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Abstract 
The systems biology community is building increasingly complex models and simulations of 

cells and other biological entities, and are beginning to look at alternatives to traditional 

representations such as those provided by ordinary differential equations (ODE). The lessons 

learned over the years by the software development community in designing and building 

increasingly complex telecommunication and other commercial real-time reactive systems, can be 

advantageously applied to the problems of modeling in the biology domain. Making use of the 

object-oriented (OO) paradigm, the Unified Modeling Language (UML) and Real-time Object-

Oriented Modeling (ROOM) visual formalisms, and the Rational Rose RealTime (RRT) visual 

modeling tool, we describe a multi-step process we have used to construct top-down models of 

cells and cell aggregates. The simple example model described in this paper includes membranes 

with lipid bilayers, multiple compartments including a variable number of mitochondria, substrate 

molecules, enzymes with reaction rules, and metabolic pathways. We demonstrate the relevance 

of abstraction, reuse, objects, classes, component and inheritance hierarchies, multiplicity, visual 

modeling, and other current software development best practices. We show how it is possible to 

start with a direct diagrammatic representation of a biological structure such as a cell, using 

terminology familiar to biologists, and by following a process of gradually adding more and more 

detail, arrive at a system with structure and behavior of arbitrary complexity that can run and be 

observed on a computer. We discuss our CellAK (Cell Assembly Kit) approach in terms of 

features found in SBML, CellML, E-CELL, Gepasi, Jarnac, StochSim, and Virtual Cell. 
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1. Introduction 
Researchers in bioinformatics and systems biology are increasingly using computer models and 

simulation to understand complex inter- and intra-cellular processes. The principles of object-

oriented (OO) analysis, design, and implementation, as standardized in the Unified Modeling 

Language (UML), can be directly applied to top-down modeling and simulation of cells and other 

biological entities. This paper describes the process of how an abstracted cell, consisting of 

membrane-bounded compartments with chemical reactions and internal organelles, can be 

modeled using tools such as Rational Rose RealTime (RRT), a UML-based software 

development tool. The resulting approach, embodied in CellAK (for Cell Assembly Kit), 

produces models that are similar in structure and functionality to those that can be specified using 

the Systems Biology Markup Language (SBML) (Hucka et al., 2003a; Hucka et al., 2003b), and 

CellML (Hedley et al., 2001), and implemented using E-CELL (Tomita et al., 1999), Gepasi 

(Mendes, 1993; Mendes, 1997), Jarnac (Sauro, 2000), StochSim (Morton-Firth & Bray, 1998), 

Virtual Cell (Schaff et al., 2000; Loew & Schaff, 2001; Slepchenko et al., 2002), and other tools 

currently available to the biology community. We claim that this approach offers greater potential 

modeling flexibility and power because of its use of OO, UML, ROOM, and RRT. The OO 

paradigm, UML methodology, and RRT tool, together represent an accumulation of best practices 

of the software development community, a community constantly expected to build more and 

more complex systems, a level of complexity that is starting to approach that of systems found in 

biology. 

All of these approaches listed in the previous paragraph make a fundamental distinction between 

structure and behavior. This paper deals mainly with the top-down structure of membranes, 

compartments, small molecules, and the relationships between these, but also shows how bottom-

up behavior of active objects such as enzymes, transport proteins, and lipid bilayers, is 

incorporated into this structure to produce an executable program. 
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We do not use differential equations to determine the time evolution of cellular behavior, as is the 

case with most of the cell modeling systems described in this paper. Differential equations find it 

difficult to model directed or local diffusion processes and subcellular compartmentalization 

(Khan, et al., 2003) and they lack the ability to deal with non-equilibrium solutions. Further, 

differential equation-based models are difficult to reuse when new details are added to the model. 

CellAK more closely resembles Cellulat (Gonzalez et al., 2003) in which a collection of 

autonomous agents (our active objects – enzymes, transport proteins, lipid bilayers) act in parallel 

on elements of a set of shared data structures called blackboards (our compartments with small 

molecule data structures). The dynamics of a CellAK model result from messages passing 

between active objects. Agent-based modeling of cells is becoming an area of increasing research 

interest (Gonzalez et al., 2003; Khan, et al., 2003) owing in no small measure to the desire to 

understand cellular processes at an increasing level of detail.   

