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Abstract 

To evolve or not to evolve? That is the question: whether ‘tis 
nobler in the mind to suffer the slings and arrows of grey goo, 
or to deny evolution to a sea of self-replicators and by 
prevention control them? We have been developing a physical 
self-replicating machine concept for deployment on the Moon 
built from local resources on the Moon. Here, we are concerned 
with architectural issues - we specifically address the problem 
of uncontrolled replication. We propose a multitiered approach 
to prevent this: (i) denial of self-replication through the 
implementation of centralised mass manufacturing of 
replicators; (ii) denial of scarce sodium and chlorine from Earth 
acts as an Earth-controlled kill switch in preventing further 
replication; (iii) denial of centralised supplies of asteroidal 
metals (tungsten-nickel-cobalt-selenium) at the lunar south pole 
acts as a Moon-controlled kill switch; (iv) denial of online 
learning capacity through fixed neural weights; (v) denial of 
extended computing resources through the elimination of 
transmit communications between self-replicators; (vi) denial 
of evolutionary capacity by implementing error detection and 
correction (EDAC) coding. Two kill switches and EDAC 
provide the backbone to our approach that maintain self-
replication capability.  

Introduction 

We have been developing a physical instantiation of a self-
replicating machine concept for service on the Moon to 
robotically construct a lunar infrastructure at low cost using 
local resources (Ellery, 2015a, 2016, 2017). To date, most 
effort has been devoted to 3D printing certain crucial 
components: (i) electric motors which has progressed to near 
completion; (ii) active computational components (vacuum 
tube) which has yet to be achieved but efforts are ongoing. 
We are also concerned with an important architectural issue – 
that of the prevention of uncontrolled replication. In 
approaching this problem, we are mindful of the Royal 
Navy’s hard-learned lessons during the Falklands conflict 
regarding layered air defence for individual ships and flotillas, 
of which there are four – air combat patrol (Sea Harrier/F35 
Lightning), area air defence (Sea Viper), point air defence 
(Sea Wolf) and close-in weapons (Phalanx/Goalkeeper). We 
explore a similar multi-tiered approach as our defence strategy 
against uncontrolled replication: (i) denial of self-replication 
through the implementation of centralised mass 
manufacturing of replicators; (ii) salt contingency – denial of 

scarce sodium and chlorine from Earth acts as an Earth-
controlled kill switch in preventing further replication; (iii) 
tunicose contingency – denial of centralised supplies of 
asteroidal metals (tungsten-nickel-cobalt-selenium) at the 
lunar south pole acts as a Moon-controlled kill switch 
preventing further replication; (iv) denial of online learning 
capacity through fixed neural weights controls the machine’s 
intelligence; (v) denial of extended computing resources 
through the elimination of transmit communications between 
self-replicators (receive only); (vi) denial of evolutionary 
capacity by implementing error detection and correction 
(EDAC) coding controls the machine’s adaptability. We pay 
special attention to (i), (ii), (iii), (iv) and (vi).  

3D Printer-Based Turing Machine – Denial of 

Online Learning 

To address the problem of 3D printing computing machines, 
we revert to the original model of a computer. The Turing 
machine is a finite-state machine comprising a read/write head 
mounted onto an infinitely long tape divided into discrete 
squares. The Church-Turing thesis asserts that the mechanistic 
computations of a Turing machine define an algorithmic 
process. The Turing machine sequentially reads an infinitely 
long digital tape of cells. Symbols from a finite alphabet are 
inscribed on the tape which are read in sequence by the 
read/write head. The initial tape encodes a set of input data. 
The read/write head incorporates a finite memory of internal 
state transitions constituting the computer program of the 
Turing machine. The motion of the read/write head – the 
behaviour of the Turing machine - is determined by the 
symbol inscribed on each cell of the tape and the internal state 
of the machine. The symbol is overwritten by a replacement 
symbol and/or the read/write head moves one cell left or right 
according to the Turing machine’s state transition function. 
The resulting tape encodes a set of output data. Different 
Turing machines are specified by different state transition 
functions. This simple machine implements a mathematical 
function that converts its input into an output – the Turing 
machine’s mechanical procedure encapsulates the algorithm 
concept as a finite sequence of simple operations. Any 
specific Turing machine may be encoded as an input tape so a 
universal Turing machine can emulate any specific Turing 
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machine, i.e. a universal Turing machine can compute any 
computable function given the appropriate algorithm. 
 Our implementation of a Turing machine comprises an 
input tape represented by magnetic core memory, an output 
tape represented by an analogue neural net circuit, and a 
read/write head represented by a 3D printer. The 3D printer 
thus becomes a central component of a universal computation 
capability – it prints out hardware circuitry according to the 
program stored in magnetic core memory. Magnetic core 
memory uses ferrite magnetic cores (toroids) through which 
wires are passed to convey read and write signals. Each core 
stores one bit of information non-volatilely as zero or one 
depending on the direction of the core’s magnetisation. The 
invention of the coincident current system enabled a small 
number of wires to control a large number of cores in 3D 
stacks.  A large number of small ferrite toroidal cores are held 
on layers of XY grids of wires through the toroidal centres. 
Only where the combined magnetic field from X and Y lines 
cross exceeds a threshold will the magnetic polarity reverse. 
Magnetic core memory offers high reliability and was used for 
the Apollo Guidance Computer and Space Shuttle Flight 
Computers. 

