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Abstract— Mobile edge computing has risen as a promising
technology for augmenting the computational capabilities of
mobile devices. Meanwhile, in-network caching has become a
natural trend of the solution of handling exponentially increasing
Internet traffic. The important issues in these two network-
ing paradigms are computation offloading and content caching
strategies, respectively. In order to jointly tackle these issues
in wireless cellular networks with mobile edge computing, we
formulate the computation offloading decision, resource alloca-
tion and content caching strategy as an optimization problem,
considering the total revenue of the network. Furthermore, we
transform the original problem into a convex problem and then
decompose it in order to solve it in a distributed and efficient way.
Finally, with recent advances in distributed convex optimization,
we develop an alternating direction method of multipliers-based
algorithm to solve the optimization problem. The effectiveness of
the proposed scheme is demonstrated by simulation results with
different system parameters.

Index Terms— Mobile edge computing, small cell networks,
computation offloading, resource allocation, in-network caching.

I. INTRODUCTION

W ITH the radically increasing popularity of smart
phones, new mobile applications such as face recog-

nition, natural language processing, augmented reality, etc.
are emerging constantly. However, traditional wireless cellular
networks are becoming incapable to meet the exponentially
growing demand not only in high data rate but also in high
computational capability [1].

In order to address the data rate issue, the heterogeneous
network structure was recently proposed, in which multiple
low-power, local coverage enhancing small cells are deployed
in one macro cell [2]. Since the same radio resource could
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be shared among small cells and with the macro cell, small
cell networks have been considered as a promising solution to
improving spectrum efficiency and energy efficiency, therefore
consisting one of the key components of next generation wire-
less cellular networks [3]. Nevertheless, severe inter-cell inter-
ference may be incurred due to spectrum reuse, which will sig-
nificantly deteriorate network performance. Without effective
spectrum resource allocation mechanism, the overall spectrum
efficiency and energy efficiency of the network might become
even worse than that of a network without small cells [4]. To
address the spectrum allocation issue, the work in [5] proposes
a graph colouring method to assign physical resource blocks
(PRBs) to user’s equipment (UEs). The study of [4] presents
a spectrum allocation algorithm based on game theory, in
which the PRB allocation can reach a Nash equilibrium of the
game.

On the other hand, to address the computational capability
issue, mobile cloud computing (MCC) systems have been
proposed to enable mobile devices to utilize the powerful
computing capability in the cloud [6], [7]. In order to further
reduce the latency and make the solution more economical,
the fog computing has been proposed to deploy computing
resources closer to end devices [8]–[10]. A similar technique,
called mobile edge computing (MEC), has attracted great
interest in wireless cellular networks recently [11]–[13]. MEC
enables the mobile to UEs to perform computation offloading
to send their computation tasks to the MEC server via wireless
cellular networks. Then each UE is associated with a clone in
MEC server, which executes the computation tasks on behalf
of that UE. A number of previous works have discussed
the computation offloading problem [14]–[18], from latency
reduction and energy saving, or QoS (Quality of Service)
promoting perspectives.

In addition, the server in MEC system can realize an
in-network caching function [11], similar to the function
provided by information-centric networking (ICN) [19]–[22],
which is able to reduce replicate information transmissions.
According to the study of [23], in-network caching has the
capability of significantly improving the quality of Internet
content transmissions (e.g., reducing latency and increasing
throughput) by moving the content closer to users. A number
of research efforts have been dedicated to content caching
strategies. The caching strategies proposed in [24] and [25]
are based on where routers are located in the topology,
while [26] designs the strategy according to the content
popularity.
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Although some outstanding works have been dedicated
to studying computation offloading, resource allocation and
content caching, these important aspects were generally con-
sidered separately in the existing works. However, as shown
in the following, it is necessary to jointly address these issues
together to improve the performance of next generation wire-
less networks. Therefore, in this paper, we propose to jointly
consider computation offloading, spectrum and computation
resource allocation and content caching in order to improve the
performance of wireless cellular networks with mobile edge
computing. The motivations behind our work are based on the
following observations.

• Computation offloading, resource allocation and content
caching are all parts of the entire system, and they all
contribute to the end-to-end user experience, which can
be hardly guaranteed by the optimization of one single
segment of the whole system [27].

• If multiple UEs choose to offload their computation tasks
to the MEC server via small cell networks simultane-
ously, severe interference can be generated, which will
decrease the data rate. Moreover, the MEC server could
be overloaded. In this case, it is not beneficial for all the
UEs to offload their tasks to the MEC server. Instead,
some UEs should be selected to offload their compu-
tations, while others should execute their computations
locally.

• Different amounts of spectrum and computation resources
should be allocated to different UEs to fulfill different
user demands.

• Due to limited caching space of the MEC server, differ-
ent caching strategies should be applied upon different
contents, in order to maximize the caching revenue.

Therefore, an integrated framework for computation offload-
ing, resource allocation and content caching has the potential
to significantly improve the performance of wireless cellular
networks with mobile edge computing.

To the best of our knowledge, the joint design of compu-
tation offloading, resource allocation and content caching has
not been addressed in previous works. The distinct features of
this paper are as follows.

• We formulate the computation offloading decision,
resource allocation, and content caching in wireless cel-
lular networks with mobile edge computing as an opti-
mization problem.

• We transform the original non-convex problem into a
convex problem and provide the proof of the convexity
of the transformed problem.

• We decompose the problem and apply alternating direc-
tion method of multipliers (ADMM) to solve the problem
in an efficient and practical way.

• Simulation results are presented to show the effectiveness
of the proposed scheme with different system parameters.

The rest of this paper is organized as follows. The system
model under consideration is described in Section II. The
original optimization problem is formulated and is transformed
into a convex problem in Section III. Furthermore, it is
decomposed in order to employ a distributed problem solving
method. Section IV presents the progress of problem solving

by ADMM. Simulation results are discussed in Section V.
Finally, we conclude this study in Section VI.

II. SYSTEM MODEL

In this section, the system model adopted in this work
is described. We first describe the network model, then we
present the communication model, computation model and
caching model in details. Finally, the utility function of the
optimization problem is proposed.

A. Network Model

An environment of one macrocell and N small cells in the
terminology of LTE standards is considered here. The macro
cell is connected to the Internet through the core network
of cellular communication system. An MEC server is placed
in the macro eNodeB (MeNB), and all the N small cell
eNodeBs (SeNBs) are connected to the MeNB as well as the
MEC server. In this paper, it is assumed that the SeNBs are
connected to the MeNB in wired manner [28]. The set of small
cells is denoted by N = {1, 2, . . . , N}, and we use n to refer
to the nth small cell (SeNB). It is assumed that SeNB n is
associated with Kn mobile UEs. We let Kn = {1, 2, . . . , Kn}
denote the set of UEs associating with SeNB n, and kn refers to
the kth UE which associates with the nth SeNB. In this paper,
we consider single-antenna UEs and SeNBs. The network
model is illustrated in Fig. 1.

We assume that each UE has a computationally intensive
and delay sensitive task to be completed. Each UE can
offload the computation to the MEC server through the SeNB
with which it is associated, or execute the computation task
locally. UEs can request content from the Internet, then
the Internet content will be transmitted through macro base
station (MeNB) to UEs. Upon the first transmission of any
particular Internet content, the MEC server can choose whether
to store the content or not. If the content were stored, it can be
used by other UEs without another transmission from Internet
in the future. In this paper, we consider two logical roles in the
network: mobile network operator (MNO) and MEC system
operator (MSO). The mobile network operators possess and
operate the radio resources and physical infrastructures of
the wireless networks, including spectrum, backhaul, radio
access networks, transmission networks, core networks, etc.,
while the MEC system operators own the MEC servers, lease
physical resources (e.g., spectrum and backhaul) from MNO
and provide mobile edge computing services to UEs. The
MSO will charge the UEs for receiving mobile edge computing
services.

