
To Evolve or Not to Evolve? That is the Question

Alex Ellery1, A. E. Eiben2

1Department of Mechanical & Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON. K1S 5B6.

Canada: aellery@mae.carleton.ca
2Department of Computer Science, Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081HV Amsterdam. Netherlands:

a.e.eiben@vu.nl

Abstract

To evolve or not to evolve? That is the question: whether ‘tis
nobler in the mind to suffer the slings and arrows of grey goo,
or to deny evolution to a sea of self-replicators and by
prevention control them? We have been developing a physical
self-replicating machine concept for deployment on the Moon
built from local resources on the Moon. Here, we are concerned
with architectural issues - we specifically address the problem
of uncontrolled replication. We propose a multitiered approach
to prevent this: (i) denial of self-replication through the
implementation of centralised mass manufacturing of
replicators; (ii) denial of scarce sodium and chlorine from Earth
acts as an Earth-controlled kill switch in preventing further
replication; (iii) denial of centralised supplies of asteroidal
metals (tungsten-nickel-cobalt-selenium) at the lunar south pole
acts as a Moon-controlled kill switch; (iv) denial of online
learning capacity through fixed neural weights; (v) denial of
extended computing resources through the elimination of
transmit communications between self-replicators; (vi) denial
of evolutionary capacity by implementing error detection and
correction (EDAC) coding. Two kill switches and EDAC
provide the backbone to our approach that maintain self-
replication capability.

Introduction

We have been developing a physical instantiation of a self-
replicating machine concept for service on the Moon to
robotically construct a lunar infrastructure at low cost using
local resources (Ellery, 2015a, 2016, 2017). To date, most
effort has been devoted to 3D printing certain crucial
components: (i) electric motors which has progressed to near
completion; (ii) active computational components (vacuum
tube) which has yet to be achieved but efforts are ongoing.
We are also concerned with an important architectural issue –
that of the prevention of uncontrolled replication. In
approaching this problem, we are mindful of the Royal
Navy’s hard-learned lessons during the Falklands conflict
regarding layered air defence for individual ships and flotillas,
of which there are four – air combat patrol (Sea Harrier/F35
Lightning), area air defence (Sea Viper), point air defence
(Sea Wolf) and close-in weapons (Phalanx/Goalkeeper). We
explore a similar multi-tiered approach as our defence strategy
against uncontrolled replication: (i) denial of self-replication
through the implementation of centralised mass
manufacturing of replicators; (ii) salt contingency – denial of

scarce sodium and chlorine from Earth acts as an Earth-
controlled kill switch in preventing further replication; (iii)
tunicose contingency – denial of centralised supplies of
asteroidal metals (tungsten-nickel-cobalt-selenium) at the
lunar south pole acts as a Moon-controlled kill switch
preventing further replication; (iv) denial of online learning
capacity through fixed neural weights controls the machine’s
intelligence; (v) denial of extended computing resources
through the elimination of transmit communications between
self-replicators (receive only); (vi) denial of evolutionary
capacity by implementing error detection and correction
(EDAC) coding controls the machine’s adaptability. We pay
special attention to (i), (ii), (iii), (iv) and (vi).

3D Printer-Based Turing Machine – Denial of

Online Learning

To address the problem of 3D printing computing machines,
we revert to the original model of a computer. The Turing
machine is a finite-state machine comprising a read/write head
mounted onto an infinitely long tape divided into discrete
squares. The Church-Turing thesis asserts that the mechanistic
computations of a Turing machine define an algorithmic
process. The Turing machine sequentially reads an infinitely
long digital tape of cells. Symbols from a finite alphabet are
inscribed on the tape which are read in sequence by the
read/write head. The initial tape encodes a set of input data.
The read/write head incorporates a finite memory of internal
state transitions constituting the computer program of the
Turing machine. The motion of the read/write head – the
behaviour of the Turing machine - is determined by the
symbol inscribed on each cell of the tape and the internal state
of the machine. The symbol is overwritten by a replacement
symbol and/or the read/write head moves one cell left or right
according to the Turing machine’s state transition function.
The resulting tape encodes a set of output data. Different
Turing machines are specified by different state transition
functions. This simple machine implements a mathematical
function that converts its input into an output – the Turing
machine’s mechanical procedure encapsulates the algorithm
concept as a finite sequence of simple operations. Any
specific Turing machine may be encoded as an input tape so a
universal Turing machine can emulate any specific Turing

357

machine, i.e. a universal Turing machine can compute any
computable function given the appropriate algorithm.
 Our implementation of a Turing machine comprises an
input tape represented by magnetic core memory, an output
tape represented by an analogue neural net circuit, and a
read/write head represented by a 3D printer. The 3D printer
thus becomes a central component of a universal computation
capability – it prints out hardware circuitry according to the
program stored in magnetic core memory. Magnetic core
memory uses ferrite magnetic cores (toroids) through which
wires are passed to convey read and write signals. Each core
stores one bit of information non-volatilely as zero or one
depending on the direction of the core’s magnetisation. The
invention of the coincident current system enabled a small
number of wires to control a large number of cores in 3D
stacks. A large number of small ferrite toroidal cores are held
on layers of XY grids of wires through the toroidal centres.
Only where the combined magnetic field from X and Y lines
cross exceeds a threshold will the magnetic polarity reverse.
Magnetic core memory offers high reliability and was used for
the Apollo Guidance Computer and Space Shuttle Flight
Computers.

