
Can Cognitive Modeling Improve Rapid Prototyping?1 
 

                                                        
1  Carleton University Cogniti ve Science Technical Report 2002-05 
 URL http://www.carleton.ca/ii s/TechReports 
 © Robert L. West and Bruno Emond 

Robert L. West 
Department of Psychology 

Carleton University 
Ottawa, Ontario, Canada 
robert_west@carleton.ca 

Bruno Emond 
Department of Education 

Université du Québec à Hull 
Hull, Quebec, Canada 

emond@uqah.uquebec.ca 
 
 

ABSTRACT 
Rapid prototyping is an area in which cogniti ve 
modeling is not frequently used. We examine some of 
the reasons behind this and argue that cogniti ve 
modeling could play an important role. Specificall y we 
argue that usabilit y testing could be improved by testing 
simulated users. We review the benefits that this 
methodology could offer and discuss one approach to 
building a simulated user using ACT-R to embody a 
GOMS-like memory structure.  

Keywords 
cogniti ve modeling, rapid prototyping, usabilit y testing 
ACT-R, GOMS 

INTRODUCTION 
Cogniti ve modeling is often employed in the design of 
systems destined to be used by well trained personal 
performing tasks in which errors could have serious 
consequences (e.g., military systems, aviation systems, 
nuclear power plants). Not surprisingly, due to the 
serious nature of these types of systems, the process of 
redesign often allows time for careful development and 
testing. In contrast, commercial software products are 
often aimed at an audience containing a relatively high 
number of non-experts. No formal training in how to use 
the product is expected and most users will not study the 
manual. Also, these systems generall y have very short 
development times. The process most commonly used for 
developing interfaces under these conditions is rapid 
prototyping. 

Rapid prototyping may involve a number of different 
techniques such as cogniti ve walk through, heuristic 
evaluation, and usabilit y testing. The idea is to rapidly 
iterate a cycle of creating, evaluating, and redesigning 
the system interface. Cogniti ve modeling is not 
extensively used in rapid prototyping. In our opinion, this 
is due to three interrelated misperceptions: (1) that the 
process of cogniti ve modeling is necessaril y slow, (2) that 
cogniti ve modeling is useful only for well l earned, 

routine tasks, and (3) that cogniti ve modeling (as applied 
to interface design) is too low level (e.g., using Fitts Law 
to model mouse movements). These misconceptions are 
based on understanding cogniti ve modeling in terms of 
the type of  

 

 

projects that cogniti ve modelers typicall y work on rather 
than any inherent limits involved in cogniti ve modeling. 
(this li st of misperceptions was distill ed from a number 
of discussions concerning this project with usabilit y 
professionals).  

In this paper we describe how usabilit y testing, an 
important element of rapid prototyping, could be 
improved by testing simulated users. The simulated user 
is not a new idea, it has its origins in the GOMS 
approach to interface design [4]. However, GOMS (a 
system for modeling users using goals, operators, 
methods, and selection rules) was designed to model well 
learned, routine behaviors, so it is not appropriate for 
modeling the process of learning to use a new interface 
(although it can be used to estimate the learning time, see 
[10]). We will first describe how using a simulated user 
could improve usabilit y testing and then discuss our 
approach to building a simulated user using ACT-R [2].  

USABILITY TESTING 
Usabilit y testing is generall y acknowledged to be one of 
the more effective methodologies for rapid prototyping. 
This is because, of all the methods used in rapid 
prototyping, usabilit y testing is the only one to test naïve 
users, similar in nature to the users the interface is 
intended for (i.e., they are not usabilit y professionals). 
Usabilit y testing involves having users perform tasks on 
an interface prototype to see how well it works. The 
actual testing procedure is relatively quick and informal. 
Typicall y, four to seven users are asked to do a series of 
tasks using the interface prototype. The problems they 



encounter are noted down and sometimes there is a 
criterion set that specifies how many users need to 
encounter a problem before it is considered worth 
changing. Typicall y, usabilit y testing succeeds in 
detecting usabilit y problems that were undetected during 
the design process. 