Similar to many previous works in mobile cloud com-
puting [29] and mobile networking [30]–[34], to enable
tractable analysis and get useful insights, we employ a quasi-
static scenario where the set of mobile device users Kn,∀n
remains unchanged during a computation offloading period
(e.g., within several seconds), while it may change across
different periods. Since both the communication and compu-
tation aspects play a key role in mobile edge computing, next
the communication and computation models are introduced in
detail.
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Fig. 1. Network model.

TABLE I

NOTATION

The notations that will be used in the rest of this paper are
summarized in Table I.

B. Communication Model

Every SeNB in the network is linked to the MEC server,
so each UE could offload its computation task to the MEC
server via the SeNB to which it is connected. We denote akn ∈
{0, 1},∀n, k as the computation offloading decision of UE kn .
Specifically, we have akn = 0 if UE kn was determined to
compute its task locally on the mobile device. We have akn = 1
if UE kn was chosen to offload the computation to the MEC
server via wireless access. So we have a = {akn }kn∈Kn,n∈N as
the offloading decision profile.

In this paper, we consider the case where spectrum used by
small cells is overlaid, which means there exists interference
between small cells. However, spectrum within one small cell
is orthogonally assigned to every UE, so there will be no
interference within one small cell. Only uplink direction trans-
missions are considered, which means transmission is from a
UE to the SeNB to which it is associated, and interference is
from a UE to a neighboring SeNB. In this paper, we assume
that the interference only occurs when UEs served by various
SeNBs are occupying the same frequency simultaneously. The
whole available spectrum bandwidth is B Hz. The backhaul

capacity between MeNB and MEC server is L bps, and the
backhaul capacity of SeNB n is Ln bps. According to Shannon
bound, the spectrum efficiency of UE kn is given by,

ekn = log2

⎛
⎜⎜⎜⎜⎝

1 + pkn Gkn ,n

σ +
N∑

m=1,m �=n

Km∑
i=1

pim Gim ,n

⎞
⎟⎟⎟⎟⎠

, ∀n, k, (1)

where pkn is the transmission power density of UE kn , and
Gkn ,n , Gim ,n stand for the channel gain between UE kn and
SeNB n, the channel gain between UE im and SeNB n,
respectively. σ denotes the power spectrum density of additive
white Gaussian noise.

We denote skn ∈ [0, 1],∀n, k as the percentage of
radio spectrum allocated to UE kn by small cell n, thus∑

kn∈Kn
skn ≤ 1,∀n. We have s = {skn }kn∈Kn,n∈N as the radio

spectrum allocation profile. Then the expected instantaneous
data rate of UE kn , Rkn is calculated as

Rkn (a, s) = akn skn Bekn , ∀n, k. (2)

The data rate cannot exceed the backhaul capacity of SeNB n,
thus

∑
kn∈Kn

Rkn ≤ Ln,∀n must hold. The total data rate of
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all the UEs cannot exceed the backhaul capacity of MeNB,
thus

∑
n∈N

∑
kn∈Kn

Rkn ≤ L must hold.

C. Computation Model

For the computation model, we consider that each UE kn has
a computation task Wkn � (Zkn , Dkn ), which can be computed
either locally on the mobile device or remotely on the MEC
server via computation offloading, as in [16]. Here Zkn stands
for the size of input data, including program codes and input
parameters, and Dkn denotes the total number of CPU cycles
required to accomplish the computation task Wkn . A UE kn

can use the method in [29] and [35] to obtain the information
of Zkn and Dkn . We next discuss the computation overhead in
terms of processing time for both local and MEC computing
approaches.

1) Local Computing: For the local computing approach,
the computation task Wkn is executed locally on each mobile

device. We denote f (l)
kn

as the computational capability
(i.e., CPU cycles per second) of UE kn . It is allowed that
different UEs may have different computational capabilities.
The computation execution time T (l)

kn
of task Wkn executed

locally by UE kn is expressed as

T (l)
kn

= Dkn

f (l)
kn

. (3)

2) MEC Server Computing: For the MEC server computing
approach, a UE kn will offload its computation task Wkn

through wireless access to SeNB n, then through the con-
nection from SeNB n to the MEC server. Then the MEC
server will execute the computation task instead of UE kn . For
offloading the computation task, a UE kn will incur the con-
sumption on time when transmitting computation input data
to the MEC server. According to the communication model
presented in Subsection II-B, the time costs for transmitting
the computation input data of size Zkn are calculated as

T (e)
kn ,o f f (a, s) = Zkn

Rkn (a, s)
. (4)

The MEC server will execute the computation task after
offloading. Let f (e)

kn
denote the computational capability

(i.e., CPU cycles per second) of the MEC server assigned to
UE kn . Then the execution time of the MEC server on task
Wkn is given as

T (e)
kn ,exe = Dkn

f (e)
kn

. (5)

Then the total execution time of the task of UE kn is given
by

T (e)
kn

(a, s) = T (e)
kn ,of f (a, s) + T (e)

kn ,exe. (6)

In Section V, we will use this expression to assess the average
UE time consumption for executing computation tasks in
simulations.

Similar to the study in [16], the time consumption of
computation outcome transmission from the MEC server to
UE kn is neglected in this work, due to the fact that the size
of computation outcome data in general is much smaller than

that of the computation input data including the mobile system
settings, program codes and input parameters.

D. Caching Model

We denote hkn ∈ {0, 1},∀n, k as the caching strategy for
UE kn . Specifically, we have hkn = 1 if the MEC server
decides to cache the content requested by UE kn and hkn = 0
otherwise. So we have h = {hkn }kn∈Kn,n∈N as the caching
decision profile.

According to [36] and [37], the reward of caching in wire-
less networks can be the reduction of backhaul delay or the
alleviation of backhaul bandwidth. In this paper the alleviated
backhaul bandwidth between macro cell and the Internet is
adopted as the caching reward. Thus, the reward (alleviated
backhaul bandwidth) of caching the content requested by UE
kn can be given as

Caching reward = qkn R̄hkn , (7)

where R̄ is the average single UE data rate in the system,
and qkn is the request rate (by other UEs) of the content first
requested by UE kn . According to the statistics of [38], if the
requested content has a constant size, the request rate follows
Zipf popularity distribution, therefore can be calculated as
q(i) = 1/ iβ , where i stands for the i -th most popular content,
and β is a constant whose typical value is 0.56 [39]. Therefore,
if the size of the content first requested by UE kn is known,
the request rate of other UEs upon the same content could be
derived from the equation given above. In fact, the modeling
of request rates of the caching content is still under research
by many scholars. Since we adopt constant request rates in
this paper, the modeling of request rates is above the scope of
this paper.

It is worth noting that the storage capability of the MEC
server is not unlimited, thus the sum size of all the cached
content cannot exceed the total storage capability of the MEC
server. In other words,

∑
n∈N

∑
kn∈Kn

hkn okn ≤ Y must hold,

where Y is the total storage capability of the MEC server, and
okn is the size of the content first requested by UE kn . In this
paper, it is assumed that okn ∀k, n is constant and we adopt
okn = 1.