This paper describes a process that starts with the identification of biological entities and their 

relationships with each other, progresses through the gradual addition of details, and ends with an 

executable program that simulates biochemical pathways. This relatively simple process can be 

used to model any chemical-like system that involves active objects transforming and moving 

passive small molecules, such as cells, a circulatory system, neural circuits, or organisms. We 

believe this process to be superior to other modeling approaches owing to its use of standard 

techniques from software engineering, the visual nature of the modeling process and the 

significant potential for reuse of the model components. 

The remainder of the paper is organized as follows. Section 2 introduces object-oriented concepts 

by discussing a eukaryotic cell. Section 3 introduces UML, formalizing the example introduced in 

section 2. Section 4 describes the principal concepts behind the Real Time Object Oriented 

Methodology (ROOM). Having described ROOM, section 5 provides details of a process used in 

CellAK for cell modeling. Section 6 provides an extended discussion of the model created, 
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contrasting it with prior art. In section 7, future work is described and the paper concludes with 

key messages in section 8. 

2. Object-Oriented (OO) Paradigm 
The process of software development has evolved considerably in the last 20 years. The current 

more generally accepted paradigm for commercial software development is called the object-

oriented approach, which includes OO analysis and design methodologies, and OO programming 

languages such as Java and C++. OO replaced the earlier imperative paradigm in which a 

computer program was thought of as a system of procedures calling other procedures. 

An OO object is a software entity that encapsulates or hides its own internal details or attributes. 

The scope of an internal attribute is such that it is only known within the object rather than at the 

global level as was typically the case with the older paradigm. For example, an Organelle object 

should not allow any other object in the system, such as EukaryoticCell or other instances of 

Organelle, to directly manipulate its private internal structure. Objects are a way of breaking the 

system into a manageable set of modules that can be developed and tested by individuals, and 

integrated into a larger system being developed by a team. Some objects are typically contained 

within other objects, resulting in a containment hierarchy. 

The OO concept of class allows multiple instances of the same type of object to be created. For 

example, a cell model may need many instances of the Organelle class. A class is defined once 

and reused as many times as needed. This creates abstractions that can be reused as parts of larger 

abstractions, and also allows for multiplicity (multiple instances of a class). 

Subclasses allow developers to explicitly capture what two objects have in common through 

inheritance from a superclass, as well as how they are different. Mitochondrion and Chloroplast 

objects, two subclasses of Organelle, both encapsulate a functionality that can be used by 

EukaryoticCell, but that differs in the details. 
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3. Unified Modeling Language (UML) 
Starting in the late 1980s various individuals and software development communities developed 

their own graphics-based methods for object-oriented analysis and design. These methods became 

increasingly necessary as computer systems became more and more complex, and it was no 

longer possible to simply sit down at a computer workstation and start entering lines of code in 

some computer programming language. In the mid 1990s Grady Booch, Jim Rumbaugh, and Ivar 

Jacobson merged their slightly different approaches into a common Unified Modeling Language 

(UML). The UML standardization process is managed by the Object Management Group (OMG) 

(OMG, 2003). It is standard practice in the computer industry to present analysis, design, and 

implementation models of a system, using the UML common visual notation (Booch et al., 1998). 

Figure 1 shows a UML class diagram that specifies the simple system used as an example in the 

previous section on the OO paradigm. The connecting line with unfilled triangle from the 

Mitochondrion and Chloroplast subclasses to 

Organelle is the symbol for inheritance in UML. Any 

number (multiplicity of 0..*) of Mitochondrion and 

Chloroplast objects can be created within 

EukaryoticCell. The connecting line with filled 

diamond from Organelle to EukaryoticCell is the 

symbol for containment in UML. Functions 

associated with classes are also defined; e.g. 

generateATP() in the Mitochondrion class. 

U

B

f

N

Figure 1 - Simple example system. 
ML is starting to be used to a limited extent within the biology community. The Systems 

iology Markup Language (SBML) specification documents use many UML diagrams to 

ormalize the SBML data structures (Hucka et al., 2003). 