PROBLEMS WITH USABILITY TESTING 
While usabilit y testing is effective, li ke any methodology, 
it is not without problems. This is evident from studies 
such as [12] and [9], which show that, given the same 
interface, standard usabilit y practices do not find the 
same sets of problems. We have divided our li st of 
problems into two classes. The first is problems inherent 
in the experimental procedure: 

1. Low numbers of subjects – Using lower numbers of 
subjects increases the chance of overestimating or 
underestimating the li kelihood of a problem 
occurring in the user population. It is also a problem 
for large interfaces (e.g., extensive e-commerce sites) 
as there are so many different ways in which they 
could be used. Large numbers of subjects would be 
required to cover all the permutations (e.g., see [16]) 

2. Poor control over subjects’ backgrounds – Usabilit y 
testing generall y does not involve a detailed 
examination of subjects’ backgrounds, making it 
diff icult to know how well the results will generali ze 
to the population. This is especiall y important when 
a product is targeted at a particular group. 

3. Motivational validity – Subjects in a study may not 
have the same motivation to overcome problems as 
someone who has paid money for a program or needs 
to use it at work. 

4. Subject availabilit y – Usabilit y studies are often 
carried out in environments in which subjects are not 
readily available. This can result in an odd selection 
of subjects and/or in using the same subjects over 
and over again. These situations will aggravate 
problems 2 and 3 respectively. 

5. Experimental bias – Bias can be introduced through 
the comments and attitude of the experimenter or 
through the experimental design. The extent of this 
problem will depend on the experience and skill of 
the experimenter. 

6. Focus on initial experience – Usabilit y testing does 
not tell you anything about the long term learning 
process, which is important for complex products. 

7. Focus on a single, isolated interface – Usabilit y 
testing does not consider the possibilit y that a user 
may be in the process of learning several interfaces 
(e.g., learning to use a suite of off ice products). 

The second class involves problems of interpreting the 
results of usabilit y testing: 

1. Understanding why a problem occurred – Usabilit y 
testing relies on subjects’ self reports, which may not 
always accurately reflect why a problem occurred 
(e.g., see [14]).    

2. Judging the severity of a problem – Usabilit y testing 
provides no means of judging the severity of a 
problem other than how many subjects encountered 
the problem. Thus a problem that is trivial to 
overcome may be judged to be as serious as a 
problem that occurred the same number of times but 
is very diff icult or impossible to overcome. 

3. Judging the qualit y of the study – Given the 
problems raised above it should be clear that 
sometimes usabilit y testing will provide misleading 
results. However, since there is no theory or 
cumulative body of knowledge employed when 
evaluating usabilit y study results, it is diff icult to 
judge the qualit y of the work. Also, follow up 
research is rarely done to see if usabilit y testing 
actuall y did result in a better interface. The result of 
this is that it is easy to fake expertise.   

4. Lack of theory – Usabilit y studies identify problems 
in specific interface designs and in most cases that is 
all . Because usabilit y tests are not tied to a theory of 
usabilit y, they do not directly increase in our 
knowledge of how to build better interfaces by 
testing specific hypothesis.   

SIMULATED USERS 
As noted above, usabilit y testing is an effective means of 
finding usabilit y problems. Our point, however, is that 
usabilit y testing would be better if the issues li sted above 
could be addressed. To do this we propose that usabilit y 
testing could be augmented through the use of simulated 
users, created through cogniti ve modeling. To ill ustrate 
how this could work we will first address the perceived 
problems with using cogniti ve modeling for rapid 
prototyping, and then go through the problems with 
usabilit y testing and show how using simulated users can 
address these problems. 

The first perceived problem was that cogniti ve modeling 
is too slow. Of course building a cogniti ve model from 
scratch would indeed be slow. A more sensible starting 
point would be to select a well tested cogniti ve 
architecture to use to build the simulated user, such as 
ACT-R [2] or SOAR [13]. In addition to using a 
cogniti ve architecture we propose that cognitive 
templates could also be used. Gobet and Simon [5] use 
the term templates to refer to preexisting structures in 
memory that allow domain specific information to be 
quickly and effectively coded. Vicente [17] uses 
templates to refer to preexisting, generic structures used 
to guide problem solving (see also [18]). We propose that 
it is appropriate to use templates describing how data is 



stored and how problem solving occurs when modeling a 
user exploring a new interface within an operating 
system that they are familiar with (e.g., Windows, Mac 
OS, UNIX). Using templates it should be relatively easy 
to construct a model for testing a particular interface. In 
addition the model could be preloaded with knowledge of 
the operating system and of programs commonly used 
within the operating system. Under these conditions, we 
believe a model could be constructed very quickly. Of 
course the success of the model would depend on the 
validity of the  architecture, the templates and the 
knowledge coded into it, but the development and testing 
of this aspect of the model would take place outside of the 
rapid prototyping domain.  

