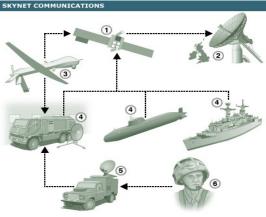


Artificially Intelligent Spacecraft as a Defence Strategy Against Hostile Cyber-Intervention

Prof Alex Ellery

Space Exploration Engineering Group (SEEG) Carleton University, Ottawa, CANADA

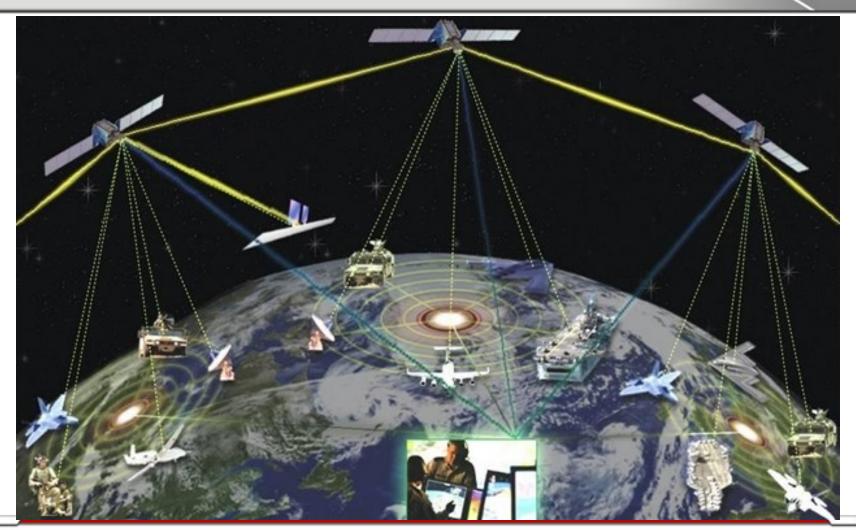

12th Annual Conference on MILITARY SPACE SITUATIONAL AWARENESS London (26-27 Apr 2017)

Military Space Assets & Ground-Space Architecture

What military use is space?

- GPS navigation is a core capability for military ground forces broadcast downlink – TTC uplink only – no user uplink
- Comsats for global communications in fixed orbits

 TTC uplink user uplink downlink via transponder relay, e.g. Skynet
- 3. Strategic/tactical reconn by EO TTC uplink for orbit re-tasking no direct user access



- 4. Meteorological monitoring and forecasting TTC is same as for EO satellites
- 5. Internet-of-Things military logistics (a la van Creveld)
- 6. Battlefield telemedicine

Backbone of the Future Battlefield

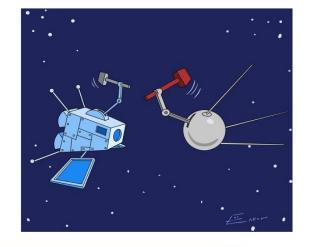
Example - Drones

- Drones operate through 3 radio links aircraft transponder GPS satellite – air-ground pilot control (via satellite)
- 1982: IDF Air Force deployed RPV squadrons against Syrian SAM air defence system in the Bekka Valley:
 - (i) draw missile fire to deplete missiles
 - (ii) recon missile radars and launch sites
 - (iii) second wave manned air attack destroyed targets
- Aircraft losses: Syria 80 Israel 0
- Drones are the weapon system of choice for all kinds of political ailments

Satellite Vulnerability

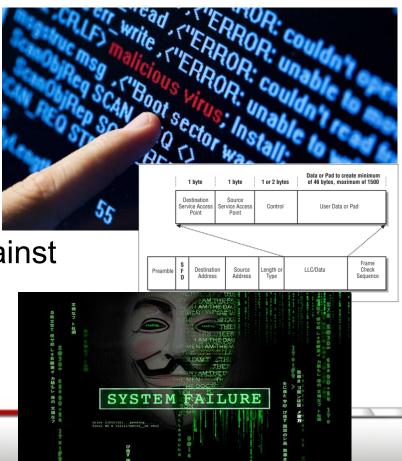
- It was once assumed that high technological barrier rendered military satellites immune to attack
- US DoD used commercial services for 45% of its US-Gulf communications traffic during Desert Storm (first space war)
- However, there are 3 avenues of attack by state actors relevant to SSA
 - (i) ASAT (anti-satellite) air-to-space missile

e.g. 2007: China fired missile at its Fengyun-1C meters increasing debris population by 30%



