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Abstract

This paper presents a method for extracting data on regolith online with a planetary exploration micro-rover. The method uses a
trained neural network to map engineering data from an instrumented chassis to estimates of regolith parameters. The target application
for this method is a low-cost micro-rover scout on Mars that will autonomously traverse the surface and detect changes in the regolith
cohesion and shearing resistance without the need for dedicated visual sinkage estimation on each wheel. This method has been applied
to Kapvik, a low-cost 30 kg micro-rover analogue designed and built for the Canadian Space Agency. Data was collected using a motor
controller interface designed for Kapvik using off-the-shelf components. The neural network was trained from parameters derived by
classical terramechanics theory using Matlab’s Neural Network Toolbox. The results demonstrate a proof of concept that neural
networks can estimate the terrain parameters which may have applications for automated online traction control.
� 2013 ISTVS. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The Mars Exploration Rover (MER) Spirit landed on
the plains of Gusev Crater on 4 January 2004. Its original
mission life was 90 Martian solar days, otherwise known as
sols. Spirit continued to operate until sol 2210 when com-
munication with Earth ended. Its right front wheel drive
actuator failed during its extended mission. This failure
caused the front right wheel to be pushed through the ter-
rain instead of being driven. Spirit continued its extended
exploration mission with five active wheels until it became
embedded in loose terrain on sol 1871. Several attempts
were made to extract Spirit from the loose soil. However,
on sol 2104 the right rear wheel also failed which furthered
impeded Spirit’s mobility. With only four functioning
wheels, Spirit was unable to overcome the terrain resistance
and continued to function merely as a stationary research

base [1]. Spirit was not the only MER to be impeded by
loose terrain. Opportunity encountered 30 cm of loose aeo-
lian deposits at Meridiani Plains in which all six wheels
became embedded. The rover required 23 Sols and 150 m
of commanded wheel movements to move 26 cm and free
itself from the “Purgatory Ripple” [2].

Spirit and Opportunity became immobilized due to the
presence of a non-geometric obstacle: loose terrain. The
loose terrain that trapped Spirit was believed to be a
weakly cohesive mixture of sulfate and basaltic sands that
caused the rover to experience greater wheel slip and wheel
sinkage. The tractive force generated by the wheel-terrain
interaction was not enough to overcome the terrain resis-
tance. Classical terramechanics theory, with previously
estimated terrain parameters, validated this conclusion [1].

The purpose of this work is to provide a proof of concept
of estimating two Mars terrain parameters, cohesion and
shearing resistance, online during a micro-rover’s traverse
phase using trained neural networks. Mars soil is herein
referred to as regolith. Micro-rovers are intended to be
low-cost scouts for a larger class of rover, such as Curiosity
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and ExoMars. The research includes the development of
motor controller interface software that provides the inputs
to the neural network. The research presented is an exten-
sion of the motor controller interface software developed
for the Kapvik micro-rover.

1.1. Kapvik micro-rover

Kapvik, as shown in Fig. 1, is a 30 kg micro-rover ana-
logue designed as a tool for further developing Canada’s
planetary exploration capabilities. The Space Exploration
Engineering Group (SEEG) at Carleton University was
responsible for the development of the mobility system.
Kapvik has an instrumented six-wheeled rocker-bogie sys-
tem with differential drive similar to NASA’s fleet of explo-
ration rovers: Sojourner [3], Spirit [2] and Opportunity [1],
and Curiosity [4]. The rocker-bogie allows all six wheels
to maintain ground contact to enhance mobility while
allowing the rover to climb over rocks [5,6]. Kapvik was

designed with a view to flight qualification, and to help
assess potential exploration missions to which Canada
may contribute. It was designed for temperatures associ-
ated with summer in the high arctic. Its trial operations will
be in an unknown environment-likely in the Canadian Arc-
tic-analogous to the Mars equatorial surface.

