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Abstract 

Response time (RT) distributions for large and small problem sizes were obtained 

under both speed- and accuracy-stressed instructions in a multiplication production 

task.  Fitting the ex-Gaussian distributional model to the individual RT data allowed 

for the derivation of quantitative measures of distributional shape.  Statistical results 

indicate that small problem size RT distributions differ from large problem size RT 

distributions with respect to both the mean of the normal component, µ (larger for 

large problems) and the size of the tail, τ, (larger for large problems).  Accuracy 

instruction RT distributions also differ from speeded instruction RT distributions with 

respect to µ (larger under accuracy instructions), and τ (larger under accuracy 

instructions for large problem sizes only).  Results support a strategy-choice 

explanation of the problem-size effect, and provide suggestions for the comparison of 

latencies obtained under speed- and accuracy-emphasized instructions. 
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Decomposing the Mean in the Problem-size Effect: An Investigation of 

Response Time Distributions for a Multiplication Production Task 

 Why does it take longer to solve 8 x 9 than 3 x 4?  Is speeded arithmetic 

performance simply faster or fundamentally different?  The current analysis examined 

these questions using the no-report condition of Smith (1996).  We undertook a 

detailed analysis of the problem-size effect and the effect of instructional emphasis on 

basic arithmetic performance.   A response time distributional approach was 

employed to allow a more thorough evaluation of both these phenomena and existing 

theories.   

Problem-size effect 

 Larger problems (e.g., 8 x 9) take longer to solve than smaller problems (e.g., 

3 x 4).  This problem-size effect (Groen & Parkman, 1972) is the most robust 

phenomenon in mathematical cognition.  As such, models must provide an 

explanation of the problem-size effect.  Proponents of direct retrieval have posited 

that the greater problem frequency of smaller problems gives them an advantage in 

memory (Ashcraft, 1992), or that differences in the magnitude of large numbers are 

increasingly difficult to discriminate, complicating retrieval (Campbell, 1995).  In 

contrast, LeFevre, Sadesky & Bisanz (1996) posited that different strategy choices for 

large and small problems account for the problem-size effect.  In LeFevre at al, 

participants reported using slower procedures involving derived-facts (e.g., 6 x 7 = 6 

x 6 + 6) to solve larger problems.  The current investigation analyzes response time 

distributions for small and large problems to provide criteria for evaluating conflicting 

accounts of the problem-size effect. 

Instructional emphasis 
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  Mathematical cognition literature consists of findings from separate labs, 

using different types of instructions.  It is important to determine if separate findings 

reflect the same cognitive processes and therefore can be directly compared.  

Reported response times for single-digit arithmetic problems have varied significantly 

depending on the research laboratory.  Campbell (1994) has consistently reported 

significantly faster response times than LeFevre et al. (1996).  Research laboratories 

differ in the instructions given to participants.  Campbell emphasizes speed in order to 

ensure errors for analysis.  LeFevre emphasizes accuracy to maximize valid latencies.  

The purpose of the current analysis was to determine if speed-emphasized instructions 

result in a faster, yet similarly shaped distribution of response times, or if the 

distributional shape was significantly altered under different instructions, suggesting a 

change in the nature of the task. 

Ex-Gaussian distribution   

Response time distributions are positively skewed. For the purpose of 

analyses, some researchers assume response times are normally distributed, and use 

mean or median response times.  Alternatively, researchers trim their extreme scores 

or perform scale transformations to achieve a normal distribution.  Data is trimmed 

under the assumption that the true underlying distribution is normal and that extreme 

scores represent nuisance variables.  However, it is important to consider that the true 

distribution may in fact be skewed.  If the skew were representative of the underlying 

process being studied, trimming the data would hamper research.  Transforming the 

data also reduces the meaningfulness of the findings.  However, methods to extract 

quantitative measures of a non-normal distribution are not available in traditional 

statistical packages.   
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The ex-Gaussian distribution (Hohle, 1965) provides a good fit to response 

time data and allows three quantitative measures to be obtained.  The ex-Gaussian 

distribution consists of a normal (Gaussian) component and an exponential tail.  

Measures derived from this distribution include: mu (µ) the mean of the normal 

component, sigma (σ) the standard deviation of the normal component, and tau (τ) the 

mean of the exponential tail.  Fitting the ex-Gaussian distribution to response time 

data provides a more detailed analysis than that provided by examining the means 

alone.  Heathcote (1996) has developed a statistical package, RTSYS, which allows 

researchers to obtain quantitative measures of response time distributions: mu, sigma 

and tau.  Analyses performed using RTSYS have provided insight into cognitive 

processing, and allowed for stringent evaluation of existing theories of response time 

phenomena in a variety of areas (Heathcote et al., 1991; Leth-Steensen et al., 2000).   