There are three main advantages to using UML as a basis for defining SBML 
data structures. First, compared to using other notations or a programming 
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language, the UML visual representations are generally easier to grasp by readers 
who are not computer scientists. Second, the visual notation is implementation-
neutral: the defined structures can be encoded in any concrete implementation 
language—not just XML, but C or Java as well. Third, UML is a de facto 
industry standard that is documented in many sources. Readers are therefore 
more likely to be familiar with it than other notations. (Hucka et al, 2003, p.3) 

 

However, although biotechnology tools are being written in OO programming languages such as 

Java and C++, and although some tools such as Virtual Cell (NRCAM, 2003) and E-CELL 

(Takahashi et al., 2002, p.68) are expressing their OO software design using UML, the end user 

interfaces of these systems do not make use of OO and UML concepts. Because cells and other 

biological entities naturally exhibit the principles embodied in OO and UML, at least when 

viewed from a top-down perspective, it makes sense to use these computer approaches when 

modeling cells. 

As efforts go forward to develop whole-cell (Tomita, 2001) and other increasingly complex 

models containing multiple compartments, biologists will encounter many of the same issues 

such as scalability that led the software development community to develop and use graphics-

based formalisms such as UML.  

This paper will present examples of a number of UML diagram types and visual notations used in 

these diagrams. This paper does not present a comprehensive review of UML, providing only 

sufficient information to clarify modeling concepts and diagrams. 

4. The ROOM formalism and the Rational Rose RealTime tool 
David Harel, originator of the hierarchical state diagram (statecharts) formalism used today in 

UML (Harel, 1987), and an early proponent of visual formalisms in software analysis and design 

(Harel, 1988), has argued that biological cells and multi-cellular organisms can be modeled as 

reactive systems using real-time software development tools (Harel, 2002; Kam, Harel et al., 

2003). Two such commercially-available tools are I-Logix Rhapsody (I-Logix, 2003), and 
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Rational Rose RealTime (Rational Software, 2003), the latter being used to implement the system 

described in this paper. 

Reactive systems are those whose complexity stems not necessarily from 
complicated computation but from complicated reactivity over time.  They are 
most often highly concurrent and time-intensive, and exhibit hybrid behavior that 
is predominantly discrete in nature but has continuous aspects as well. The 
structure of a reactive system consists of many interacting components, in which 
control of the behavior of the system is highly distributed amongst the 
components.  Very often the structure itself is dynamic, with its components 
being repeatedly created and destroyed during the system’s life span. (Kam, 
Harel et al., 2003, p.5) 

 

Rational Rose RealTime (RRT) is a visual design and implementation tool for the production of 

telecommunication systems, embedded software, and other highly-concurrent real-time systems. 

It combines the features of UML with the real-time specific features and visual notation of the 

Real-time Object-Oriented Modeling (ROOM) (Selic et al., 1994). A RRT application’s main 

function is to react to events in the environment, and to internally-generated timeout events, in 

real-time. 

Software developers design software with RRT by decomposing the system into an inheritance 

hierarchy of classes and a containment hierarchy of objects, using UML class diagrams. Each 

architectural object, or capsule as they are called in RRT, contains a UML state diagram that is 

visually designed and programmed to react to externally-generated incoming messages (generated 

within other capsules or sent from external systems), and to internally-generated timeouts. 

Messages are exchanged through ports defined for each capsule. Ports are instances of protocols, 

which are interfaces that define sets of related messages. All C++, C, or Java code in the system 

is executed within objects’ state diagrams, along transitions from one state to another (which may 

be a self-transition to the same state). An executing RRT system is therefore an organized 

collection of communicating finite state machines. The RRT run-time scheduler guarantees 

correct concurrent behavior by making sure that each transition runs all of its code to completion 

before any other message is processed. 
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The RRT design tool is visual. During design, to create the containment structure, capsules are 

dragged from a list of available classes into other classes. For example, the designer may drag an 

instance of Nucleus onto the visual representation of EukaryoticCell, thus establishing a 

containment relationship. This naturally mirrors the view understood by the biologist, making the 

model far more accessible when compared to a differential equation-based formulation. 