1.2. Related works

Classical terramechanics theory developed by Bekker [7]
and later Wong [8] has been applied to planetary vehicles
since the Apollo program [9,10]. Much of the recent
research on applying terramechanics to planetary rovers
has been led by the Massachusetts Institute for Technology
(MIT) Field and Space Robotics Laboratory and MIT
Robotic Mobility Group. Therefore, the simplified wheel-
terrain interaction model in this paper is based upon their
research [11–13]. Many other research groups have been
researching terramechanics for planetary rovers. The Space
Robotics Laboratory at Tohoku University has been devel-
oping autonomous traction control for planetary rovers
[14,15]. The terramechanics of wheel grousers for planetary
rovers has been researched at Dalhousie University [16,17].
Current planetary rover research in Europe is studying flex-
ible wheels [18,19].

Online terrain classification and estimation has also been
studied. Kleiner [20] successfully classified terrain based on
vision and wheel vibrations; however, the terrain greatly var-
ied (grass versus asphalt versus gravel) and there was no indi-
cation this classification method could detect changes in the
properties of a single terrain type. Brooks [21,22] also used
wheel vibrations to classify between more similar terrain
types but not to estimate terrain parameters. Tan [23] and
Yousefi Moghaddam [24] each proposed a method for esti-
mating terrain parameters online; however their application
was for excavation and not based on wheel-terrain interac-
tion. Iagnemma used a simplified wheel-terrain interaction
model [11–13] for estimating the two terrain parameters
online for an exploration rover. He solved for [c, /] using lin-
ear least squares with a set of sensor data [V, x, z, I], a quasi-
static wheel load W, and assumed shear deformation param-
eter K. His laboratory experiments, using an instrumented
testbed, showed that the least squares estimates for [c, /] of
the sand were within range of the bevameter measurements.
An a priori value for the shear deformation parameter K was
needed to solve the least squares estimate. He also estimated
the terrain parameters for a six-wheeled rover in a Matlab

Nomenclature

CAN Controller Area Network
MER Mars Exploration Rover
MLP Multilayer Perceptron
MSE Mean Square Error

RSD Relative Standard Deviation
SEEG Space Exploration Engineering Group

Fig. 1. Kapvik’s mobility system, including the motor controller interface,
was developed by the SEEG team at Carleton University.
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simulation using simulated noisy sensor data. His simulation
results showed that the least squares estimates of sand were
within error. Iagnemma’s simulation did not describe how
the wheel sinkage z, or wheel-terrain contact area A, was
measured; only a simulated value was used for the estimation
of the terrain parameters.

The wheel sinkage z estimates are used to calculate the
wheel-terrain contact arc hC = cos�1(1 � z/r). Wilcox [25]
estimated z on a six-wheeled articulated rover similar to
Sojourner and Kapvik. His kinematic model worked well
to detect sinkage but he noted the sensor noise was too
high to give a good z estimate. Reina [26] used visual sink-
age estimation to measure z however the size, mass, and
power consumption required to support dedicated vision
measurements of each wheel do not fit into the scope of a
low-cost micro-class rover.

1.3. Outline

This paper continues with a description of the terrain
parameter estimation method including the simplified
wheel-terrain model. A brief introduction to neural net-
working is provided along with the procedure to construct
the neural network used for this research. The neural net-
work training set is then derived using the simplified
wheel-terrain model. The results from field testing are pro-
vided followed by conclusions.

2. Terrain parameter estimation method

Iagnemma’s simplified wheel-terrain interaction model
[11–13] allows the terrain parameters to be a multivariable
function of the sensor measurements [c, /] = f(V, x, z, W, I):

� The rover velocity V is provided by a velocimeter;
� The motor rotational speed x is provided by enco-

der data;
� The current drawn by the motor I is provided by the

motor controller;
� The weight-on-wheels W is provided from load cells

on each wheel; and
� The wheel sinkage z is unknown and is needed for

the contact arc hC.

