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Abstract
In this paper, | address the pervasive phenomenon of individua differences in basic
mathematical skill among adults. Within the framework outlined by Marr (1982), differences in
mathematical skill must reflect differences at one or more of the following levels. computational
theory (mapping), choice of representation and algorithm (solution procedure), or hardware
implementation (brain). Research from the areas of neuroscience and cognitive psychology is
evaluated with the goa of exploring which levels are indicative of individual differences in

mathematical skill.
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Determining the Locus of Individual Differencesin Mathematicd Skill :
A Tri-level Hypothesis Approach
“The greaest unsolved theorem in mathematics is why some people ae better at it than others.”
(Eves, 1998.

Mathematics is an arearife with individual differences. The skill | evel of elementary
schoal children varies by seven yeas on average within asingle dasgoom (Cockcroft, 1982).
However, the widespread individual differences in mathematics ability are not smply a
developmental phenomenon. Educaed adults have been found to show large differencesin sKill
even for single-digit fads (LeFevre, Sadesky & Bisanz, 1996 LeFevre, Bisanz & al., 1996
Geay, 1996.

In the aurrent paper, | employ a novel approach to the phenomenon of individual
differencesin basic arithmetic skill among adults. Empiricd results are explored in a framework
developed by Marr (1982. Marr outlines threelevels at which any information processng task
must be understood: 1) the most abstrad level of what a processng device does and why, 2) how
the device solves the problem, and 3) the hardware implementation of the device Marr used his
framework to explore human vision, however many cognitive scientists have alopted the tri-
level hypothesisin various areas of reseach. Dawson (1998 posits that adherenceto this
framework is a defining feaure of cognitive science

In applying the framework to basic aithmetic, what the devise does, at an abstrad level,
involves choosing a representation of the problem. Taking as our information problem the
mapping of two operands to asingle answer (e.g. 2 and 2to 4), the representation could take
many forms. Some reseachers have posited a number-line representation of arithmetic fads,

others have posited a number-chart representation, whereas gill others have posited a network
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representation (Campbell, 1995. The second level involves choosing an algorithm to solve the
problem. Educated adults have been shown to use avariety of solution algorithms to solve basic
problems (LeFevre, Sadesky & Bisanz, 1996 LeFevre, Bisanz & al., 1996 Geay, 1996. The
third level involves the hardware implementation, or human kbrain. Marr asserts that
understanding any information processng task requires attention to ead of these threelevels of
description.

Of the threg the level that has recaved the greaest amount of empiricd reseach is
individual differences in solution procedures, or algorithms. Experimenta participants are asked
to salf report their solution procedures (i.e., asked “how did you solve the problem?’).  Such
self-reports have shown that adults use avariety of procedures, and that many adults use multiple
procedures to solve single-digit problems (LeFevre, Sadesky & Bisanz, 1996 LeFevre, Bisanz &
a., 1996. Although ealy results were mntroversial, researchers generally now accept that
adults do not solely retrieve the answersto single-digit problems (Campbell & Timm, 2001).
Some of the procedures commonly reported include:

Retrieval from memory- participants often report smply knowing the answer to a

problem, having memorized it, or that it Simply popped into their head.

Derived fact- participants frequently report using a known fad to solve another problem;

for example, 5x6=(5x5=25) +5=30.

Repeated addition- for multiplication, participants report adding one operand the number

of times of the seaond operand; for example, 3x4=3+3+3+3=12

Counting based procedures- participants report counting to find the answer; for example,

5+4=5/6,7,8,09.
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Rules- zero rules(e.g., anything times zero is zero, anything plus zero isitself, anything

minus zero isitself), ninesrules, etc.

Some of the reported algorithms are obviously more dficient than others. Retrieval and
application of arule ae generally faster (REF). These dgorithms are dso more robust.
Repedaed addition, derived fad and counting strategies all require alditional steps and memory,
and thus are more time @nsuming and allow more opportunity for error. The solution
procedures used are well documented, what is not clea iswhy certain algorithms are seleded.
High skilled individuals have been found to use agreaer amount of retrieval, one of the most
efficient, robust solution methods (REF), whereas low skilled performanceis more likely to
include dternative solution methods.

Marr (1982 statesthat the dhoice of algorithm isinfluenced both by the representation,
and by the hardware. Algorithm choiceis based on the dficiency and robustness given the
representation and hardware constraints. Strategy reports ow that solution procedure doices
are often neither efficient nor robust (e.g. repeaed addition for large operands), espedally for
low skilled individuals. Siegler (1988 posits that in problem solution, a confidence citerion is
chosen and then retrieval is attempted. |f the retrieved answer exceals the aiterion, the aswer
isgiven. However, if the aiterion is not met abadkup procedure is applied. Thus, use of a non-
retrieval solution procedure refleds either a high criterion, or lad of a problem-answer
representation (i.e., the problem-answer representation is not stored in memory). As Siegler
could be understood in holding the hardware constant since he was gudying human cognition,
and therefore the brain, these two approades are not so different. However, as the purpose of

this paper isto provide athorough description of mathematicd performancewithin Marr’s
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framework, both representational and hardware influences on algorithm choicewill be
considered (seeFigure 1).