We must now consider the 3D printed output circuitry. We 
have adopted the vacuum tube as the basis of our active 
electronics. Vacuum tube devices are based on the generation 
of relativistic electron beams and their interaction with 
electromagnetic waves. A vacuum tube is simple in 
construction - a tungsten cathode that emits electrons attracted 
to a nickel anode controlled by a third nickel grid electrode 
encased in an evacuated glass or ceramic tube and linked by 
silicone or ceramic-insulated kovar wiring. Only a small 
number of materials are required which are readily extracted 
from lunar resources. However, vacuum tubes are bulky and 
present challenges for building complex computational 
circuits. The von Neumann architecture computer is based on 
the central processing unit (CPU). The core of the CPU is one 
or more arithmetic logic units (ALU). The ALU is a 
combinatorial logic circuit for performing arithmetic 
operations (addition, subtraction, increment/decrement and 
sign) and bitwise logical operations (AND, OR, EX-OR and 
NOT) on 4-bit, 8-bit, 16-bit, 32-bit or 64-bit data widths. For 
example, the modest embedded 8051 CPU comprises 2,200 
logic gates. Modern computers comprise ~500 million logic 
gates. Data is stored in a variety of different memory locations 
which must be fetched as input data to the CPU and the 
results of which must be pushed back into memory. The basic 
operation of the von Neumann architecture is the fetch-
decode-execute cycle which is wasteful in hardware footprint. 
Using vacuum tube-based circuitry based on the von 
Neumann architecture would require very large computers.  

To prevent runaway growth in the computer footprint 
imposed by the vacuum tube, the output of our Turing 
machine is an analogue neural network that encodes a specific 
algorithm in hardware form. The complexity of a neural 
network increases only with the logarithm of the task 
complexity unlike the exponential increase in circuit 
complexity of digital architectures (Parberry, 1994). Neural 
networks are under development for general purpose 
intelligence - the SpiNNaker (spiking neural network 
architecture) project is based on combining a large number of 
digital ARM processors within a grid of switches to emulate a 

vast neural network representing a small brain of ~106 
neurons. A simple electronic ring circuit of neurons has been 
proposed that emulates the neural processing function of the 
neocortex (Hahnloser et al, 2000). There is the prospect of 
implementing robust albeit simple behaviours neurally - one 
of the simplest biological neural networks in a non-aquatic 
free-living animal is that of the nematode worm C elegans:  it 
comprises 959 cells in total as a hermaphrodite (of which 302 
are neurons) or 1031 cells in total as a male (of which 381 are 
neurons) with approximately 5000 synapses. This potentially 
gives us a minimum neural network size though an engineered 
version might be subdivided into subnetworks of more modest 
dimension. On a much smaller scale, analogue neural circuits 
offer rapid computation with some biological fidelity in 
reducing specific energy consumption (energy/neuron) but at 
the cost of a fixed neural architecture.  

We have adopted a modified version of the Yamashita-
Nakamura neuron (Yamashita & Nakaruma, 2007) which 
comprises an input summing amplifier, an inverting amplifier 
(for a step function) and a comparator. The weights of each 
neuron are pre-trained offline to implement its desired 
behaviour. We have demonstrated a pre-trained two-neuron 
hardware circuit implementing a Braitenburg control 
architecture of BV2/BV3 class (Braitenburg, 1984) 
performing automatic obstacle avoidance on a simple desktop 
mobile robot. We have begun exploring the potential for 
augmenting hardware neurons with online learning circuitry 
(Larson & Ellery, 2015). There are several intriguing 
possibilities for learning circuitry (Winter & Widrow, 1988; 
Martinelli & Perfetti, 1991) but we assume that we do not 
implement such capabilities to prevent uncontrolled learning – 
nevertheless, we have the quandary of requiring weight 
adjustment to permit fine-tuning of analogue neural circuits to 
variations in physical manufacture against the denial of online 
learning to ensure that behavior is both known and controlled. 