2.1. Simplified wheel-terrain interaction model

The terrain parameters [c, /] are related to the wheel-
terrain interaction model by the shear stress distribution
equation along the wheel-terrain interface [8] (see Fig. 2):

sm ¼ ðcþ rm tan /Þ 1� e
�j
K

� �
ð1Þ

where

� The shear deformation parameter K is experimen-
tally derived for a particular terrain;

� c is the terrain cohesion and one of the parameters
to be estimated;

� / is angle of shearing resistance and is the other
parameter to be estimated;

� The amount of slippage j = f(i, hC) is determined by
the slip ratio i = 1 � V/r x from the rover velocity V

and the motor shaft rotational speed x;
� The maximum shear stress sm = f(I, hC) over the

wheel contact area A = rwhC is determined from
the torque T applied by the motor, which draws a
current I;

� The maximum normal stress rm = f(W, hC) is deter-
mined by the wheel load W acting over A; and

� The wheel radius r and width w are known values.

The shear stress sm acting over A determines the maxi-
mum allowable thrust F = f(sm). Therefore, [c, /] influence
the mobility of a rigid-wheeled vehicle on terrestrial and
planetary terrain. A decrease in either c or / will result
in a decrease in the maximum thrust available at the wheel.
When the thrust available is less than the resisting force of
the terrain, the wheel becomes immobilized. The force and
torque balance of the wheel-terrain interface is given in
Eqs. (2) and (3):

W ¼ rw
Z h1

h2

rðhÞ cos hdhþ
Z h1

h2

sðhÞ sin hdh

� �
ð2Þ

T ¼ r2w
Z h1

h2

sðhÞdh ð3Þ

The normal stress r(h) is divided into two regions on
either side of the maximum normal stress rm, where h is
an angle relative to vertical axis. The normal stress in

Fig. 2. Simplified wheel-terrain interface diagram. W is the weight on the
wheels; T is the torque driving the wheel as determined by the motor
current draw; x is the rotational speed of the wheel as determined by the
encoder; and hC is the wheel-terrain contact arc.
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Region 1, r1, occurs in the region between the wheel-terrain
interface entry point h1 and the maximum stress point hm;
The normal stress in Region 2, r2, occurs in the region
between hm and the interface exit point h2. These regions
of normal stress are shown in Fig. 3. Iagnemma [12,13]
states that rm and sm can be assumed to be co-located at
the same angle hm “for a wide range of soil values”. With
these linearization assumptions, the simplified stress distri-
bution along the wheel-terrain interface can be shown:

rðhÞ ¼
r1ðhÞ ¼ h1�h

h1�hm
rm for h ¼ h1 ! hm

r2ðhÞ ¼ h�h2

hm�h2
rm for h ¼ hm ! h2

(
ð4Þ

sðhÞ ¼
s1ðhÞ ¼ h1�h

h1�hm
sm for h ¼ h1 ! hm

s2ðhÞ ¼ cþ h�h2

hm�h2
ðsm � cÞ for h ¼ hm ! h2

(
ð5Þ

Iagnemma further states that the maximum stresses
occur approximately midway along the contact angle
hm ¼ 1

2
ðh1 þ h2Þ, and this is “reasonable for a wide range

of soils”. The exit angle h2 is taken to be approximately 0
(in line with the vertical axis) [12,13]. The wheel-terrain
contact arc spans the angle between the entrance angle
and the exit angle, hC = jh1 � h2j. With these simplifying
assumptions Eq. (2) reduces to Eqs. (6) and (3) reduces
to Eq. (7):

W ¼ rw
hC

chC � 2rmð1þ cosðhCÞ � 2 cosðhC

2
ÞÞ

�

�2smðsinðhCÞ � 2 sin
hC

2

� �
Þ � 2c sin

hC

2

� ��
ð6Þ

T ¼ 1

2
sm þ

c
2

� �
r2whC ð7Þ

The final unknown variable z is needed to estimate [c, /]
using classical terramechanics theory. The mapping
[c, /] = f(V, x, z, W, I) exists as an approximate function

even if z is unknown. Trained neural networks have been
shown to be universal function approximators [27]; here
we use them to map the terrain parameters [c, tan/] as a
function of the sensor values [W, i, I].