Satellite Vulnerability II

- (ii) Micro-satellites introduce low-cost
 option for hunter-killer interceptors to
 observe, track and destroy satellites
- e.g. laser/particle/kinetic weapons for more selective attack to simulate debris
- e.g. Cubesats may be designed with low radar cross-setion for stealth



Stealth Attack

- Most insidious threat is that of which one is not aware until it happens – this is the ultimate challenge to SSA
- Cyber-threat is interference with satellite operations through its communications links (uplink)
- Virus appended data packets
- Example of asymmetric warfare waged by non-state aggressor against technological infrastructure

Types of Satellite Cyber-Attack

- 1. Direct communications (jamming) denial-of-service (DOS)
- 2. Source of elint (malware)
- 3. Subversion of communications channel (misinformation)
- 4. Physical self-destruction
- 5. Subversion of satellite wholesale in pursuit of enemy's goals
- Cyber-attack requires minimal technological investment
- Terrorism or even disaffected individuals
- Cyber-attack can be disguised as legitimate failure

History of Satellite Hacking

- 1. 1986: "Captain Midnight" disrupted uplink feed to Galaxy 1 TV broadcast satellite from Florida ground-station
- 2. 1995: Kurdish satellite channel jammed for broadcasting promotion of terrorism
- **3**. 1997: Indonesian government imposed DOS attack on Tongan satellite regarding dispute over orbital slots
- 4. 2007: Sri Lankan Tamil Tigers hacked Intelsat to broadcast propaganda over TV and radio channels
- 5. 2009: hackers took control over NASA Terra EOS satellite (twice)
- 6. 2010: Dow Jones lost 9% die to flash (momentary) crash in GPS signals (accidental)

Non-satellite hacks can be implemented on satellites:

- 1. 2012: S Korean recon drone crashed into ground control station killing 3 people N Korea jammed GPS signal
- 2. 2010: allegedly America-Israeli Stuxnet zero-day virus attacked Iranian nuclear processing plant centrifuges causing them to self-destruct

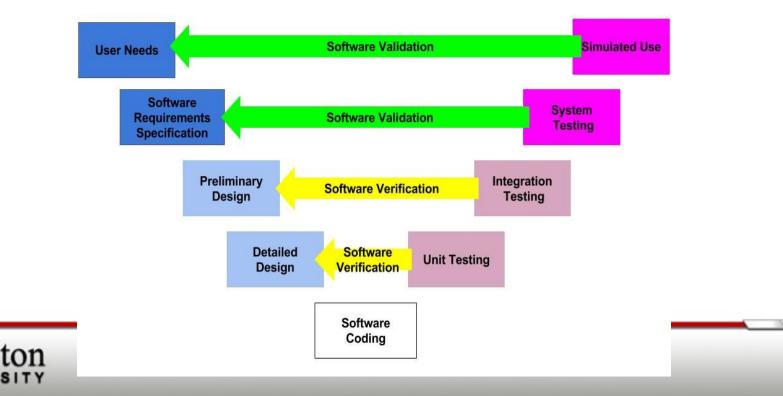
Stuxnet demonstrated that **computer viruses** can cause extensive physical damage to infrastructure facilities including satellites by manipulating control systems – a **version of munitions**

Satellite is a Hacker's Delight

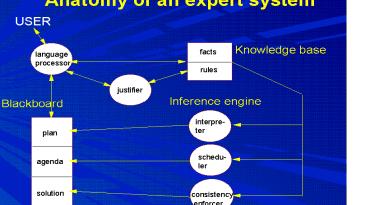
- Orient solar arrays away from the sun to drain the batteries so on entering eclipse there is no power
- Feed constant current through solar array cells to encourage tin whisker growth short circuit
- Open louvres to heat sensitive batteries and optical surfaces to distort them
- Orient propellant tanks to deep space to freeze the propellant
- Induce mechanical resonant vibrations through reaction wheel motors or solar array motors
- Saturate reaction wheel drives to tumble the spacecraft
- Toggle thermal switches to re-distribute heat loads to sensitive components
- Dribble-leak propellant to shorten mission lifetime
- Overload CPU with DOS
- Spoof cameras by pointing them to the sun
- Switch open electronics/optics during SAA passage
- Overload diode protectors to breakdown voltage to generate power surges
- Intercept and re-direct communications traffic
- In all cases, ensure voltage/pressure/temperature sensors read nominal conditions
- In all cases, loss of functionality/failure may be attributable to random events

Multilayered Defence System

- Isolate ground station from unauthorised users
- 1. Firewalls cannot protect against password distribution across multiple users
- 2. Passwords insecure due to multiple users daily random letter/number generation are pseudorandom (unless quantum events exploited) and difficult to remember easily remembered mnemonics with number substitution (Logica protocol) resistance to change
- 3. Antivirus software (legacy only)
- Isolate spacecraft from TTC uplink
- isolate spacecraft asset from ground by reducing TTC uplink sessions – last line of defence