Centralised Manufacturing – Denial of Self-

Replication Capacity and Kill Switches 

The most aggressive approach to prevent runway replication is 
denial of self-replication of productive capacity. For this 
approach, we consider two options (centralized versus 
distributed production) across two dimensions (variability 
versus no variability), yielding four different cases (Table 1): 
 

 Centralised 
Production 

Distributed 
Production 

Identical 
Copies  

Conventional 
factory (e.g. six-
sigma) 

Self-replicators 
without 
evolutionary 
variation 

Mutated 
Copies 

EvoSphere Self-replicators 
with 
evolutionary 
variation 

 
Table 1. Replicator population options 
 
The conventional factory employs mass production and has 
been employed since the Industrial Revolution for the 
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worldwide production of goods. In traditional factories, goods 
are produced in which variations are minimized. Before 
distribution, the quality of the goods are checked, and indeed, 
one of the hallmarks of quality is the so-called six-sigma 
quality control protocol.  

Regarding terminology, self-reproduction may be regarded 
as an inaccurate form of self-replication that permits variation 
in offspring (Adams & Lipson, 2009) but we use the over-
arching term self-replication here with or without evolution. 
The EvoSphere concept envisions an entire ecosystem of 
physically and behaviourally evolving robots in the physical 
environment (Eiben, 2015a). It comprises a birthing clinic, a 
nursery and a living arena. In the birth clinic, robotic 
machines are constructed from raw materials; in the nursery, 
they undergo an online learning phase for fine-tuning their 
behaviours to their bodies; and in the living arena, only 
successfully graduated robots that perform their desired 
function are selected and are permitted to replicate exactly. 
The EvoSphere imposes two apparently contradictory 
objectives: (a) reproduction with variation and selection is 
permitted to implement robot evolution in the real world; (b) a 
kill switch is implemented to prevent procreation of undesired 
variants by human operators. Robot reproduction is divided 
into two phases that differentiate between the robot genotype 
and the robot phenotype: (a) recombination of robotic 
genotypes is permitted without constraint; (b) production of 
the genotype-encoded robot phenotype is constrained. This 
constraint is imposed by permitting only a single centralised 
production centre for the physical construction of robots. The 
kill switch is implemented at the centralised production 
centre. If invoked, it shuts down all reproductive processes 
and, as a consequence, halts evolution. All prior variations of 
robot generations however are permitted to continue 
operation.  

Versions of the kill switch through centralized production 
facilities have been proposed in approaches (ii) and (iii) to 
deny specific resources for self-replicators. In Fig 1, we 
present a lunar industrial ecosystem with recycling loops 
representing the required chemical processing to yield 
material feedstock for 3D printing of the self-replicator from 
lunar raw material. Self-replication requires precisely green 
chemistry (Anastas & Warner, 1998) in order to achieve the 
material closure implicit in an industrial ecology. A corollary 
of this is that an evolving and diverging population would be 
wasteful in physical resources unless the littered carcasses of 
failed evolutionary experiments were scavenged efficiently. 
For our lunar ecosystem, the loss of iron-nickel-cobalt alloy 
from asteroidal resources – which must be mined from special 
ore locations on the Moon – and the loss of NaCl imported 
from Earth due to its scarcity of the Moon effectively 
decimates the entire ecosystem. The loss of tunicose materials 
prevent the manufacture of ferrite magnets (and so motors, 
etc), tool steel, permalloy, kovar, thermionic cathodes and 
photosensitive elements (tunicose contingency). Loss of NaCl 
prevents the manufacture of AlNiCo magnets (and so motors, 
etc), photosensitive elements, silica for transparent glass, 
piezoelectric sensors, regolith binder, drilling mud, silicone 
plastics and oils, Metalysis FFC process anode and electrolyte 
regeneration (salt contingency). These two sets of kill 
switches – one on the Moon and the other on Earth – provide 
the last lines of defence to uncontrolled replication. An 
important proviso is that as the number of replicating units 
grows, central supply hubs become traffic bottlenecks. 
Although these contingencies are specific to the self-
replicating machine proposed for the Moon (for instance, the 
salt contingency would not be possible on Mars), they 
illustrate the effectiveness of multiple resource-denial kill 
switches.   

 
Lunar Ilmenite 

Fe0 + H2O or silicone oil in colloidal suspension → ferrofluidic sealing 

                  1000oC 

FeTiO3 + H2 → TiO2 + H2O + Fe (Fe separated by liquation) 

ilmenite                       2H2O→2H2+O2 (H2 recycling)                                                

                                                  2Fe + 1.5O2 → Fe2O3/Fe2O3.CoO - ferrite magnets 

Nickel-iron meteorites 

Mond process:                                                                      Alloy                          Ni      Co      Si      C      W                                               

Fe(CO)5 ↔ 5CO + Fe (175oC/100 bar)               →             Tool steel                                              <2%   9-18% 

Ni(CO)4 ↔ 4CO + Ni (55oC/1 bar)                      →             Electrical steel                                3% 

Co2(CO)8 ↔ 8CO + 2Co (150oC/35 bar)             →             Permalloy                 80% 

                                                                                               Kovar                       29%  17%  0.2%  0.01%      . 

