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Terrain Response Estimation Using an Instrumented
Rocker-Bogie Mobility System

Timothy Setterfield, Alex Ellery

Abstract—This paper presents a procedure to model the draw-
bar pull and resistive torque of an unknown terrain as a function
of normal load and slip using on-board rover instruments. Kapvik,
a planetary micro-rover prototype with a rocker-bogie mobility
system, is simulated in two dimensions. A suite of sensors is
used to take relevant measurements; in addition to typical rover
measurements, forces above the wheel hubs and rover forward
velocity are sensed. An estimator determines the drawbar pull,
resistive torque, normal load and slip of the rover. The collected
data is used to create a polynomial fit model which closely
resembles the real terrain response.

Index Terms—Terrain response, rocker-bogie, terramechanics,
drawbar pull, resistive torque, rover mobility, Kapvik.

I. INTRODUCTION

IN order to analyze the trafficability of upcoming terrain
or optimize the performance of a planetary rover using

traction control it is necessary to know the terrain response.
An assessment of the upcoming terrain using forward looking
range data coupled with a model of the terrain response
allows an assessment of whether the upcoming terrain can be
traversed. Optimal control of a rover for trafficability or for
power consumption, achieved through the favourable distribu-
tion of forces amongst the rover wheels [1], [2], also depends
on knowledge of the terrain response. For wheels driving
in deformable terrain, there is no proportional relationship
between applied wheel torque and the force delivered by the
terrain. Additionally, the force and moment delivered by the
terrain is sensitive to normal load and slip in a nonlinear
manner.

Most planetary rovers use relatively rigid metal wheels and
drive in deformable sand-like terrain. Terramechanics equa-
tions for analyzing this scenario were developed by J.Y. Wong
and A.R. Reece in the late 1960’s [3]. These equations require
many soil properties, most of which must be found empirically.
Measuring these properties requires several instruments that
are unlikely to be included on planetary exploration missions
because of their mass and relatively low utility. As a result,
researchers have sought methods to estimate soil properties
during regular rover operation.

One such method for estimating two important soil prop-
erties (cohesion and internal friction angle) was presented by
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Iagnemma et al. [4] using a simplified stress distribution and
the assumption that wheel sinkage can be measured. Since
there are several other soil properties involved in Wong’s
terramechanics equations, re-creating the terrain response rela-
tionships from these properties alone requires that representa-
tive values be chosen for the remainder of the soil properties.

High-fidelity dynamic simulations of an articulated plane-
tary rover were conducted by Ding et al. using Lagrangian
mechanics and Wong’s terramechanics equations [5]. In these
simulations the wheeled mobile robot was treated as an
articulated multibody system with a moving base. Wong’s
terramechanics equations were used to solve for the moments
and forces exerted on the wheels.

Ray et al. were able to re-create the terrain response of a
four wheeled mobile robot using an Extended Kalman-Bucy
Filter and a fifth unpowered wheel to measure velocity [6].

The rocker-bogie planetary rover mobility system has been
used on the Sojourner Rover, the Mars Exploration Rovers [7],
and the Curiosity Rover; it also comprises the mobility system
of Kapvik, a 30 kg micro-rover prototype developed for the
Canadian Space Agency (Figure 1). The left and right sides of
the rover body are connected to two rocker links via a rotary
joint. An internal differential ensures that the rocker joint
angles are equal and opposite with respect to the body. The
front wheel is attached to the front end of the rocker; another
link, termed the bogie, is attached to the rear end of the rocker
via a free rotary joint. Two rear wheels are attached to either
end of the bogie. The mobility system thus has three wheels
per side. Above each wheel is a single-axis force-sensing load
cell, added to aid in the estimation of terrain response. A
linear bearing protects the load cell from off-axis loading.
The rover’s mobility system was designed, manufactured, and
assembled at Carleton University in parallel with the research
presented in this paper. The major dimensions of Kapvik are
shown in Table I.

Wheel Dimension Value Units
Wheelbase lw 700 mm
Total Length 850 mm
Total Width 782 mm
Height (without arm) 350 mm
Wheel radius rw 75 mm
Wheel width bw 70 mm

TABLE I: Kapvik major dimensions.

The objective of the research presented herein is to de-
velop a procedure for estimating the terrain response of a
homogeneous soil using only the on-board instruments of
Kapvik or a similar rover. Instead of obtaining soil properties
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Fig. 1: A three dimensional rendering of the Kapvik micro-
rover’s rocker-bogie mobility system and the load cell assem-
bly used for single-axis force sensing.

and using them to calculate the net traction relationships,
this research focuses on directly estimating the net traction
relationships. The method presented herein does not require
representative values of soil properties to be chosen. The major
net traction relationships are simplified into two-dimensional
polynomial equations. Although this fails to directly capture
information about the soil properties, it allows the full terrain
response models to be recaptured from estimated data points
via polynomial fitting. This paper presents: the simplification
of terramechanics relationships into polynomial equations;
the multibody dynamic simulation of the Kapvik micro-rover
in two dimensions; and the development of an estimator
capable of determining the terrain response using only on-
board sensors. Although this procedure is presented in the
context of a rover with a rocker-bogie mobility system, this
should not be considered restrictive: the same techniques could
be used with other wheeled rovers.

II. TERRAMECHANICS EQUATIONS

Interaction between a wheel and the soil beneath it produces
a distribution of normal stresses σ and shear stresses τs. The
two net effects of this are a moment, termed resistive torque
τR, and a net forward force, termed drawbar pull DP . These
effects are obtained by integrating the stresses around the
wheel rim [3]. Wong’s terramechanics equations for a rigid
wheel driving on deformable terrain are used in this paper.

A. Wong’s Equations

When a wheel’s forward velocity vw is less than the product
of wheel radius and angular velocity rwω, the non-dimensional
term slip i is used to describe the degree to which the wheel
is slipping. When a wheel’s forward velocity vw is greater
than the product of wheel radius and angular velocity rwω the
non-dimensional term skid i is used to describe the degree to
which the wheel is skidding. The variable i is positive when
the wheel is slipping and negative when the wheel is skidding

[8]–[11].

i = 1− vw
rwω

when |rwω| ≥ |vw| (slip) (1)

i =
rwω

vw
− 1 when |rwω| < |vw| (skid) (2)

The relationships below are all developed for a wheel in
slip, where i≥0. The case for skidding is handled in the next
section.

Soil flow under a wheel was empirically found by Wong
to form forward and rearward flow zones, with the maximum
normal stress occurring at the transition point between the two
(at an angle of θm between θ=0 and θ=θ0 in Figure 2). The
location of θm is given by the following relationship [3]:

θm = θ0 (c1 + c2i) (3)

where θ0 is the total wheel-soil contact angle, and c1 and c2
are empirically determined constants.

The normal stress under the wheel follows a different
relationship in the forward and rearward flow zones [3].

σ = (k1 + k2bw)

[
rw
bw

(cos θ − cos θ0)

]ns

when θm ≤ θ ≤ θ0 (forward region) (4)

σ = (k1 + k2bw)

[
rw
bw

(
cos

[
θ0 −

θ

θm
(θ0 − θm)

]
− cos θ0

)]ns

when 0 ≤ θ < θm (rearward region) (5)

where k1 and k2 are pressure-sinkage constants, bw is the
width of the wheel, and ns is the soil deformation exponent.
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Fig. 2: Wheel coordinates, stresses and dynamics.

The shear stress τs at a point on the wheel rim is dependent
on soil properties, the normal stress σ at that point, and the
shear displacement [3]. The shear displacement of the soil for
a wheel in steady-state is a function of the slip i.

τs = (c+ σ tanφ)
(

1− e
−rw
Ks

[(θ0−θ)−(1−i)(sin θ0−sin θ)]
)

(6)

where c is soil cohesion, φ is internal friction angle, and Ks
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is the shear deformation parameter.
Forces perpendicular to the ground include the normal load

W , the perpendicular component of normal stress σ, and the
perpendicular component of shear stress τs. Since the analysis
is performed for a wheel moving with a constant velocity
entirely parallel to the ground, the forces perpendicular to the
ground sum to zero.

−W + bwrw

(∫ θ0

0

σ cos θdθ +

∫ θ0

0

τs sin θdθ

)
= 0 (7)

A root finding algorithm must be used to solve Equation 7
for the wheel-soil contact angle θ0, given normal load W and
slip i [3]. Once the wheel-soil contact angle θ0 has been found,
the drawbar pull DP and resistive torque τR can be calculated:

DP = bwrw

(∫ θ0

0

τs cos θdθ −
∫ θ0

0

σ sin θdθ

)
(8)

τR = bwr
2
w

∫ θ0

0

τsdθ (9)

B. Skidding Wheel
Wheels undergoing skid have received very little attention

in the literature compared with wheels undergoing slip. One of
the reasons for this is likely that in challenging environments
where traction analysis is necessary, skidding is almost never
encountered.