2.2. Neural network

We have established the simplified wheel-terrain interac-
tion model in the previous section to show the terrain
parameters to be a function of the sensor values. We will
then use a neural network to approximate that function.
This section gives a brief introduction to the concepts of
neural networks.

Neural networks contain a set of artificial neurons. An
artificial neuron q has four components:

� The vector input signal, x 2 Rn�1 is multiplied by the
synaptic weights, wq 2 Rn�1;
� A bias or threshold x0 is connected to the summing junc-

tion by a synaptic weight wq0 and acts to raise or lower
activity level of the neuron;
� The output of the summation junction, vq, is then passed

through an activation function, f(�). For the application
described in this paper, the activation function is a bin-
ary sigmoid function fbsðvqÞ ¼ 1

1þe�vq with saturation lev-
els at 0 and 1; and
� The output of the activation function

uq ¼ f
Pn

j¼0wqjxj

� �
is the axon.

When the axon uq is the output of the neuron is denoted
as yq [28,29].

There is a wide range of neural network types that are
used for different applications. A static feed forward multi-
layer perceptron (MLP) is used for the application
described in this paper. A MLP contains more than one
layer of artificial neurons.

� The “zero” layer is the vector input signal, which con-
tain the sensor values x 2 Rn�1 ¼ ½W ; i; I �;
� x 2 Rn�1 ¼ ½W ; i; I �feeds into the first “hidden” layer of

neurons. There may be more than one hidden layer
depending on the network architecture. One layer of a
large enough number of hidden neurons is sufficient
for function approximation [27]. For the MLP described
in this paper, only one layer is used.

� The last hidden layer fires synapses into the output layer
that provides the vector response signal, which contain
the terrain parameter estimates y 2 Rm�1 ¼ ½c; tan /�.

The MLP is trained with backpropagation [28–30] to
approximate a desired signal or pattern. Backpropagation
is a gradient descent method for updating the weights of
a MLP during training. The training goal is to minimize
the mean square error (MSE) between network
output y 2 Rm�1 ¼ ½c; tan /� and the desired output
d 2 Rm�1 ¼ ½c; tan /�. The weights of output layer S are

Fig. 3. Simplified wheel-terrain interface diagram showing normal r and
shear stress s distribution.
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updated based on the error e = d � y, the learning rate l,
and the output of the layer u: DwS

ji ¼ lSdS
j uS�1 where the

local delta error is dS
j ¼ ef 0 vS

j

� �
¼ egðvS

j Þ and f0 is the deriv-
ative of the activation function. The learning rate is a var-
iable parameter in Matlab that gets automatically re-
evaluated after each epoch. The weights on the hidden
layer are updated in a similar manner.

2.3. Network sizing

The number of neurons in the hidden layer is based
upon the size of the training set. Georgio [31] and Bartlett
[32] each provide different formulations to size the hidden
layer. Here we use both neuron sizes as the range for statis-
tical analysis. The range of optimal hidden neurons is
determined from Georgio’s equations [31], and Bartlett’s
linear relation (each neuron has six connections: 3 input,
2 output and 1 bias) [32]. The MLP was trained 100 times
for each number of hidden neurons in the range. The num-
ber of hidden neurons that resulted in the best mean MLP
performance (lowest mean mean-square-error (MSE)) was
set as the optimal hidden layer size. Matlab Neural Net-
work Toolbox is used for the MLP performance testing.
The training goal was set to be an MSE of 0.005, or
10,000 epochs, whichever came first. Several runs showed
the network would converge after approximately 5000
epochs, and runs for 100,000 epochs showed no further
improvement. The steps to get the optimal number of hid-
den neurons are as follows:

Step 1: Get size of training set.
Step 2: Get range of hidden neurons for statistical net-

work training.
Step 3: Run the MLP 100 times to determine the mean

MSE.
Step 4: Repeat Step 3 over the range of neurons.
Step 5: The hidden neuron number that results in the

lowest MSE is selected as the optimal size.

