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Abstract
Response time (RT) distributions for large and small problem sizes were obtained
under both speed- and accuracy-stressed instructions in a multiplication production
task. Fitting the ex-Gaussian distributional model to the individua RT data allowed
for the derivation of quantitative measures of distributional shape. Statistical results
indicate that small problem size RT distributions differ from large problem size RT
distributions with respect to both the mean of the norma component, u (larger for
large problems) and the size of the tail, 1, (larger for large problems). Accuracy
instruction RT distributions also differ from speeded instruction RT distributions with
respect to u (larger under accuracy instructions), and 1 (larger under accuracy
instructions for large problem sizes only). Results support a strategy-choice
explanation of the problem-size effect, and provide suggestions for the comparison of

latencies obtained under speed- and accuracy-emphasized instructions.
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Decomposing the Mean in the Problem-size Effect: An Investigation of
Response Time Distributions for a Multiplication Production Task

Why does it take longer to solve 8 x 9 than 3 x 4? |s speeded arithmetic
performance simply faster or fundamentally different? The current analysis examined
these questions using the no-report condition of Smith (1996). We undertook a
detailed analysis of the problem-size effect and the effect of instructional emphasis on
basic arithmetic performance. A response time distributional approach was
employed to allow a more thorough evaluation of both these phenomena and existing
theories.

Problem-size effect

Larger problems (e.g., 8 x 9) take longer to solve than smaler problems (e.g.,

3 x 4). Thisproblem-size effect (Groen & Parkman, 1972) is the most robust

phenomenon in mathematical cognition. As such, models must provide an
explanation of the problem-size effect. Proponents of direct retrieval have posited
that the greater problem frequency of smaller problems gives them an advantage in
memory (Ashcraft, 1992), or that differences in the magnitude of large numbers are
increasingly difficult to discriminate, complicating retrieval (Campbell, 1995). In
contrast, LeFevre, Sadesky & Bisanz (1996) posited that different strategy choices for
large and small problems account for the problem-size effect. InLeFevreat d,
participants reported using slower procedures involving derived-facts (e.g., 6 X 7 =6
X 6 + 6) to solve larger problems. The current investigation analyzes response time
distributions for small and large problems to provide criteriafor evaluating conflicting
accounts of the problem-size effect.

Ingtructional emphasis
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Mathematical cognition literature consists of findings from separate labs,
using different types of instructions. It isimportant to determine if separate findings
reflect the same cognitive processes and therefore can be directly compared.

Reported response times for single-digit arithmetic problems have varied significantly
depending on the research laboratory. Campbell (1994) has consstently reported
significantly faster response times than LeFevre et al. (1996). Research laboratories
differ in the instructions given to participants. Campbell emphasizes speed in order to
ensure errors for anaysis. LeFevre emphasizes accuracy to maximize valid latencies.
The purpose of the current analysis was to determine if speed-emphasized instructions
result in afaster, yet similarly shaped distribution of response times, or if the
distributional shape was significantly altered under different instructions, suggesting a
change in the nature of the task.

Ex-Gaussian distribution

Response time distributions are positively skewed. For the purpose of
analyses, some researchers assume response times are normally distributed, and use
mean or median responsetimes. Alternatively, researchers trim their extreme scores
or perform scde transformations to achieve a normal distribution. Datais trimmed
under the assumption that the true underlying distribution is normal and that extreme
scores represent nuisance variables. However, it isimportant to consider that the true
distribution may in fact be skewed. |If the skew were representative of the underlying
process being studied, trimming the data would hamper research. Transforming the
data also reduces the meaningfulness of the findings. However, methods to extract
guantitative measures of a non-normal distribution are not available in traditional

statistical packages.
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The ex-Gaussian distribution (Hohle, 1965) provides a good fit to response

time data and allows three quantitative measures to be obtained. The ex-Gaussian
distribution consists of a normal (Gaussian) component and an exponential tail.
Measures derived from this distribution include: mu () the mean of the normal
component, sigma (o) the standard deviation of the normal component, and tau (1) the
mean of the exponential tail. Fitting the ex-Gaussian distribution to response time
data provides a more detailed analysis than that provided by examining the means
alone. Heathcote (1996) has developed a statistical package, RTSY S, which allows
researchers to obtain quantitative measures of response time distributions: mu, sgma
and tau. Analyses performed using RTSY S have provided insight into cognitive
processing, and allowed for stringent evaluation of existing theories of response time
phenomenain a variety of areas (Heathcote et al., 1991; Leth-Steensen et d., 2000).