At the most abstrad level, basic arithmetic performanceis the mapping of two operands
to asingle answer (e.g., 2 and 2to 4). Both Marr and Siegler posit arole for representationsin
influencing the solution algorithm chosen. Siegler’s (1988 model explains why a non-retrieval
solution procedure would be dhosen; the answer arrived at through retrieval does not exceed a set
confidence caiterion. Thus, low skilled individuals may use non-retrieval solution procedures as
badkup because they have not formed strong representations. Marr contends that the choice of
representation impads the doice of algorithm significantly. A chosen representation may make
certain information explicit while doaking other useful information (e.g., the relation between
operations). Thus, the dhoice of representation effeds how easy it isto perform a given
operation. If low skilled individuals have formed representations ladking useful information,
their ease of computation is compromised.

Mauro et a. (2001) have posited a hybrid-representation model of multiplicaion and
division, but which could be equally expeded to apply to addition and subtradion. According to
Mauro et a., skilled individuals have an integrated representation of multiplicaion and divison
problems. A single representation consists of a problem family (e.g., 5, 7, 35) through which one
can find the answer to multiple problems (e.g., 5x 7, 7x 5, 35/ 5, 35/ 7). In contrast, low skilled
individuals are posited to lad division representations all together, having only multiplication
representations through which the solution of division problems must be mediated (e.g., 35/ 7 =
?,?x7=355x7=35 35/7=5). Therefore, because high skill ed individuals have formed

superior representations, the use of efficient, robust solution is supported. However, low skilled
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individuals are forced to make do with inferior representations resulting in the use of less
efficient algorithms, prone to error due to multiple steps.

The remaining level, that of hardware implementation, is garnering an increasing amount
of investigation with the use of positron emisson tomography (PET) and functional magnetic
resonanceimaging (fMRI) technology. Marr noted that the same dgorithm may be implemented
on different hardware and that some dgorithms are better suited to different hardware
implementations. Thus, the hardware implementation influences the choice of algorithm in that
it credes a set of constraints on how an algorithm can be performed. Certain algorithms are
better suited to different physicd substrates (e.g., the brain’s parallel processng vs. a digital
computer’s serial processng). The aurrent paper discusses only human performance, and thus
the hardware implementation is necessarily the brain. PET and fMRI scans have identified the
areas involved in mental cdculation (Gruber et al., 2001 Zago et a. 2001). Presenti et al. (200])
investigated the different patterns of adivation for an expert and non-expert cdculators using
PET scans. The results $rowed that different brain regions were adivated based on skill | evel
with increased use of right prefrontal and medial temporal regions for the expert cdculator.
Menon et al. (2000, used fMRI to investigate differences in adivation among perfed and
imperfed performers. The results siowed that perfed performers, those who achieved 100%
acaracy, had lessadivation of the left angular gyrus.

The finding of lessadivation, and adivation within different areas in skill ed individuals
is not spedfic to the mathematics domain. More generally, skilled participants have been found
to show the same patterns on a variety of tasks (Jausoveg 1998. However, the difficulty in
understanding the neurologicd evidence within this framework isthat the different patterns of

adivation for low and high skill ed individuals do not necessarily imply that the structures
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themselves are different, but may instead refled the use of different solution algorithms.
Alternative neurologicd evidenceis necessary to determine if the brain structures (hardware) are
in faa different among high and low skilled individuals.
The arrent paper investigated individual differences in mathematicad skill within Marr’s
tri-level framework. This framework set the stage for an investigation of the influences on
algorithm choice, a well-documented phenomenon lading satisfying explanation. An
interdisciplinary literature review provided insight into two influences on solution procedure
choice 1) differences in representations formed, and 2) possble neural differences. An
interdisciplinary assault with attention to multiple levels of description would seem to be the best
approach to fully understanding the phenomenon of individual differences in mathematica sKill .
More spedficdly, further reseach into the neurologica substrates for low and high skilled
individuals, and psychologicd reseach into the representations formed by low and high skilled
individuals (in the vein of Mauro et al., 2001 may ultimately solve the “greaest unsolved
theorem in mathematics’ (Eves, 1998 and lead to methods of improving mathematics

performance
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Figure 1. Marr's (1982) Levels of description with direction of influence shown (arrows).
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Representation level influences algorithm choice by making certain information explicit,
making some computations easier.

Hardware level influences algorithm choice as hardware constraints make certain algorithms
more efficient.