E. Utility Function

In this paper, we set the maximization of the revenue of
MSO as our goal. MSO rents spectrum and backhaul from
MNO, and the unit price for leasing spectrum from small cell
n is defined as δn per Hz, while the unit price of backhaul
between small cell n and macro cell is defined as ηn per
bps. The MSO will charge UEs for transmitting computation
input data to MEC server, and the unit price being charged is
defined as θn per bps. So the net revenue of MSO for assigning
radio resources to UE kn is calculated as ιkn = skn �kn =
skn (θn Bekn − δn B − ηn Bekn ).

We next calculate the revenue of MSO for allocating com-
putation resource to UEs. First, we define ckn ∈ [0, 1],∀n, k as
the percentage of MEC server computation resource allocated
to UE kn , thus

∑
n∈N

∑
kn∈Kn

ckn ≤ 1. We have c =
{ckn }kn∈Kn,n∈N as the computation resource allocation profile.
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Without losing generality, the different sizes of computation
tasks and different local computation capability of different
UEs should be taken into account. So we define that the
MSO will charge UE kn only for the difference between MEC
computation resource allocated to every unit computation task
and the local computation resource assigned to every unit
computation task, and the unit price is λn for small cell n.
Then the net revenue of allocating computation resource to
UE kn is given as 
kn = λn(ckn F/Dkn − f (l)

kn
/Dkn ), where

F stands for the total computation resource of MEC server.
Note that the reciprocal of ckn F/Dkn is the time consumption
for MEC server executing computation task Dkn , and the
reciprocal of f (l)

kn
/Dkn is the time consumption for UE kn

locally executing task Dkn . This implies that the amount of
computation resource assigned to every unit computation task
can reflect the time consumption of executing this task.

We next discuss the revenue of MSO for caching Internet
content requested by UEs. We define the unit price of leasing
the backhaul between the macro cell and Internet is ζ per
bps, and the cost in the memory for caching one content is � .
If the content first requested by UE kn was stored by the MEC
server, the alleviated backhaul bandwidth in the future should
be ζqkn R̄. And the memory cost for storing that content is � .
So the long term revenue of caching the Internet content first
requested by UE kn is calculated as, 
kn = ζqkn R̄ − � .

Next we formulate the utility function of MSO as

U =
∑
n∈N

∑
kn∈Kn

u
(
akn ιkn + akn 
kn

) + hkn 
kn

=
∑
n∈N

∑
kn∈Kn

u

[
akn skn �kn + akn λn(

ckn F

Dkn

− f (l)
kn

Dkn

)

]

+ hkn 
kn

=
∑
n∈N

∑
kn∈Kn

akn u

(
skn �kn + ckn

λn F

Dkn

− λn f (l)
kn

Dkn

)

+ hkn 
kn , (8)

where u(·) is an utility function which is nondecreasing and
convex. Since hkn 
kn is always non-negative due to problem
optimality, it can be put outside of the function u(·). It is
equivalent to take akn outside of the function u(·). If akn = 0,
it means UE kn will not offload the task to the MEC server, so
MSO will not earn, then akn u(skn , ckn ) = u(akn , skn , ckn ) = 0;
if akn = 1, it means MSO may earn, and akn u(skn , ckn ) =
u(akn , skn , ckn ). Here the logarithmic function, which has been
used frequently in literature [40], is adopted as the utility
function, given as, u(x) = logx when x > 0 and u(x) = −∞
otherwise.

Define

U ′ =
∑
n∈N

∑
kn∈Kn

akn u

(
skn �kn + ckn

λn F

Dkn

)
+ hkn 
kn . (9)

Because λn f (l)
kn

/Dkn is constant, when U ′ reaches the maxi-

mum value, U reaches the maximum as well, i.e., the MSO
reaches the maximum income. Let λn F/Dkn = �kn , next we

will use

U ′ =
∑
n∈N

∑
kn∈Kn

akn u
(
skn �kn + ckn �kn

) + hkn 
kn (10)

as our objective function of the optimization problem.

III. PROBLEM FORMULATION, TRANSFORMATION

AND DECOMPOSITION

In order to maximize the utility function of MSO, we
formulate it as an optimization problem and transform it into
a convex optimization problem.

A. Problem Formulation

We adopt the utility function proposed in (10) as the objec-
tive function of our optimization problem, and the problem is
formulated as

Maximize
a,s,c,h

∑
n∈N

∑
kn∈Kn

akn u
(
skn �kn + ckn �kn

) + hkn 
kn

s.t . C1 :
∑

kn∈Kn

akn skn ≤ 1, ∀n

C2 :
∑

kn∈Kn

akn skn Bekn ≤ Ln, ∀n

C3 :
∑

m∈N /{n}

∑
km ∈Km

akm pkm Gkm ,n ≤ In, ∀n

C4 :
∑
n∈N

∑
kn∈Kn

akn ckn ≤ 1

C5 : akn (
ckn F

Dkn

− f (l)
kn

Dkn

) ≥ 0, ∀k, n

C6 :
∑
n∈N

∑
kn∈Kn

hkn ≤ Y. (11)

The first set of constraints (11) C1 guarantee that in every
small cell, the sum of spectrum allocated to all the offload-
ing UEs cannot exceed the total available spectrum of that
small cell. Constraints (11) C2 mean the sum data rate of
all offloading UEs which associate with SeNB n cannot
exceed the backhaul capacity of small cell n. If too many
UEs are allowed to offload computation tasks to the MEC
server, the transmitting delay will be high due to high inter-
ference. In order to guarantee a relatively high data rate,
constraints (11) C3 are proposed to ensure that the interference
on SeNB n caused by all offloading UEs which are served
by other SeNBs doesn’t exceed a predefined threshold, In .
Constraint (11) C4 is due to the request that the sum of
computation resource allocated to all offloading UEs in the
whole system cannot exceed the total amount of computation
resource (total computational capability) of the MEC server.

Because we removed (−λn f (l)
kn

/Dkn ) in (8), we need con-
straints (11) C5 to guarantee that the computation resource
allocated to each offloading UE kn is no less than that of itself.
Constraint (11) C6 guarantees that the sum size of all the
cached content doesn’t exceed the total storage capability of
the MEC server.
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B. Problem Transformation

Problem (11) is difficult to solve due to the following
observations:

• Due to the fact that a and h are binary variables, the
feasible set of problem (11) is not convex.

• There exist product relationships between {akn } and linear
function of {skn }, as well as {ckn }, so that the objective
function of problem (11) is not a convex function.

• The problem has a quite large size. If we assume that
the average number of UEs in one small cell is k, the
number of variables in this problem could reach 4k N , and
the complexity for a central algorithm to find a globally
optimal solution will be O((k N)x ) (x > 0, x = 1 implies
a linear algorithm while x > 1 implies a polynomial time
algorithm) even if we simply consider all the variables as
binary variables. In addition, the number of small cells
in one macro cell is increasing as time goes on, which
results in an even more radically increasing complexity
in our problem.

As is shown, problem (11) is a mixed discrete and non-
convex optimization problem, and such problems are usually
considered as NP-hard problems [41]. Therefore, a transfor-
mation and simplification of the original problem are neces-
sary. The transformation of the problem is composed of the
following two steps:

1) Binary Variable Relaxation: In order to transform the
non-convex feasible set of problem (11) into a convex set,
we need to relax binary variables a and h into real value
variables as 0 ≤ akn ≤ 1, 0 ≤ hkn ≤ 1 [41]. The relaxed
variables can be interpreted as the time fraction of access to the
MEC computation resource of UE kn and the time fraction of
sharing the content cache introduced by the request of UE kn ,
respectively.