AI – Raison D'Etre

- Artificial intelligence methods permit autonomous satellite operations (launch-and-forget)
- Humans are poor decision-makers:
- 1988: USS Vincennes in Persian Gulf shot down Iran Flight 655 Airbus killing 290 civilians – weapon crew authorised firing
- 2009: human pilot of Air France airliner crashed into Atlantic during storm killing 228 passengers because ice formed in the pitot tubes measuring airspeed – pilot pitched up and stalled
- Autonomous operations are also desirable to reduce costs of ground station personnel
- PROBA (Project for On-Board Autonomy) focussed on fault detection, isolation and recovery (FDIR), autonomous navigation and mission planning
- I am proposing much more radical approach

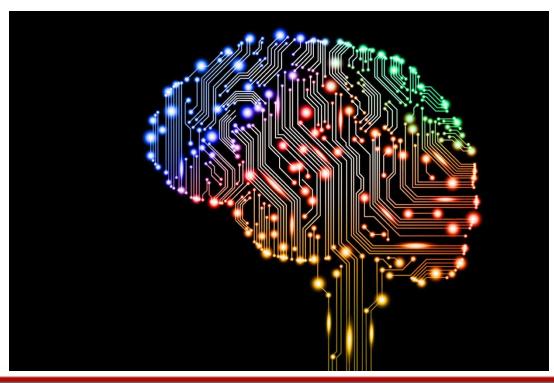

Verification & Validation

- Average released software has 11 bugs/1000 lines of code
- Space Agencies reduce this to 011 bugs/1000 lines of code through extensive V&V methods
- Program synthesis flow down is structured

Good Old Fashioned Al

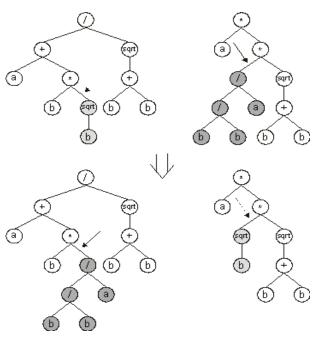
- GOFAI is traditional approach to AI based on logical rules of inference logic permits mathematical theorem proving techniques and program tracing
- Expert system comprises knowledge base of production rules of form: "IF (conditions) THEN (action)"
- GOFAI is structured consistent with V&V required by space software
- Large expert systems suffer from large
 computational footprint, consistency maintenance and brittleness
- Non-monotonic logics (e.g. temporal logic of Remote Agent) weakens theorem proving validity

Fallibility of V & V

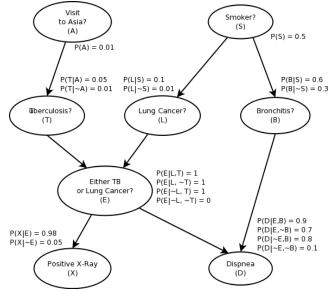

- 1. 1996: ESA's Ariane 5 self-destructed within minutes of its maiden launch due to an error in its guidance system
- 1999: NASA's Mars Polar Lander experienced atmospheric vibrations which it interpreted as landing impact – it crashed from a great height
- 1998: Mars Climate Observer received commands in units of lbf instead of N and inserted into too low a Mars orbit resulting in disintegration

Illusion of V & V has prevented adoption of soft computing methods of great power on spacecraft

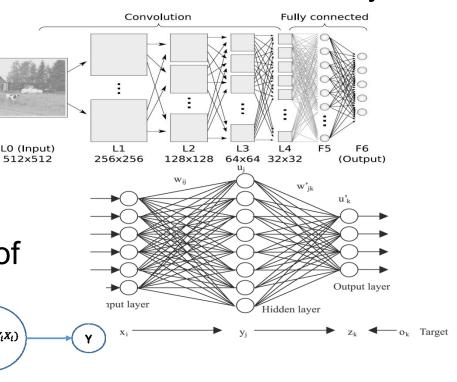
Proposed AI Architecture


 Genetic Program – Bayesian Network – Recursive Auto-Associative Memory – Recurrent Neural Network – FPGA hardware

Genetic Program


- Genetic program is high level programming language (Prolog) version of genetic algorithm
- Genetic program is inductive learning component
- Programs are subject a fitness function and evolved from generation to generation
- Cross-over of subtrees
- It learns Prolog condition-action rules

Bayesian Network


- Prolog rules form Bayesian network structured expert system with inheritance links
- Bayes rule gives a posterior probability of rule H given data D: $p(H|D) = \frac{p(D|H)p(H)}{p(D)}$
- where p(H)=a priori probability of rule H p(D)=probability of measuring data D, p(D|H)=probability of measuring data if H is true

Deep Learning

- Deep learning involves unsupervised network followed by supervised network Convolution Fully connected
- RAAM is preprocessor to encode rules compactly
- This is where magic happens.
- Multilayer NN is back-engine
- Neural net is layered network of thresholded switches^(x1) W1 $f(\sum_{i=1}^n W_i X_i)$

Problem: neural network information is opaque to analysis

W2

WЗ

XЗ

The Prestige!