W(CO)6 ↔ 6CO + W                                            →           Thermionic cathodic material 

          S catalyst 

4FeS + 7O2 → 2Fe2O3 + 4SO2 

(Troilite)                            SO2 + H2S → 3S + H2O 

FeSe + Na2CO3 + 1.5O2 → FeO + Na2SeO3 + CO2 

                              KNO3 catalyst                Na2SeO3 + H2SO4 → Na2O + H2SO4 + Se → photosensitive Se  

                                                                                             ↑____________| 

                                                                                                       Na2O + H2O → 2NaOH (recycle) 

Lunar Orthoclase 

3KAlSi3O8 + 2HCl + 12H2O → KAl3Si3O10(OH)2 + 6H4SiO4 + 2KCl 

orthoclase                                    illite               silicic acid (soluble silica) 

                                                  2KAl3Si3O10(OH)2 + 2HCl + 3H2O → 3Al2Si2O5(OH)4 + 2KCl 

                                                                                                                 kaolinite (clay)                 → porcelain 

                                                   H4SiO4 → SiO2 + 2H2O 
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                                                                                                                KCl + NaNO3 → NaCl + KNO3 (recycle) 

                                                                                                                                                      saltpetre 

Olivine 

Mg2SiO4 + 2CH4 → 2CO + H2 + 2MgO + Si at 2000oC                     → 3D Shaping binder 

  forsterite                                     MgO + HCl → MgCl2 + H2O        → 3D Shaping binder 

                                                     2Mg + Si → Mg2Si                         → thermoelectric conversion 

Lunar Anorthite 

CaAl2SiO8 + 4C → CO + CaO + Al2O3 + 2Si at 1650oC                       → CaO cathode coatings 

                                                                                                                → Portland cement 

                                          CaO + H2O → Ca(OH)2  

                                                                   Ca(OH)2 + CO2 → CaCO3 + H2O                                                                                              

CaAl2SiO8 + 5HCl + H2O → CaCl2 + 2AlCl3.6H2O + SiO2         → fused silica glass 

                                                                                                       → Metalysis FFC electrolyte 

                                                              AlCl3.6H2O → Al(OH)3 + 3HCl + H2O at 100oC 

                           ↑________________________________________|                                                           

Al(OH)3 → Al2O3 + 3H2O at 400oC → 2Al + Fe2O3                     → 2Fe + Al2O3 (thermite) 

                                                                                                       → Al wiring 

                                                                                                       → AlNiCo hard magnets 

                                                                                                       → reflective surfaces, e.g. Al solar sail    

Lunar Pyroxene 

CaFeSi2O6 + HCl + H2O → Ca0.33(Al)2(Si4O10)(OH)2.nH2O + H4SiO4 + CaCl2 + Fe(OH)3   

  pyroxene                           calcium montmorillonite       soluble silica                                 

                                                                                                 → bentonite drilling mud/sand casting binder                                             

                                                                                                 → Metalysis FFC electrolyte 

Lunar Volatiles 

              850oC           250oC 

CH4 + H2 → CO + 3H2 → CH3OH                     350oC 

           Ni catalyst      Al2O3          CH3OH + HCl → CH3Cl + H2O    370oC            +nH2O 

                                                                            Al2O3     CH3Cl + Si → (CH3)2SiCl2 → ((CH3)2SiO)n + 2nHCl   

                                                                         ↑_______________________________________________| 

                                                                                                                                     → silicone plastics/oils  

3NO + H2O → 2HNO3 + NO 

    ↑__________________| 

2SO2 + O2 ↔ 2SO3 (low temp) 

                          SO3 + H2O → H2SO4 

Metalysis FFC Process (CaCl2 electrolyte) 

MOx + xCa → M + xCaO → M + xCa + ½xO2 where M=Fe, Ti, Al, Mg, Si, etc, (O2 consumes graphite anode) 

CO + 0.5 O2 → CO2 

                          CO2 + 4H2 → CH4 + 2H2O at 300oC (Sabatier reaction) → CH4 → C + 2H2 at 1400oC  

                                        Ni catalyst                                                          → graphite anode regeneration                                       

Salt of the Earth 

NaCl + CaCO3 → Na2CO3 + CaCl2                                   → Metalysis FFC electrolyte 

                                                   350oC/150 bar 

                              Na2CO3 + SiO2(i) ↔ Na2SiO3 + CO2   → piezoelectric quartz  

NaCl + HNO3 → HCl + NaNO3 

Fig 1. In-situ resource utilisation schematic with highlighted kill switches indicating loss of function 
 

 

The full centralised replicator production facility approach 

denies the prospect of exponential growth of productive 

capacity (though the kill switches retain their applicability and 

effectiveness). A self-replicating machine offers 

unprecedented productive capacity by virtue of its exponential 

population P growth: 

 