2) Substitution of the Product Term: Due to the non-convex
objective function, the problem is still intractable even though
we relax the variables. Next we will propose a proposition of
the equivalent problem of (11) to make the problem solvable.

Proposition 1: If we define s̃kn = skn akn , c̃kn = ckn akn , and
akn u[(s̃kn �kn + c̃kn �kn )/akn ] = 0 when akn = 0, the following
formulation (12) is equivalent to problem (11):

Maximize
a,s̃,c̃,h

∑
n∈N

∑
kn∈Kn

akn u

(
s̃kn �kn + c̃kn �kn

akn

)
+ hkn 
kn

s.t . C1 :
∑

kn∈Kn

s̃kn ≤ 1, ∀n

C2 :
∑

kn∈Kn

s̃kn Bekn ≤ Ln, ∀n

C3 :
∑

m∈N /{n}

∑
km∈Km

akm pkm Gkm ,n ≤ In, ∀n

C4 :
∑
n∈N

∑
kn∈Kn

c̃kn ≤ 1

C5 : c̃kn

F

Dkn

− akn

f (l)
kn

Dkn

≥ 0, ∀k, n

C6 :
∑
n∈N

∑
kn∈Kn

hkn ≤ Y

C7 : akn ≥ s̃kn , akn ≥ c̃kn , ∀k, n. (12)

Proof: This proof of proposition 1 is motivated by [42].
If we substitute s̃kn = skn akn and c̃kn = ckn akn into (12), we
can recover the original optimization problem (11) except the
point when akn = 0. Next we will discuss about this point.
Suppose akn = 0, then skn = 0 and ckn = 0 will certainly hold
because of the problem optimality. Apparently, if UE kn will
not offload computation task to MEC server, SeNB n will not
allocate any spectrum resource to UE n, and MEC server will
not assign any computation resource to it, either. Thus, the
complete mapping between {akn , skn , ckn } and {akn , s̃kn , c̃kn } is
as shown in (13) and (14).

skn =
{

s̃kn /akn , akn > 0,

0, otherwi se,
(13)

ckn =
{

c̃kn /akn , akn > 0,

0, otherwi se.
(14)

Now it’s a one-to-one mapping. Note that constraints (12) C7
guarantee that s̃kn and c̃kn don’t exceed akn , and that is because
of skn ∈ [0, 1] and ckn ∈ [0, 1]. �

C. Convexity

In this subsection, we will discuss the convexity of prob-
lem (12) using the well known perspective function [43].

Proposition 2: If problem (12) is feasible, it is jointly convex
with respect to all the optimization variables a, s̃, c̃ and h.

Proof: This proof of proposition 2 is similar to [42].
f (t, x) = x log(t/x), t ≥ 0, x ≥ 0 is the well-known
perspective function of f (x) = log x . Next we will give a
proof of the continuity of the perspective function f (t, x) =
x log(t/x), t ≥ 0, x ≥ 0 on the point x = 0. Let s = t/x ,

f (t, 0) = lim
x→0

x log
t

x
= lim

s→∞
t

s
log s = t lim

s→∞
log s

s
= 0.

(15)

So we have akn log[(s̃kn �kn + c̃kn �kn )/akn ] = 0 for akn = 0.
Since (s̃kn �kn + c̃kn �kn ) are linear with respect to s̃kn

and c̃kn , log(s̃kn �kn + c̃kn �kn ) is a concave function. Then
akn log[(s̃kn �kn + c̃kn �kn )/akn ] is concave due to the fact that
it is the perspective function of log(s̃kn �kn + c̃kn �kn ). The
perspective function of a concave function is concave [43].
Furthermore, hkn 
kn is linear, then it is obvious that our
objective function of problem (12), i.e., akn log[(s̃kn �kn +
c̃kn �kn )/akn ] + hkn 
kn is concave. On the other hand, all
the constraints of problem (12) are linear (the feasible set of
the problem is a convex set), so problem (12) is a convex
optimization problem. �

A lot of methods could be applied to solve a convex
optimization problem. But as far as our problem (12) is
concerned, as mentioned above, the size of the problem
becomes appreciably large as the number of small cells grows.
In addition, if a centralized algorithm is adopted in the MEC
server, the signaling overhead of delivering local information
(e.g., channel status information (CSI)) to the MEC server
could be extremely high. Therefore, it will be more efficient
to employ a distributed algorithm which is running on each
SeNB as well as the MEC server. In the next section, we
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will decouple the optimization problem (12) in order to
enable the application of a distributed optimization prob-
lem solving method, namely alternating direction method of
multipliers (ADMM).

D. Problem Decomposition

In order to make it possible for each SeNB to participate
in the computation for problem solving, we need to separate
problem (12) so that it can be solved in a distributed manner.
However, optimization variables a, c̃ and h in problem (12)
are considered as global variables, which are not separable
in the problem (Specifically speaking, it is constraints (12)
C3, C4 and C6 that make the problem inseparable). Thus,
in order to make the problem separable, we introduce the
local copies of the global variables. Since the global variables
concern all the small cells in the network, which means they
cannot be handled in any single small cell, we create a copy
for every global variable in each small cell. Thus each small
cell can independently conduct their computation for problem
solving with their local copies. For small cell n, we denote
ân = {ân

k j
}k j ∈K j , j∈N ,n∈N ,∗ ĉn = {ĉn

k j
}k j ∈K j , j∈N ,n∈N and

ĥn = {ĥn
k j

}k j ∈K j , j∈N ,n∈N as the local copies of a, c̃ and h,

respectively. We have⎧⎪⎨
⎪⎩

ân
k j

= ak j , ∀n, k, j,

ĉn
k j

= c̃k j , ∀n, k, j,

ĥn
k j

= hk j , ∀n, k, j.

(16)

Letting

U ′′ =
∑
n∈N

∑
kn∈Kn

ân
kn

u

(
s̃kn �kn + ĉn

kn
�kn

ân
kn

)
+ ĥn

kn

kn , (17)

next we give the equivalent global consensus version of
problem (12) as

Maximize
{ân,s̃,ĉn ,ĥn },

{a,c̃,h}
U ′′

s.t . C1 :
∑

kn∈Kn

s̃kn ≤ 1, ∀n

C2 :
∑

kn∈Kn

s̃kn Bekn ≤ Ln, ∀n

C3 :
∑

j∈N /{n}

∑
k j ∈K j

ân
k j

pk j Gk j ,n ≤ In, ∀n

C4 :
∑
j∈N

∑
k j ∈K j

ĉn
k j

≤ 1, ∀n

C5 : ĉn
k j

F

Dk j

− ân
k j

f (l)
k j

Dk j

≥ 0, ∀n, k, j

C6 :
∑
j∈N

∑
k j ∈K j

ĥn
k j

≤ Y, ∀n

C7 : ân
kn

≥ s̃kn , ân
kn

≥ ĉn
kn

, ∀k, n

C8 : ân
k j

= ak j , ĉn
k j

= c̃k j , ĥn
k j

= hk j , ∀n, k, j.

(18)

∗Here we need to introduce another small cell index j ∈ N to indicate each
small cell in the local copy of small cell n.