- Weights w interpreted as a posteriori probabilities computing likelihood I(y|x,w) that training samples (x,y) are estimates of (y|x)
- Learning weights updated continuously using Kalman filter learning:

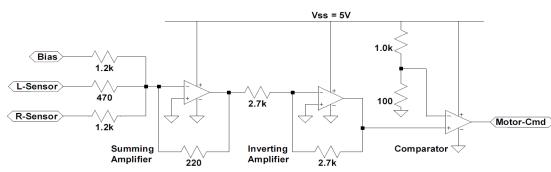
$\hat{w}(t+1) = \hat{w}(t) + K(t)[y^d(t) - h(\hat{x}(t))]$

• where $[y^d(t) - h(\hat{x}(t))]$ = error between estimated and measured output

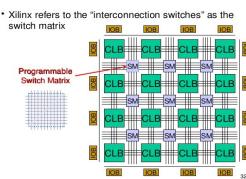
 $K(t) = P(t)H(t)[(1/\eta)I + H(t)^{T}P(t)H(t)]^{-1}$

 $\eta = [H(t)P(t)H(t)^{T} + R(t)]^{-1}P(t)$

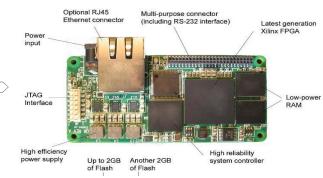
- Neural net compresses symbolic information around 100:1!
- Leaky integrate-and-fire neuron offers closer biological analogue with spiking output.


Neural Immunity

- Information flow is one-way
- 1. Learned networks downloaded to ground station
- 2. Rules extracted from neural net
- 3. V & V analysis performed on demand
- Neural net protects against Logic Bombs
- Logic Bombs must be installed in specific locations in software logic
- Stuxnet-like worms must be integrated into control software specifically to alter control parameters
- In neural net, logic is distributed throughout network in network matrix
- Hypothesis: neural controllers immune to worms
- However, neural net must be implemented in hardware


Field Programmable Gate Arrays

- Neural net may be implemented on FPGA for superior performance
- Neurons implemented as sub-blocks:
- 1. Multiplication of weighted inputs
- 2. Summation of weighted inputs
- 3. LUT implementation of sigmoid function
- 4. Control block to coordinate computations



Xiphos Q6 card is space qualified

FPGA

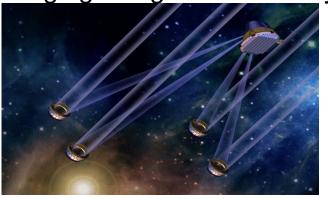
Fault Diagnosis

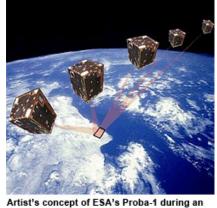
 AI model to compute residuals (signatures) by comparing AI model with spacecraft measurements using Kalman filter

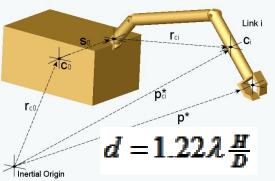
current estimation

 $\hat{X}_{k} = K_{k} \cdot Z_{k} + (1 - K_{k}) \cdot \hat{X}_{k-1}$ previous
estimation
Kalman Gain

measured value


- Kalman filter balances noisy model-based prediction and noisy sensory measurements
- Changes in system dynamics indicate actuation failure
- Changes in measurement expectation indicate sensor failures




Earth Situational Awareness from Space

 We have been exploring a technique for extremely high resolution imaging using interferometry

1m resolution imagery sufficient to identify ships, aircraft and armoured vehicles

image capture run

- 0.5 m resolution imagery supply 50% of imagery requirements for the intelligence services
- D=1 km → d=0.5 mm!

srms_mov1.wmv

The Future is Here – Get Ready!

Private sector is blazing a trail to the Moon and beyond

- This is happening
- Your citizens are expanding their domain
- Defence community needs to expand with them