Current analysis   

The primary focus of the current analysis was to provide a more detailed 

account of the problem-size effect by fitting the ex-Gaussian distributional model to 

response time distributions.  We expected that this detailed analysis, employing ex-

Gaussian parameters, would result in a better understanding of the cognitive processes 

involved in the problem-size effect.  As such, the results would be a useful tool for 

evaluating current theories of cognitive arithmetic.  Specifically, we hypothesized that 

the size of the exponential tail of the distribution would increase with problem size.  

This result would be expected if larger problems were solved using less efficient 

strategies as found by LeFevre et al. (1996).   

Response time distributions were also examined under both speed- and 

accuracy-stressed instructions.  The analysis of instructional conditions was 

undertaken to determine if instructions change the underlying processes and render 
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these different tasks.  We expected to find that the mean of the normal component was 

smaller under speed-emphasized instructions, showing a shift to faster performance.  

We hypothesized that the size of the exponential tail of the distribution would be 

longer in the accuracy condition.  This result would be expected if participants were 

checking problems (particularly for large problems) using strategies other than direct 

retrieval, as suggested by LeFevre et al. (1996).   

Method 

  Data used in the present experiment constitutes the no-report condition from 

Smith-Chant (1996). 

Participants  

Thirty-two introductory-psychology students (16 men and 16 women, median 

age 22 years) participated for course credit or a $12 honorarium.   The results 

presented in the current paper will focus primarily on twenty-one of the 32 original 

participants. Nine participants were eliminated from the present analysis because the 

ex-Gaussian distribution failed to fit their response times (most often due to bi-

modality of their distributions in at least one of the four experimental conditions). A 

further participant was eliminated because the chi-square test for the goodness of the 

ex-Gaussian fit was highly significant for three of the four conditions.  A final 

participant was eliminated due to a highly irregular sigma value in the speed-

emphasized, large problem condition (sigma=756.7 with the next largest value in that 

condition being 159.4).  For the remaining twenty-one participants, the ex-Gaussian 

distribution provided a good fit. 

Design and Procedure 

 The current analysis constitutes a 2 (instructional emphasis: speed, accuracy) 

x 2 (problem size: large, small) repeated-measures design.  
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 Materials.  The set of multiplication problems consisted of all single-digit 

problems from 2x2 through 9x9, presented twice in each condition.  Stimuli were 

presented in amber on a black computer screen.  Two presentation-order lists were 

created.   The order of problems was randomized such that each problem occurred 

only once in each half of the list.  Participants solved the 128-problem set once with 

accuracy-emphasized instructions and once with speed-emphasized instructions (see 

appendix A).  The order of the instructions (speed/accuracy) was counterbalanced 

across participants. 

Multiplication production task.  Participants were seated in front of a computer 

monitor and wore headphones with an attached microphone.  Participants viewed the 

multiplication problem on the screen and answered vocally.  The computer recorded 

response times, from the presentation of the stimulus until a verbal response was 

made.  In each condition, participants were given ten practice trials before beginning 

the experimental trials. 

Results and Discussion 

Dependent measures included: mean response time, standard deviation, and 

the three ex-Gaussian parameters obtained by fitting the ex-Gaussian distribution to 

the individual participant data in each of the four experimental conditions.  2 

(instructional emphasis: speed, accuracy) x 2 (problem size: large, small) repeated-

measures ANOVAs were performed for each dependent measure.  Means for each 

measure are reported in Table 1. 

Mean response time   

Participants took longer to solve problems under accuracy-emphasized 

instructions than under speed-emphasized instructions (1121 vs. 938 ms), F (1, 

20)=43.90, MSE=15893.8, p<.001.  Thus speeded instructions had the desired effect, 
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speeding performance.  As expected, the problem-size effect is present in mean 

response time data.  Participants took longer to solve large problems than small 

problems, (1173 vs. 885 ms), F (1, 20)=45.54, MSE=38221.1, p<.001.  As shown in 

Figure 1, problem size interacted with instructional-emphasis such that large problems 

took disproportionately longer to solve under accuracy-emphasized instructions than 

under speed-emphasized instructions, F (1, 20)=14.46, MSE=6110.0, p<.01.  This 

interaction is consistent with the hypothesis that answers to large problems are being 

checked with less eff icient procedures (e.g., repeated addition, derived-facts). 

Standard Deviation 

Participant’s standard deviations were larger under accuracy-emphasized 

instructions than under speed-emphasized instructions (380 vs. 290), F (1, 20)=13.06, 

MSE=12927.2, p<.01.  Standard deviations were larger for large problems than small 

problems, (439 vs. 232), F (1, 20)=30.91, MSE=28999.5, p<.001.  As shown in 

Figure 1, problem size interacted with instructional-emphasis such that large problems 

had disproportionately larger standard deviations under accuracy-emphasized 

instructions than under speed-emphasized instructions, F (1, 20)=4.46, MSE=21530.2, 

p<.05. 

