5530 � 10�7. While this fit is not as good as the batch

propagation algorithm, which agrees with other findings, it

still was shown to have a high correlation and very low

MSE, making it potentially suitable for the pan–tilt appli-

cation. While after training the network seems to perform

well, it’s stability during training is unknown. Stability

Ross and Ellery 5



analysis neural network-based controllers cannot be done

using the traditional techniques. In this case, the R2 and

MSE of the EKF algorithm were monitored during the

training process and are shown in Figure 5.

This plot indicates both how fast the algorithm is able to

converge to a solution and how to fit changes after each

new data sample. In this case, the EKF algorithm was found

to converge very quickly, needing fewer than 50 training

Figure 3. Linear regression of the neural network taught by online backpropagation with momentum.

Figure 4. Linear regression of the neural network taught by extended Kalman filter.

Figure 5. Training results of the neural network taught by EKF. EKF: extended Kalman filter.
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samples for the R2 to remain above 0.95 after beginning

with a randomized state. There is also not a lot of variance

in R2 and MSE during the training, which would suggest

some degree of stability over the use of the system. Since

the EKF controller was shown to be plausible in simulation,

it was then taken and applied in hardware testing on the

Barrett WAM.

Barrett WAM results

The EKF controller shown to be a plausible control scheme

in the previous section was applied to the Barrett WAM

with the goal of determining whether:

1. An EKF controller can be used to control a pancam

allowing it to track objects in the visual field.

2. An EKF controller can function as well or better

than a PD feedback controller.

The Barrett WAM is a 7-DOF manipulator with a sphe-

rical wrist. The spherical wrist allows for the decoupling of

the displacement and orientation components of the end

effector. The decoupling allows for us to easily simulate

a full rover/pan–tilt system. The rover itself can be simu-

lated using the displacement of the arm. Moving the first

four joints moves the end effector–mounted camera and

changes the required viewing orientation. The spherical

wrist can simulate the pan–tilt and is able to adjust and

control the viewing direction of the camera. In this setup,

the arm is told where the target is, and the wrist is tasked

with trying to track the object in the visual field using

motor commands while the arm itself is being moved. This

setup can be seen in Figure 6. While most pan–tilt units in

space applications are 2-DOF, it can be assumed if the

controller works for a more complex 3-DOF system, it will

also work for the simpler 2-DOF model. As with the pre-

vious section, in order to compare a feedback controller

with a feedforward controller, the R2 and MSE values for

each were used.

First a simple PD controller was used to create a control.

The controller was tested within the environment described

above and the performance is shown in Figure 7. This system

had an R2 of 0.733 and an MSE of 0.98%. The plot shows a

predictable feedback response, where errors need to exist in

the system before they can be corrected. Visually, these

Figure 6. Configuration of the Barrett WAM.

Figure 7. Linear regression of feedback control law applied to the Barrett WAM.
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errors occur as drift where the target moves around a lot in

the visual field, occasionally out of the screen.

The EKF controller was then built and simulated under

the same conditions. The linear regression for this con-

troller is shown in Figure 8. The EKF feedforward con-

troller had an R2 value of 0.931 and the MSE of 0.18%.

The reduction in fit parameters can be attributed to the

increase in the complexity of the modeled components.

The network is now attempting to predict friction, motor

backlash, and so on along with the gravitation, inertial,

and Coriolis forces that were used in the MATLAB simu-

lated environment. It is significant to note that the feed-

forward controller was an improvement over feedback

along. Visually, there was less drift and fewer large cor-

rections in the visual field. The tracking was smoother in

general; however, it was prone to few jerks when the

system came across one of the outlier points.

Conclusions

It was shown that an EKF-trained neural network is able to

track objects with a pan–tilt using a 3-DOF spherical

manipulator for a model in space rover missions with lim-

ited feedback and no images. The EKF network performed

better than both a backpropagation model that is normally

used and a PD feedback controller.

Feedforward control as shown in this article can also

be easily applied to further control applications subject to

feedback delays and modeling errors, such as tele-

operation of manipulators on the moon or for on-orbit ser-

vicing, which is currently considered to be an unsolved

problem within robotics.
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