2.4. Offline MLP construction

This section outlines the method of constructing the
MLP to estimate terrain parameters. The MLP is first
designed (Steps 1–3) and trained (Steps 4–6) offline before
it is used for parameter estimation. Training set construc-
tion is described in detail in Section 3.1.

Step 1 Define the number of neurons in the hidden layer.
Step 2 Initialize the synaptic weights with Nguyen-Wid-

row algorithm [33].
Step 3 Define a MSE to be used as the training goal.
Step 4 Present input pattern from training set and com-

pare the MLP output to the desired output:
� The vector input signal, x 2 Rn�1 ¼ ½W ; i; I � feeds into

the hidden layer.
� For each hidden neuron:

– x 2 Rn�1 ¼ ½W ; i; I �is multiplied by the synaptic
weights, wq 2 Rn�1.

– The x0 = 1 bias is multiplied by its respective syn-
aptic weight wq0.

– The output of the summation junction, vq, is then
passed through an activation function,
gbsðvqÞ ¼ 1

1þe�avq .
– The output of the activation function, uq is the

axon.

� The hidden layer fires synapses into the output
layer which provides the vector response signal,
y 2 Rm�1 ¼ ½c; tan /�.

� The network output y 2 Rm�1 ¼ ½c; tan /�is com-
pared to the desired output d 2 Rm�1 ¼ ½c; tan /�.

� The error between the desired output and the
MLP output e = d � y becomes the basis for
weight adjustments.

Step 5 Adjust weights with backpropagation until the
defined training goal is met.

Step 6 The MLP is ‘frozen’ and ready to be used for esti-
mating parameters.

It should be noted that the MLP output is [c, tan/] and
is post-processed to give an angular value of /. The MLP
in operation will take the input vector [W, i, I] and map it
to an output vector [c, tan/] as per its training.

3. Verification experiment

A MLP was constructed to map the sensor values taken
during Kapvik’s field testing [W, i, I] to the terrain param-
eters [c, tan/]. The MLP must first be trained using a set of
input–output pairs before it can be used for parameter esti-
mation. This section describes the process by which the
MLP was trained, and tested using data collected from
the Kapvik rover.

3.1. MLP set construction

This section describes how the sets of training pairs were
constructed in Matlab using the simplified wheel-terrain
interaction model. Each training pair consists of inputs
(wheel-terrain interface variables [W, i, I]) and outputs (ter-
rain parameters [c, tan/]). The set of terrain parameters are
taken from terrestrial soil classes in Table 1. The interface
variables [z, i, I] are defined as representative values
observed during testing; the range of motor currents
(I = 50, 60, 70, 80, 90, 100 mA), wheel slip (i = 0.01, 0.02,
0.03), and wheel sinkage values (z = 0.005, 0.0075, 0.01,
0.0125, 0.015, 0.0175, 0.02 m). The objective is to deter-
mine, for a given terrain and wheel interaction, the sensor
values expected to be observed as determined by the simpli-
fied model. This procedure creates a set of training pairs
that map [W, i, I] to [c, tan/] and is given as follows:
Step 1: Define wheel dimensions r and w.
Step 2: Get [c, /, K] set from one terrain class.
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Step 3: Get [z] and [i] from the defined sets to calculate
the sinkage due to shear loading, also known as
slip sinkage, zSS, using Lyasko’s analytic formula-
tion [34]:

zSS ¼
1þ i

1� 0:5i

� �
z ð8Þ

Step 4: Calculate hC, taking slip sinkage into account,
from zSS, r, and w

hC ¼ cos�1 1� zSS

r

� �
ð9Þ

Step 5: Use [i] to calculate j

j ¼ r ðhC þ i sin ðhCÞ � sin ðhCÞÞ ð10Þ
Step 6: Define the gearing ratios f and transmission effi-

ciencies g of the harmonic drive (HD) and plane-
tary gears (PG); define the motor torque constant
j; get [I] to calculate T