We must now consider the 3D printed output circuitry. We
have adopted the vacuum tube as the basis of our active
electronics. Vacuum tube devices are based on the generation
of relativistic electron beams and their interaction with
electromagnetic waves. A vacuum tube is simple in
construction - a tungsten cathode that emits electrons attracted
to a nickel anode controlled by a third nickel grid electrode
encased in an evacuated glass or ceramic tube and linked by
silicone or ceramic-insulated kovar wiring. Only a small
number of materials are required which are readily extracted
from lunar resources. However, vacuum tubes are bulky and
present challenges for building complex computational
circuits. The von Neumann architecture computer is based on
the central processing unit (CPU). The core of the CPU is one
or more arithmetic logic units (ALU). The ALU is a
combinatorial logic circuit for performing arithmetic
operations (addition, subtraction, increment/decrement and
sign) and bitwise logical operations (AND, OR, EX-OR and
NOT) on 4-bit, 8-bit, 16-bit, 32-bit or 64-bit data widths. For
example, the modest embedded 8051 CPU comprises 2,200
logic gates. Modern computers comprise ~500 million logic
gates. Data is stored in a variety of different memory locations
which must be fetched as input data to the CPU and the
results of which must be pushed back into memory. The basic
operation of the von Neumann architecture is the fetch-
decode-execute cycle which is wasteful in hardware footprint.
Using vacuum tube-based circuitry based on the von
Neumann architecture would require very large computers.

To prevent runaway growth in the computer footprint
imposed by the vacuum tube, the output of our Turing
machine is an analogue neural network that encodes a specific
algorithm in hardware form. The complexity of a neural
network increases only with the logarithm of the task
complexity unlike the exponential increase in circuit
complexity of digital architectures (Parberry, 1994). Neural
networks are under development for general purpose
intelligence - the SpiNNaker (spiking neural network
architecture) project is based on combining a large number of
digital ARM processors within a grid of switches to emulate a

vast neural network representing a small brain of ~106
neurons. A simple electronic ring circuit of neurons has been
proposed that emulates the neural processing function of the
neocortex (Hahnloser et al, 2000). There is the prospect of
implementing robust albeit simple behaviours neurally - one
of the simplest biological neural networks in a non-aquatic
free-living animal is that of the nematode worm C elegans: it
comprises 959 cells in total as a hermaphrodite (of which 302
are neurons) or 1031 cells in total as a male (of which 381 are
neurons) with approximately 5000 synapses. This potentially
gives us a minimum neural network size though an engineered
version might be subdivided into subnetworks of more modest
dimension. On a much smaller scale, analogue neural circuits
offer rapid computation with some biological fidelity in
reducing specific energy consumption (energy/neuron) but at
the cost of a fixed neural architecture.

We have adopted a modified version of the Yamashita-
Nakamura neuron (Yamashita & Nakaruma, 2007) which
comprises an input summing amplifier, an inverting amplifier
(for a step function) and a comparator. The weights of each
neuron are pre-trained offline to implement its desired
behaviour. We have demonstrated a pre-trained two-neuron
hardware circuit implementing a Braitenburg control
architecture of BV2/BV3 class (Braitenburg, 1984)
performing automatic obstacle avoidance on a simple desktop
mobile robot. We have begun exploring the potential for
augmenting hardware neurons with online learning circuitry
(Larson & Ellery, 2015). There are several intriguing
possibilities for learning circuitry (Winter & Widrow, 1988;
Martinelli & Perfetti, 1991) but we assume that we do not
implement such capabilities to prevent uncontrolled learning –
nevertheless, we have the quandary of requiring weight
adjustment to permit fine-tuning of analogue neural circuits to
variations in physical manufacture against the denial of online
learning to ensure that behavior is both known and controlled.

Centralised Manufacturing – Denial of Self-

Replication Capacity and Kill Switches

The most aggressive approach to prevent runway replication is
denial of self-replication of productive capacity. For this
approach, we consider two options (centralized versus
distributed production) across two dimensions (variability
versus no variability), yielding four different cases (Table 1):

 Centralised
Production

Distributed
Production

Identical
Copies

Conventional
factory (e.g. six-
sigma)

Self-replicators
without
evolutionary
variation

Mutated
Copies

EvoSphere Self-replicators
with
evolutionary
variation

Table 1. Replicator population options

The conventional factory employs mass production and has
been employed since the Industrial Revolution for the

358

worldwide production of goods. In traditional factories, goods
are produced in which variations are minimized. Before
distribution, the quality of the goods are checked, and indeed,
one of the hallmarks of quality is the so-called six-sigma
quality control protocol.

Regarding terminology, self-reproduction may be regarded
as an inaccurate form of self-replication that permits variation
in offspring (Adams & Lipson, 2009) but we use the over-
arching term self-replication here with or without evolution.
The EvoSphere concept envisions an entire ecosystem of
physically and behaviourally evolving robots in the physical
environment (Eiben, 2015a). It comprises a birthing clinic, a
nursery and a living arena. In the birth clinic, robotic
machines are constructed from raw materials; in the nursery,
they undergo an online learning phase for fine-tuning their
behaviours to their bodies; and in the living arena, only
successfully graduated robots that perform their desired
function are selected and are permitted to replicate exactly.
The EvoSphere imposes two apparently contradictory
objectives: (a) reproduction with variation and selection is
permitted to implement robot evolution in the real world; (b) a
kill switch is implemented to prevent procreation of undesired
variants by human operators. Robot reproduction is divided
into two phases that differentiate between the robot genotype
and the robot phenotype: (a) recombination of robotic
genotypes is permitted without constraint; (b) production of
the genotype-encoded robot phenotype is constrained. This
constraint is imposed by permitting only a single centralised
production centre for the physical construction of robots. The
kill switch is implemented at the centralised production
centre. If invoked, it shuts down all reproductive processes
and, as a consequence, halts evolution. All prior variations of
robot generations however are permitted to continue
operation.