Recent experiments by Ding et al. on rover wheels driving
on planetary soil simulant were conducted down to skids of
i = −0.4 [11]. Although this study does not cover the full
spectrum of possible slips/skids (i.e. from −1 ≤ i ≤ 1), it does
give clear insight into the shapes of the drawbar pull DP and
resistive torque τR curves for a skidding wheel in deformable
terrain. The shapes of the curves in skid are very similar
to those for slip, but are approximately anti-symmetric about
the vertical axis (i = 0) intercept. The Pacejka “Magic Tyre
Formula”, used extensively for modelling the dynamics of road
vehicles, produces a curve of the character described above
[12]. The drawbar pull curve for skidding is the same shape
as the drawbar pull curve for slipping, but is anti-symmetric
about the vertical axis intercept [6], [12]. Lhomme-Desages
et al. [8] use a similar model for drawbar pull that is also
anti-symmetric about the vertical axis intercept. In this paper,
curves for both drawbar pull DP and resistive torque τR were
made to be anti-symmetric about the vertical axis intercept.
When the wheel is skidding (i < 0), the following equations
can be used to obtain the drawbar pull DP and resistive torque
τR using the anti-symmetric curves:

DP (i) = −DP (i = −i) + 2DP (i = 0) | i < 0 (10)
τR(i) = −τR(i = −i) + 2τR(i = 0) | i < 0 (11)

where DP for i ≥ 0 is calculated using Equation 8, and τR
for i ≥ 0 is calculated using Equation 9.

C. Soil Properties
The soil properties used in this paper were mostly taken

from a thorough experimental study of rover wheel perfor-
mance on a planetary soil simulant by Ding et al. [11]. The

soil simulant is designed to closely resemble lunar soil; the
soil properties are summarized in Table II.

Soil Property Value Units Reference
Soil deformation
exponent ns

1.1 - Ding soil simulant [11]

Cohesion c 250 Pa Ding soil simulant [11]
Internal angle of
friction φs

31.9 ◦ Ding soil simulant [11]

Shear deformation
parameter Ks

11.4 mm Ding soil simulant [11].

Soil modulus of co-
hesion kc

15.6 kPa/mns−1 Ding soil simulant [11]

Soil modulus of
friction kφ

2407.4 kPa/mns Ding soil simulant [11]

Pressure-sinkage
constant k1

12.0 kPa Ding soil simulant [11] †

Pressure-sinkage
constant k2

1845.3 kPa/m Ding soil simulant [11] †

Maximum stress
angle modulus c1

0.18 - Empirical, loose sand [3]

Maximum stress
angle modulus c2

0.32 - Empirical, loose sand [3]

TABLE II: Soil Properties. † These values are given as the
similar properties soil modulus of cohesion kc and soil modu-
lus of friction kφ in [11], but are converted using k1 =kcb

ns−1
w

and k2 =kφb
ns−1
w .

D. Numerical Evaluation of Traction Parameters

Equations 4, 5, and 6 allow the stress distributions to be
calculated given soil properties, wheel-soil contact angle θ0
and slip i. A large set of points can be sampled for Riemann
sum integration, or a total of five points can be sampled for
Simpson’s rule integration. An example stress distribution and
its approximation using five points is shown in Figure 3.
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Fig. 3: An example stress distribution using the Kapvik wheel
dimensions in Table I, soil properties in Table II, a wheel
contact angle θ0 of 45◦, and a slip i of 0.25. Note the distinct
transition between the forward and rearward regions.

A root finding method in MATLAB is used to find the
smallest angle θ0 that will support a given normal load W
at a given slip i. Drawbar pull DP and resistive torque τR
are then evaluated by performing Riemann sum or Simpson’s
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rule integration of Equations 8 and 9 around the wheel rim.
Simpson’s rule integration provides an accurate result with a
decreased computational cost. The full procedure for finding
the traction parameters is outlined in Algorithm 1.

Algorithm 1 Calculate drawbar pull DP and resistive torque
τR given normal load W , wheel centroid velocity vw and
wheel angular velocity ω.

1: Calculate wheel slip/skid given vw and ω using Equation 1 or 2.
2: If the wheel is skidding, use Equations 10 and 11 to convert the

problem into one for which slip i is positive.
3: Calculate wheel-soil contact angle θ0 by finding the smallest root

of Equation 7 over the interval 0 < θ0 < π/2.
4: Compute the normal stresses σ and shear stresses τs at sample

points, using Equations 4, 5, and 6.
5: Using either Riemann sums or Simpson’s rule, perform the

integrals of shear stress in Equations 8 and 9 to calculate the
drawbar pull DP and the resistive torque τR; use the points
sampled in the previous step.

It can be seen from this development that drawbar pull DP
and resistive torque τR are exclusive functions of normal load
W and slip/skid i when the soil properties are known. Example
plots are shown in Figure 4 for a normal load W of 50 N.
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Fig. 4: The relationship between drawbar pull DP (left), re-
sistive torque τR (right), and slip i for normal load W = 50 N.

E. Equation Simplification

Both drawbar pull DP and resistive torque τR as a function
of normal load W and slip i can be approximated by Oth

order two dimensional polynomial fits. The fits are represented
with (O + 1) (O + 2) /2 coefficients pkl, where pkl is the
coefficient for the term ikW l. Simplifying the equations in this
way greatly expedites dynamic rover simulations, since finding
the root of Equation 7 is computationally expensive; it also
allows the terrain response relationships to be reconstructed
from estimated data.

Using the soil properties defined in Table II, a 100×100
array of results was calculated over the parameter space
0 ≤ i ≤ 1 and 0.1 N ≤ W ≤ 200 N. The publicly available
polyfitweighted2 MATLAB function was used to find 4th

order polynomial fits to the data. A 100×100 array of results
was again calculated, this time using the polynomial model.
The root mean square (RMS) errors for the 10,000 calculated
data points for the drawbar pull and resistive torque 4th order
approximations over this parameter space were 0.1080 N and

0.008033 N m respectively, for calculated values spanning
-9.406 N to 10.195 N and 0 N m to 7.874 N m. The error
distributions over the parameter space are shown in Figure 5.
The largest errors are at the outer edges of the parameter space;
however, even at their maximums, the errors induced by using
the polynomial fits are acceptable. The 4th order fits were used
herein for simulation. Polynomial fits for resistive torque and
drawbar pull – not shown in this paper – were performed
using different soil properties to ensure that the suitability of
approximating these functions with a polynomial was not soil
property dependent.
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Fig. 5: Contour plots showing the error distribution in 4th order
polynomial approximated values of resistive torque (left) and
drawbar pull (right) when compared with the results using
Wong’s classical terramechanics models.

III. MULTIBODY DYNAMICS

A rover with a rocker-bogie mobility system comprises an
articulated multibody system with a moving base [5]. La-
grangian mechanics were used to perform a two dimensional
simulation of the Kapvik micro-rover driving over rolling ter-
rain. The two simulation dimensions are the world horizontal
Xw and the world vertical Zw, chosen so that the rover can be
simulated traversing slopes. A single side of the rocker-bogie
mobility system was considered. This is equivalent to the three
dimensional case for which the terrain extends infinitely into
the page – a good approximation for slowly changing terrain
in which the roll of the rover is negligible. The simulation
methodology used in this paper closely resembles that used by
Ding et al. in their high-fidelity simulation of rover dynamics
[5].

A. Coordinates, Naming Conventions, and Configuration

The coordinates and naming conventions of the different
joints are shown in Figure 6. The combined center of mass
of the body and the rocker is denoted 0; the rocker “joint”
is denoted r; the bogie joint denoted 1; the wheel joints are
denoted 2, 3, and 4. A vector lkl represents the vector from
k to l when the rover is resting on level ground. The vector
c11 represents the vector from joint 1 to its center of mass.
The wheel centers of mass are located at the wheel joints, so
c22 = c33 = c44 = 0. The angular displacement of the rover
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body from the horizontal is given by θ0y . The joint angles of
the bogie and the three wheels are {q1, q2, q3, q4} respectively.
The wheel-terrain contact angles with respect to the world
horizontal are given by {γ1, γ2, γ3}. In deformable terrain, the
wheel does not actually have a single discrete contact point.
However, in simulation, a single effective point of contact
dictating the rovers dynamics can be used [1].
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Fig. 6: Two dimensional rocker bogie system configuration
variables, internal vectors, and forces.

The configuration of the rover at any given time can be fully
described by the configuration vector Φ.