T ¼ jfPGfHDgPGgHDI ð11Þ
Step 7: Calculate sm by rearranging Eq. (7)

sm ¼
2T

wr2hC
� c

2
ð12Þ

Step 8: Calculate rm by rearranging Eq. (1)

rm ¼ ðtan /Þ�1 sm

1� e�j=K
� c

� �
ð13Þ

Step 9: Calculate W with Eq. (6)

W ¼ rw
hC

chC � 2rm 1þ cosðhCÞ � 2 cos
hC

2

� �� ��

�2sm sinðhCÞ � 2 sin
hC

2

� �� �
� 2c sin

hC

2

� ��
ð14Þ

Step 10: Create Input [W, T, i] and Output [c, tan/] pair.
Step 11: Repeat Steps 6–10 for each I in the motor current

training set.
Step 12: Repeat Steps 5–11 for each i in the wheel slip

training set.
Step 13: Repeat Steps 3–12 for each z in the wheel sinkage

training set.
Step 14: Repeat Steps 2–13 for each terrain class.
Step 15: Randomize order of training pairs.

These variations resulted in 504 training pairs. Several
training runs showed that randomizing the order of the

training pairs improved the MLP’s ability to converge.
The neuron range for statistical analysis was from 59 to
84 neurons; 64 neurons were found to have the lowest
mean MSE. The 3:64:2 MLP was trained by backpropaga-
tion with momentum and learning updating for 10,000
epochs and a MSE of 0.0251 was reached. The MLP was
set to 3:64:2 for terrain parameter estimation.

3.2. Kapvik field testing

Kapvik’s mobility system, as shown in Fig. 4, was tested
at Petrie Island, located in the east end of Ottawa along the
Ottawa River, over two days in September 2011. Petrie
Island is a municipal park that has a flat sandy section
(approximately 100 m in length), which was found to be
suitable for testing. The field testing was conducted accord-
ing to the verification test plan to verify the mechanical per-
formance of Kapvik’s instrumented mobility system. The
test plan required Kapvik to be loaded to its design mass
of 30 kg and traverse a variety of obstacles, distances,
and terrain conditions. For each test condition, Kapvik’s
designed speed was set to 2.2 cm/s. The motor controller
interface software collected [W, x, I] at 2 Hz.

Kapvik ran two additional tests at Petrie Island: one
10 m traverse over prepared terrain and one 10 m traverse
over unprepared terrain. The prepared terrain consisted of
sand that had been raked level. The unprepared terrain was
as it was found: uneven with windswept footprints. The
data from these additional tests was used for post-test anal-
ysis but not for on-line operation nor navigation purposes.

The mobility testing was performed before Kapvik was
fully integrated, and before online terrain parameter estima-
tion was considered. A speckle velocimeter [35] was not
available to provide V needed to calculate i. The slip ratio
was derived as follows: Kapvik was commanded to traverse
10 m as determined by x; the motor control interface soft-
ware calculates how long to leave the motors running at a
constant speed (2.2 cm/s) for the wheels to have rotated
the equivalent of 10 m (454.54 s); the final distance travelled
was 9.75 m for an average i of 0.025. A constant slip ratio of
0.025 was appended to the I and W data sets consisting of
909 data points were recorded during the traverse.

3.3. Results and discussion

The 500th data set was arbitrarily selected from the 909
to test the trained MLP; from that set the current
(I = 80 mA) and wheel load (W = 31.6 N) from the 5th
wheel were selected. These two values, along with the aver-
aged slip ratio of 0.025, were entered into the trained 3:64:2
MLP. The output of the network gives the estimate of
cohesion to be 3352 N and the shearing angle to be 28.6�.
Both of these results are consistent with reported values
of sandy loam [8] as show in Table 2, which was to be
expected.

It should be noted that the terrain parameters were not
measured at the time of the mobility testing; the idea of

Table 1
Terrestrial soil parameters used in MLP training.