=

+=
m

i

irP
1

)1(                          

 

where r=number of offspring per generation, i=generation 
number, m=number of generations. In a self-replicating 
machine, the number of offspring per generation, r≥1, e.g. our 
lunar application proposed r=2 and m=13 yielding P~2 x 106, 
i.e. the power of self-replication yields exponential growth in 
production. This is both its attraction and its prospect for 
jeopardy. Without restraint, robots can reproduce including 
their own reproductive capacity – this is equivalent to cell 
division in single cell populations, larvae in arthropods, egg 
laying in fish, reptiles and birds, and pregnancy in mammals. 
This introduces the potential for runaway replication with two 
specific dangers: (a) uncontrolled population growth (a 
macroscopic version of the grey goo scenario); (b) 
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uncontrolled and unwanted alterations in form and function of 
individuals. The dangers that this represents cannot be 
permitted (Eiben et al, 2012).  

Error Detection & Correction Coding – 

Denial of Evolutionary Capacity 

Despite the inadequacies of an operational definition of life to 

be a self-sustained chemical system capable of Darwinian 

evolution (Cleland & Chyba, 2002), we adopt it here with the 

corollary that any kind of self-replicator that copies genetic 

information is subject to Darwinian evolution due the genetic 

mutation (Ellery, 2018). Biological evolution has been 

broadly characterised by a growth in genetic complexity in 

that complex biological phenotypes require increased amounts 

of genetic information encoded from the environment in 

which they have evolved (Adami et al, 2000). Algorithmic 

complexity in a Kolmogorov sense may be regarded as the 

shortest bit sequence that can yield a given output. Although 

there are exceptions due to the C-value paradox (there is a 

fraction of non-coding genes that varies across species), 

genomic complexity reflects phenotypic complexity. At gene 

site i, there are four possible nucleotides with probabilities 

(pC(i),pG(i),pA(i),pT(i)) yielding an entropy per site: 

 

  

 

Hence, the maximum entropy per site is two bits due to base 

pair complementarity of A-T and C-G. This permits 

computation of the physical complexity of the organism as a 

whole by: 

 

 where L=genome length (bp).  

 
We expect this trend to continue in the self-replicating 
machine – evolutionary variation through generations implies 
a degree of uncontrollability. Our goal is to prevent 
evolutionary processes in the self-replicating machine to 
retain controllability. One proposal suggests that runaway 
self-replication of machines on Earth will yield at least 4oC 
temperature rise assuming thermal pollution within 2 years 
which would be readily detectable (Freitas, 2001). We aim to 
prevent uncontrolled replication in the first place so any self-
replication scheme requires an error detection and correction 
(EDAC) coding strategy which we briefly review here 
(Griffith et al, 2005).  

Biological self-replication employs template molecules to 
make copies of itself using building blocks in its environment. 
The invariant strands of alternating pentose and phosphate 
groups mount the four bases as rungs which form specific 
pairs A-T and G-C between purines (A and G) and 
pyramidines (C and T). DNA bases A, T, G and C form a 
digital code with three-quad codons such as GCC which 
encodes the amino acid alanine. This provides 64 codons for 
only 20 amino acids providing redundancy in the genetic 
code, e.g. UC* codes for serine so the third position of the 
codon is a wildcard. There are others however that are 
uniquely coded, e.g. UGG is the unique code to tryptophan.  

In its normal packaging state, DNA is coiled up in 
chromatin proteins which unrolls the sticky DNA strings 
rapidly for copying and re-rolls it after copying. DNA helicase 
separates DNA into two strands in preparation for replication. 
DNA polymerase then creates two double stranded DNA 
strings from the two separated single strands. The average 
copying error rate in human DNA is ~10-8 but this varies with 
the sensitivity of the gene to allelic variation – histone genes 
which code for DNA packing proteins appear almost invariant 
to mutation across biological domains. The most significant 
treatment of information theory to genetics is the visionary 
monograph by Hubert Yockey that deserves wider recognition 
(Yockey, 1992).  

The evolutionary pressure for genetic parsimony favours 
the short overlapping genes of low complexity eukaryotic 
viruses and DNA phages but favours non-overlapping 
modular genes in higher organisms (Ofria & Adami, 2002). 
Overlapping genes with multiple expression require slower 
evolutionary change. Neutral mutations occur in the third 
nucleotide of a codon afforded by coding redundancy but 
overlapping genes have offset reading frames making neutral 
mutations impossible. Larger genomes cannot exploit 
overlapping genes. The conundrum of replication copying 
fidelity requiring high genomic complexity (length) during 
early life before such high copying fidelity could evolve is 
referred to as the “error catastrophe” (Joyce, 2002). At higher 
mutation rates, genotypes of higher mutational robustness 
with lower replication rates are favoured irrespective of 
replication fidelity per genome F=e-RL where R=error rate per 
base pair, L=genome length (base pairs) (Wilke et al 2001). 
The vast majority of eukaryotic DNA is non-coding – in 
humans, only 3% of the genome is active, the other 97% 
being pseudogenes, etc. In eukaryotes, there is “junk” DNA 
(introns) that is excised from mRNA before being translated 
into proteins. Introns are marked for excision by a start 
sequence GT and a stop sequence AG after being looped to 
bring the active flanking genes into proximity and then cut 
out. Noncoding regions of the eukaryotic genome exhibit long 
range correlations (Buldyrev et al, 1995). There are epigenetic 
mechanisms for switching out genes - methylation of DNA 
either attaches methyl groups directly to DNA or modifies 
histones which dictate the activation status of genes.  