Φ =
[
x0 y0 z0 θ0x θ0y θ0z q1 q2 q3 q4

]T
(12)

where {x0, y0, z0} are the Cartesian coordinates of the
combined body/rocker center of mass in the world frame,
{θ0x , θ0y , θ0z} are the rotation angles of the body about the
{Xw, Yw, Zw} axes respectively, and {q1, q2, q3, q4} are the

joint angles. Note that coordinates y0, θ0x , and θ0z are not
required to describe the two dimensional system, but are
included to facilitate easy rotations and cross products.

B. Simulation Methodology

The Lagrangian of a system L is defined as:

L = T − V (13)

The term T represents the kinetic energy of the system and
for the rover is given by:

T =
1

2
Φ̇
T

(
nv∑
i=0

miJvi
TJvi + Jωi

T IiJωi

)
Φ̇

T =
1

2
Φ̇
T
HΦ̇ (14)

where the Jacobian matrices of velocities vi and ωi with
respect to generalized velocity Φ̇ are given by Jvi and Jωi

respectively, H is the system inertia matrix, and the number
of joints nv is equal to 4 (the rocker “joint” r is considered
rigid because of the two dimensional nature of the simulation).

The term V represents the gravitational potential energy of
the system.

V = g
[
z0 z1 . . . znv

] [
m0 m1 . . . mnv

]T
(15)

where g is the local gravitational acceleration, {z0, . . . , znv
}

are the heights of the mass centers of each body in world
coordinates, and {m0, . . . ,mnv} are the masses of each body.

The linear and angular velocity of the center of mass of link
i are respectively given by:

vi = v0 +ω0×(pci−r0)+

nv∑
j=1

Li,jNj×(pci−pj)q̇j (16)

ωi = ω0 +

nv∑
j=1

Li,jNj q̇j (17)

where L is an array for which Li,j=1 if j is on the kinematic
chain from 0 to i and Li,j = 0 otherwise, Nj is the normal
vector along the axis of rotation of joint j, and q̇j is angular
rate of joint j.

A skew symmetric matrix can be used to turn the cross
product into matrix multiplication. For two vectors a =
[a1 a2 a3]

T and b= [b1 b2 b3]
T , a skew symmetric matrix

ã can be constructed with the following properties [5]:

a× b = ãb =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

b1b2
b3


b× a = −ãb = ãT b (18)

Using the insights above, the Jacobians describing the
velocity of the center of mass and angular velocity for a single
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link can be found such that vi=JviΦ̇ and ωi=JωiΦ̇.

Jvi =
[
I3×3 r̃0i

T Li,1N1 × (pci − p1) . . .

. . . Li,4N4 × (pci − p4)
]

(19)

Jωi =
[
03×3 I3×3 Li,1N1 . . . Li,4N4

]
(20)

where Ip×p is a p × p identity matrix, 0p×p is a p× p zero
matrix, and r0i = pci−r0 is the vector from the combined
body/rocker center of mass 0 to the center of mass of link i.

Stacking the Jacobians creates a link Jacobian Ja, which
when multiplied by the generalized velocity Φ̇, gives a vector
containing the full set of link center of mass velocities Ẋa.

Ẋa =


v1

ω1

...
vnv

ωnv

 = JaΦ̇ =


Jv1
Jω1

...
Jvnv

Jωnv

 Φ̇ (21)

The velocity and angular velocity Jacobians for the body 0
are easily deduced since its velocity and angular velocity are
explicitly included in the generalized velocity Φ̇.

Jv0 =
[
I3×3 03×3 03×4

]
(22)

Jω0 =
[
03×3 I3×3 03×4

]
(23)

The system inertia matrix H can then be calculated using
the term in parentheses in Equation 14.

The Euler-Lagrange equation gives utility to the Lagrangian:

d

dt

∂L

∂Φ̇
− ∂L

∂Φ
= HΦ̈ + ḢΦ̇− ∂L

∂Φ
= τg (24)

where the system has n degrees of freedom, and τg is a vector
of generalized forces acting on the system.

A continuously differentiable function zwc(xwc) is created
to constrain the path of the wheel centroids. The effective
terrain (i.e. the path traced by the effective terrain contact
points as in [1]) is formed by offsetting the wheel centroid
path by the wheel radius rw. Given a wheel centroid path
zwc(xwc), the corresponding terrain coordinates xt and zt are
given by:

[
xt
zt

]
=

[
xwc

zwc(xwc)

]
+ rw

[
dzwc

dxwc
|xwc ,−1

]T
√

1 + dzwc

dxwc

2
(25)

The wheel centroids are constrained to the wheel centroid
path using a vector of constraints Ψ.

Ψ =

Ψ1

Ψ2

Ψ3

 =

p2z − zwc(p2x)
p3z − zwc(p3x)
p4z − zwc(p4x)

 = 03×1 (26)

where pix and piz are the x and z components of joint i’s
position respectively.

Algebraic constraints Ψ to the position, velocity, and ac-
celeration of the system respectively can be implemented as

follows [13]:

Ψ(Φ, t) = 0 | Ψ ∈ Rnc (27)

Ψ̇(Φ, t) = Ψt(Φ, t) + ΨΦ(Φ, t)Φ̇ = 0 |ΨΦ ∈ Rnc×n (28)

Ψ̈(Φ, t) = Ψ̇t(Φ, t) + Ψ̇Φ(Φ, t)Φ̇ + ΨΦ(Φ, t)Φ̈ = 0 (29)

where ΨΦ is the Jacobian of the constraints Ψ with respect
to the configuration vector Φ, Ψt is the derivative of the
constraints Ψ with respect to time t, and nc = 3 is the number
of constraints on the system.

The generalized forces τg consist of applied forces τa and
constraint forces τc. The constraint forces deliver zero power,
represent the effect of the normal load reaction forces in
generalized coordinates, and can be set to [14]:

τc = ΨΦ
Tλ (30)

where λ ∈ Rnc is a set of Lagrange multipliers {λ1, . . . , λnc}
that form a linear combination of the columns of ΨΦ and
allow the constraints to be satisfied. Note that with the
constraints imposed, λi represents the Zw component of the
normal reaction force Wz for wheel i; the Xw component for
wheel i can also be found: Wx=ΨΦi,1λi.

To ensure that the roundoff error does not cause violation
of the constraints, Baumgarte stabilization is used [13]. Using
Baumgarte stabilization, Equation 29 is replaced with an
equation that incorporates both Ψ̇ and Ψ:

Ψ̈(Φ, t) + 2αΨ̇(Φ, t) + β2Ψ(Φ, t) = 0 (31)

where α and β are appropriately chosen constants.

Combining Equations 24, 27, 28, 29, 30 and 31 into a single
system of equations, the dynamic system is described by:[

H ΨΦ
T

ΨΦ 0

] [
Φ̈
−λ

]
=

[
τa − ḢΦ̇ + ∂L

∂Φ
ζ

]
(32)

ζ = −Ψ̇t − Ψ̇ΦΦ̇− 2α
(
Ψt + ΨΦΦ̇

)
− β2Ψ

If the nc constraint equations are independent, Equation 32
can be solved through matrix inversion [13].

In order to solve this system of equations, the following
variables are required: H , Ḣ , Ψ, Ψt, Ψ̇t, ΨΦ, Ψ̇Φ, and ∂L

∂Φ .
Equations for these variables were found but are not included
herein. The term ∂T

∂Φ in ∂L
∂Φ was found to be negligible for a

slowly moving rover and was excluded from the simulation
in order to reduce the simulation time by approximately one
third.

The set of generalized applied forces τa consists of the
effects of: resistive wheel torques τR, drawbar pull τDP , and
internal wheel torques τW . Generalized forces represent forces
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or moments in the coordinates of the configuration vector Φ.

τa = τR + τDP + τW (33)

τR = Jw
TFτR (34)

FτR =
[
FτR1 FτR2 FτR3

]T
(35)

FτR i =
[
0 0 0 0 − τRi 0

]
(36)

τDP = Jw
TFτDP (37)

FτDP =
[
FτDP 1 FτDP 2 FτDP 3

]T
(38)

FτDP i =
[
DPi cos γi 0 −DPi sin γi 0 0 0

]
(39)

τW =
[
01×7 (τW1

−bdq̇2) (τW2
−bdq̇3) (τW3

−bdq̇4)
]T

(40)

where FτR i and FDP i are the set of external forces and
moments in world coordinates that are applied to the centroid
of wheel i; they have the form Fext=

[
Fx Fy Fz Mx My Mz

]
and are projected onto generalized coordinates using a Jaco-
bian Jw; τRi and DPi are the resistive torque and drawbar
pull respectively on wheel i given the current normal load Wi

and slip ii; bd is a viscous damping coefficient; and τWi
is the

motor torque times the gear ratio and transmission efficiency,
applied to wheel i.