The second misperception, that cogniti ve modeling is 
only able to capture well l earned, routine tasks, does not 
deserve very much attention. Possibly this view arises 
from people who have only been exposed to GOMS 
modeling, which does not typicall y deal with novel 
situations or problem solving. At any rate, problem 
solving within a well structured domain, such as an 
operating system, is exactly what cogniti ve architectures 
such as ACT-R or SOAR do best. More specificall y, an 
interface can be thought of as a means of moving through 
a problem space. From this point of view, trying to 
accomplish a task with a new interface is equivalent to 
searching for a path through a problem space. 

The third misconception is that cogniti ve modeling is too 
low level. Generall y speaking, the task structure in 
usabilit y studies is conceptualized in terms of higher 
level goals, and issues concerning keystroke level actions 
are not expli citl y considered. Thus from a usabilit y 
perspective “open the file menu” would typify the lowest 
grain size of task analysis. Cogniti ve modeling systems 
used to model interface use, such as GOMS [4], EPIC 
[11], and ACT-R PM [3] tend to focus on a lower grain 
size. For example, “move hand to mouse, move eyes to 
file menu, move mouse cursor to file menu, cli ck mouse.” 
Usabilit y studies are rarely concerned with exactly how 
long actions take, which is one of the main things you 
learn by using such precise operators. However, how long 
things take can be an important factor when making 
decisions about how to use an interface (e.g., see [6])) 
and is also important when comparing model results to 
human results. Because of this we believe that a 
simulated user should include keystroke level actions that 
take set amounts of time, similar to a GOMS model. 
However, since the simulated user would come with these 
actions already loaded and with an understanding of how 
to combine them to perform common tasks, in most cases 
dealing with this level of analysis would involve very 
littl e effort from the usabilit y tester. For example, the 
simulated user would understand the necessary sequence 

of motor operators needed to cli ck on a button so it would 
only need to be told to “click the button.”  

ADVANTAGES OF USING SIMULATED USERS 
We believe that using a simulated user in conjunction 
with usabilit y testing can significantly reduce the 
problems associated with usabilit y testing. First we 
address problems inherent in the experimental procedure: 

1. Low numbers of subjects – Using a simulated user 
provides you with access to an almost unlimited 
number of simulated subjects. Due to random 
chance, and depending on the situation, the same 
model may run into a variety of different problems 
across simulations. By using many simulations it 
should be possible to estimate the probabiliti es for 
encountering each type of problem in the user 
population. 

2. Poor control over subjects’ backgrounds – With 
simulated users you have an exact knowledge of 
simulated user’s background. Also, it would be 
possible to test simulated users with different 
backgrounds to see the effects of previous 
knowledge. 

3. Motivational validity – Simulated users are always 
full y motivated. 

4. Subject availabilit y – Simulated users are always 
available.  

5. Experimental bias – Simulated users are not 
influenced by bias introduced through the comments 
and attitude of the experimenter. In terms of bias 
introduced through the experimental design (e.g., 
neglecting to test some aspect of the interface), 
simulated users would not change the situation.   

6. Focus on initial experience – Simulated users can be 
used to explore long term learning within an 
interface system by having them interact with it as 
many times as necessary, and by having them 
progress to more complex tasks. This is particularly 
important for programs with multiple levels of 
complexity where an assumption is often made that 
the user will master the lower levels before moving 
onto the higher levels 

7. Focus on a single, isolated interface – Simulated 
users can also be tested on more than one interface. 
This can address the question of the effects of 
learning one interface on learning another interface 
for a commonly associated task (e.g., programs from 
a suit of off ice tools, such as word processors, 
spreadsheets, email , etc.).  