Versions of the kill switch through centralized production
facilities have been proposed in approaches (ii) and (iii) to
deny specific resources for self-replicators. In Fig 1, we
present a lunar industrial ecosystem with recycling loops
representing the required chemical processing to yield
material feedstock for 3D printing of the self-replicator from
lunar raw material. Self-replication requires precisely green
chemistry (Anastas & Warner, 1998) in order to achieve the
material closure implicit in an industrial ecology. A corollary
of this is that an evolving and diverging population would be
wasteful in physical resources unless the littered carcasses of
failed evolutionary experiments were scavenged efficiently.
For our lunar ecosystem, the loss of iron-nickel-cobalt alloy
from asteroidal resources – which must be mined from special
ore locations on the Moon – and the loss of NaCl imported
from Earth due to its scarcity of the Moon effectively
decimates the entire ecosystem. The loss of tunicose materials
prevent the manufacture of ferrite magnets (and so motors,
etc), tool steel, permalloy, kovar, thermionic cathodes and
photosensitive elements (tunicose contingency). Loss of NaCl
prevents the manufacture of AlNiCo magnets (and so motors,
etc), photosensitive elements, silica for transparent glass,
piezoelectric sensors, regolith binder, drilling mud, silicone
plastics and oils, Metalysis FFC process anode and electrolyte
regeneration (salt contingency). These two sets of kill
switches – one on the Moon and the other on Earth – provide
the last lines of defence to uncontrolled replication. An
important proviso is that as the number of replicating units
grows, central supply hubs become traffic bottlenecks.
Although these contingencies are specific to the self-
replicating machine proposed for the Moon (for instance, the
salt contingency would not be possible on Mars), they
illustrate the effectiveness of multiple resource-denial kill
switches.

Lunar Ilmenite

Fe0 + H2O or silicone oil in colloidal suspension → ferrofluidic sealing

 1000oC

FeTiO3 + H2 → TiO2 + H2O + Fe (Fe separated by liquation)

ilmenite 2H2O→2H2+O2 (H2 recycling)

 2Fe + 1.5O2 → Fe2O3/Fe2O3.CoO - ferrite magnets

Nickel-iron meteorites

Mond process: Alloy Ni Co Si C W

Fe(CO)5 ↔ 5CO + Fe (175oC/100 bar) → Tool steel <2% 9-18%

Ni(CO)4 ↔ 4CO + Ni (55oC/1 bar) → Electrical steel 3%

Co2(CO)8 ↔ 8CO + 2Co (150oC/35 bar) → Permalloy 80%

 Kovar 29% 17% 0.2% 0.01% .

W(CO)6 ↔ 6CO + W → Thermionic cathodic material

 S catalyst

4FeS + 7O2 → 2Fe2O3 + 4SO2

(Troilite) SO2 + H2S → 3S + H2O

FeSe + Na2CO3 + 1.5O2 → FeO + Na2SeO3 + CO2

 KNO3 catalyst Na2SeO3 + H2SO4 → Na2O + H2SO4 + Se → photosensitive Se

 ↑____________|

 Na2O + H2O → 2NaOH (recycle)

Lunar Orthoclase

3KAlSi3O8 + 2HCl + 12H2O → KAl3Si3O10(OH)2 + 6H4SiO4 + 2KCl

orthoclase illite silicic acid (soluble silica)

 2KAl3Si3O10(OH)2 + 2HCl + 3H2O → 3Al2Si2O5(OH)4 + 2KCl

 kaolinite (clay) → porcelain

 H4SiO4 → SiO2 + 2H2O

359

 KCl + NaNO3 → NaCl + KNO3 (recycle)

 saltpetre

Olivine

Mg2SiO4 + 2CH4 → 2CO + H2 + 2MgO + Si at 2000oC → 3D Shaping binder

 forsterite MgO + HCl → MgCl2 + H2O → 3D Shaping binder

 2Mg + Si → Mg2Si → thermoelectric conversion

Lunar Anorthite

CaAl2SiO8 + 4C → CO + CaO + Al2O3 + 2Si at 1650oC → CaO cathode coatings

 → Portland cement

 CaO + H2O → Ca(OH)2

 Ca(OH)2 + CO2 → CaCO3 + H2O

CaAl2SiO8 + 5HCl + H2O → CaCl2 + 2AlCl3.6H2O + SiO2 → fused silica glass

 → Metalysis FFC electrolyte

 AlCl3.6H2O → Al(OH)3 + 3HCl + H2O at 100oC

 ↑__|

Al(OH)3 → Al2O3 + 3H2O at 400oC → 2Al + Fe2O3 → 2Fe + Al2O3 (thermite)