Soil c (kPa) / K (m)

LETE sand 1.22 30.3� 0.0116
Sandy loam 3.15 30.0� 0.0420
Clayey soil 4.12 11.8� 0.0254
Medium soil 6.41 25.7� 0.0238
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estimating terrain parameters from the sensors values did
not arise until after mobility testing and as such the true
terrain parameters were not required at the time. As the
Kapvik chassis was delivered shortly after the mobility
tests, there was no available platform to collect data at
the same time as taking bevameter measurements. There-
fore, the estimated parameters were compared only to the
reported values in Table 2. However, in his review of soil
strength measurement techniques, Okello [36] highlights
the variability of terrain parameter estimation by different
techniques. The bevameter technique most closely simu-
lates wheel-terrain interaction; however, measurements
are static and do not account for slippage or slip-sinkage
that dynamically occur in wheel-terrain interaction. Fur-
thermore, Okello states that “there seems to be no stan-
dard, proven and above all, reliable technique currently
available that can be universally applied to measure soil
strength parameters appropriate to prediction of vehicle
performance” [36].

Okello’s statement suggests to us that directly measuring
the terrain parameters using different techniques would not
yield the same values each time or for each technique.
However, we assume that measured values would be con-
sistent within a range; measuring the terrain parameters
at Petrie Island would produce a range of values depending
on the measurement method. Therefore, we are not able
give a definite range of error for our estimates using the
MLP because there are no absolute values for comparison.
For this reason, we deem reasonable comparisons to the
reported values in Table 2 to be sufficient for the proof
of concept.

The entire data set for all six wheels on prepared terrain
was processed. The results for Wheel 3 (see Fig. 5 for wheel
numbering) are shown in Figs. 6 and 7. Fig. 6 shows the
cohesion to be mostly between 3200 and 4000 Pa with a
mean of 3726 Pa and relative standard deviation (RSD)
of 6.4%, which is to be expected from the terrain at Petrie
Island. Fig. 7 shows the shearing resistance angle to be
between 26� and 30� with a mean of 27.8� and RSD of
6.5%, which is consistent with sandy loam. Table 3 lists
the estimates from all six wheels. The RSD for the esti-

mates can be compared to the RSD of sensor data
in Table 4.

The three largest deviations in shearing resistance angle
correlate to the three spikes in cohesion. This is attributed
to current data noise in which the reported current dropped
momentarily. The drop in current translates to a drop in
required torque to move the wheel which would be
observed if the terrain had a higher cohesion. The MLP
would report that to be more clayey loam-like based on
the training set.

The data collected from the traverse over unprepared
terrain was then inputted to the MLP. The results for
Wheel 3 are shown in Figs. 8 and 9. Fig. 8 shows the cohe-
sion to be mostly between 3200 and 4000 Pa with a mean of
3722 Pa and RSD of 6.7%, which is to be expected from the
sand at Petrie Island. Fig. 9 shows the shearing resistance
angle to be between 26� and 30� with a mean of 27.8�
and RSD of 6.5%, which is consistent with sandy loam.
Table 5 lists the estimates from all six wheels. The RSD
for the estimates can be compared to the RSD of sensor
data in Table 6.

These results show that there is little difference in the
estimates between prepared and unprepared terrain. In
both cases, all six wheels given similar results, as expected.
The RSD is similar between the cohesion and shearing
resistance angle estimates for each wheel.

Comparing the results (Table 3) to the sensor noise
(Table 4) shows how higher sensor noise results in greater
variance in the estimates. In both cases, wheel 2 had the
noisiest results as shown by its high RSD. In fact, the
wheels on the right side of the rover had noisier values
compared to the left side. The current drawn noise appears
to have a greater influence than the wheel weight noise.
This sensor noise could be attributed to noisier sensors or
due to mechanically induced vibrations on the right side
of the rover during its traverse.