Current anaysis

The primary focus of the current analysis was to provide a more detailed
account of the problem-size effect by fitting the ex-Gaussian distributional model to
response time distributions. We expected that this detailed analysis, employing ex-
Gaussian parameters, would result in a better understanding of the cognitive processes
involved in the problem-size effect. As such, the results would be a useful tool for
evaluating current theories of cognitive arithmetic. Specifically, we hypothesized that
the size of the exponentid tail of the distribution would increase with problem size.
This result would be expected if larger problems were solved using less efficient
strategies as found by LeFevre et d. (1996).

Response time distributions were also examined under both speed- and
accuracy-stressed instructions. The analysis of instructional conditions was

undertaken to determine if instructions change the underlying processes and render
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these different tasks. We expected to find that the mean of the normal component was
smaller under speed-emphasized instructions, showing a shift to faster performance.
We hypothesized that the size of the exponential tail of the distribution would be
longer in the accuracy condition. Thisresult would be expected if participants were
checking problems (particularly for large problems) using strategies other than direct
retrieval, as suggested by LeFevre et al. (1996).
Method
Data used in the present experiment constitutes the no-report condition from

Smith-Chant (1996).
Participants

Thirty-two introductory-psychology students (16 men and 16 women, median
age 22 years) participated for course credit or a$12 honorarium. The results
presented in the current paper will focus primarily on twenty-one of the 32 original
participants. Nine participants were eliminated from the present analysis because the
ex-Gaussian distribution failed to fit their response times (most often due to bi-
modality of their distributions in at least one of the four experimental conditions). A
further participant was eliminated because the chi-square test for the goodness of the
ex-Gaussian fit was highly significant for three of the four conditions. A final
participant was eliminated due to a highly irregular sigma vaue in the speed-
emphasized, large problem condition (sigma=756.7 with the next largest value in that
condition being 159.4). For the remaining twenty-one participants, the ex-Gaussian
distribution provided a good fit.

Design and Procedure

The current analysis constitutes a 2 (instructional emphasis. speed, accuracy)

X 2 (problem size: large, small) repeated-measures design.
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Materials. The set of multiplication problems consisted of all single-digit
problems from 2x2 through 9x9, presented twice in each condition. Stimuli were
presented in amber on ablack computer screen. Two presentation-order lists were
created. The order of problems was randomized such that each problem occurred
only once in each half of thelist. Participants solved the 128-problem set once with
accuracy-emphasized instructions and once with speed-emphasized instructions (see
appendix A). The order of the instructions (speed/accuracy) was counterbalanced

across participants.

Multiplication production task. Participants were seated in front of a computer
monitor and wore headphones with an attached microphone. Participants viewed the
multiplication problem on the screen and answered vocally. The computer recorded
response times, from the presentation of the stimulus until averbal response was
made. In each condition, participants were given ten practice trials before beginning
the experimental trials.

Results and Discussion

Dependent measures included: mean response time, standard deviation, and
the three ex-Gaussian parameters obtained by fitting the ex-Gaussian distribution to
the individua participant data in each of the four experimental conditions. 2
(instructional emphasis: speed, accuracy) x 2 (problem size: large, small) repeated-
measures ANOVAs were performed for each dependent measure. Means for each
measure are reported in Table 1.

M ean response time

Participants took longer to solve problems under accuracy-emphasized
instructions than under speed-emphasized instructions (1121 vs. 938 ms), F (1,

20)=43.90, MSE=15893.8, p<.001. Thus speeded instructions had the desired effect,



Decomposing the Mean 8

spedading performance. As expected, the problem-size dfed is present in mean
resporse time data. Participants took longer to solve large problems than small
problems, (1173 vs. 885 ms), F (1, 20)=45.54, MSE=38221.1, p<.001. As iown in
Figure 1, problem sizeinteracted with instructional-emphasis auch that large problems
took disproportionately longer to solve under accuracy-emphasized instructions than
under speed-emphasized ingtructions, F (1, 20)=14.46, MSE=6110.0, p<.01. This
interaction is consistent with the hypothesis that answers to large problems are being
chedked with lessefficient procedures (e.g., repeated addition, derived-facts).

Standard Deviation

Participant’s gandard deviations were larger under accuracy-emphasized
instructions than under speed-emphasized instructions (380 vs. 290), F (1, 20)=13.06,
MSE=12927.2, p<.01. Standard deviations were larger for large problems than small
problems, (439 vs. 232), F (1, 20)=30.91, MSE=28999.5, p<.001. As iown in
Figure 1, problem size interacted with instructional-emphasis auch that large problems
had disproportionately larger standard deviations under accuracy-emphasized
instructionsthan under speed-emphasized instructions, F (1, 20)=4.46, MSE=21530.2,
p<.05.

Accuracy

Participants had higher accuracy rates under accuracy-emphasized instructions
than under speed-emphasized instructions (93 vs. 89%), F (1, 20)=10.09, MSE=32.9,
p<.001. Accuracy rates were lower for large problems than small problems, (86 vs.
97%), F (1, 20)=39.21, MSE=68.2, p<.01, as r.own in Figure 1.