Compatible ports on different capsules are graphically connected to allow the sending of 

messages. UML state diagrams are drawn to represent the behavior of each capsule. Other useful 

UML graphical tools include use case diagrams, and sequence diagrams. External C++, C, or 

Java classes can be readily integrated into the system. 

The developer generates the executing system by making a selection from a menu. RRT generates 

all required code from the diagrams, and produces an executable program. The executable can 

then be run and observed using the design diagrams to dynamically monitor the run-time structure 

and behavior of the system. 

The powerful combination of the OO paradigm as embodied in the UML and ROOM visual 

formalisms with the added flexibility of the C, C++ or Java programming languages, bundled 

together in a development tool such as RRT, provide much that is appropriate for biological 

modeling. Models are much more accessible to non-mathematicians using this formalism. 

To summarize, benefits of the CellAK methodology that are of use in cell and other biological 

modeling that have been identified so far in this paper include: support for concurrency and 

interaction between entities, scalability to large systems, use of inheritance and containment to 

structure a system, ability to implement any type of behavior that can be implemented in C, C++ 

or Java, object instantiation from a class, ease of using multiple instances of the same class, and 

subclassing to capture what entities have in common and how they differ. Examples of capsules, 

protocols, ports, and the various diagrams and concepts mentioned in this section, will be 

provided in subsequent sections of this paper. 
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5. Process 
This paper will present a simple process that has been used to develop cellular models. The 

process has five iterated steps. Each step has a number of sub-steps. These steps and the 

principles behind them have been adapted loosely from a number of computer industry sources 

(Quatrani, 1998; Kruchten, 2000).  

The design methodology presented here is top-down rather than bottom-up, but as we will see the 

run-time dynamics can be much more bottom-up. A cell is considered as an entity that consists of 

various compartments, each containing active objects that act chemically on various types and 

quantities of small molecules. An active object is defined here as a RRT capsule that acts in a 

biologically-plausible manner on some substrate molecule or set of substrates, possibly located in 

multiple compartments. Each compartment may contain other compartments to any arbitrary 

depth. 

Abstraction is an important principle of software development. Start by identifying entities that 

exist in the application domain, in this case cellular biology. For example, think in terms of 

membranes, enzymes, organelles, and small molecules rather than computer-centric processes. 

These are the types of entities that would appear in a cell biology textbook (Becker, 1996). 

Consider how these entities relate to each other. At this point, pay minimal attention to 

considerations of how these will actually be implemented in lines of software code. Start with a 

high level of abstraction, and gradually add detail until the final concrete system is ready to be 

executed. UML allows an initial application-level model (such as at the level of biology) to be 

gradually evolved into a design, and then a programming language implementation. 

The five-step CellAK process described here has been successfully used to develop models and 

executing simulations of cells and of cell aggregates. A simple cell model is used to motivate the 

discussion for each step. This process can be used to develop models and simulations using a 

variety of software development languages and tools. 
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Step 1: Identify entities, inheritance and containment hierarchies 
The first step can be divided into three sub-steps: 

1. Identify entities in the problem domain (biology), 

2. Identify inheritance relations between these entities, and 

3. Identify containment relations between them. 

The purpose of the small example system described here will be to model and simulate metabolic 

pathways, especially the glycolytic pathway that takes place within the cytoplasm, and the TCA 

cycle that takes place within the mitochondrial matrix. It should also include a nucleus to allow 

for the modeling of genetic pathways in which changes in the extra cellular environment can 

effect changes in enzyme and other protein levels. The model should also be extensible, to allow 

for specialized types of cells. 

Figure 2 shows a set of candidate entities organized into an inheritance hierarchy, drawn as a 

UML class diagram using RRT. These are only candidate entities because further analysis may 

uncover other entities that should be included, or some of these may prove unnecessary. The lines 

with a triangle at one end are standard UML notation for inheritance. Erythrocyte and 

NeuronCellBody are particular specializations of the more generic EukaryoticCell type. 