Accuracy   

Participants had higher accuracy rates under accuracy-emphasized instructions 

than under speed-emphasized instructions (93 vs. 89%), F (1, 20)=10.09, MSE=32.9, 

p<.001.  Accuracy rates were lower for large problems than small problems, (86 vs. 

97%), F (1, 20)=39.21, MSE=68.2, p<.01, as shown in Figure 1. 

Mu   

The mean of the normal component of the fitted ex-Gaussian distributions was 

larger under accuracy-emphasized instructions than under speed-emphasized 
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instructions (779 vs. 682 ms), F (1, 20)=31.36, MSE=6251.0, p<.001.  The constant 

100 ms decrease in mu, shown in Figures 4 and 5 for Vincentized data, under speed-

emphasized instructions for small and large problems suggests a constant factor such 

as motor response (speech) is being affected, but that cognitive processing remains 

the same.  Mu was larger for large problems than small problems, (775 vs. 687 ms), F 

(1, 20)=25.61, MSE=6333.4, p<.001.  Thus the problem-size effect is observed in mu.  

In contrast to the analysis of mean response times, problem size did not interact with 

instructional emphasis for mu, as shown in Figure 1.  The lack of an interaction in mu 

suggests that the interaction present in mean response times is a result of greater skew 

of the response time distribution rather than a shift in the mode. 

Sigma  

The standard deviation of the normal component of the fitted ex-Gaussian 

distributions was larger for large problems than small problems, (90 vs. 56), F (1, 

20)=9.60, MSE=2496.3, p<.01.  In contrast to the analysis of standard deviations, no 

main effects or interactions were associated with instructional emphasis, as shown in 

Figure 1. 

Tau   

As shown in Figure 2, the size of the tail of the fitted ex-Gaussian distributions 

was larger under accuracy-emphasized instructions than under speed-emphasized 

instructions (344 vs. 257 ms), F (1, 20)=13.21, MSE=12294.1, p<.01.  As 

hypothesized, this result suggests participants were checking problems in the accuracy 

condition.   Tau was larger for large problems than small problems, (401 vs. 199 ms), 

F (1, 20)=32.37, MSE=26583.4, p<.001.  This result is consistent with the theory that 

larger problems were solved using less efficient strategies. As shown in Figure 1, 

problem size interacted with instructional-emphasis such that the tail of the 
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distribution was disproportionately larger under accuracy-emphasized instructions 

than under speed-emphasized instructions, F (1, 20)=9.84, MSE=10048.0, p<.01.  

This finding is consistent with checking of answers, under accuracy-emphasized 

instructions, with procedures such as repeated addition or derived facts, which would 

be more time consuming for larger problems. 

General Discussion  

The fitting of an ex-Gaussian distributional model to response time data was 

successful in adding to our knowledge of the problem size effect and effect of 

instructional emphasis.  The present analysis lends support to a strategy-choice 

definition of the problem-size effect.  Tau in particular seems to be a reflection of 

strategy choice.  This information may be useful in developing an alternative indicator 

of strategy use instead of the controversial self-report method currently used.  

 The examination of the effects of instructional emphasis show that findings 

under different types of instructions are comparable, taking into account the 100 ms 

shift, and processes occurring after an answer is obtained under accuracy-emphasized 

instructions (i.e., answer checking).  This finding is encouraging, as the mathematical 

cognition literature is comprised of results obtained under various types of 

instructions.   
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Table 1   

Dependent Measures by instruction type for small and large problems.  

 

 Accuracy Instructions Speed Instructions 

Measure Small Large Small Large 

Mean  944.6 1297.4 827.2 1050.3 

SD 243.4 517.7 221.4 360.3 

Mu 735.5 823.4 638.8 726.7 

Sigma 63.6 90.4 50.0 90.7 

Tau 209.2 480.2 189.8 323.7 
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Appendix A 

Instructions for speed and accuracy conditions, Smith-Chant (1996) 

Speed.  You are being tested on how quickly you can solve simple 

multiplication problems.  First, you will see an asterisk in the centre of the computer 

screen.  The asterisk will begin to flash.  This signals that the asterisk will be replaced 

by a single digit multiplication problem like ‘3 x 4’ . 

 I would like you to say the answer as quickly as you possibly can, without 

making any mistakes.  Occasional mistakes are normal when people go fast, so do not 

be too concerned if you make a mistake.  It is important that you respond as quickly 

as possible. 

Accuracy.  You are being tested on how accurately you can solve simple 

multiplication problems.  First, you will see an asterisk in the centre of the computer 

screen.  The asterisk will begin to flash.  This signals that the asterisk will be replaced 

by a single digit multiplication problem like ‘3 x 4’ . 

 I would like you to say the answer as quickly as you possibly can, without 

making any mistakes.  Occasional errors are normal, but please try to avoid making 

mistakes.  It is important that you respond as accurately as possible. 
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