C. Simulation Implementation

The result of solving Equation 32 is a value for second time
derivative of configuration Φ̈. To propagate the configuration
forward, a configuration state vector Φs is required:

Φs =

[
Φ̇
Φ

]
Φ̇s =

[
Φ̈

Φ̇

]
(41)

Each evaluation of Φ̇s is function of Φs, the applied
wheel torques {τW1

, τW2
, τW3

}, and the previously evaluated
generalized constraint forces τc. Numerical integration is used
to propagate the configuration state vector Φs forward. A
block diagram of the simulation implementation is shown in
Figure 7.

vd

Desired no-slip
velocity

H(Φ), H(Φs), Ψ(Φ), Ψt, Ψt,
ΨΦ(Φ), ΨΦ(Φs), dL/dΦ(Φs), Jw(Φ) 
τR(Φs,τc), τDP(Φs,τc,γ), τW(Φs)

Solve for Φs and τc
Integrate Φs

 

ODE Solver

Kp, Ki, Kd

PID Controller

Φs, τc, τR,

τDP, τW

S
-{rw q2, rw q3, rw q4}

Φs, τc

Record Φs,
{τR1, τR2, τR3},
{DP1, DP2, DP3},
{W1,W2,W3}

+

{τW1, τW2, τW3}

 

Fig. 7: Block diagram of simulation implementation.

A proportional integral derivative (PID) controller was
used to individually control the wheel speeds so that the
approximate no-slip wheel velocities {rw q̇2, rw q̇3, rw q̇4} were
equal to the desired velocity vd. The controller was run at a
frequency of 50 Hz; the configuration state vector Φs and
all values of interest were also recorded at this frequency.
Because of the sensitivity of drawbar pull DP and resistive
torque τR to slip i, the MATLAB ordinary differential equation
solver ode45 was used, with default settings, for integration
between time steps. Over the duration of a single time step
the control input torques {τW1

, τW2
, τW3

} and normal loads
{W1,W2,W3} were presumed to be constant.

The parameters used in simulation were selected so as to
represent one side of the Kapvik micro-rover and are shown
in Table III. Inertias were taken about the Yw axis only. The
wheel dimensions from Table I were used.

IV. TERRAIN RESPONSE ESTIMATION

This section develops the estimation of resistive torque τR,
drawbar pull DP , normal load W and slip i. It is assumed
that there is no a priori knowledge of soil properties or terrain
response; the estimator builds a terrain response model from
scratch. Estimation is accomplished through the use of two
Unscented Kalman Filters [15] running simultaneously. A total
of three estimators are presented here. Estimator 1, with state
vector x1, is a general estimator which estimates a large set of
states essential for determining the terrain response, including
resistive torques {τR1 , τR2 , τR3} and slips {i1, i2, i3}. It is
run regardless of the type of force sensors available. Esti-
mator 2, with state vector x2, estimates the normal loads
{W1,W2,W3} and the drawbar pulls {DP1, DP2, DP3} in
the case where two-axis force sensors are available. Esti-
mator 3, with state vector x3 estimates the normal loads
{W1,W2,W3} and the drawbar pulls {DP1, DP2, DP3} in
the case where single-axis force sensors are available. The
linearized observability of the filters has been proved, but is
not included herein.

A set of sensor measurements z is taken; each is assumed
to be a Gaussian random variable. The sensor measurements
are used to create the measurement vector y1 for use in Esti-
mator 1. Some of the measurements in y1 are taken directly
from the sensor measurements, and some are calculated using
a combination of sensor measurements. The measurement
vectors y2 and y3, used in Estimators 2 and 3 respectively,
contain sensor measurements as well as measurements calcu-
lated using a combination of state estimates from Estimator 1.

A. Sensors and Sensor Measurements

To perform accurate terrain response estimation, a com-
prehensive suite of sensors is required. Fortunately, several
of these sensors are typically included on planetary rover
platforms. The required measurements include wheel angular
velocities, bogie angle, rover accelerations, rover pitch rate,
forward velocity, and forces above the wheel hubs (either two-
axis or single-axis). The set of measurements is illustrated in
Figure 8. In this paper a measurement of x is denoted x̆ and
the current time step is denoted k.
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Parameter Value Units Source
Mass of body and rocker m0 12.49 kg SolidWorks model
Mass of link 1 m1 1.562 kg SolidWorks model
Mass of a wheel m2,m3,m4 0.3174 kg SolidWorks model
Inertia of body and rocker I0 0.5045 kg m2 SolidWorks model
Inertia of link 1 I1 0.05248 kg m2 SolidWorks model
Wheel inertia Iw 0.003584 kg m2 SolidWorks model and drivetrain specs
Wheel and gear inertia referred to wheel Iwg 1.082 kg m2 SolidWorks model and drivetrain specs
Wheel angular viscous damping coefficient bd 2.28855 N m s Experiment
Vector c11

[
0 0 − 0.07322

]T m SolidWorks model
Vector c22 = c33 = c44

[
0 0 0

]T m SolidWorks model
Baumgarte stabilization constant α 500 - Trial and error
Baumgarte stabilization constant β 500 - Trial and error
Desired velocity vd 2 cm/s Design speed
Proportional control gain Kp 25 - Trial and error
Integral control gain Ki 0.5 - Trial and error
Derivative control gain Kd 12.5 - Trial and error

TABLE III: Parameters used in simulation.

x 0
R

r

1 0
x 0
R

z 0
R

q3

q4

q2

q1 FL2
F 2 FL3

F 3

FL1

F 1

wheel 1

wheel 2

wheel 3

θ0y 

Fig. 8: Sensor measurements.

Wheel angle measurements {q̆2, q̆3, q̆4} are provided by
motor encoders with a quadrature output which provide the
number of counts traversed by the wheel. This is converted
into wheel angle given the number of counts per turn and
the gear ratio. Bogie angle measurement q̆1 is provided by
a hollow shaft grey code absolute encoder. Measured rover
accelerations in rover coordinates {˘̈xR0 , ˘̈zR0 } and measured
rover pitch rate ˘̇

θ0y are provided by an inertial measurement
unit (IMU) mounted to the rover body. A measurement of rover
body velocity along the rover’s forward direction ˘̇xR0 could be
taken using a vision-based velocimeter under development at
Carleton University. The velocimeter uses a downward facing
camera placed at the rover’s center of mass to take a sequence
of images; optic flow is then used to deduce the rover velocity.
A distance sensor beside the camera could be used to scale
the measured optic flow from camera to world coordinates; the
distance sensor would make the velocity measurement inde-
pendent of wheel sinkage depth and rover pitch, which could
alter the distance from the camera to the terrain. Note that the
body velocity in the rover’s z direction żR0 is not measured.
The rover is equipped with either single-axis (e.g. Kapvik)
or two-axis force sensors placed above the wheels. These
sensors measure either the forces {F̆L1 , F̆L2 , F̆L3} (single-
axis) or the forces {F̆L1 , F̆L2 , F̆L3 , F̆⊥1 , F̆⊥2 , F̆⊥3} (two-axis)
shown in Figure 8. Either type of sensor can be used in terrain
response estimation, but performance is better using a two-

axis force sensor. These measurements form a vector of sensor
measurements z.

z =
[
q̆1

˘̇
θ0y ˘̇xR0 ˘̈xR0 ˘̈zR0 q̆2 q̆3 q̆4 . . .

. . . F̆L1
F̆L2

F̆L3
F̆⊥1

F̆⊥2
F̆⊥3

]T
(42)

The expected sensor noises are shown in Table IV.

Measured Variable * Sensor Noise Std.
Dev. (σ∗)

Units

Bogie angle q̆1 16-bit Absolute
encoder

9.155×10−4 ◦

Pitch rate ˘̇
θ0y H3-IMU-HP02-

0300
0.56 ◦/s

Velocity in rover coordinates
˘̇xR0

Velocimeter 1 mm/s

Accelerations in rover coor-
dinates {˘̈xR0 , ˘̈zR0 }

H3-IMU-HP02-
0300

1.245×10−3 m2/s

Wheel positions {q̆2, q̆3, q̆4} Motor encoders † 2.143×10−5 ◦

Wheel vertical loads
{F̆L1 , F̆L2 , F̆L3}

Force sensor ‡ 3.255×10−2 N

Wheel perpendicular loads
{F̆⊥1 , F̆⊥2 , F̆⊥3}

Force sensor ‡ 3.255×10−2 N

TABLE IV: Sensor measurement noises. † 500 count/turn 3-
channel quadrature encoders with 1400:1 gear ratio. ‡ 200 N
full-scale force sensor sampled by a 10-bit analog to digital
converter.

B. Estimator 1: The General Estimator

The general estimator estimates 22 states related to terrain
response estimation. In this paper an estimate of x is denoted
x̂.

