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Abstract 

In this paper, I address the pervasive phenomenon of individual differences in basic 

mathematical skill among adults. Within the framework outlined by Marr (1982), differences in 

mathematical skill must reflect differences at one or more of the following levels: computational 

theory (mapping), choice of representation and algorithm (solution procedure), or hardware 

implementation (brain). Research from the areas of neuroscience and cognitive psychology is 

evaluated with the goal of exploring which levels are indicative of individual differences in 

mathematical skill. 
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Determining the Locus of Individual Differences in Mathematical Skill : 

A Tri-level Hypothesis Approach 

“The greatest unsolved theorem in mathematics is why some people are better at it than others.” 

(Eves, 1998). 

Mathematics is an area rife with individual differences.  The skill l evel of elementary 

school children varies by seven years on average within a single classroom (Cockcroft, 1982).  

However, the widespread individual differences in mathematics abili ty are not simply a 

developmental phenomenon.  Educated adults have been found to show large differences in skill , 

even for single-digit facts (LeFevre, Sadesky & Bisanz, 1996; LeFevre, Bisanz et al., 1996; 

Geary, 1996).   

In the current paper, I employ a novel approach to the phenomenon of individual 

differences in basic arithmetic skill among adults.  Empirical results are explored in a framework 

developed by Marr (1982).  Marr outlines three levels at which any information processing task 

must be understood: 1) the most abstract level of what a processing device does and why, 2) how 

the device solves the problem, and 3) the hardware implementation of the device.   Marr used his 

framework to explore human vision, however many cognitive scientists have adopted the tri-

level hypothesis in various areas of research.  Dawson (1998) posits that adherence to this 

framework is a defining feature of cognitive science.   

In applying the framework to basic arithmetic, what the devise does, at an abstract level, 

involves choosing a representation of the problem. Taking as our information problem the 

mapping of two operands to a single answer (e.g. 2 and 2 to 4), the representation could take 

many forms.  Some researchers have posited a number-line representation of arithmetic facts, 

others have posited a number-chart representation, whereas still others have posited a network 
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representation (Campbell, 1995).  The second level involves choosing an algorithm to solve the 

problem.  Educated adults have been shown to use a variety of solution algorithms to solve basic 

problems (LeFevre, Sadesky & Bisanz, 1996; LeFevre, Bisanz et al., 1996; Geary, 1996).  The 

third level involves the hardware implementation, or human brain. Marr asserts that 

understanding any information processing task requires attention to each of these three levels of 

description. 

Of the three, the level that has received the greatest amount of empirical research is 

individual differences in solution procedures, or algorithms.  Experimental participants are asked 

to self report their solution procedures (i.e., asked “how did you solve the problem?”).    Such 

self-reports have shown that adults use a variety of procedures, and that many adults use multiple 

procedures to solve single-digit problems (LeFevre, Sadesky & Bisanz, 1996; LeFevre, Bisanz et 

al., 1996).  Although early results were controversial, researchers generally now accept that 

adults do not solely retrieve the answers to single-digit problems (Campbell & Timm, 2001). 

Some of the procedures commonly reported include: 

Retrieval from memory- participants often report simply knowing the answer to a 

problem, having memorized it, or that it simply popped into their head. 

Derived fact- participants frequently report using a known fact to solve another problem; 

for example, 5 x 6 = (5 x 5 = 25) + 5 = 30. 

Repeated addition- for multiplication, participants report adding one operand the number 

of times of the second operand; for example, 3 x 4 = 3 + 3 + 3 + 3 = 12. 

Counting based procedures- participants report counting to find the answer; for example, 

5 + 4 = 5, 6, 7, 8, 9. 



  Individual Differences 5  

Rules- zero rules(e.g., anything times zero is zero, anything plus zero is itself, anything 

minus zero is itself), nines rules, etc. 

Some of the reported algorithms are obviously more efficient than others.  Retrieval and 

application of a rule are generally faster (REF).  These algorithms are also more robust.  

Repeated addition, derived fact and counting strategies all require additional steps and memory, 

and thus are more time consuming and allow more opportunity for error.  The solution 

procedures used are well documented, what is not clear is why certain algorithms are selected.  

High skill ed individuals have been found to use a greater amount of retrieval, one of the most 

efficient, robust solution methods (REF), whereas low skill ed performance is more likely to 

include alternative solution methods.  

Marr (1982) states that the choice of algorithm is influenced both by the representation, 

and by the hardware.  Algorithm choice is based on the efficiency and robustness, given the 

representation and hardware constraints.  Strategy reports show that solution procedure choices 

are often neither efficient nor robust (e.g. repeated addition for large operands), especially for 

low skill ed individuals.  Siegler (1988) posits that in problem solution, a confidence criterion is 

chosen and then retrieval is attempted.  If the retrieved answer exceeds the criterion, the answer 

is given.  However, if the criterion is not met a backup procedure is applied.  Thus, use of a non-

retrieval solution procedure reflects either a high criterion, or lack of a problem-answer 

representation (i.e., the problem-answer representation is not stored in memory).  As Siegler 

could be understood in holding the hardware constant since he was studying human cognition, 

and therefore the brain, these two approaches are not so different.  However, as the purpose of 

this paper is to provide a thorough description of mathematical performance within Marr’s 
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framework, both representational and hardware influences on algorithm choice will be 

considered (see Figure 1). 