CellBilayer, MitochondrialInnerBilayer, and MitochondrialOuterBilayer are three of potentially 

many different subclasses of LipidBilayer. These three share certain characteristics but typically 

differ in the specific lipids that constitute them. 
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Figure 2 - Set of entities organized into an inheritance UML class diagram. 
he figure also shows that there are four specific Solution entities, each of which contains a mix 

f small molecules dissolved in the Solvent water. All entity classes are subclasses of BioEntity. 

his will make it possible in a later design stage for instances of each class to share programming 

ode such as the ability to display information about themselves, or the ability to be scheduled at 

ome regular interval. For now these are just potentialities we are setting up by making 

verything a subclass of BioEntity. 
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Figure 3 shows a different hierarchy, that of containment. This UML class diagram shows that at 

the highest level, a EukaryoticCell is contained within an ExtraCellularSolution. The 

EukaryoticCell in turn contains a CellMembrane, Cytoplasm, and a Nucleus. This reductionist 

decomposition continues for several more levels. It includes the dual membrane structure of a 

Mitochondrion along with its inter-membrane space and solution and its internal matrix space and 

solution. Part of the inheritance hierarchy is also shown in these figures. Each Membrane contains 

a LipidBilayer, but the specific type of bilayer (CellBilayer, MitochondrialInnerBilayer, 

N

 

Figure 3 - The containment hierarchy as a UML class diagram. 
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MitochondrialOuterBilayer) depends on which type of membrane (CellMembrane, 

MitochondrialInnerMembrane, MitochondrialOuterMembrane) it is contained within. 

The UML class diagram, Figure 3 has been annotated with text to show which entities (the four

Solution subclasses identified in the inheritance hierarchy) will contain small molecules (SM) 

such as glucose, pyruvate, and the other substrates and products of the metabolic pathways that 

are part of this simulation. Small molecules are captured in the model as a pair of passive (non-

capsule) classes (SmallMolecules containing multiple instances of SmallMolecule, one instan

for each type such as glucose or pyruvate). The three entity types identified as active objects 

(Enzyme, PyruvateTransporter, LipidBilayer) will act on

 

ce 

 the small molecules to create a dynamic 

metabol

f ROOM ion as in 

es 

ances of Cytosol, Mitochondrion, and Enzyme into the rectangle that represents 

 of 

(nEnzPerMatrix). 

Multiplicities can range from 0 to hundreds or even thousands of instances. 

ism. That dynamics will be described in step 4. 

Figure 4 shows a set o  capsule structure diagrams that present the same informat

the UML diagram of Figure 3, but laid out as a series of nested rectangles. The software 

developer creates a new entity by dragging and dropping existing entities from a list in a browser 

to a space that represents the new container. For example, to create the Cytoplasm class requir

dragging inst

Cytoplasm. 

There will typically be many enzyme types active at the same time, so a multiplicity factor 

nEnzPerCyt (number of enzymes per cytoplasm) is declared, the specific value of which can be 

delayed until later. The model includes several other multiplicity factors including the number

EukaryoticCell instances in ExtraCellularSolution (nEukCell), the number of Mitochondrion 

instances in Cytoplasm (nMito), and the number of Enzyme types in Matrix 
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Figure 4 - The containment hierarchy as a set of ROOM capsule structure diagrams 
he result of step 1 is often called a Domain Model, especially if it incorporates a large number 

f entities belonging to one domain, in this case biology, that can later be used to build many 

eparate models. 

nce the architectural structure is in place, the more fine-grained structure of the small molecules 

an be specified, again using UML. In CellAK, each type of small molecule is an instance of the 

ubstrate class (a C++ class rather than a RRT capsule) which contains a count of the number of 

olecules of that molecule type (from 0 to 1015), and also contains operations to increase ( 

nc(amount) ) and decrease ( dec(amount) ) the count by a designated amount and to get ( 
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(get() ) and set ( set(amount) ) the current value of the count. A separate SmallMolecules 

class includes an array or dictionary of all the possible types of small molecules that may be 

found in a CellAK model. 