The states estimated by the general estimator are:

x1 =
[
q̇2 q̇3 q̇4 τR1

τR2
τR3

θ0y q1 θ̇0y q̇1 θ̈0y q̈1 . . .

. . . ẍ0 z̈0 M0fw M1fw Fxfw Fzfw ẋR0 i1 i2 i3

]T
(43)

where {M0fw ,M1fw , Fxfw , Fzfw} are the net effects of
the wheel forces (the moment exerted about the lumped
body/rocker center of mass 0, the moment exerted about the
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bogie joint 1, the net force in the world horizontal direction
Xw, and the net force in the world vertical direction Zw
respectively), and {i1, i2, i3} are the wheel slip(s)/skid(s).
Note that {M0fw ,M1fw , Fxfw , Fzfw} describe the net effects
of wheel linear forces, but do not include the effects of wheel
resistive torques.

An estimate of configuration Φ̂ can be calculated for
subsequent use. The wheel angles {q2, q3, q4} and the position
of the rover in the world frame {x0, y0, z0} are irrelevant
in the subsequent applications of Φ̂. Thus, the estimated
configuration Φ̂ is given by:

Φ̂k =
[
0 0 0 0 θ̂0yk

0 q̂1k 0 0 0
]T

(44)

Similarly, the estimated generalized velocity ˆ̇Φ is given by:

ˆ̇Φk =
[
ˆ̇xR0k cos θ̂0yk 0 ˆ̇xR0k sin θ̂0yk 0 . . .

. . .
ˆ̇
θ0yk 0 ˆ̇q1k ˆ̇q2k ˆ̇q3k ˆ̇q4k

]T
(45)

Note that this estimate of ˆ̇Φ involves the assumption that the
velocity in the rover’s z direction żR0 is zero. This assumption
necessitates that the rover be used only on gently rolling terrain
for which żR0 � ẋR0 and is explored in further detail in Sections
IV-F and V-B.

1) Process Model: The process model is a nonlinear
discrete-time model. The state is propagated forward using
the function f1:

x̂1k+1 = f1 (x̂1k,uk) (46)

where uk is the control vector, equal to the set of input wheel
torques:

uk =
[
τW1k

τW2k
τW3k

]T
(47)

The first three states are wheel angular velocities. Their
process model is straightforward, propagating the previous
velocity forward by the estimator time step Te.

ˆ̇qik+1
= ˆ̇qik + ˆ̈qikTe | i = {2, 3, 4} (48)

ˆ̈qik+1
=
(
τWi−1k

− τ̂Ri−1k
− ˆ̇qikbd

)
Iwg
−1 (49)

where ˆ̈qi is the estimated angular acceleration of joint i;
although not a state, it is used in the process model. Negligible
inertial terms in H relating q̈i to θ̈0y and q̈1 are neglected.

The following three states are the wheel resistive torques.
As no a priori model exists for these states, a random walk
is assumed, and the predicted estimate is set to the previous
estimate.

τ̂Rik+1
= τ̂Rik

| i = {1, 2, 3} (50)

The process models for θ0y and q1 use second order Taylor
series approximations; the process models for θ̇0y , and q̇1 use

first order Taylor series approximations.

θ̂0yk+1
= θ̂0yk

+
ˆ̇
θ0yk

Te +
ˆ̈
θ0yk

T 2
e /2 (51)

q̂1k+1
= q̂1k + ˆ̇q1kTe + ˆ̈q1kT

2
e /2 (52)

ˆ̇
θ0yk+1

=
ˆ̇
θ0yk

+
ˆ̈
θ0yk

Te (53)
ˆ̇q1k+1

= ˆ̇q1k + ˆ̈q1kTe (54)

The acceleration states all use a particular row of Equa-
tion 32, solved for the state variable of interest. When using
the dynamic equations in the estimator, the terms ḢΦ̇ and
∂T
∂Φ are not included.

ˆ̈
θ0yk+1

=
(
M̂0fwk

− Ĵw5,5k τ̂R1k
− Ĵw11,5k τ̂R2k

. . . (55)

. . .− Ĵw17,5k τ̂R3k
−

[
∂̂V

∂Φ

]
5

− Ĥ5,1k
ˆ̈x0k − Ĥ5,3k

ˆ̈z0k . . .

. . .− Ĥ5,7k
ˆ̈q1k − Ĥ5,8k

ˆ̈q2k − Ĥ5,9k
ˆ̈q3k − Ĥ5,10k

ˆ̈q4k

)
Ĥ5,5k

−1

ˆ̈q1k+1
=
(
M̂1fwk

− Ĵw5,7k τ̂R1k
− Ĵw11,7k τ̂R2k

. . . (56)

. . .−

[
∂̂V

∂Φ

]
7

− Ĥ7,1k
ˆ̈x0k − Ĥ7,3k

ˆ̈z0k . . .

. . .− Ĥ7,5k
ˆ̈
θ0yk − Ĥ7,8k

ˆ̈q2k − Ĥ7,9k
ˆ̈q3k

)
Ĥ7,7k

−1

ˆ̈x0k+1
=
(
F̂xwk

− Ĥ1,5k
ˆ̈
θ0yk − Ĥ1,7k

ˆ̈q1k

)
Ĥ1,1k

−1
(57)

ˆ̈z0k+1
=
(
F̂zwk

−

[
∂̂V

∂Φ

]
3

− Ĥ3,5k
ˆ̈
θ0yk − Ĥ3,7k

ˆ̈q1k

)
Ĥ3,3k

−1

(58)

where ∂̂V
∂Φ , Ĥ , and Ĵw are obtained using the estimated

configuration Φ̂.
The net moments M0fw and M1fw and forces

Fxfw and Fzfw resultant from the wheel forces
{DP1, DP2, DP3,W1,W2,W2} are assumed to follow
a random walk. Their process models are then:

M̂0fwk+1
= M̂0fwk

M̂1fwk+1
= M̂1fwk

F̂xfwk+1
= F̂xfwk

F̂zfwk+1
= F̂zfwk

(59)

The process model for the velocity along the rover ẋR0 is
a first order Taylor series approximation using the estimated
acceleration of the rover along the rover body.

ˆ̇xR0 k+1 = ˆ̇xR0 k +
(

ˆ̈x0k cos θ̂0yk − ˆ̈z0k sin θ̂0yk

)
Te (60)

The slip(s)/skid(s) of the rover wheels are assumed to follow
a random walk.

îik+1
= îik | i = {1, 2, 3} (61)

2) Measurements: The measurement vector y1 for the
general estimator is given by:

y1 =
[
˘̇q2 ˘̇q3 ˘̇q4 θ̆0y q̆1 ˘̈xR0 ˘̈zR0 ˘̇xR0 ĭ1 ĭ2 ĭ3

]T
(62)
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The measurements of wheel angular velocities are obtained by
applying the first order finite difference method to the wheel
angle measurements.

˘̇qik =
q̆ik − q̆ik−1

Te
| i = {2, 3, 4} (63)

The wheel angular velocities and resistive torques are made
observable through this measurement [6].

A measurement of the rover’s pitch angle θ̆0y is created
using the direction of the gravity vector as sensed by the IMU.
Under the slow acceleration or steady-state conditions on the
rover this method is valid.

θ̆0yk = tan−1

(
−˘̈xR0k
˘̈zR0k

)
(64)

This measurement is used to make θ̇0y and θ̈0y observable.
Using a pitch rate measurement θ̇0y , which is obtainable
from the IMU, was found to decrease the performance of the
estimator; this is due to the low signal to noise ratio of this
sensor for a slowly moving rover. As a result, a pitch rate
measurement was not included in the measurement vector y1.

The measurements q̆1, ˘̈xR0 , ˘̈zR0 , and ˘̇xR0 are taken directly
from the sensor measurement vector z.

To create a measurement of slip, a measured configuration
vector Φ̆ and its derivative ˘̇Φ are required.

Φ̆k =
[
0 0 0 0 θ̆0yk 0 q̆1k 0 0 0

]T
(65)

˘̇Φk =
[
˘̇xR0k cos θ̆0y 0 − ˘̇xR0k sin θ̆0y . . .

. . . 0
˘̇
θ0yk 0 ˘̇q1k ˘̇q2k ˘̇q3k ˘̇q4k

]T
(66)

The measured link Jacobian J̆ak and measured set of joint
velocities ˘̇Xak can then be calculated as in Equation 21.

˘̇Xak = J̆ak
˘̇Φk (67)

The measurements of slip can then be calculated using the
wheel linear and angular velocity magnitudes found above and
Equation 1 or 2. It is assumed that the direction of rover motion
is positive with positive Xw.