 → Al wiring

 → AlNiCo hard magnets

 → reflective surfaces, e.g. Al solar sail

Lunar Pyroxene

CaFeSi2O6 + HCl + H2O → Ca0.33(Al)2(Si4O10)(OH)2.nH2O + H4SiO4 + CaCl2 + Fe(OH)3

 pyroxene calcium montmorillonite soluble silica

 → bentonite drilling mud/sand casting binder

 → Metalysis FFC electrolyte

Lunar Volatiles

 850oC 250oC

CH4 + H2 → CO + 3H2 → CH3OH 350oC

 Ni catalyst Al2O3 CH3OH + HCl → CH3Cl + H2O 370oC +nH2O

 Al2O3 CH3Cl + Si → (CH3)2SiCl2 → ((CH3)2SiO)n + 2nHCl

 ↑___|

 → silicone plastics/oils

3NO + H2O → 2HNO3 + NO

 ↑__________________|

2SO2 + O2 ↔ 2SO3 (low temp)

 SO3 + H2O → H2SO4

Metalysis FFC Process (CaCl2 electrolyte)

MOx + xCa → M + xCaO → M + xCa + ½xO2 where M=Fe, Ti, Al, Mg, Si, etc, (O2 consumes graphite anode)

CO + 0.5 O2 → CO2

 CO2 + 4H2 → CH4 + 2H2O at 300oC (Sabatier reaction) → CH4 → C + 2H2 at 1400oC

 Ni catalyst → graphite anode regeneration

Salt of the Earth

NaCl + CaCO3 → Na2CO3 + CaCl2 → Metalysis FFC electrolyte

 350oC/150 bar

 Na2CO3 + SiO2(i) ↔ Na2SiO3 + CO2 → piezoelectric quartz

NaCl + HNO3 → HCl + NaNO3

Fig 1. In-situ resource utilisation schematic with highlighted kill switches indicating loss of function

The full centralised replicator production facility approach

denies the prospect of exponential growth of productive

capacity (though the kill switches retain their applicability and

effectiveness). A self-replicating machine offers

unprecedented productive capacity by virtue of its exponential

population P growth:


=

+=
m

i

irP
1

)1(

where r=number of offspring per generation, i=generation
number, m=number of generations. In a self-replicating
machine, the number of offspring per generation, r≥1, e.g. our
lunar application proposed r=2 and m=13 yielding P~2 x 106,
i.e. the power of self-replication yields exponential growth in
production. This is both its attraction and its prospect for
jeopardy. Without restraint, robots can reproduce including
their own reproductive capacity – this is equivalent to cell
division in single cell populations, larvae in arthropods, egg
laying in fish, reptiles and birds, and pregnancy in mammals.
This introduces the potential for runaway replication with two
specific dangers: (a) uncontrolled population growth (a
macroscopic version of the grey goo scenario); (b)

360

uncontrolled and unwanted alterations in form and function of
individuals. The dangers that this represents cannot be
permitted (Eiben et al, 2012).

Error Detection & Correction Coding –

Denial of Evolutionary Capacity

Despite the inadequacies of an operational definition of life to

be a self-sustained chemical system capable of Darwinian

evolution (Cleland & Chyba, 2002), we adopt it here with the

corollary that any kind of self-replicator that copies genetic

information is subject to Darwinian evolution due the genetic

mutation (Ellery, 2018). Biological evolution has been

broadly characterised by a growth in genetic complexity in

that complex biological phenotypes require increased amounts

of genetic information encoded from the environment in

which they have evolved (Adami et al, 2000). Algorithmic

complexity in a Kolmogorov sense may be regarded as the

shortest bit sequence that can yield a given output. Although

there are exceptions due to the C-value paradox (there is a

fraction of non-coding genes that varies across species),

genomic complexity reflects phenotypic complexity. At gene

site i, there are four possible nucleotides with probabilities

(pC(i),pG(i),pA(i),pT(i)) yielding an entropy per site:

Hence, the maximum entropy per site is two bits due to base

pair complementarity of A-T and C-G. This permits

computation of the physical complexity of the organism as a

whole by:

 where L=genome length (bp).

We expect this trend to continue in the self-replicating
machine – evolutionary variation through generations implies
a degree of uncontrollability. Our goal is to prevent
evolutionary processes in the self-replicating machine to
retain controllability. One proposal suggests that runaway
self-replication of machines on Earth will yield at least 4oC
temperature rise assuming thermal pollution within 2 years
which would be readily detectable (Freitas, 2001). We aim to
prevent uncontrolled replication in the first place so any self-
replication scheme requires an error detection and correction
(EDAC) coding strategy which we briefly review here
(Griffith et al, 2005).

Biological self-replication employs template molecules to
make copies of itself using building blocks in its environment.
The invariant strands of alternating pentose and phosphate
groups mount the four bases as rungs which form specific
pairs A-T and G-C between purines (A and G) and
pyramidines (C and T). DNA bases A, T, G and C form a
digital code with three-quad codons such as GCC which
encodes the amino acid alanine. This provides 64 codons for
only 20 amino acids providing redundancy in the genetic
code, e.g. UC* codes for serine so the third position of the
codon is a wildcard. There are others however that are
uniquely coded, e.g. UGG is the unique code to tryptophan.