Step 2: Establish relationships between entities 
 The second step involves several sub-steps, which would typically be done in parallel: 

1. Identify adjacency and other relationships between capsules (relationships not identified in 
step 1), 

2. Identify and specify protocols (interaction types between entities), 

3. Create ports (instances of protocols) on capsules, and 

4. Connect ports using connectors. 

This step establishes the adjacency structure of the biological and chemical entities in the system, 

and their potential for interaction. In a EukaryoticCell, CellMembrane is adjacent to and interacts 

with Cytoplasm, but is not adjacent to and therefore cannot interact directly with Nucleus. 

Interactions between CellMembrane and Nucleus must occur through Cytoplasm. In many cases 

the static layout defined in step 1 suggests which entities will interact, but not in all cases. For 

example, within 

MitochondrialInnerMembrane, both 

LipidBilayer and PyruvateTransporter 

are adjacent and could in theory 

interact with each other, but this will 

not be allowed in the simple 

simulation described here. It is 

important to have a structural 

architecture that will place those 

things adjacent to each other that need 

to be adjacent, so they can be allowed 

to interact. 

 

Figure 5 – Configuration and Adjacency Protocols.
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A protocol is a specific set of messages that can be exchanged between capsules to allow 

interaction. Figure 5 is a RRT dialog that shows the two protocols used in the sample system. The 

Configuration protocol has two signals - ConfigSig and MRnaSig. When the simulation starts, the 

Chromosome within the Nucleus sends a ConfigSig message to the Cytoplasm, which will 

recursively pass this message to all of its contained capsules. The contents of this message is a 

reference to a structure, specific to this cell, that defines the genome, the quantities of the various 

small molecules, and other starting conditions. When an active object such as an Enzyme receives 

the ConfigSig message, it determines its type and takes on the characteristics defined in the 

genome for that type. When a Solution such as Cytosol receives the ConfigSig message, it 

extracts the quantity of the various molecules that it contains, for example how many glucose and 

how many pyruvate molecules. In addition to being passed as messages through ports, 

configuration information may also be passed in to a capsule as a parameter when it is created. 

This is how the entire Mitochondrion containment hierarchy is configured. In this approach, 

Nucleus is used for a purpose in the simulation that is similar to its actual role in a biological cell. 

The MRnaSig (messenger RNA signal) message can be used to reconfigure the system by 

creating new Enzyme types and instances as the simulation evolves over time. 

The Adjacency protocol allows configured capsules to exchange messages that will establish an 

adjacency relationship. Capsules representing active objects (Enzymes, PyruvateTransporter and 

other types of TransportProtein, LipidBilayer) that engage in chemical reactions (to be described 

in step 4) by acting on small substrate molecules, will send SubstrateRequest messages. Capsules 

that contain small molecules (types of Solution such as Cytosol, ExtraCellularSolution, 

MitochondrialIntermembranesol, Matrixsol) will respond with SubstrateLevel messages. 

Figure 6 is a RRT capsule structure diagram that shows EukaryoticCell and its three contained 

capsules with named ports and connector lines between these ports. The ports are added by 

dragging from the protocol symbol in a browser window to the capsule structure diagram. The 
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ports whose names begin with adj are instances of the Adjacency protocol, while config and 

configM are instances of the Configuration protocol. The color of the port (black or white) 

indicates the relative direction (in or out) of message movement. 

Figure 7 shows the final result once all protocols, ports and connectors are in place. This figure 

continues the step-by-step progression 

that has led from identifying biological 

entities, through organizing these entities 

into inheritance (Figure 2) and 

containment (Figure 3) hierarchies, 

creating capsule structure diagrams 

(Figure 4), identifying adjacency and 

genetic configuration relationships and 

specifying these as protocols (Figure 5), 

to creating instances of these protocols as 

ports and connecting the ports using 

connectors. The structural architecture of 

the system is now complete. By 

f

e

a

m
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Figure 6 - The three contained capsules within 
the EukaryoticCell capsule structure diagram. 
The capsules are connected through ports that 
are instances of the two protocols shown in 
Figure 5. 
igure 7ollowing the series of connector lines between capsules in F , you can confirm which 

ntities are in an adjacency relationship with which other entities. For example, the lipidBilayer 

nd pyruvateTransporter capsules within MitochondrialInnerMembrane are both adjacent to the 

itochondrialIntermembranesol and matrixsol capsules. 

ovember 2003 17  



 

Figure 7 - The complete structure of the sample model, with all capsules, ports, and 
connectors. This is an enhancement of Figure 4, with additional details added. 
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Step 3: Define external and internal behavior patterns 
The third step adds behavior to the existing structure. 