In biology, the error correcting process during DNA 
replication involves proofreading (known as 3’-5’ end 
exonuclease) (Battail, 2004). In DNA, error detection and 
correction is accomplished with polymerases which check the 
complementary fit between base pairs. In bacteria, the three 
DNA polymerases I, II and III progress along the growing 
dual DNA strand from the 5’ end to the 3’ end, recognise 
incorrect bases, reverse direction from the 3’ end to the 5’ 
end, excise the incorrectly matched base and re-insert the 
correct base. There are other repair mechanisms for base 
excision repair, mismatch repair, strand break repair, cell 
cycle checkpoints and cell apoptosis. There are many 
environmental disruptions that can occur in cells: UV 
radiation can cause cytosine and thymine to fuse distorting the 
DNA shape which effectively marks the region to be excised; 
deamination converts the GC base pair to an AT base pair 
which can be corrected by DNA glycosylases; oxidised 
guanine emulates thymine and must be replaced. These are 
point mutations. Deletions and insertions of single base pairs 
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generate frameshift mutations which cause entire reading 
frames to become shifted. Similar frameshifts occur when 
entire sections are deleted, copied or inverted. Transposons 
are sections of DNA that cut-and-paste themselves out of and 
into different locations. In each case, it is the complementary 
base that provides the reference datum, detectable helix 
distortion, diploid genome copies and predictable corruptions 
that permit repair. The repair mechanisms however are not 
perfect but species such as Deinococcus radiodurans can 
survive extreme radiation environments by using an average 
of four to ten copies of its genome (evolved to cope with 
extremely dry conditions) (Battista, 1997). This is a form of 
repetitive coding. Such a form of coding may be employed 
through multiple gene copies – triple (or higher order n-tuple) 
modular redundancy with voting logic is common in safety 
critical systems in spacecraft. An example of such a safety 
critical function would be a Hayflick limit on the number of 
generational copies that a self-replicating population can 
produce, e.g. emulating telomere shortening as a counter. 

For our self-replicating machine, it is essential that codec 

(coding/decoding) can be performed using simple circuitry 

and/or neutrally using analogue neural network circuits. We 

assume that genetic information is transmitted vertically 

through generations and hierarchically through the population 

as it increases (Battail, 2010). This constitutes a noisy and 

bursty communications channel for the transmission of 

genetic information. The maximum information transmission 

rate through a communication channel is given by Shannon’s 

coding theorem:  

 

R<Blog2(1+SNR)  

 

where B=bandwidth and SNR=signal-to-noise ratio. One way 

to transmit error-tolerant messages is to transmit the message f 

times (repetition coding) – if f=3, triple modular redundancy 

permits a simple majority voting logic. This is highly 

inefficient. A more efficient way is to add parity bits to the 

message data. Any kind of channel code adds structured 

redundant bits increase the fidelity of information 

transmission at a cost of higher bandwidth requirements 

(Berlekamp, 1980). Typically, error detection and correction 

(EDAC) codes are usually implemented in hardware using 

extra memory bus bits and encoding/decoding circuits. The 

data lines of the EDAC bus connect directly to RAM. Address 

lines to the memories are buffered by latches which 

synchronise the address to the system clock allowing 

synchronous burst of instruction and data caches. The SNR 

can be related to normalized signal-to-noise ratio per bit Eb/N0 

by: 

 

Eb/N0=(S/N)/(R/B) 

 

Above the theoretical Shannon coding limit, there is a code 

that can communicate with zero error (Costello & Forney, 

2007): 

 

Eb/N0>  = ln2 = -1.6 dB  

 