ĭik = i (vw, ω) = i
(

sgn
(

˘̇Xa(6i+1)k

) ∣∣v̆i+1k

∣∣ , ˘̇qi+1k

)
(68)

for i = {1, 2, 3} and where v̆i+1k is the wheel centroid

velocity vector of wheel i, a term in ˘̇Xa (see Equation 21).
3) Measurement Model: The measurement model h1 pre-

dicts the expected set of measurements based on the current
estimated state vector x̂1k. The estimated measurement of a
variable x is denoted ˆ̆x in this paper.

ŷ1k = h1 (x̂1k) (69)

The wheel angular velocities {q̇2, q̇3, q̇4}, rover pitch θ0y ,
and bogie joint angle q1 are states and thus have a simple
measurement model.

ˆ̆
q̇2k = ˆ̇q2k

ˆ̆
q̇3k = ˆ̇q3k

ˆ̆
q̇4k = ˆ̇q4k (70)

ˆ̆
θ0yk = θ̂0yk

ˆ̆q1k = q̂1k (71)

The estimated accelerations in world coordinates {ˆ̈x0, ˆ̈z0}
must be rotated into rover coordinates to match the measure-
ments {˘̈xR0 , ˘̈zR0 }. The effect of gravity, which is measured by
the accelerometers, must also be included. Note that gravity,
although directed downwards, produces the same signal as an
upward acceleration of g.

ˆ̆
ẍR0k = ˆ̈x0k cos θ̂0yk − ˆ̈z0k sin θ̂0yk − g sin θ̂0yk (72)
ˆ̆
z̈R0k = ˆ̈x0k sin θ̂0yk + ˆ̈z0k cos θ̂0yk + g cos θ̂0yk (73)

The slips {i1, i2, i3} are states and thus have a simple
measurement model.

ˆ̆i1k = î1k
ˆ̆i2k = î2k

ˆ̆i3k = î3k (74)

C. Estimator 2: Wheel Force Estimator with Two-Axis Force
Sensors

The wheel force estimators both estimate nine states: the
wheel-terrain contact angles, the wheel normal loads, and the
wheel drawbar pulls.

x2 =
[
γ1 γ2 γ3 W1 W2 W3 DP1 DP2 DP3

]T
(75)

The two-axis force sensor senses two orthogonal compo-
nents of force and thus given the wheel-terrain contact angle
γi, can resolve the sensed forces into normal load Wi and
drawbar pull DPi for wheel i.

1) Process Model: The process model f2 is used to prop-
agate the states forward.

x̂2k+1 = f2 (x̂2k) (76)

Terrain angle evolution is an inherently random process [1]
and thus is modelled as a random walk. Since the estimator
has no a priori knowledge of the terrain response, both normal
load W and drawbar pull DP must be treated as unmodelled
phenomena; their process models are also assumed to be a
random walk. Thus the expected next state vector is simply
the same as the previous one.

x̂2k+1 = x̂2k (77)

2) Measurements: The measurement vector contains
wheel-terrain contact angle measurements, and force sensor
measurements.

y2 =
[
γ̆1 γ̆2 γ̆3 F̆L1

F̆L2
F̆L3

F̆⊥1
F̆⊥2

F̆⊥3

]T
(78)

The estimated configuration vector Φ̂ and estimated gen-
eralized velocity ˆ̇Φ calculated in Estimator 1 are used in
the measurement of wheel-terrain contact angles. Since the
velocity of the wheel centroid will be parallel to the terrain, the
angle of the velocity vector with respect to the horizontal will
also represent the wheel-terrain contact angle. The procedure
for creating the measurements of wheel-terrain contact angle
is as follows:

ˆ̇Xak = Ĵak
ˆ̇Φk

γ̆ik = tan−1

(
−v̂i+1zk

v̂i+1xk

)
= tan−1

− ˆ̇Xa(6i+3)k

ˆ̇Xa(6i+1)k

 (79)
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where Ĵak is a function of Φ̂k, and v̂i+1xk
and v̂i+1zk

are
respectively the Xw and Zw components of wheel i’s centroid
velocity.

The wheel-terrain contact angle estimation presented above
is similar to a method used by Iagnemma et al. [1] except that
owing to the addition of a velocimeter, does not rely on the
assumption of low slip.

The measurements {F̆L1
, F̆L2

, F̆L3
, F̆⊥1

, F̆⊥2
, F̆⊥3

} are
taken directly from the two-axis force sensors.

3) Measurement Model: The measurement model h2 pre-
dicts the expected set of measurements based on the current
estimated state vector x̂2k. The wheel-terrain contact angles
{γ1, γ2, γ3} are states and thus have a simple measurement
model.

ˆ̆γik = γ̂ik | i = {1, 2, 3} (80)

When the rover is traversing a planar surface, the sensing
axes of the force sensors are perfectly aligned with the normal
loads and drawbar pulls. However, in the general case this is
not true and the estimated normal loads and drawbar pulls must
be rotated in order to predict the force sensor measurements.

ˆ̆
FLik

= Ŵik cos (γ̂ik − ε̂ik)− D̂P ik sin (γ̂ik − ε̂ik) (81)
ˆ̆
F⊥ik

= Ŵik sin (γ̂ik − ε̂ik) + D̂P ik cos (γ̂ik − ε̂ik) (82)

for i= {1, 2, 3} and where ε̂1k = ε̂2k = θ̂0yk + q̂1k and ε̂3k =

θ̂0yk .

D. Estimator 3: Wheel Force Estimator with Single-Axis Force
Sensors

The state vector for Estimators 2 and 3 are identical.

x3 = x2 (83)

Single-axis force sensors may be used on a rover to provide
force sensing above the wheel hubs with a minimal impact
on mass and complexity. The Kapvik micro-rover is equipped
with single-axis force sensors above the wheel hubs.

1) Process Model: The process model is identical to the
previous estimator: all states are assumed to undergo a random
walk.

x̂3k+1 = x̂3k (84)

2) Measurements: The measurement vector contains a set
of measurements identical to the previous estimator; however,
the perpendicular forces {F⊥1 , F⊥2 , F⊥3} are calculated arti-
ficially since they are not explicitly sensed.

y3 = y2 (85)

The procedure for calculating measurements of wheel-
terrain contact angles {γ̆1, γ̆2, γ̆3} is identical to the pre-
vious estimator (see Equation 79). The measurements
{F̆L1

, F̆L2
, F̆L3

} are taken directly from the single-axis force
sensors. As a result, one component of each wheel force is
known. The remaining components {F̆⊥1 , F̆⊥2 , F̆⊥3} must be
solved for using the estimated net effects of wheel forces
{M̂0fw , M̂1fw , F̂xfw , F̂zfw}. As shown in Figure 9, forces F⊥1

and F⊥2
have the same line of action. Given the net effects of

wheel forces observed it is impossible to differentiate the two

forces and they are combined together into F⊥12 = F⊥1+F⊥2 .
With two unknowns, F⊥12

and F⊥3
, only two of the four

equations are required to find a solution. The equation for
M1fw is used to solve for F⊥12

. With knowledge of F⊥12
,

the equation for Fxfw is used to solve for F⊥3 . Referring to
Figure 9, the forces F⊥12 and F⊥3 are solved for as follows:

F̆⊥12k
=
(
−M̂1fwk

+
(
F̆L1k

− F̆L2k

)
b
) 1

a
(86)

F̆⊥3k
=
(
F̂xfwk

−
(
F̆L1k

+ F̆L2k

)
sin ε̂1k . . .

. . . − F̆⊥12k
cos ε̂1k − F̆L3k

sin ε̂3k

) 1

cos ε̂3k
(87)

r

q4

0

FL2

F 2

FL1

F 1 FL3

F 3

a

b

b

M1fw

M0fwε1

ε2 ε3  

Fig. 9: Forces applied at the wheel shown in sensor directions.

Thus, it is possible to provide an accurate measurement of
F⊥3

. The combined force F̆⊥12
can then be apportioned based

on the sensed loads F̆L1
and F̆L2

, which up to moderate values
of {ε1, ε2} approximately represent the normal loads W1 and
W2.

F̆⊥1k
=

F̆⊥12k
F̆L1k

F̆L1k
+ F̆L2k

F̆⊥2k
=

F̆⊥12k
F̆L2k

F̆L1k
+ F̆L2k

(88)

This is an approximation, since the relationship between
drawbar pull and normal load is not a proportional one.
Additionally, FL1

and FL2
do not directly represent the normal

loads, and F⊥1 and F⊥2 do not directly represent the drawbar
pulls, as can be seen in Equations 81 and 82. Nevertheless,
apportioning the forces in this way provides a reasonable
approximation. A similar procedure is performed in [6].

3) Measurement Model: The measurement model for the
single-axis wheel force estimator is identical to that for the
two-axis wheel force estimator.