The shearing resistance angle estimates have a down-
ward bias. The output of the MLP will converge towards
one of the training set values. In this case, the training
set values for shearing angle are 30.3�, 30�, 25.7�, and

Fig. 4. Kapvik’s mobility system was tested at Petrie Island in Ottawa,
Canada. Tests were performed at full load in sandy terrain. Kapvik

successfully navigated all required obstacles.

Table 2
Reported parameters of various terrains, from Wong [8].

c (kPa) / (�)

LETE sand 1.15 31.5
LETE sand 1.39 30.6
Sand 1.3 31.1
Sandy loam 3.3 33.7
Sandy loam 3.4 24.1
Sandy loam 4.3 22.7
Sandy loam 3.7 29.8
Sandy loam 3.2 30.5
Loam 3.45 30.1
Clayey soil 3.45 11.0
Clayey soil 7.58 14.0
Soft soil 3.71 25.6
Medium soil 6.89 29.0
Medium soil 8.62 22.5
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11.8�. Most of the estimate points are between 25.7� and
30.3�. The remaining points converge towards the fourth
value at 11.8�. Therefore, the results that do not converge

towards 25.7� or 30.3� will converge towards 11.8� as
shown by the figures. This downward bias can be explained
by the noisy current data when the current values are low.
Lower current values translate into less torque required,
which can be interpreted as the more cohesive training
value (clayey loam) that has the shearing resistance angle
of 11.8�.

The objective of estimating the terrain parameters is to
detect when the cohesion or shearing angle decrease. A
decrease in either one of these terrain parameters will result
in a decrease in shear stress developed at the wheel-terrain
interface. The consequence of decreased shear stress is the
decrease in the maximum thrust developed by the rover
wheels. When the developed thrust is insufficient to over-
come terrain resistance, as was the case with Spirit, the
rover will become immobilized.

1 2

3 4

5 6

Fig. 5. Wheel numbering for rover showing forward direction of motion.

Fig. 6. Terrain cohesion estimate for Wheel 3 on prepared terrain.

Fig. 7. Terrain shearing resistance angle estimate for Wheel 3 on prepared
terrain.

Table 3
Terrain parameter estimates for prepared terrain.

Wheel Mean, c (Pa) %RSD Mean, / (�) %RSD

1 3832 7.6 27.5 8.4
2 3849 13.1 26.6 13.2
3 3726 6.4 27.8 6.5
4 3644 7.8. 26.5 9.4
5 3641 6.7 27.7 6.9
6 3737 11.5 26.2 11.4

Table 4
Relative standard deviation (RSD) for sensor data collected on prepared
terrain.

Wheel %RSD of I %RSD of W

1 31.2 14.2
2 38.8 11.9
3 31.3 9.6
4 36.5 7.0
5 31.2 6.7
6 35.1 7.2

Fig. 8. Terrain cohesion estimate from Wheel 3 on unprepared terrain.
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4. Conclusions and future work

This paper identified a novel method for online terrain
parameter estimation that does not require knowledge of
the wheel sinkage depth. The preliminary results from ter-
restrial tests are a proof-of-concept that a trained neural
network can provide an estimate of the terrain cohesion
and internal shearing resistance online during the rover’s
traverse. Following conversations with engineers at
NASA’s Jet Propulsion Lab, there is hope to test this
method of parameter estimation using data collected from
the still mobile MER Opportunity. The target of this
method has been Mars regolith however future simulations
will apply this method to lunar regolith.

It is hoped that continuing to apply neural computing
techniques to terramechanics theory will allow for more
robust parameter estimation. Future work will require
means of damping the erroneous values that arise from sen-
sor noise without defeating the intent of detecting actual
changes in the terrain parameters. The current MLP uses
three sensors as inputs. Additional sensor data, such as
vibrations from an IMU, could also serve as inputs so long
as there is a model on how different terrain produces those
data. Similarly, the effect of elevation will need to be incor-
porated. The tests presented in this paper occurred on level
terrain and the neural network does not take elevation into
account.
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