Next we examine how simulated users could help in 
terms of interpreting the results: 

1. Understanding why a problem occurred – With a 
simulated user it should always be possible to tell 



why a problem occurred by examining the model and 
the course of events in the simulation. Also it may be 
possible to gain insight into why a human subject 
experienced a particular problem by using model 
tracing [1], which would involve having a model 
step through the same steps as the human subject to 
see what it takes to make the model make the same 
mistake    

2. Judging the severity of a problem – With a simulated 
user it should be possible to judge the severity of a 
problem by seeing how long it takes a simulated user 
to work around the problem. If the simulated user 
can’t worked around the problem, severity can be 
judged by seeing the extent to which information 
needs to be added to the model in order to overcome 
the problem.  

3. Judging the quality of the study – Having a model 
that explains and extends the results of a usability 
study also provides a means to evaluate the quality of 
the study. Specifically, if getting the model to agree 
with the human results involves adding a lot of 
unrealistic assumptions to the model or involves 
excessively altering the background knowledge or 
the template structure of the model, then, provided 
the model has worked well under similar conditions, 
we should suspect a problem with the study. Also, a 
well developed model shows that the usability tester 
thoroughly analyzed the interface before designing 
the study. 

4. Lack of theory – Building and testing models is a 
way of testing the theories embodied in the models. 
As better models are developed our understanding of 
what makes a good interface will increase.  

LIMITATIONS OF SIMULATED USERS 
As illustrated above, cognitive modeling has a lot to offer 
the rapid prototyping process. However, cognitive 
modeling is not a panacea. Some current limitations are 
listed below: 

1. Usability - In rapid prototyping there is a very strong 
emphasis on developing prototyping tools that are 
fast and relatively easy to use. Therefore a simulated 
user should be as easy to program and to understand 
as possible. This is not the case with many cognitive 
modeling systems, especially those complex enough 
to create a simulated user. Thus usability is an 
important issue for developers of cognitive modeling 
systems. Currently this is a significant barrier to the 
use of cognitive modeling for rapid prototyping. 

2. Perception - Another limitation of cognitive 
modeling is in perceiving graphical objects, such as 
icons. Recently there has been a focus on providing 
cognitive architectures with perceptual abilities. 
ACT-RPM [3] and EPIC [11] are notable in this 

regard. However, these systems still need to be told 
what graphic objects on the screen represent. So at 
this point, it is problematic to use cognitive 
modeling to ascertain how objects, such as icons, 
will be interpreted. Although, cognitive modeling 
can be used to examine the effect of understanding, 
or not understanding, the meaning of an object, by 
simulating both scenarios.  

3. Bottom up attention - Cognitive modeling is 
currently limited in terms of accounting for bottom 
up attention. Therefore, given an interface, cognitive 
modeling will not tell you which elements will grab 
the user’s attention first. This is especially true for 
interfaces with complex graphics, such as found on 
some web pages.  

4. Unresolved theoretical issues – cognitive modeling is 
an active field of research and there are often 
competing theories about best way to model different 
cognitive abilities. So the best way to construct a 
simulated user may not always be clear. 

5. Esthetics – cognitive models will not tell you much 
about how good an interface looks 

However, these problems can actually be overcome by 
using usability testing. For (1), usability testing could be 
very helpful in making cognitive modeling systems easier 
to use. For (2) and (3) usability testing can be used to 
provide some idea about whether or not graphical objects 
can be understood and which objects tend to grab 
peoples’ attention. This interface specific information 
can then be added to the simulated user. Usability testing 
also provides an excellent domain for testing different 
cognitive architectures. It is an extremely well defined 
domain with no shortage of people who are familiar with 
it. Thus usability testing could help problem (4) by 
providing a lot of valuable data for evaluating different 
modeling theories. Issues concerning individual 
differences can also be investigated as it should be 
possible to model individual usability results by using 
parameter fitting (we do not have a solution for problem 
5).   

Further details on how a simulated user could be 
constructed would depend on the specific project. So, as 
an example, we will give an overview of a simulated user 
that we have been working on.  