At the most abstract level, basic arithmetic performance is the mapping of two operands 

to a single answer (e.g., 2 and 2 to 4).  Both Marr and Siegler posit a role for representations in 

influencing the solution algorithm chosen.  Siegler’s (1988) model explains why a non-retrieval 

solution procedure would be chosen; the answer arrived at through retrieval does not exceed a set 

confidence criterion.  Thus, low skill ed individuals may use non-retrieval solution procedures as 

backup because they have not formed strong representations.  Marr contends that the choice of 

representation impacts the choice of algorithm significantly.  A chosen representation may make 

certain information explicit while cloaking other useful information (e.g., the relation between 

operations).  Thus, the choice of representation effects how easy it is to perform a given 

operation.  If low skill ed individuals have formed representations lacking useful information, 

their ease of computation is compromised.   

Mauro et al. (2001) have posited a hybrid-representation model of multiplication and 

division, but which could be equally expected to apply to addition and subtraction.  According to 

Mauro et al., skill ed individuals have an integrated representation of multiplication and division 

problems.  A single representation consists of a problem family (e.g., 5, 7, 35) through which one 

can find the answer to multiple problems (e.g., 5 x 7, 7 x 5, 35 / 5, 35 / 7). In contrast, low skill ed 

individuals are posited to lack division representations all together, having only multiplication 

representations through which the solution of division problems must be mediated (e.g., 35 / 7 = 

?, ? x 7 = 35, 5 x 7 = 35, 35 / 7 = 5).  Therefore, because high skill ed individuals have formed 

superior representations, the use of efficient, robust solution is supported.  However, low skill ed 
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individuals are forced to make do with inferior representations resulting in the use of less 

efficient algorithms, prone to error due to multiple steps. 

The remaining level, that of hardware implementation, is garnering an increasing amount 

of investigation with the use of positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI) technology.  Marr noted that the same algorithm may be implemented 

on different hardware and that some algorithms are better suited to different hardware 

implementations.  Thus, the hardware implementation influences the choice of algorithm in that 

it creates a set of constraints on how an algorithm can be performed.  Certain algorithms are 

better suited to different physical substrates (e.g., the brain’s parallel processing vs. a digital 

computer’s serial processing).  The current paper discusses only human performance, and thus 

the hardware implementation is necessarily the brain. PET and fMRI scans have identified the 

areas involved in mental calculation (Gruber et al., 2001; Zago et al. 2001).  Presenti et al. (2001) 

investigated the different patterns of activation for an expert and non-expert calculators using 

PET scans.  The results showed that different brain regions were activated based on skill l evel 

with increased use of right prefrontal and medial temporal regions for the expert calculator.  

Menon et al. (2000), used fMRI to investigate differences in activation among perfect and 

imperfect performers.  The results showed that perfect performers, those who achieved 100% 

accuracy, had less activation of the left angular gyrus.   

The finding of less activation, and activation within different areas in skill ed individuals 

is not specific to the mathematics domain. More generally, skill ed participants have been found 

to show the same patterns on a variety of tasks  (Jaušovec, 1998).  However, the difficulty in 

understanding the neurological evidence within this framework is that the different patterns of 

activation for low and high skill ed individuals do not necessarily imply that the structures 
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themselves are different, but may instead reflect the use of different solution algorithms.  

Alternative neurological evidence is necessary to determine if the brain structures (hardware) are 

in fact different among high and low skill ed individuals.  

The current paper investigated individual differences in mathematical skill within Marr’s 

tri-level framework. This framework set the stage for an investigation of the influences on 

algorithm choice, a well-documented phenomenon lacking satisfying explanation.  An 

interdisciplinary literature review provided insight into two influences on solution procedure 

choice 1) differences in representations formed, and 2) possible neural differences.  An 

interdisciplinary assault with attention to multiple levels of description would seem to be the best 

approach to fully understanding the phenomenon of individual differences in mathematical skill .  

More specifically, further research into the neurological substrates for low and high skill ed 

individuals, and psychological research into the representations formed by low and high skill ed 

individuals (in the vein of Mauro et al., 2001) may ultimately solve the “greatest unsolved 

theorem in mathematics”(Eves, 1998) and lead to methods of improving mathematics 

performance.
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Figure 1.  Marr’s (1982) Levels of description with direction of influence shown (arrows).  
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Representation level influences algorithm choice by making certain information explicit, 
making some computations easier. 
 
Hardware level influences algorithm choice as hardware constraints make certain algorithms 
more efficient. 
 