ŷ3k = h3(x̂3k) = h2(x̂3k) (89)

E. Creating the Model

The result of running the estimators developed above is a set
of estimated terrain response values {τR, DP,W, i} for each
wheel. These are all treated as sample points in the two terrain
response relationships: resistive torque τR as a function of
normal load W and slip i, and drawbar pull DP as a function
of normal load W and slip i.

Creating a two dimensional polynomial fit with thousands
of data points can be computationally expensive. To make it
more manageable, sample data can be temporally averaged,
decreasing the number of sample points.
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A two dimensional polynomial function is fit to the sample
points. The complexity of the relationship modelled dictates
the required order O of the fit to be used. Over the normal
loads of 0.1 N≤W ≤ 200 N used for the simulation model,
a 4th order polynomial was found to be most appropriate.
Over the normal loads in which the rover will typically
operate (35 N≤W ≤ 70 N in Kapvik simulations below), the
relationship is less complex and 2nd order relationships were
found to be most appropriate. Fits of higher order result in
highly erroneous data at the edge of and outside the parameter
space spanned by the sample data.

The drawbar pulls and to a lesser extent the normal loads
estimated using single-axis force sensors (Estimator 3) will be
less accurate on wheels 1 and 2 than on wheel 3. If desired,
wheel 3 can be used exclusively to create the model, serving as
a sensing wheel. Drawbar pull estimates using wheels 1 and
2 will be biased toward a proportional relationship between
drawbar pull and normal load because of the force apportion-
ing performed in Equation 88.

F. Proposed Usage of Estimator

The terrain response estimation algorithm requires that the
terrain be homogeneous and gently rolling. Forward looking
range data could be used to assess the suitability of the terrain
ahead and autonomously make a decision about whether or not
to perform terrain response estimation. During a traverse, the
rover could log all of the essential sensor measurements for
terrain response estimation. When stopped, the estimator could
be run to obtain DP (W, i) and τR(W, i) data points from the
recently traversed terrain. Temporally averaged data could then
be added to the existing dataset. A maximum number of recent
points to be kept in this dataset could be chosen in advance
based on memory and processing time available. A polynomial
fit to the dataset could then be performed, forming a local
model for terrain response that could subsequently be used
in trafficability predictions, cost function based path planning,
or traction control. For example, the terrain response acquired
during a traverse over relatively benign terrain could be used
to assess the feasibility of climbing an upcoming incline. If
desired, a history of polynomial coefficients could be kept in
memory to capture the evolution of terrain response over the
duration of the mission.

Ideally, the estimator would also be able to run in real-time,
providing current estimates of resistive torques, drawbar pulls,
wheel normal loads, wheel slips, and wheel-terrain contact
angles, amongst other states. Knowledge of these states could
be used to perform reactive traction control, with forces being
optimally applied, or high slip conditions being avoided. Real-
time estimator speeds have not been achieved in the MATLAB
simulation of the estimator; optimization of the algorithm for
real-time operation lies outside the scope of this paper.

V. SIMULATION RESULTS AND DISCUSSION

Simulations of the rover traversing the six representative
terrains shown in Figure 10 were performed with a desired
speed vd of 2 cm/s, the nominal speed for Kapvik. Unbiased
Gaussian noise of the magnitudes outlined in Table IV was

0 1 2 3 4 5 6 7

0

0.5

Terrain 1 (200s)

0 1 2 3 4 5 6 7

0

0.5

Terrain 2 (300s)

0 1 2 3 4 5 6 7

-0.5

0

Terrain 3 (300s)

0 1 2 3 4 5 6 7

0

0.5

Terrain 4 (300s)

0 1 2 3 4 5 6 7

0

0.5

Terrain 5 (300s)

0 1 2 3 4 5 6 7

0

0.5

Terrain 6 (300s)

Fig. 10: The six terrains used to validate the estimator, shown
with the simulation duration in parentheses. Terrain 1 is a
gently rolling terrain. Terrains 2 and 3 are predominantly flat
uphill and downhill terrains respectively, each with slopes of
0◦, ±4◦ and ±8◦ and short transitions. Terrains 4, 5, and 6
are step increases of half a Kapvik wheel diameter formed
by sigmoid functions, where the transition region decreases in
distance from Terrain 4-5 and Terrain 5-6. The rover is shown
at the beginning, middle, and end of its traverse.

added to the sensor measurements. Since the rover moves
slowly, the estimator was run at 5 Hz using temporally
averaged measurements; this reduced computation time.

A. Estimator Performance

The root mean square estimation errors of the important
terrain response estimation states over the simulation runs
are shown in Table V. Slip î and resistive torque τ̂R are
consistently estimated well by Estimator 1. As expected, the
performance of the wheel force estimator using single-axis
force sensors (Estimator 2) is poorer than that using two-axis
force sensors (Estimator 3) for wheels 1 and 2. As the drawbar
pull and normal load do not follow a proportional relationship
as implied in Equation 88, a systematic error is introduced
for wheels 1 and 2. However, the drawbar pull for wheel 3 is
estimated with an accuracy nearly identical to that when using
two-axis force sensors. Errors in estimated forces {Ŵ , D̂P}
increase in magnitude for Terrains 4-6 as the transition region
shortens. This is a result of the assumption that żR0 ≈ 0 and
is explained in Section V-B.
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RMS Errors î1
[-]

î2
[-]

î3
[-]

Ŵ1

[N]
Ŵ2

[N]
Ŵ3

[N]
τ̂R1

[Nm]
τ̂R2

[Nm]
τ̂R3

[Nm]
D̂P 1

[N]
D̂P 2

[N]
D̂P 3

[N]
Terrain 1, Estimators 1 and 2 0.015 0.015 0.016 0.15 0.095 0.3 0.008 0.0051 0.0055 0.88 0.55 0.47
Terrain 1, Estimators 1 and 3 0.015 0.015 0.016 0.21 0.17 0.31 0.008 0.0051 0.0055 1.8 2.3 0.49
Terrain 2, Estimators 1 and 2 0.012 0.012 0.012 0.094 0.048 0.076 0.0038 0.0028 0.003 0.53 0.23 0.35
Terrain 2, Estimators 1 and 3 0.012 0.012 0.012 0.1 0.06 0.078 0.0038 0.0028 0.003 0.65 0.67 0.4
Terrain 3, Estimators 1 and 2 0.011 0.011 0.011 0.059 0.056 0.069 0.0024 0.0023 0.0024 0.31 0.18 0.27
Terrain 3, Estimators 1 and 3 0.011 0.011 0.011 0.065 0.065 0.071 0.0024 0.0023 0.0024 0.41 0.42 0.31
Terrain 4, Estimators 1 and 2 0.012 0.012 0.012 0.06 0.048 0.092 0.0032 0.0025 0.0027 0.32 0.23 0.32
Terrain 4, Estimators 1 and 3 0.012 0.012 0.012 0.067 0.061 0.096 0.0032 0.0025 0.0027 0.56 0.79 0.38
Terrain 5, Estimators 1 and 2 0.013 0.013 0.011 0.086 0.067 0.21 0.0039 0.0029 0.0031 0.73 0.51 0.71
Terrain 5, Estimators 1 and 3 0.013 0.013 0.011 0.11 0.14 0.21 0.0039 0.0029 0.0031 0.88 1.5 0.75
Terrain 6, Estimators 1 and 2 0.02 0.02 0.017 0.15 0.12 0.37 0.0068 0.0047 0.005 1.7 1 1.3
Terrain 6, Estimators 1 and 3 0.02 0.02 0.017 0.23 0.34 0.38 0.0068 0.0047 0.005 1.7 2.6 1.3

TABLE V: Root mean square errors in the simulated state estimates {̂i, Ŵ , τ̂R, D̂P}.

Figure 11 shows the estimated and real slips and normal
loads over the 200 s Terrain 1 simulation. Slip is accurately
estimated, with some white noise. Normal load is estimated
with similar accuracy using both Estimators 2 and 3; as a
result, only the results from Estimator 2 are shown.

Figure 12 shows the estimated and real resistive torques
τR and drawbar pulls DP for the same simulation. Resistive
torques are very well estimated because of the precise mea-
surement of wheel angles {q2, q3, q4} (Figure 12a). Drawbar
pulls are well estimated by Estimator 2 using two-axis force
sensors (Figure 12b). A small systematic error is caused by
the imperfect estimation of wheel-terrain contact angles, as
outlined in Section V-B. The white noise in drawbar pull is
more prevalent for wheels 1 and 3 than for wheel 2. This is
because the estimate of wheel-terrain contact angle γ̂2 is less
sensitive to noise in the estimated rover pitch θ̂0y than are γ̂1
and γ̂3. Since the estimated rover pitch θ̂0y is noisier than the
other variables affecting the estimate of wheel-terrain contact
angle, wheels 1 and 3 experience more white noise than
wheel 2. The systematic error caused by force apportioning
performed in Equation 88 is evident in the drawbar pull
estimates for wheels 1 and 2 (Figure 12c).