EXPLORING AND LEARNING 
One of the most important issues for modeling usability 
testing is conceptualizing the learning and exploration 
process. Our approach, since we specifically want to 
combine modeling with usability testing, has been to 
develop a conceptualization that makes clear linkages 
between the structure of the model and the process of 
usability testing. To do this we combined the conceptual 
structure for storing and accessing information from 



GOMS with the learning and problem solving 
architecture of ACT-R. GOMS models have been shown 
to be both effective at modeling interface use and 
relatively easy and intuitive to grasp [8]. We hypothesize 
that the reason for this is that the GOMS structure 
actually reflects the way humans organize their 
knowledge of how to use interfaces. From this 
perspective, trying to figure out an interface can be 
understood as the user attempting to mental construct 
something similar to a GOMS model. Based on this 
conceptualization, our approach has been to model the 
user as trying to construct a GOMS-like model of the task 
in their declarative memory system. The template for 
how this information is built up and stored in memory is 
based on the hierarchical structure used in GOMS, but is 
also tied to the process of usability testing. The elements 
of the template are described below: 

1. Goals – goals represent the set of sub goals that need 
to be achieved in order to complete the task. In 
usability testing it is necessary to provide the human 
subjects  with goals or sets of goals to achieve. The 
simulated user should be provide with the same set 
of goals needed for the human subjects. As in 
usability testing, the trick is to provide enough 
information to allow the user to do this task, without 
revealing everything that the user needs to know to 
do the task. So within this framework, goals 
represent information that would be provided or can 
be assumed to be known by human subjects in a 
usability test 

2. Methods – methods are fixed sets of steps that can be 
used to achieve goals. In a good usability test, human 
subjects should not be told the methods, unless 
certain methods would be known to the intended 
user but not to the test subjects. The same should be 
true for the simulated user. 

3. Operators – operators are the specific actions, 
(physical, perceptual, or cognitive) needed to 
complete each step in a method. In human subjects, 
operators are characterized by taking a certain 
amount of time and sometimes by the chance of 
making an error. The simulated user should have 
these built in. 

Figure 1 illustrates the template structure. The rectangles 
represent goals, the boxes represent methods, and the 
circles represent operators. The gray shapes represent the 
elements related to completing the first goal and the 
white shapes represent the elements related to 
completing the second goal. At each level, knowledge of 
the sequence of steps is represented as chunks describing 
each step, with each chunk containing a slot that 
identifies the next step. The model uses the ACT-R goal 
stack to move to lower levels by pushing subgoals that 
get popped when the sequence at that level is complete. 

Essentially, methods are subgoals of task goals, and 
operators are subgoals of methods. For example, if the 
goal were to open a file a subgoal for a method of 
opening a file would be pushed. The first step in the 
method (e.g., “open file menu”) would then push a sub -
subgoal to execute the operators necessary for this 
method step. The operators would fire in sequence, pop 
the sub-subgoal and move on onto the next step in the 
method. This process would repeat until the goal of 
opening a file is completed, after which the system would 
move onto the next task goal. Note, that there can be 
more than one method sequence per goal and more than 
one operator sequence per method. Learning which to use 
would be based on the act-r chunk activation system 
(from a GOMS point a view this would constitute 
learning the selection rules).  

 

Figure 1. A template structure for storing interface 
operation knowledge  

In a usability test, the user is missing information about 
the task. In terms of the data structure described above 
this would be equivalent to a model of the task with some 
of the connecting chunks missing. Since we have defined 
the goals as being known and we also assume the user 
knows the operator sequences needed for basic navigation 
(e.g., how to use a mouse, how to use the keyboard), the 
missing chunks would be method steps. Based on this we 
conceptualized the learning process as a search for the 
missing method steps. Figure 2 illustrates search 
problem. The white boxes show a missing method (e.g., 
the user does not know how to use the interface to save a 
file). In this case the user must try different things and 
look for a sign (e.g., a label) indicating they are on the 
right track. The gray boxes show a missing method step 
(e.g., the user opens the menu to get to the “save” 
dialogue box but there is no menu item labeled “save”). 
In this case the user must decide whether to search for 
the next step (e.g., look for another menu item that could 
take you to a “save” dialogue box) or abandon this 
method and try a different one (e.g., look for a “save” 
icon). Notice that in order to do these tasks the simulated 
user needs a fair amount of knowledge, including a 
lexicon for understanding labels (e.g., see [7]) and 
knowledge  about how interfaces tend to work (this could 
be generalized knowledge and/or specific knowledge of 
how other interfaces work). 