The consensus constraint (18) C8 imposes that all the local
copy variables in all small cells (i.e., {ân

k j
, ĉn

k j
, ĥn

k j
}n∈N )

must be consistent with the corresponding global variables
(i.e., {ak j , c̃k j , hk j }).

For ease of description, we define the following set as the
local variable feasible set of each small cell n ∈ N :

ξn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ân

s̃n

ĉn

ĥn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
kn∈Kn

s̃kn ≤ 1

∑
kn∈Kn

s̃kn Bekn ≤ Ln

∑
j∈N /{n}

∑
k j ∈K j

ân
k j

pk j Gk j ,n ≤ In

∑
j∈N

∑
k j ∈K j

ĉn
k j

≤ 1

ĉn
k j

F/Dk j − ân
k j

f (l)
k j

/Dk j ≥ 0,∀k, j∑
j∈N

∑
k j ∈K j

ĥn
k j

≤ Y

ân
kn

≥ s̃kn , ân
kn

≥ ĉn
kn

,∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀n.

(19)

Note that ξn is proprietary for small cell n and is completely
decoupled from other small cells.

Next we give the local utility function of each small cell
n ∈ N as follows

vn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
⎡
⎣ ∑

kn∈Kn

ân
kn

u

(
s̃kn �kn + ĉn

kn
�kn

ân
kn

)
+ ĥn

kn

kn

⎤
⎦,

when {ân, s̃n, ĉn, ĥn} ∈ ξn,

+∞, otherwi se.

(20)

With (19) and (20), an equivalent formulation of
problem (18) is given as

Minimize
{ân,s̃,ĉn,ĥn },{a,c̃,h}

∑
n∈N

vn(ân, s̃n, ĉn, ĥn)

s.t . C1 : ân
k j

= ak j , ∀n, k, j

C2 : ĉn
k j

= c̃k j , ∀n, k, j

C3 : ĥn
k j

= hk j , ∀n, k, j. (21)

Now it is obvious that in problem (21) the objective
functions vn with feasible sets ξn are separable with respect
to all the small cells in the system. But the consensus
constraints (21) C1–C3 remain coupled upon all the small
cells. That is exactly what we want. The separation of the
objective functions enables each small cell to independently
handle the subproblem related to itself, while the persistence of
coupling of the consensus constraints (21) C1–C3 guarantees
the consistency of all the local copies with each other, as well
as with the real global variables. In the next section we will
apply Alternating Direction Method of Multipliers (ADMM) to
solve the problem in a distributed fashion.

IV. PROBLEM SOLVING VIA ALTERNATING DIRECTION

METHOD OF MULTIPLIERS

In this section, first, we will derive the augmented
Lagrangian with corresponding global consensus constraints
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and formulate the ADMM iteration steps [44]–[46]; secondly,
the update methods for ADMM iterations are presented;
thirdly, the relaxed variables are recovered to binary variables;
finally, the overall algorithm is summarized.

A. Augmented Lagrangian and ADMM Sequential Iterations

According to [44], problem (21) is called a global consensus
problem, due to the fact that all the local variables are
consistent (with the global variables). According to [44], the
augmented Lagrangian of problem (21) is given as

Lρ({ân, s̃n, ĉn, ĥn}n∈N , {a, c̃, h}, {σ n,ωn, τ n}n∈N )

=
∑
n∈N

vn(ân, s̃n , ĉn, ĥn) +
∑
n∈N

∑
j∈N

∑
k j ∈K j

σ n
k j

(ân
k j

− ak j )

+
∑
n∈N

∑
j∈N

∑
k j ∈K j

ωn
k j

(ĉn
k j

− c̃k j )

+
∑
n∈N

∑
j∈N

∑
k j ∈K j

τ n
k j

(ĥn
k j

− hk j )

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(ân
k j

− ak j )
2

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(ĉn
k j

− c̃k j )
2

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(ĥn
k j

− hk j )
2, (22)

where σ n = {σ n
k j

}n∈N , ωn = {ωn
k j

}n∈N and τ n = {τ n
k j

}n∈N

are the Lagrange multipliers with respect to (18) C8, and
ρ ∈ R++ is the so called penalty parameter, which is a
constant parameter intended for adjusting the convergence
speed of ADMM [44]. Compared to standard Lagrangian, the
additional ρ-terms in augmented Lagrangian (22) can improve
the property of the iterative method [47]. Please note that
for any feasible solution, the ρ-terms added in augmented
Lagrangian (22) are actually equal to zero [44].

With ADMM being applied to solving problem (21), the
following sequential iterative optimization steps are presented
as findings [44].

Local variables:

{ân, s̃n, ĉn, ĥn}[t+1]
n∈N

= arg
{ân

k j
,s̃kn ,ĉn

k j
,ĥn

k j
}
min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn(ân, s̃n, ĉn, ĥn)

+
∑
j∈N

∑
k j ∈K j

σ
n[t ]
k j

(
ân

k j
− a[t ]

k j

)

+
∑
j∈N

∑
k j ∈K j

ωn[t ]
k j

(
ĉn

k j
− c̃[t ]

k j

)

+
∑
j∈N

∑
k j ∈K j

τ
n[t ]
k j

(
ĥn

k j
− h[t ]

k j

)

+ρ

2

∑
j∈N

∑
k j ∈K j

(
ân

k j
− a[t ]

k j

)2

+ρ

2

∑
j∈N

∑
k j ∈K j

(
ĉn

k j
− c̃[t ]

k j

)2

+ρ

2

∑
j∈N

∑
k j ∈K j

(
ĥn

k j
− h[t ]

k j

)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(23)

Global variables:

{a}[t+1]

= arg
{ak j }

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈N

∑
j∈N

∑
k j ∈K j

σ
n[t ]
k j

(
ân[t+1]

k j
− ak j

)

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(
ân[t+1]

k j
− ak j

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(24)

{c̃}[t+1]

= arg
{c̃k j }

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈N

∑
j∈N

∑
k j ∈K j

ωn[t ]
k j

(
ĉn[t+1]

k j
− c̃k j

)

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(
ĉn[t+1]

k j
− c̃k j

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(25)

{h}[t+1]

= arg
{hk j }

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n∈N

∑
j∈N

∑
k j ∈K j

τ n[t ]
k j

(
ĥn[t+1]

k j
− hk j

)

+ρ

2

∑
n∈N

∑
j∈N

∑
k j ∈K j

(
ĥn[t+1]

k j
− hk j

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(26)

Lagrange multipliers:

{σ n}[t+1]
n∈N = σ n[t ] + ρ(ân[t+1] − a[t+1]) (27)

{ωn}[t+1]
n∈N = ωn[t ] + ρ(ĉn[t+1] − c̃[t+1]) (28)

{τ n}[t+1]
n∈N = τ n[t ] + ρ(ĥn[t+1] − h[t+1]), (29)

where the superscript [t] stands for the iteration index.
It is obvious that the iteration steps (23) concerning local

variables are completely separable with respect to the small
cell index n, thus can be executed by each SeNB. The iteration
steps (24)–(29) concerning global variables and Lagrange
multipliers would be executed by the MEC server. In the
following subsections, we will discuss the methods for solving
these iterations.