B. Effect of Vertical Velocity Assumption

The assumption that the velocity of 0 along the body
vertical żR0 is approximately zero reduces the performance
of the estimator in situations where żR0 6≈ 0. This is
because the wheel-terrain contact angles {γ1, γ2, γ3} are
calculated from the estimated angles of the wheel cen-
troid velocity vectors with respect to the horizontal. The
resultant error in calculated wheel terrain contact angles
is approximately the angle of the rover velocity with re-
spect to its forward direction δ ≈ tan−1

(
−żR0 /ẋR0

)
≈

−żR0 /ẋR0 . When used to apportion the sensed/calculated
wheel forces {FL1 , FL2 , FL3 , F⊥1 , F⊥2 , F⊥3} into the desired
forces {DP1, DP2, DP3,W1,W2,W3}, the error in calculated
wheel-terrain contact angles {γ1, γ2, γ3} limits the achievable
accuracy. The approximate magnitude of the error is found by
solving Equations 81 and 82 for DP and W and comparing

their values with and without the error term δ.

EDPi
= [FLi

sin (γi − δ − εi)− F⊥i
cos (γi − δ − εi)]−

[FLi
sin (γi − εi)− F⊥i

cos (γi − εi)] (90)
EWi

= [FLi
cos (γi − δ − εi) + F⊥i

sin (γi − δ − εi)]−
[FLi

cos (γi − εi) + F⊥i
sin (γi − εi)] (91)

where EDPi and EWi are the calculated errors in drawbar pull
and normal load respectively for wheel i. A representative case
is chosen where γi = 0, Wi = 50 N, and DPi = 0, but δ 6= 0;
this represents steady state operation where the wheel being
analyzed is on level ground but the velocity along the body
vertical żR0 is non-zero; this situation is possible if the rover
is pitched. In Figure 13, as (γi − εi) is altered, FLi

and F⊥i

are altered to accurately reflect the redistribution of forces.
The resulting relationship is shown in Figure 13 and shows
that miscalculation of wheel terrain contact angle has a larger
effect on drawbar pull DPi than on normal load Wi.
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Fig. 13: The sensitivity of calculated drawbar pull (left) and
normal load (right) to errors in calculated wheel-terrain contact
angle δ.

A non-zero velocity żR0 on a rover using a rocker-bogie
mobility system is induced by a variety of terrain types which
are not gently rolling. The approximate magnitude of żR0 and
resultant severity of the error in wheel-terrain contact angle,
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(a) Estimated slip for wheels 1, 2, and 3 (left to right), Estimator 1.
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(b) Estimated normal load for wheels 1, 2, and 3 (left to right), Estimator 2.

Fig. 11: Estimated normal loads W and slips i over the 200 s simulation (time in [s] on x axis). The estimation of normal
load is of comparable accuracy between Estimators 2 and 3.

normal load, and drawbar pull estimates can be judged based
on the curvature of the terrain κ compared with the wheelbase
of the rover lw. Terrains 4-6 have similar profiles but with
increasing levels of curvature. Figure 14 demonstrates how
the severity of the errors scale with the terrain’s curvature
for Terrains 4-6. As the terrain curvature κ approaches the
reciprocal of the rover’s wheelbase (1/lw), the likelihood of
increased velocity of the rover along its body vertical żR0
increases; the assumption that żR0 ≈ 0 loses validity, and
the estimator’s performance degrades. In operation, forward
looking range data could be used to assess the curvature of
the upcoming terrain and decide whether or not to perform
terrain response estimation during the traverse. Terrains that
include curvatures κ ≥ 1/lw should not be used for the terrain
response estimation described herein.

C. Terrain Response Model Re-creation

To reduce the amount of data used to reconstruct the terrain
response models, the estimates were temporally averaged to
1 sample every 2 seconds from the original sampling rate
of 5 samples/s. Based on the requirement that κ < 1/lw
from Section V-B and Kapvik’s wheelbase lw from Table I,
the curvature of viable terrain must be less than 1.43 m/m2;
using this requirement, data points from the rover’s traverses
of Terrains 1-5 were included, but data points from the rover’s
traverse of Terrain 6 were excluded. A two dimensional, 2nd

order polynomial function with was then fit to the data. The
resulting models for resistive torque and drawbar pull using

Estimators 1 and 2 are shown in Figures 15 and 16 respec-
tively. The models using Estimators 1 and 3 are very similar
and are not included herein. The coefficients for the estimated
model are compared with an optimal two dimensional fit to
the real model in Table VI. The distribution of errors in the
resultant models for resistive torque and drawbar pull are
shown in Figures 17 and 18 respectively. The estimated fits
provide a good approximation of the actual terrain response
in the traversed parameter space.

Fig. 15: Resistive torque fit using Estimators 1 and 2.

As shown in Figures 17 and 18, the errors in the estimated
models are most severe near the edge of the traversed param-
eter space, and close to zero near to the estimated data points.
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(a) Estimated resistive torque for wheels 1, 2, and 3 (left to right), Estimator 1.
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(b) Estimated drawbar pull for wheels 1, 2, and 3 (left to right), Estimator 2.
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(c) Estimated drawbar pull for wheels 1, 2, and 3 (left to right), Estimator 3.

Fig. 12: Estimated resistive torque τR and drawbar pull DP over the 200 s simulation (time in [s] on x axis) on Terrain 1.

p00 p10 p01 p20 p11 p02
τR Local Model -0.367 2.16 0.0139 -2.7 0.0266 8.2×10-5

τ̂R Fit, Est. 1 and 2 0.777 2.35 -0.0327 -2.48 0.0156 5.79×10-4

DP Local Model -4.17 31.5 -0.032 -38.8 0.274 -1.66×10-4

D̂P Fit, Est. 1 and 2 11.8 35.7 -0.685 -38.3 0.122 0.00673
D̂P Fit, Est. 1 and 3 9.33 35.5 -0.579 -37.8 0.127 0.00562

TABLE VI: Coefficients pkl of the 2nd order polynomial
fits to the optimal local model and estimated data. The local
model was created by performing a 2nd order polynomial fit
to a 100×100 array of global model sample points over the
traversed parameter space.

The area enclosed by estimated data points also has minimal
error. This shows that predictions made using the estimated
models would be most accurate for values of slip and normal
load similar to or enclosed by those already sampled. The
root mean square errors in the estimated model are shown in

Table VII. The RMS errors as well as the error distributions
of Figures 17 and 18 are calculated using 100×100 arrays of
values over the traversed parameter space. The magnitudes of
the RMS errors are relatively small, meaning that the estimated
model could be effectively used for trafficability analysis, cost
function based path planning, or traction control.

RMS Errors τR[Nm] DP [N]
Estimators 1 and 2 0.0551 0.747
Estimators 1 and 3 0.0554 0.670

TABLE VII: Root mean square error of the 2nd order esti-
mated terrain response models compared with the 4th order
global model over the traversed parameter space.

VI. CONCLUSION

Rovers exploring other planets will require knowledge of
the terrain’s response in order to assess terrain trafficability,
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(b) Terrain 5.
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(c) Terrain 6.

Fig. 14: The effect of terrain curvature on the assumption that żR0 ≈ 0 and resultant errors in estimated wheel-terrain contact
angles and drawbar pulls. The resultant errors very closely follow the error term δ, which is a result of the assumption that
żR0 = 0.

Fig. 16: Drawbar pull fit using Estimators 1 and 2.

perform cost function based path planning, or perform optimal
traction control. Since bringing additional equipment to char-
acterize the soil is expensive and impractical, soil properties or
terrain response must be found using on-board rover sensors.

In this paper, resistive torque and drawbar pull, the key
outputs of Wong’s terramechanics equations, are simplified
into two dimensional polynomial functions of normal load and
slip. This expedites simulation by eliminating the requirement
to use root-finding routines. Additionally, it provides a model
that can be reconstructed if all the required variables are
estimated.
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Fig. 17: Distribution of errors in 2nd order estimated resistive
torque model over traversed parameter space compared with
the 4th order global model.

Fully dynamic 2D simulation was performed on one side of
Kapvik, a 30 kg planetary micro-rover prototype with a rocker-
bogie mobility system. The rover was simulated traversing
six different terrains; the simulations incorporated Wong’s
terramechanics relations to properly represent the wheel-soil
interactions.

A suite of on-board sensors, including conventional sensors
as well as a velocimeter and force sensors, were used to
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Fig. 18: Distribution of errors in 2nd order estimated drawbar
pull model over traversed parameter space compared with the
4th order global model.

take measurements critical to the observation of the terrain
response. These sensors, coupled with Unscented Kalman
Filters, were used in simulation to accurately reconstruct the
terrain response relationships over the traversed parameter
space.
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