In its normal packaging state, DNA is coiled up in
chromatin proteins which unrolls the sticky DNA strings
rapidly for copying and re-rolls it after copying. DNA helicase
separates DNA into two strands in preparation for replication.
DNA polymerase then creates two double stranded DNA
strings from the two separated single strands. The average
copying error rate in human DNA is ~10-8 but this varies with
the sensitivity of the gene to allelic variation – histone genes
which code for DNA packing proteins appear almost invariant
to mutation across biological domains. The most significant
treatment of information theory to genetics is the visionary
monograph by Hubert Yockey that deserves wider recognition
(Yockey, 1992).

The evolutionary pressure for genetic parsimony favours
the short overlapping genes of low complexity eukaryotic
viruses and DNA phages but favours non-overlapping
modular genes in higher organisms (Ofria & Adami, 2002).
Overlapping genes with multiple expression require slower
evolutionary change. Neutral mutations occur in the third
nucleotide of a codon afforded by coding redundancy but
overlapping genes have offset reading frames making neutral
mutations impossible. Larger genomes cannot exploit
overlapping genes. The conundrum of replication copying
fidelity requiring high genomic complexity (length) during
early life before such high copying fidelity could evolve is
referred to as the “error catastrophe” (Joyce, 2002). At higher
mutation rates, genotypes of higher mutational robustness
with lower replication rates are favoured irrespective of
replication fidelity per genome F=e-RL where R=error rate per
base pair, L=genome length (base pairs) (Wilke et al 2001).
The vast majority of eukaryotic DNA is non-coding – in
humans, only 3% of the genome is active, the other 97%
being pseudogenes, etc. In eukaryotes, there is “junk” DNA
(introns) that is excised from mRNA before being translated
into proteins. Introns are marked for excision by a start
sequence GT and a stop sequence AG after being looped to
bring the active flanking genes into proximity and then cut
out. Noncoding regions of the eukaryotic genome exhibit long
range correlations (Buldyrev et al, 1995). There are epigenetic
mechanisms for switching out genes - methylation of DNA
either attaches methyl groups directly to DNA or modifies
histones which dictate the activation status of genes.

In biology, the error correcting process during DNA
replication involves proofreading (known as 3’-5’ end
exonuclease) (Battail, 2004). In DNA, error detection and
correction is accomplished with polymerases which check the
complementary fit between base pairs. In bacteria, the three
DNA polymerases I, II and III progress along the growing
dual DNA strand from the 5’ end to the 3’ end, recognise
incorrect bases, reverse direction from the 3’ end to the 5’
end, excise the incorrectly matched base and re-insert the
correct base. There are other repair mechanisms for base
excision repair, mismatch repair, strand break repair, cell
cycle checkpoints and cell apoptosis. There are many
environmental disruptions that can occur in cells: UV
radiation can cause cytosine and thymine to fuse distorting the
DNA shape which effectively marks the region to be excised;
deamination converts the GC base pair to an AT base pair
which can be corrected by DNA glycosylases; oxidised
guanine emulates thymine and must be replaced. These are
point mutations. Deletions and insertions of single base pairs

361

generate frameshift mutations which cause entire reading
frames to become shifted. Similar frameshifts occur when
entire sections are deleted, copied or inverted. Transposons
are sections of DNA that cut-and-paste themselves out of and
into different locations. In each case, it is the complementary
base that provides the reference datum, detectable helix
distortion, diploid genome copies and predictable corruptions
that permit repair. The repair mechanisms however are not
perfect but species such as Deinococcus radiodurans can
survive extreme radiation environments by using an average
of four to ten copies of its genome (evolved to cope with
extremely dry conditions) (Battista, 1997). This is a form of
repetitive coding. Such a form of coding may be employed
through multiple gene copies – triple (or higher order n-tuple)
modular redundancy with voting logic is common in safety
critical systems in spacecraft. An example of such a safety
critical function would be a Hayflick limit on the number of
generational copies that a self-replicating population can
produce, e.g. emulating telomere shortening as a counter.

For our self-replicating machine, it is essential that codec

(coding/decoding) can be performed using simple circuitry

and/or neutrally using analogue neural network circuits. We

assume that genetic information is transmitted vertically

through generations and hierarchically through the population

as it increases (Battail, 2010). This constitutes a noisy and

bursty communications channel for the transmission of

genetic information. The maximum information transmission

rate through a communication channel is given by Shannon’s

coding theorem:

R<Blog2(1+SNR)

where B=bandwidth and SNR=signal-to-noise ratio. One way

to transmit error-tolerant messages is to transmit the message f

times (repetition coding) – if f=3, triple modular redundancy

permits a simple majority voting logic. This is highly

inefficient. A more efficient way is to add parity bits to the

message data. Any kind of channel code adds structured

redundant bits increase the fidelity of information

transmission at a cost of higher bandwidth requirements

(Berlekamp, 1980). Typically, error detection and correction

(EDAC) codes are usually implemented in hardware using

extra memory bus bits and encoding/decoding circuits. The

data lines of the EDAC bus connect directly to RAM. Address

lines to the memories are buffered by latches which

synchronise the address to the system clock allowing

synchronous burst of instruction and data caches. The SNR

can be related to normalized signal-to-noise ratio per bit Eb/N0

by:

Eb/N0=(S/N)/(R/B)

Above the theoretical Shannon coding limit, there is a code

that can communicate with zero error (Costello & Forney,

2007):