B. Local Variables {ân, s̃n, ĉn, ĥn}n∈N Update

As described above, iteration (23) is decomposed into N
subproblems, with each of them being solved by an SeNB.
Thus, after eliminating the constant terms, it is equivalent for
SeNB n ∈ N to solve the following optimization problem at
iteration [t + 1],

Minimize
{ân

k j
,s̃kn ,

ĉn
k j

,ĥn
k j

}

vn(ân, s̃n, ĉn, ĥn)

+
∑
j∈N

∑
k j ∈K j

[
σ

n[t ]
k j

ân
k j

+ ρ

2

(
ân

k j
− a[t ]

k j

)2
]

+
∑
j∈N

∑
k j ∈K j

[
ωn[t ]

k j
ĉn

k j
+ ρ

2

(
ĉn

k j
− c̃[t ]

k j

)2
]

+
∑
j∈N

∑
k j ∈K j

[
τ

n[t ]
k j

ĥn
k j

+ ρ

2

(
ĥn

k j
− h[t ]

k j

)2
]

s.t . {ân, s̃n, ĉn, ĥn} ∈ ξn . (30)

Obviously, problem (30) is a convex problem due to its
quadric objective function and convex feasible set. So here
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Algorithm 1 Primal-Dual Interior-Point Method for Local
Variables Updating
1: Initialization

Given {ân, s̃n , ĉn, ĥn} ∈ ξn , � > 0, ς > 1, ε f eas > 0,
ε > 0.

2: Repeat
a) Determine t . Set t := ςm/η̂;
b) Compute primal-dual search direction �ypd ;
c) Line search and update

Determine step length s > 0 and set y := y + s�ypd .
Until ‖rpri ‖2 ≤ ε f eas , ‖rdual‖2 ≤ ε f eas , and η̂ ≤ ε.

we employ primal-dual interior-point method [43] to solve
this problem, which is briefly described in Algorithm 1.

In Algorithm 1, η̂ stands for the surrogate duality gap, and
m denotes the number of constraints. Due to the limited space,
the detailed description about this method is omitted here, and
readers could turn to [43] for more information, where the
method is described in detail.

We only need to consider how to provide an initial feasible
solution {a, c̃, h}[0] for algorithm 1. In order to do so, let
us consider an extreme case, where only one UE among all
the UEs in system is allowed to offload computation task to
MEC server. And we designate this UE as UE k̄ j̄ , so we

set a[0]
k̄ j̄

= 1 and a[0]
k j

= 0,∀k j �= k̄ j̄ . Naturally, when only

one UE is offloading computation task to MEC server, all
the computation resource would be allocated to this UE, thus
c̃[0]

k̄ j̄
= 1 and c̃[0]

k j
= 0,∀k j �= k̄ j̄ . And all the radio resource

of small cell j̄ will be assigned to UE k̄ j̄ , so sk̄ j̄
= 1,

while sk j̄
= 0,∀k �= k̄. As all the other small cells are

concerned, they will not allocate any spectrum resource to
any of their associating UEs, since all their UEs will execute
the computation tasks locally. Thus sk j = 0,∀k j �= k̄ j̄ . As the

caching strategy is concerned, we assume that the MEC server
chose to store the Internet content requested by UE k̄ j̄ and
not to store content requested by any other UEs, thus we have
h[0]

k̄ j̄
= 1 and h[0]

k j
= 0,∀k j �= k̄ j̄ . By doing so, the constraints

of problem (30) are automatically satisfied.

C. Global Variables {a, c̃, h} and Lagrange
Multipliers {σ n,ωn, τ n}n∈N Update

Now we move on to the global variables. Since problem
(24), (25) and (26) are unconstrained quadratic problems and
are strictly convex due to the added quadratic regularization
terms in augmented Lagrangian (22), we can solve them by
simply setting the gradients of a, c̃ and h to zeros, i.e.,

∑
n∈N

σ n[t ]
k j

+ ρ
∑
n∈N

(
ân[t+1]

k j
− ak j

)
= 0, ∀k, j (31)

∑
n∈N

ω
n[t ]
k j

+ ρ
∑
n∈N

(
ĉn[t+1]

k j
− c̃k j

)
= 0, ∀k, j (32)

∑
n∈N

τ n[t ]
k j

+ ρ
∑
n∈N

(
ĥn[t+1]

k j
− hk j

)
= 0, ∀k, j (33)

and this result in

a[t+1]
k j

= 1

Nρ

∑
n∈N

σ n[t ]
k j

+ 1

N

∑
n∈N

ân[t+1]
k j

, ∀k, j (34)

c̃[t+1]
k j

= 1

Nρ

∑
n∈N

ωn[t ]
k j

+ 1

N

∑
n∈N

ĉn[t+1]
k j

, ∀k, j (35)

h[t+1]
k j

= 1

Nρ

∑
n∈N

τ
n[t ]
k j

+ 1

N

∑
n∈N

ĥn[t+1]
k j

, ∀k, j. (36)

By initializing the Lagrange multipliers as zeros at iteration [t]
[44], i.e.,

∑
n∈N σ n[t ]

k j
= 0,

∑
n∈N ωn[t ]

k j
= 0,

∑
n∈N τ n[t ]

k j
= 0,

∀k, j , equations (34)– (36) reduce to

a[t+1]
k j

= 1

N

∑
n∈N

ân[t+1]
k j

, ∀k, j (37)

c̃[t+1]
k j

= 1

N

∑
n∈N

ĉn[t+1]
k j

, ∀k, j (38)

h[t+1]
k j

= 1

N

∑
n∈N

ĥn[t+1]
k j

, ∀k, j. (39)

Equations (37)–(39) imply that at each iteration the global
variables are calculated by averaging out all the corresponding
local copies in all the small cells, which can be philosophically
interpreted as the summary of the small cells’ opinions on the
optimal global variables.

The process of Lagrange multipliers {σ n,ωn, τ n}n∈N updat-
ing is simple compared to {ân, s̃n, ĉn, ĥn}n∈N and {a, c̃, h}
updating. With the current local variables received from each
SeNB, the MEC server can easily obtain the Lagrange multi-
pliers using equations (27)–(29) in each iteration.

D. Algorithm Stopping Criterion and Convergence

Apparently, all the variables of problem (21) are bounded
and the objective function of the problem is bounded, too,
so inequality

∑
n∈N vn(ân∗, s̃∗

n , ĉn∗, ĥn∗) < ∞ holds, where

{ân∗, s̃∗
n , ĉn∗, ĥn∗} is the optimal solution of problem (21).

Since problem (21) is a convex optimization problem (the
proof of the convexity of the problem has been given in
Section III-C), the strong duality holds [43]. According to [44],
the objective function of problem (21) is convex, closed and
proper, and the Lagrangian (22) has saddle point, so the
ADMM iterations described above satisfy residual conver-
gence, objective convergence and dual variable convergence
when t → ∞.

For implementation purposes, we can employ the rational
stopping criterion proposed in [44], which is given as

‖ r [t+1]
p ‖2≤ ϑpri and ‖ r [t+1]

d ‖2≤ ϑdual, (40)

where ϑpri > 0 and ϑdual > 0 are small positive constant
scalars, which are called the feasibility tolerances for the pri-
mal and dual feasibility conditions, respectively. This stopping
criterion implies that the primal residual r [t+1]

p and the dual
residual r [t+1]

d must be small.
As this stopping criterion in [44] being applied to our

algorithm, the residual for the primal feasibility condition of
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Algorithm 2 Binary Variables Recovery
1: Computing first partial derivations

Compute the first partial derivations of augmented
Lagrangian Qkn = ∂Lρ/∂akn with respect to each akn .