Mu
The mean of the normal component of the fitted ex-Gaussan distributions was

larger under accuracy-emphasized instructions than under speed-emphasized
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instructions (779 vs. 682 ms), F (1, 20)=31.36, MSE=6251.0, p<.001. The congtant
100 ms decrease in mu, shown in Figures 4 and 5 for Vincentized data, under speed-
emphasized instructions for small and large problems suggests a congtant factor such
as motor response (speech) is being affected, but that cognitive processing remains
the same. Mu was larger for large problems than small problems, (775 vs. 687 ms), F
(1, 20)=25.61, MSE=6333.4, p<.001. Thusthe problem-size effect is observed in mu.
In contrast to the analysis of mean response times, problem size did not interact with
instructional emphasis for mu, as shown in Figure 1. The lack of an interaction in mu
suggests that the interaction present in mean response times is a result of greater skew
of the response time digtribution rather than a shift in the mode.
Sigma

The standard deviation of the normal component of the fitted ex-Gaussian
distributions was larger for large problems than small problems, (90 vs. 56), F (1,
20)=9.60, MSE=2496.3, p<.01. In contrast to the analysis of standard deviations, no
main effects or interactions were associated with instructional emphasis, as shown in
Figure 1.
Tau

Asshown in Figure 2, the size of the tail of the fitted ex-Gaussian distributions
was larger under accuracy-emphasized instructions than under speed-emphasized
instructions (344 vs. 257 ms), F (1, 20)=13.21, MSE=12294.1, p<.01. As
hypothesized, this result suggests participants were checking problems in the accuracy
condition. Tau was larger for large problems than small problems, (401 vs. 199 ms),
F (1, 20)=32.37, MSE=26583.4, p<.001. Thisresult isconsstent with the theory that
larger problems were solved using less efficient strategies. As shown in Figure 1,

problem size interacted with instructional-emphasis such that the tail of the
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distribution was disproportionately larger under accuracy-emphasized instructions
than under speed-emphasized instructions, F (1, 20)=9.84, MSE=10048.0, p<.01.
Thisfinding is consstent with checking of answers, under accuracy-emphasized
instructions, with procedures such as repeated addition or derived facts, which would
be more time consuming for larger problems.

Generd Discussion

The fitting of an ex-Gaussian distributional model to response time data was
successful in adding to our knowledge of the problem size effect and effect of
instructional emphasis. The present analysis lends support to a strategy-choice
definition of the problem-size effect. Tau in particular seemsto be areflection of
strategy choice. Thisinformation may be useful in developing an alternative indicator
of strategy use instead of the controversial self-report method currently used.

The examination of the effects of instructional emphasis show that findings
under different types of instructions are comparable, taking into account the 100 ms
shift, and processes occurring after an answer is obtained under accuracy-emphasized
instructions (i.e., answer checking). Thisfinding is encouraging, as the mathematical
cognition literature is comprised of results obtained under various types of

instructions.
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Table 1

Dependent Measures by instruction type for small and large problems.

Accuracy Instructions Speed Instructions
Measure Small Large Small Large
Mean 944.6 1297.4 827.2 1050.3
SD 2434 517.7 2214 360.3
Mu 735.5 8234 638.8 726.7
Sigma 63.6 90.4 50.0 90.7

Tau 209.2 480.2 189.8 323.7
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Appendix A

Ingructions for speed and accuragy conditions, Smith-Chant (1996)

Speed. You are being tested onhow quickly you can solve simple
multiplication problems. First, you will see an asterisk in the centre of the computer
screen. The asterisk will begin to flash. This ggnals that the asterisk will be replaced
by a single digit multiplication problem like ‘3 x 4.

I would like you to say the answer as quickly as you possibly can, without
making any mistakes. Occasiona mistakes are norma when people go fast, so do not
be too concerned if you make a mistake. It isimportant that you respond as quickly
as possible.

Accuracy. You are being tested on hawv accurately you can solve simple
multiplication problems. First, you will seean asterisk in the entre of the computer
screen. The asterisk will begin to flash. This ggnals that the asterisk will be replaced
by a single digit multiplication problem like ‘3 x 4.

I would like you to say the answer as quickly as you possibly can, without
making any mistakes. Occasiond errors are normal, but please try to avoid making

mistakes. It isimportant that you respond as accurately as possble.
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Figure 1. Traditional and ex-Gaussian measures as a function of
problem size for accuracy- and speed-emphasized instructions
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Figure 2. Vincentized response time histograms for small and
large problems under speed- and accuracy-emphasized
instructions with ex-Gaussian model fitted (curve shown)
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