Eb/N0> = ln2 = -1.6 dB

A typical bit error rate (BER) used in spacecraft
communications is 10-6 (less stringent that the biological BER
of 10-8) but the BER will depend on the genome size for the
self-replicator. A BER of 10-9 is routinely achievable in space
systems and that a BER of 10-15 is desirable – with a
maximum population limit of 106 self-replicating units, this
gives a standard BER of 10-9 per machine. The closest to the
Shannon coding limit achievable are turbo codes which are
formed by the parallel concatenation of two recursive codes
separated by an interleaver code (Berrou et al, 1993). The
interleaver is the crucial aspect as it implements a pseudo-
random code. Turbo-codes are complex and are unlikely
candidates for biological implementation. The extensive
tandem repeats and introns in the eukaryotic genome and
especially the human genome may be implementing error
detection and correction codes as parity bits. One of the
simplest error detection and correction codes is the Hamming
code such as the Hamming (7.4) code which can correct a
single-bit error but detect one-bit and two-bit errors. It has
been suggested that exon-intron genes are Hamming
codewords (Faria et al, 2012). There are two main types of
EDAC other than turbo codes – block codes and
convolutional codes. In an (n,k) linear block code, there are k
information bits (input block) and n-k parity bits for n
message bits in total (output block) with a code rate of r=k/n
(Bhargava, 1983). There are 2k possible different messages of
length k that are mapped onto 2k codewords of length n. The
summations require modulo-2 arithmetic without carries
which can be implemented through the memoryless EX-OR
circuit. The Hamming weight of a code word w(c) is the
number of nonzero components to the code word. The code
can correct any pattern of e or fewer random errors provided
2e+1 d where d=Hamming distance between two codewords
(number of different elements in the codewords). The primary
goal of block coding is to maximise the Hamming distance
between codewords. The commonest used block codes are the
Bose-Chaudhuri-Hocquenhem (BCH) codes and Reed-
Solomon (RS) codes with the following parameters (Table 2):

 Block length Number of
coding bits

Hamming
distance

Hamming
code

n=2m-1 k=m d=3

BCH code n=2m-1 for
m=3,4,5,…

k n-me d 2e+1

RS code n=2m-1
symbols with
m
bits/symbol

(n-k)=2e
symbols with
m
bits/symbol

d=2e+1
symbols

Table 2: Properties of some common block codes

The Reed-Solomon code is a type of non-binary BCH code.
The Reed-Solomon code is of particular interest because it
offers the maximum Hamming distance for an (n,k) code with
Hamming distance d=n-k+1 and can correct bursts of e
symbol (m-bit) errors per codeword (Berlekamp, 1982). This
is because an m-bit burst is concentrated into a single symbol
error. The BCH code is decoded by an iterative Berlekamp-
Massey decoding algorithm (Imamura & Yoshida, 1987).
There is evidence that block codes such as BCH codes appear

362

to be implemented in evolutionarily ancient gene sequences of
the Arabidopsis brassica flowering plant (Brandao et al,
2015). The Golay code is a “perfect” three-error block code
that works only for (23,12) for d=7 and (24,12) for d=8 – it is
based on a remarkable number theoretic relation:

 = =212

where =binomial coefficients. It would be
curious indeed if evolution had discovered the tri-error Golay
code for the tri-base genetic code.

A convolutional code of code rate 1/r is a type of trellis
code which can be generated by a sequential k-stage shift
register with r modulo-2 adders. Convolutional codes do not
segment the information stream into blocks but add redundant
bits continuously and so requires a memory of order m. Each
branch in the decoding trellis is labelled with an n-bit output
block, so there are 2n branch metrics. A common coding
protocol is a constraint length of k=7 and code rate r=1/2 for
decoding efficiency. Convolutional codes are decoded using
the Viterbi algorithm which is a maximum likelihood decoder
(Forney, 1973). A shift register represents every state in the
decoding trellis. The complexity of Viterbi decoders is
exponential with the constraint length of the code. An
artificial neural network Viterbi decoder based on analogue
neurons has been demonstrated (Wang & Wicker, 1996). It
implemented discrete connections weights (+1,-1) to eliminate
the need for network training. Neurons represented trellis
elements and selected the maximum trellis path at each pass
and updated the path metrics through feedback connections. It
was a locally connected network to minimize its complexity.
2n neurons are required for an n-bit input while 2m neurons are
required for m encoding feedback connections (m=k-1). For
each state, 2(2k-1) neurons are required to find the maximum
metric of the 2k paths. Thus, the total number of neurons
required is n=2m+k+2+2n-2. For a r=1/2, k=7 convolutional
code, n=514 neurons offering a much smaller footprint than a
digital ASIC. The neural Viterbi algorithm performed
significantly faster than a digital implementation due to its
parallel architecture.

The CCSDS (consultative committee for space data
systems) standard for spacecraft recommends concatenation
of two EDAC by interleaving an inner (7,1/2) convolutional
code (applied first) with an outer Reed-Solomon (255,223)
block code (applied last) for high data rate telemetry
downlinks or BCH (63,56) for low data rate command
uplinks. This is a specific example of Battail’s nested code
characterising aspects of the biological genetic code such as
highly conserved HOX genes (Battail, 2008). HOX genes
determine head-tail topological structure through
morphological gradients and have diverged little since the
emergence of multicellular organisms in the Cambrian
explosion 540 My ago. The evolutionary rate can be
controlled to significantly reduce evolutionary divergence.
The CCSDS protocol illustrates that EDAC may be nested
multiple times to give an arbitrary error rate, though of course
at the cost of memory consumption. Resources devoted to
EDAC during copying from n random components in the
environment increases linearly as error rate decreases
exponentially as (1-e)n (Griffith et al, 2005).