A typical bit error rate (BER) used in spacecraft 
communications is 10-6 (less stringent that the biological BER 
of 10-8) but the BER will depend on the genome size for the 
self-replicator. A BER of 10-9 is routinely achievable in space 
systems and that a BER of 10-15 is desirable – with a 
maximum population limit of 106 self-replicating units, this 
gives a standard BER of 10-9 per machine. The closest to the 
Shannon coding limit achievable are turbo codes which are 
formed by the parallel concatenation of two recursive codes 
separated by an interleaver code (Berrou et al, 1993). The 
interleaver is the crucial aspect as it implements a pseudo-
random code. Turbo-codes are complex and are unlikely 
candidates for biological implementation. The extensive 
tandem repeats and introns in the eukaryotic genome and 
especially the human genome may be implementing error 
detection and correction codes as parity bits. One of the 
simplest error detection and correction codes is the Hamming 
code such as the Hamming (7.4) code which can correct a 
single-bit error but detect one-bit and two-bit errors. It has 
been suggested that exon-intron genes are Hamming 
codewords (Faria et al, 2012). There are two main types of 
EDAC other than turbo codes – block codes and 
convolutional codes. In an (n,k) linear block code, there are k 
information bits (input block) and n-k parity bits for n 
message bits in total (output block) with a code rate of r=k/n 
(Bhargava, 1983). There are 2k possible different messages of 
length k that are mapped onto 2k codewords of length n. The 
summations require modulo-2 arithmetic without carries 
which can be implemented through the memoryless EX-OR 
circuit. The Hamming weight of a code word w(c) is the 
number of nonzero components to the code word. The code 
can correct any pattern of e or fewer random errors provided 
2e+1 d where d=Hamming distance between two codewords 
(number of different elements in the codewords). The primary 
goal of block coding is to maximise the Hamming distance 
between codewords. The commonest used block codes are the 
Bose-Chaudhuri-Hocquenhem (BCH) codes and Reed-
Solomon (RS) codes with the following parameters (Table 2): 
 

 Block length  Number of 
coding bits 

Hamming 
distance 

Hamming 
code 

n=2m-1 k=m d=3 

BCH code n=2m-1 for 
m=3,4,5,… 

k n-me d 2e+1 

RS code n=2m-1 
symbols with 
m 
bits/symbol  

(n-k)=2e 
symbols with 
m 
bits/symbol 

d=2e+1 
symbols 

 
Table 2: Properties of some common block codes  
 
The Reed-Solomon code is a type of non-binary BCH code. 
The Reed-Solomon code is of particular interest because it 
offers the maximum Hamming distance for an (n,k) code with 
Hamming distance d=n-k+1 and can correct bursts of e 
symbol (m-bit) errors per codeword (Berlekamp, 1982). This 
is because an m-bit burst is concentrated into a single symbol 
error. The BCH code is decoded by an iterative Berlekamp-
Massey decoding algorithm (Imamura & Yoshida, 1987). 
There is evidence that block codes such as BCH codes appear 
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to be implemented in evolutionarily ancient gene sequences of 
the Arabidopsis brassica flowering plant (Brandao et al, 
2015). The Golay code is a “perfect” three-error block code 
that works only for (23,12) for d=7 and (24,12) for d=8 – it is 
based on a remarkable number theoretic relation: 
 

 = =212 

 
where =binomial coefficients. It would be 
curious indeed if evolution had discovered the tri-error Golay 
code for the tri-base genetic code. 

A convolutional code of code rate 1/r is a type of trellis 
code which can be generated by a sequential k-stage shift 
register with r modulo-2 adders. Convolutional codes do not 
segment the information stream into blocks but add redundant 
bits continuously and so requires a memory of order m. Each 
branch in the decoding trellis is labelled with an n-bit output 
block, so there are 2n branch metrics. A common coding 
protocol is a constraint length of k=7 and code rate r=1/2 for 
decoding efficiency. Convolutional codes are decoded using 
the Viterbi algorithm which is a maximum likelihood decoder 
(Forney, 1973). A shift register represents every state in the 
decoding trellis. The complexity of Viterbi decoders is 
exponential with the constraint length of the code. An 
artificial neural network Viterbi decoder based on analogue 
neurons has been demonstrated (Wang & Wicker, 1996). It 
implemented discrete connections weights (+1,-1) to eliminate 
the need for network training. Neurons represented trellis 
elements and selected the maximum trellis path at each pass 
and updated the path metrics through feedback connections. It 
was a locally connected network to minimize its complexity. 
2n neurons are required for an n-bit input while 2m neurons are 
required for m encoding feedback connections (m=k-1). For 
each state, 2(2k-1) neurons are required to find the maximum 
metric of the 2k paths. Thus, the total number of neurons 
required is n=2m+k+2+2n-2. For a r=1/2, k=7 convolutional 
code, n=514 neurons offering a much smaller footprint than a 
digital ASIC. The neural Viterbi algorithm performed 
significantly faster than a digital implementation due to its 
parallel architecture. 