 
Figure 2. Representing a usabilit y testing scenario in the 

template structure 

We are implementing different strategies for searching 
for the missing chunks through production rules (i.e., 
if…then rules). As a starting point, we are considering 
four basic strategies. The first is choosing based on past 
associations from other interfaces. This would involve 
trying to achieve a goal by using methods that have been 
used successfull y to achieve the same goal on other 
interfaces. To do this it is necessary to provide the 
simulated user with the same relevant domain knowledge 
that a human user would be expected to have. The second 
strategy is to try interface objects that are labeled to 
indicate to the user that they are related to the goal. The 
third strategy is to try interface objects at random to see 
how they transform the problem space, and the fourth 
strategy is to attempt to use the “help” features of the 
interface. However, this is only a starting point for 
further development through comparisons with human 
data. In terms of development, in our opinion, the best 
way to proceed is by using the open source code concept. 
We believe that this would best facilit ate the process of 
development as well as the use of simulated users for 
rapid prototyping. 

LOW FIDELITY PROTOTYPING 
Developing simulated users is only half the problem. The 
simulated users still need an interface prototype to 
interact with. The prototypes used in usabilit y testing 
range from high fidelit y to low fidelit y. High fidelit y 
prototypes are full y functional or almost full y functional 
interfaces. They have the advantage of providing human 
subjects with a reali stic experience but have the 
disadvantage of being time consuming to develop. Low 
fidelit y prototypes are mockups that have limi ted 
functionalit y. The advantage of low fidelit y prototypes is 
that they are fast and cheap, and therefore very useful for 
testing potential interface designs early in the design 
process. Currently there are several projects to get 
simulated users to interact with relatively high fidelit y 
interfaces (e.g., see [15]). The idea is to develop systems 
that allow simulated users to interact with the same 
software that human subjects interact with. This 
approach is good for high fidelit y prototyping but may 
not be the best choice for low fidelit y prototyping. 

Because we are interested in testing simulated users early 
on in the rapid prototyping process, we have focused on 
low fidelit y prototyping.  To be useful, low fidelit y 

prototyping systems must be relatively quick and easy to 
use. They also need to capture the elements of the full 
interface design that drive the way that human users 
interact with it. If completely successful in this regard, a 
low fidelit y prototype is just as effective as a high fidelit y 
prototype for testing human subjects. However, there is 
no way to know if you have succeeded without also 
building a high fidelit y prototype and testing to see if 
people behave the same way with it. The same is not true 
for simulated users. Since we know how a simulated user 
works, we can know what aspects of an interface 
prototype will affect it and what will not. Also, we know 
that a simulated user will not be affected by the reali sm 
of the experience. In fact, a simulated user does not 
require a visual interface at all , it just needs to be told 
what is there and what are the effects of its actions.  

To explore the possibiliti es offered by testing simulated 
users on low fidelit y prototypes we created a prototyping 
tool called SOS-1.0 (Simple Operating System, Version 
1). SOS-1.0 does not provide a visual representation of 
an interface. It is a system for constructing an abstract 
representation of an interface that a simulated user 
created with ACT-R 4 can interact with. SOS-1.0 is 
designed to investigate how knowledge and strategy drive 
the exploration of typical Windows interfaces. It assumes 
that simulated users can see what’s on the screen, can 
find objects on the screen, and can activate objects. This 
amounts to an assumption that the interface is reasonably 
well designed from a visual point of view. The SOS-1.0 
system is composed of four elements: 

1. Screen - The screen is a container for what is visible 
at any given time 

2. Windows - Windows can be opened or closed but 
they cannot occlude each other. If a window is open 
it is assumed to be visible.  

3. Frames - Windows can be divided into frames. 
Frames are frequently used in GUIs to indicate 
shared functionalit y. For example, menu items are 
usually grouped within a frame. Thus frames can 
provide important clues to the simulated user 

4. Objects - Objects can perform actions (e.g., buttons, 
scroll bars) or provide information (e.g., text, 
graphics) or both (e.g. icons, labeled buttons) 

Menus and other structures are constructed. For example, 
a menu bar would be a frame containing labeled buttons 
that open windows (representing drop down menus) 
containing more labeled buttons (representing the menu 
items). The fact that dropdown menu boxes occlude the 
underlying window can be modeled by closing the 
underlying window and reopening it when the menu box 
is closed. Currently we are involved in using SOS to run 
simulated subjects, created in ACT-R 4, to evaluate the 
system. We are also working on a version of SOS that 



will run with ACT-R 5 (ACT-R 5 has the perceptual 
/motor model from ACT-R PM built into it).  