Conclusions

It appears that evolutionary divergence in a growing
population of self-replicating machines are inevitable but
prudence dictates that a multi-tiered system of safeguards
should be adopted. The first layer of defence is the
implementation of costly modular redundancy (say, five gene
copies emulating the five modular redundancy of the
integrated computers onboard the Space Shuttle) and multiple
recursive layers of EDAC to reduce evolutionary divergence.
The second layer of defence is the prevention of online
learning through fixed weight neural networks – related to this
is minimisation of social interaction through fixed
communication protocols (which we have not addressed
here). The third line of defence constitutes two layers of kill
switches that are self-replicating machine specific – on the
Moon, controlling access to centrally mined tungsten-nickel-
cobalt-selenium from asteroidal resources, and on the Earth,
denial of the reagents sourced from NaCl that must be
transported from Earth. The final, most aggressive proposal is
centralisation of all mass production facilities but this
drastically reduces the attractive aspects of self-replication so
we do not consider this to be practical.
 A more philosophic issue is that by implementing EDAC
we are effectively halting the evolutionary process by
introducing high levels of copying fidelity. If life is defined as
a self-sustained chemical system capable of undergoing
Darwinian evolution (Luisi, 1998), there are three plausible
interpretations of this definition. The first is that by denying
evolutionary processes, our self-replicator is no longer alive as
it is no longer subject to evolutionary processes. The second is
that we have only suppressed the evolutionary process but not
the capacity for evolutionary development, so it is alive. The
third is that this evolutionary suppression is not absolute but
based on bit error rate – later rather than sooner, copying
errors will arise if the population grows beyond any imposed
Hayflick limit, i.e. we have slowed evolution rather than
halted it. Of course, the first interpretation states that this is
not possible because of the integrity of the Hayflick limit
imposed by EDAC. We have come full circle… A similar
situation occurs in attempts to suppress evolution in synthetic
biological organisms (Schark, 2012).
 Experiments in Avida indicate that self-replication does
not guarantee evolvability (LaBar et al, 2015). Within Avida,
a lack of evolvability can occur if all possible mutations to a
specific genetic sequence prevent further self-replication. The
closest biological organism in which this occurs is the mule
which is a horse-donkey chimera that is nominally sterile; it
might occur in engineered systems in which evolutionary
brittleness is a consequence of the genetic encoding system –
this has been explored in genetic algorithms to reduce
brittleness through cellular encoding of embryonic
development in hardware systems (Eiben & Smith, 2015b)
such as genetic programming trees (Funes & Pollack, 1998) or
L-systems. These represent growth processes which are
tolerant of mutations but direct encodings are much more
brittle rendering the possibility that engineered self-replicators
may be designed so that they always mutate into dysfunction
(most mutations are in fact dysfunctional – here, all mutations
would be so).

363

 Another interesting option concerns whether learning
capability and evolutionary capacity might be permitted but
moderated. This introduces the notion of shaping the learning
or evolutionary process. In neural networks, this requires
initialization of the network weights to incorporate pre-
defined structures prior to learning (innate knowledge).
Symbolic connectionism incorporates expert system-based
structures into neural networks (Ellery, 2015b). Bayesian
networks are particularly suitable as a priori neural network
knowledge which imposes structure to any subsequent
learning. In genetic algorithms, such shaping is imposed
through the fitness function – usually a simple metric, there is
no reason why it cannot become more prescriptive – indeed,
the design of a planetary rover’s chassis (number of wheels,
wheel radius and width, grouser size, vehicle weight, etc) was
successfully evolved using a fitness function that
implemented maximization of drawbar pull computed through
a Bekker-Wong terramechanics model (Setterfield & Ellery,
2010 unpublished data). In effect, the fitness function
substituted for the environment. The question is how to
implement such fitness functions into a self-replicator to
control the direction of its evolution.
 These issues are, as yet, unexplored but warrant further
investigation. The chief concern must be to what extent
learning and evolution can be shaped and controlled. We are
skeptical – until the advent of further evidence - that full
control can be exerted because partial control is no control –
indeed, partial control is more dangerous than no control
because it offers an illusion of control where there is none.

References

Adami C, Ofria C, Collier T (2000) “Evolution of biological complexity”
Proc National Academy Sciences 97, 4463-4468

Adams B, Lipson H (2009) “Universal framework for analysis of self-
replication phenomena” Entropy 11, 295-325

Anastas, P, Warner J (1998) Green Chemistry: Theory and Practice,
Oxford University Press: New York

Battail G (2004) “Engineer’s view on genetic information and biological
evolution” BioSystems 76, 279-290

Battail G (2008) “Information theory and error-correcting codes in
genetics and biological evolution” in Introduction to Biosemiotics
(ed. Barbieri M), Springer Publishers, 299-345

Battail G (2010) “Heredity as an encoded communication process” IEEE
Trans Information Theory 56 (2), 678-687

Battista J (1997) “Against all odds: the survival strategies of Deinococcus
radiodurans” Annual Reviews Microbiology 51, 203-224

Berlekamp E (1980) “Technology of error-correcting codes” Proc IEEE
68 (5), 564-593