The CCSDS (consultative committee for space data 
systems) standard for spacecraft recommends concatenation 
of two EDAC by interleaving an inner (7,1/2) convolutional 
code (applied first) with an outer Reed-Solomon (255,223) 
block code (applied last) for high data rate telemetry 
downlinks or BCH (63,56) for low data rate command 
uplinks. This is a specific example of Battail’s nested code 
characterising aspects of the biological genetic code such as 
highly conserved HOX genes (Battail, 2008). HOX genes 
determine head-tail topological structure through 
morphological gradients and have diverged little since the 
emergence of multicellular organisms in the Cambrian 
explosion 540 My ago. The evolutionary rate can be 
controlled to significantly reduce evolutionary divergence. 
The CCSDS protocol illustrates that EDAC may be nested 
multiple times to give an arbitrary error rate, though of course 
at the cost of memory consumption. Resources devoted to 
EDAC during copying from n random components in the 
environment increases linearly as error rate decreases 
exponentially as (1-e)n (Griffith et al, 2005).  

Conclusions 

It appears that evolutionary divergence in a growing 
population of self-replicating machines are inevitable but 
prudence dictates that a multi-tiered system of safeguards 
should be adopted. The first layer of defence is the 
implementation of costly modular redundancy (say, five gene 
copies emulating the five modular redundancy of the 
integrated computers onboard the Space Shuttle) and multiple 
recursive layers of EDAC to reduce evolutionary divergence. 
The second layer of defence is the prevention of online 
learning through fixed weight neural networks – related to this 
is minimisation of social interaction through fixed 
communication protocols (which we have not addressed 
here). The third line of defence constitutes two layers of kill 
switches that are self-replicating machine specific – on the 
Moon, controlling access to centrally mined tungsten-nickel-
cobalt-selenium from asteroidal resources, and on the Earth, 
denial of the reagents sourced from NaCl that must be 
transported from Earth. The final, most aggressive proposal is 
centralisation of all mass production facilities but this 
drastically reduces the attractive aspects of self-replication so 
we do not consider this to be practical.  
     A more philosophic issue is that by implementing EDAC 
we are effectively halting the evolutionary process by 
introducing high levels of copying fidelity. If life is defined as 
a self-sustained chemical system capable of undergoing 
Darwinian evolution (Luisi, 1998), there are three plausible 
interpretations of this definition. The first is that by denying 
evolutionary processes, our self-replicator is no longer alive as 
it is no longer subject to evolutionary processes. The second is 
that we have only suppressed the evolutionary process but not 
the capacity for evolutionary development, so it is alive. The 
third is that this evolutionary suppression is not absolute but 
based on bit error rate – later rather than sooner, copying 
errors will arise if the population grows beyond any imposed 
Hayflick limit, i.e. we have slowed evolution rather than 
halted it. Of course, the first interpretation states that this is 
not possible because of the integrity of the Hayflick limit 
imposed by EDAC. We have come full circle… A similar 
situation occurs in attempts to suppress evolution in synthetic 
biological organisms (Schark, 2012).  
      Experiments in Avida indicate that self-replication does 
not guarantee evolvability (LaBar et al, 2015). Within Avida, 
a lack of evolvability can occur if all possible mutations to a 
specific genetic sequence prevent further self-replication. The 
closest biological organism in which this occurs is the mule 
which is a horse-donkey chimera that is nominally sterile; it 
might occur in engineered systems in which evolutionary 
brittleness is a consequence of the genetic encoding system – 
this has been explored in genetic algorithms to reduce 
brittleness through cellular encoding of embryonic 
development in hardware systems (Eiben & Smith, 2015b) 
such as genetic programming trees (Funes & Pollack, 1998) or 
L-systems. These represent growth processes which are 
tolerant of mutations but direct encodings are much more 
brittle rendering the possibility that engineered self-replicators 
may be designed so that they always mutate into dysfunction 
(most mutations are in fact dysfunctional – here, all mutations 
would be so).   
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      Another interesting option concerns whether learning 
capability and evolutionary capacity might be permitted but 
moderated. This introduces the notion of shaping the learning 
or evolutionary process. In neural networks, this requires 
initialization of the network weights to incorporate pre-
defined structures prior to learning (innate knowledge). 
Symbolic connectionism incorporates expert system-based 
structures into neural networks (Ellery, 2015b). Bayesian 
networks are particularly suitable as a priori neural network 
knowledge which imposes structure to any subsequent 
learning. In genetic algorithms, such shaping is imposed 
through the fitness function – usually a simple metric, there is 
no reason why it cannot become more prescriptive – indeed, 
the design of a planetary rover’s chassis (number of wheels, 
wheel radius and width, grouser size, vehicle weight, etc) was 
successfully evolved using a fitness function that 
implemented maximization of drawbar pull computed through 
a Bekker-Wong terramechanics model (Setterfield & Ellery, 
2010 unpublished data). In effect, the fitness function 
substituted for the environment. The question is how to 
implement such fitness functions into a self-replicator to 
control the direction of its evolution.  
     These issues are, as yet, unexplored but warrant further 
investigation. The chief concern must be to what extent 
learning and evolution can be shaped and controlled. We are 
skeptical – until the advent of further evidence - that full 
control can be exerted because partial control is no control – 
indeed, partial control is more dangerous than no control 
because it offers an illusion of control where there is none.     
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