2: Sort all the partial derivations Qkn ,∀k, n from largest to
smallest. Mark them with Q1, Q2 . . . Qi . . ., and mark the
corresponding akn as a1, a2 . . . ai . . .

3: For i=1,2,…, Do
Set ai = 1 and ai+1, ai+2, ai+3 . . . = 0;
If Any of the constrains (11) C1-C6 does not hold, Then
Break.
End for

4: Output the recovered binary variables {akn },∀k, n.

small cell n in iteration [t + 1] must be small enough so that

‖ ân[t+1] − a[t+1] ‖2 ≤ ϑpri , ∀n, (41)

‖ ĉn[t+1] − c̃[t+1] ‖2 ≤ ϑpri , ∀n, (42)

‖ ĥn[t+1] − h[t+1] ‖2 ≤ ϑpri , ∀n, (43)

and the residual for the dual feasibility condition in iteration
[t + 1] must be small enough so that

‖ a[t+1] − a[t ] ‖2 ≤ ϑdual, (44)

‖ c̃[t+1] − c̃[t ] ‖2 ≤ ϑdual, (45)

‖ h[t+1] − h[t ] ‖2 ≤ ϑdual. (46)

E. Binary Variables Recovery

In order to transform the original problem (11) into a convex
problem, we have relaxed the binary variables a and h into
continuous variables in Section III-B.1. So we need to recover
the binary variables after the convergence of ADMM process.
In order to maximize the revenue of MSO, we try to maximize
the number of offloading UEs and to store as much Internet
content as possible. The recovery deals with the marginal
benefit of each UE. We adopt the following algorithm 2 to
recover the binary variables a and h. In algorithm 2 we use
a as an example, and the same algorithm is applied to h.
It should be mentioned that the recovery of binary variables
creates a gap between our results and the upper bound results.
(Since the problem is NP-hard, it is very difficult to examine
the existence of the optimal results.) However, as will be
shown in the simulation, the gap is not significant.

F. Feasibility, Complexity and Summary of the Algorithm

If the computational capability and storage capability of the
MEC server is too low, or the cost of the spectrum is too high,
the utility function of our problem may become non-positive
under all possible solutions. In that case, the optimal solution
would be {a∗, s∗, c∗, h∗} = {−→0 ,

−→
0 ,

−→
0 ,

−→
0 }, which means

that all the UEs in system will execute their computation
tasks locally, and no spectrum and computation resources are
allocated to any UE. Besides, no requested Internet content
will be stored by the MEC server. This case may be treated
as the problem becomes infeasible. However, except for the

extreme cases, the MEC server could allow at least one UE
offload its computation task or store at least one content,
and gain a positive revenue, due to the fact that a typical
MEC server could always have a much higher computational
capability and storage capability than a single UE.

Now let us discuss about the complexity of our algorithm by
comparing it with the complexity of the centralized algorithm.
First we assume that the average number of UEs in each small
cell is k, and the total number of small cells is N . Thus the
size of input for the centralized algorithm would be k N . If the
centralized algorithm adopted the primal-dual interior-point
method for convex optimization problem solving at each input,
the complexity would be O((k N)x ) with x > 0, where x = 1
implies a linear algorithm while x > 1 implies a polynomial
time algorithm. Now we move on to our proposed distributed
algorithm. In local variables updating (23), the size of input
is k, due to the fact that each small cell only needs to mind
its own associating UEs, and we employ primal-dual interior-
point method for problem solving in each iteration, thus the
complexity would be O(kx ) with x > 0. In global variables
updating (24)–(26), we denote y as the number of elementary
steps needed for calculation in (24)–(26). Then the complexity
is given as k Ny. In Lagrange multipliers updating (27)–(29),
we use z as the number of elementary steps needed for
calculation in (27)–(29), so the time complexity is calculated
as kz. Thus the sum of time complexity in each iteration would
be O(kx ) + k Ny + kz = O(kx). Assuming P stands for the
number of iterations needed for the algorithm convergence,
the overall time complexity of the distributed algorithm would
be O(kx )P . As will be shown in simulation, the number
of iterations before algorithm convergence is not large. So
it can be seen that our proposed distributed algorithm can
significantly reduce the time complexity compared to the
centralized algorithm.

Our overall resources allocation algorithm is summarized
in Algorithm 3.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results of the proposed decen-
tralized scheme are presented in comparison with the cen-
tralized scheme and several baseline schemes. The simu-
lation is run on a Matlab-based simulator. Unless other-
wise mentioned, most of the simulations employ the fol-
lowing scenario. We consider 10-50 small cells that are
randomly deployed in a 120 × 120 m2 area. It is worth
noting that most of the results of simulation studies in this
section are based on an average over a number of Monte
Carlo simulations for various system parameters. There are
4-10 UEs connected to one SeNB, as mentioned in Section II.
The transmission power of single UE, Pn is set to 100 mW.
The channel gain models presented in 3GPP standardization
are adopted here. The total size of the Internet content is
1000 files, and the storage capability of the MEC server
is 1000 files. The main simulation parameters employed in
the simulations, unless mentioned otherwise, are summarized
in table II.

We first present the convergence of the proposed
ADMM-based algorithm with different values of parameter ρ.
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Algorithm 3 Decentralized Resources Allocation Algorithm
in MEC System via ADMM
1: Initialization

a) MEC server determines the stopping criterion threshold
ϑpri and ϑdual;
b) MEC server initializes the initial feasible solution
{a, c̃, h}[0] as described in Section IV-B and sends them
to each SeNB;
c) Each SeNB n collects CSI of all its associating UEs;
d) Each SeNB n determines its initial Lagrange multipliers
vectors {σ n[0] > 0,ωn[0] > 0, τ n[0] > 0} and sends them
to MEC server;
t=0.

2: Iterations
Repeat
a) Each SeNB n updates its local variables
{ân, s̃n, ĉn, ĥn}[t+1]

n∈N by solving problem (30) and transmits
them to MEC server;
b) The MEC server updates the global variables
{a, c̃, h}[t+1] and transmits them to each SeNB;
c) The MEC server updates the Lagrange multipliers
{σ n,ωn, τ n}[t+1]

n∈N and transmits them to each SeNB;
t=t+1.
Until ‖ a[t+1] − a[t ] ‖2≤ ϑdual , ‖ c̃[t+1] − c̃[t ] ‖2≤ ϑdual

and ‖ h[t+1] − h[t ] ‖2≤ ϑdual .
3: Output

Output the optimal solution {a, s̃, c̃, h}∗.

TABLE II

SIMULATION PARAMETERS

As is shown in Fig. 2, the utilities of ADMM-based algorithm
increase dramatically in the first 15 iterations and then enter
a stable status within the first 40 iterations. So it is proper
to say that the decentralized algorithm can converge quickly.
All the three iterative progresses converge to the same utility
value eventually. The progress with a ρ value ρ = 1.2
converges fastest, while ρ = 0.4 slowest, but the difference
is not significant. As can be seen in Fig. 2, the gap between
ADMM-based algorithm and centralized algorithm is narrow.

Next the percentages of offloading UEs in all UEs with an
increasing total number of small cells are shown in Fig. 3. Here
the number of UEs connected to each SeNB is set as 6. The
offloading UE percentages of ADMM-based algorithm and
centralized algorithm are compared in Fig. 3. The percentage
of offloading UEs remains 100 with small total number of
small cells, but as the total number of small cells keeps
increasing, the percentage of offloading UEs begins to decline.