Berlekamp E (1982) “Bit-serial Reed-Solomon encoders” IEEE Trans
Information Theory 28 (6), 869-874

Berrou C, Glavieux A, Thitmajshima P (1993) “Near Shannon limit error-
correcting coding and decoding: turbo-codes” Proc IEEE Int Conf
Communications, paper no 397441

Bhargava V (1983) “Forward error correction schemes for digital
communications” IEEE Communications Magazine 21 (1), 11-19

Braitenburg V (1984) “Vehicles: Experiments in Synthetic Psychology”
MIT Press

Brandao M, Spoladore L, Faria L, Rocha A, Silva-Filho M, Palazzo R
(2015) “Ancient DNA sequence revealed by error-correcting
codes” Scientific Reports 5, 12051

Buldyrev S, Goldberger A, Havlin S, Mantegna R, Matsa M, Peng C-K,
Simons M, Stanley H (1995) “Long-range correlation properties of
coding and noncoding DNA sequences: GenBank analysis”
Physical Review E 51 (3), 5084-5091

Cleland C, Chyba C (2002) “Defining life” Origins of Life & Evolution
of the Biosphere 32, 387-393

Costello D, Forney D (2007) “Channel coding: the road to channel
capacity” Proc IEEE 95 (6), 1150-1177

Eiben A (2015a) “EvoSphere: the world of robot evolution” Proc Theory
& Practice of Natural Computing LNCS 9477 (ed. Dediu A-H et
al), Springer Publishers, 1-17

Eiben A, Smith J (2015b) “From evolutionary computation to the
evolution of things” Nature 521, 476-482

Eiben A, Kernback S, Haasdijk E (2012) “Embodied artificial evolution:
artificial evolutionary systems in the 21st century” Evolutionary
Intelligence 5 (4), 261-272

Ellery A (2015a) “Engineering artificial extraterrestrial life?” Proc
European Conf on Artificial Life (Late Breaking), York, UK, 12-
14

Ellery A (2015b) “Artificial intelligence through symbolic connectionism
– a biomimetic rapprochement” in Biomimetic Technologies:
Principles & Applications (ed. Ngo D), Elsevier Publishing

Ellery A (2016) “Are self-replicating machines feasible?” AIAA J
Spacecraft & Rockets 53 (2), 317-327

Ellery A (2017) “Building physical self-replicating machines” Proc
European Conf on Artificial Life, Lyon, France, 146-153

Ellery A (2018) “Engineering a lunar photolithoautotroph to thrive on the
Moon – life or simulacrum?” Int J Astrobiology
S1473550417000532

Faria L, Rocha A, Kleinschmidt J, Silva-Filho M, Bim E, Herai R,
Yamagishi M, Palazzo R (2012) “Is a genome a codeword of an
error-correcting code?” PLoS One 7 (5), e36644

Forney D (1973) “Viterbi algorithm” Proc IEEE 61 (3), 268-278
Freitas R (2001) “Some limits to global ecophagy by biovirus

nanoreplicators with public policy recommendations” reprint
Funes P, Pollack J (1998) “Evolutionary body building: adaptive physical

designs for robots” Artificial Life 4 (4), 337-357
Griffith S, Goldwater D, Jacobson J (2005) “Self-replication from random

parts” Nature 437, 636
Hahnloser R, Sarpeshkar R, Mahowald M, Douglas R, Seung S (2000)

“Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit” Nature 405, 947

Imamura K & Yoshida W (1987) “Simple derivation of the Berlekamp-
Massey algorithm and some applications” IEEE Trans Information
Theory 33 (1), 146-150

Joyce G (2002) “Booting up life” Nature 420, 278-279
LaBar T, Adami C, Hintze A (2015) “Does self-replication imply

evolvability?” Proc 13th European Conf Artificial Life, 596-602
Larson S & Ellery A (2015) “Trainable analogue neural network with

application to lunar in-situ resource utilisation” Proc Int
Astronautics Federation Congress, Jerusalem, IAC-15-D3.3.6

Luisi P (1998) “About various definitions of life” Origins of Life &
Evolution of Biospheres 28, 613-622

Martinelli G & Perfetti R (1991) “Circuit theoretic approach to the
backpropagation learning algorithm” IEEE Int Symp Circuits &
Systems 3, 1481-1484

Ofria C, Adami C (2002) “Evolution of genetic organisation in digital
organisms” in Evolution as Computation (ed. Landwehr L,
Winfree E), Springer Publishing, 296-313

Parberry I (1994) Circuit Complexity and Neural Networks, MIT Press
Foundations of Computing, Cambridge, MA

Schark M (2012) “Synthetic biology and the distinction between
organisms and machines” Environmental Values 21, 19-41

Wang X & Wicker S (1996) “Artificial neural net Viterbi decoder” IEEE
Trans Communications 44 (2), 165-171

Wilke C, Wang L, Ofria C, Lenski R, Adami C (2001) “Evolution of
digital organisms at high mutation rates lead to survival of the
flattest” Nature 412, 331-333

Winter R & Widrow B (1988) “Madaline II: a training algorithm for
neural networks” IEEE Int Conf Neural Networks, 401-408

Yamashita Y, Nakamura Y (2007) “Neuron circuit model with smooth
nonlinear output function” Proc Int Symp Nonlinear Theory & its
Applications, Vancouver, 11-14

Yockey H (1992) Information Theory & Molecular Biology, Cambridge
University Press

364