Our goal is to create an easy to use, low fidelity 
prototyping system. However, SOS also embodies a 
theory of cognition that says that people interpret 
standard interfaces according to a limited set of elements 
from which objects are mentally constructed. As noted 
above, to the extent that low fidelity prototyping systems 
capture the essential elements that drive the user, they 
will produce accurate results. Thus the use of low 
fidelity prototypes for testing simulated users or human 
users always embodies a cognitive theory of interface 
use (whether or not the usability tester is aware of it).  

CONCLUSIONS 
We believe that usability testing can be significantly 
improved through the use of simulated users. However, 
we do not believe that simulated users should be used to 
replace human usability testing. Rather, we suggest that 
the two techniques complement each other.  

REFERNCES 
1. Anderson, J. R., Kushmerick, N., & Lebiere, C. 

(1993). Navigation and conflict resolution. In 
Anderson, J. R. (Ed.), Rules of the mind, Erlbaum, 
Hillsdale, N.J. 

2. Anderson, J. R., & Lebiere, C. (1998).  The Atomic 
Components of Thought.  Mahwah, NJ: Lawrence 
Erlbaum Associates. 

3. Byrne, M. D. & Anderson, J. R. (1998). Perception 
and action. In Anderson, J. R. & Lebiere, C. (Eds.), 
The atomic components of thought. Mahwah NJ: 
Lawrence Erlbaum. 

4. Card, S. K., Moran, T. P., & Newell, A. (1983). 
The psychology of human-computer interaction. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

5. Gobet, G., & Simon, H. A. (2001). Five seconds or 
sixty? Presentation time in expert memory. 
Cognitive Science, 24(4), 651-682. 

6. Gray, W. D. (2000). The nature and processing of 
errors in interactive behavior. Cognitive Science, 
24(2), 205-248. 

7. Howes, A., & Young, R. M. (1996). Learning 
consistent, interactive, and meaningful task-action 
mappings: A computational model. Cognitive 
Science, 20, 301-356. 

8. John, B. E. (1995). Why GOMS? Interactions. 2 
(10), 80-89. 

9. Kessner, M., Wood, J., Dillon, R. F., & West, R. L. 
(2001). On the reliability of usability testing. 
Proceedings of CHI 2001. ACM, Seatle. 

10. Kieras, D. E. (1997). A guide to GOMS model 
usability evaluation using NGOMSL. In helander, 

M., Landauer, P., & Prabhu, P. (Eds.), Handbook of 
human computer interaction. Elsevier Science 

11. Kieras, D. E., & Meyer D. E. (1997). An overview 
of the EPIC architecture for cognition and 
performance with application to human-computer 
interaction. Human- Computer Interaction, 12, 
391-438. 

12. Molich, R., Thomsen, A. D., Karyukina, B., 
Schmid, L., Ede, M., van Oel, W., & Arcuri, M. 
Comparative evaluation of usability tests. Human 
factors in computing systems CHI 99 Extended 
Abstracts, 83-84, 1999. 

13. Newell, A. (1990). Unified theories of Cognition. 
Cambridge, Mass: Harvard University Press. 

14. Nisbett, R. E., & Wilson, T. D. (1977). Telling 
more than we can know: Verbal reports on mental 
processes. Psychological Review, 84, 3, 231-257. 

15. Ritter, F. E., (ed.) (2001). Special issue on using 
cognitive models to improve interface design. 
International Journal of Human-Computer Studies, 
55, 1-14. 

16. Spool, J., & Schroeder, W. (2001). Testing web 
sites: Five users is nowhere near enough. CHI 2001 
Extended Abstracts, 285-286. 

17. Vicente, K. J. (1999). Cognitive work analysis: 
Toward safe, productive, and healthy computer-
based work. Mahwah, NJ: Lawrence Erlbaum 
Associates. 

18. West, R. L., & Nagi, G. (2000). Situating GOMS 
Models Within Complex, Sociotechnical Systems. 
Proceedings of Cognitive Science 2000. 