Fig. 2. Convergence progresses of ADMM-based algorithm with different
values of ρ.

Fig. 3. Percentage of offloading UEs versus number of small cells.

This is because when the total number of small cells is small
enough, all the UEs are allowed to offload their computation
tasks in order to maximize the network revenue, on the
other hand, when the total number of small cells becomes
large enough, there will be more UEs that tend to offload
their computation tasks to the MEC server, and this would
cause severe interference to each other, so the algorithm
automatically rejects some of the offloading requests generated
by UEs.

Fig. 4 and Fig. 5 show the spectrum and computation
resources distribution among all the UEs in system, respec-
tively. Here we only set 4 small cells in system, and there are
4 UEs associating to each SeNB. In this case all the 16 UEs are
allowed to offload their computation tasks to the MEC server.
As we can see, due to different channel conditions and sizes
of computation tasks of different UEs, the resource allocation
among UEs is not uniform, in order to reach the optimal
utility value. In Fig. 4 and Fig. 5, the resource allocation
decisions of our ADMM-based algorithm are compared with
that of the centralized algorithm. As is shown, except for slight
discrepancies on a few UEs, they approximately coincide with
each other.
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Fig. 4. Spectrum allocation among UEs.

Fig. 5. Computation resource allocation among UEs.

Fig. 6 shows the total alleviated backhaul usage with
respect to an increasing number of small cells. Note that
total alleviated backhaul means the accumulated alleviation
of backhaul usage upon all the UEs in system. As is shown in
Fig. 6, the alleviated backhaul of our proposed ADMM-based
algorithm is very close to that of the centralized algorithm.
The alleviated backhaul of both algorithms keeps increasing
with an increasing number of small cells (UEs).

Fig. 7 shows the revenue of MSO (utility value) with respect
to the increasing computational capability, where the total
number of SeNBs is 20. The revenue of ADMM-based algo-
rithm is shown by the red line, in comparison with revenue of
centralized algorithm (in blue line) and other benchmark solu-
tions (Which are, ADMM solution without caching, ADMM
solution with spectrum uniformly allocated, ADMM solu-
tion with computation resource uniformly allocated, spectrum
and computation resource uniformly allocated, respectively).
In Fig. 7, 8 and 9, we also calculate the revenue before the
binary variables are recovered and present them, which serve
as the upper bound results and are given the legend “Upper
bound”, to demonstrate that the binary variables recovery
operation does not significantly reduce the algorithm perfor-
mance. The centralized algorithm achieves the highest revenue

Fig. 6. Total alleviated backhaul usage versus number of small cells.

Fig. 7. MSO revenue versus MEC server computational capability.

among all the solutions, but it is obvious that the gap between
ADMM-based algorithm and centralized algorithm is not wide.
In contrast, ADMM with uniform spectrum allocation solution
and ADMM with uniform computation resource allocation
solution can just achieve much lower revenue. This is because
uniform resource allocation usually cannot reach the optimal
revenue. Then it is no wonder the solution with uniform
spectrum and computation resource allocation achieves the
lowest MSO revenue. Finally, without the revenue of alleviated
backhaul bandwidth, ADMM solution without caching can
only achieve a much lower total revenue compared to joint
ADMM-based solution.

Fig. 8 shows the revenue of MSO (utility value) with respect
to the increasing number of small cells. It can be seen that with
an increasing number of small cells, the revenues of all the
solutions increase dramatically at first, because with more and
more small cells joining into the system, the spectrum can
be reused among more and more small cells, then the MSO
could gain more from allocating spectrum to more small cells.
Nevertheless, when the number of small cells reaches about 10,
the acceleration of the increasing revenue significantly goes
down. The main reason is that when there are too many small
cells in the system, all those UEs will cause severe interference
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Fig. 8. MSO revenue versus the number of small cells.

Fig. 9. MSO revenue versus the available bandwidth.

to each other during the computation tasks offloading process,
so the algorithm automatically declined some of the offloading
requests generated by the UEs. Besides, the computation
resource of the MEC server cannot be reused at the same
time, so if there are too many offloading UEs, the amount
of computation resource assigned to each UE will decrease,
which implies that the MSO will gain less from a single
UE. The centralized algorithm and our proposed ADMM-
based algorithm achieve relatively high revenue among all
the six solutions. Again, because of the uniform allocation of
spectrum and computation resources, the other three solutions
in which uniform resource allocation strategies are adopted
can just achieve much lower revenue. Similarly, due to lack
of revenue from alleviated backhaul bandwidth, the revenue
of ADMM solution without caching is also low.

In Fig. 9, the revenue of ADMM is compared with those of
the centralized algorithm and the other four baseline solutions.
In this figure, the number of small cells is set as 20. It can be
seen from Fig. 9 that the revenue of our proposed ADMM
algorithm is close to the revenue achieved by the central-
ized algorithm under various spectrum bandwidth conditions.
The solution of ADMM with uniform computation resource
allocation but optimal spectrum allocation can achieve rela-
tively higher revenue compared with the other two uniform

Fig. 10. Average UE time consumption versus the size of computation task.

solutions (ADMM with uniform spectrum allocation and uni-
form spectrum and computation resource allocation). This is
mainly because of the fact that spectrum allocation usually
plays a more important role in earning interest of MSO,
and this in turn is due to the fact that unlike computation
resource of MEC server, the spectrum resource could be reused
simultaneously among UEs in different small cells.

Next we discuss the average UE time consumption in the
system for executing computation tasks, and the execution
time expression proposed in Section II-C.2 is employed here
to present the results. Fig. 10 shows the average UE time
consumption of ADMM based algorithm compared with that
of the centralized algorithm, local computation solution and
other three baseline solutions. The number of small cells here
is 20. The y axis is the average time consumptions of all
the UEs in system and the x axis is the size of computation
tasks Wkn (including Zkn and Dkn ), expressed in times of the
regular size of computation task. Without losing generality,
different UEs are considered to have different regular sizes
of computation tasks, but the regular sizes are all around the
values shown in Table II. The largest time consumption is
achieved by local computation solution, in which all the UEs
in system execute their computation tasks on local devices.
Because of the shortage of computation resources, the local
computation solution consumes much time, especially when
the size of computation task is large. The benchmark solution
in which both MEC computation and spectrum resources are
uniformly allocated achieves less time consumption compared
with local computation solution. This is due to the fact that the
MEC server is more powerful than the UE devices. Because
the resource allocation is not optimized, the advantage over
local computation solution is not significant. ADMM with
uniform computation resource allocation and ADMM with
uniform spectrum resource allocation consume less time than
the two solutions discussed above. The centralized algorithm
consumes the least time among all the solutions. But as we can
see, the gap between centralized algorithm and our proposed
ADMM based algorithm is narrow.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an ADMM-based decentralized
algorithm for computation offloading, resource allocation and
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Internet content caching optimization in heterogeneous wire-
less cellular networks with mobile edge computing. We formu-
lated the computation offloading decision, spectrum resource
allocation, MEC computation resource allocation, and content
caching issues as an optimization problem. Then, in order
to tackle this problem in an efficient way, we presented an
ADMM-based distributed solution, followed by a discussion
about the feasibility and complexity of the algorithm. Finally,
the performance evaluation of the proposed scheme was pre-
sented in comparison with the centralized solution and several
baseline solutions. Simulation results demonstrated that the
proposed scheme can achieve better performance than other
baseline solutions under various system parameters. Future
work is in progress to consider wireless network virtualization
in the proposed framework.
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