1. Define the desired behavior of the system by specifying patterns of message exchange 
between capsules, and 

2. Define the detailed behavior of each capsule using state diagrams, the combined effect of 
which will produce this desired overall pattern of message exchange. 

 

Figure 8 is a UML sequence diagram that shows the adjacency configuration processing that 

would be expected to occur in the small system described in this paper. Capsule instances are 

shown at the top of the diagram, annotated with AO (active object) or SM (container for small 

molecules). When it starts up, each active object sends a SubstrateRequest message out each of its 

adj ports (instances of the Adjacency protocol). If a port is connected to a capsule such as a 

Solution that contains small molecules, that capsule will respond with a SubstrateLevel message 

containing a reference to its small molecule data structure. Each enzyme (enzyme_1 to 

enzyme_N), plus cellBilayer and mitochondrialOuterBilayer, sends a SubstrateRequest to 

Cytosol. Cytosol responds with SubstrateLevel messages containing the reference pSM. Time in a 

sequence diagram is represented by the thin line pointing downward from each capsule instance. 
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Figure 8 - Adjacency configuration as a UML sequence diagram.The diagram is split into 
two parts so it will fit on the page. 
he resulting reference structure for the entire system is shown in F . This is exactly the 

ame diagram as Figure 7, with two types of configured reference structures superimposed, one 

epresenting adjacency, and the other representing the influence of genes. LipidBilayer and 

yruvateTransporter both point to the small molecule data structures within both 

itochondrialIntermembranesol and matrixsol. Because there are multiple instances of 

ukaryoticCell, Mitochondrion, and Enzyme, some of the pointers have double arrow heads to 

raphically represent this multiplicity. The instances of LipidBilayer also point to an internal 

mall molecule data structure that contains the lipids that they are composed of, allowing for lipid 

reation in the Cytoplasm, lipid transport, and disintegration to be modeled. 

igure 9

n the sample model, the glycolytic pathway is implemented through the multiple enzymes within 

ytoplasm, all acting concurrently on the same set of small molecules within Cytosol. The TCA 

etabolic pathway is similarly implemented by the concurrent actions of the multiple enzymes 

ovember 2003 20  



within Matrix acting on the small molecules of the Matrixsol. Movement of small molecules 

across membranes is implemented by the various lipid bilayers. For example, lipidBilayer within 

MitochondrialOuterMembrane transports pyruvate from the Cytosol to the 

MitochondrialIntermembranesol, and pyruvateTransporter within MitochondrialInnerMembrane 

transports pyruvate across this second membrane into the Matrixsol. 

Figure 9 also shows the influence of the genes. Each enzyme, transporter, and other protein, is 

configured to reference a detailed description of its functionality. The description is contained 

within a table of gene data residing within the Chromosome object inside the Nucleus. 
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November 
 

e 9 - Structure of the entire system with references from active objects (AO) to 
artments that contain small molecules (SM), and to the genes that reside at the 

Chromosome. 
 shows the UML state diagram representing the behavior of an Enzyme active object. 

t created, it makes the initialize transition, the line from the large grey circle in the 

to the Waiting state. As part of this transition it executes a line of C++ code 
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adj.SubstrateRequest().send();  that sends a message out its adj port. When it 

subsequently receives a SubstrateLevel response message through the same adj port, it stores the 

pSM reference that is part of that message, creates a timer so that it can be invoked at a regular 

interval, and makes the transition to the Active state. 

The state diagrams for lipid bilayers and transport proteins are much the same, but include 

additional states because they need to connect to two small molecule containers, one inside and 

the other outside. 

F
dr  

Step 4: Implement detailed behavior 
The fourth step involves adding C++ programming 

language code to the state diagrams. The two types of 

configuration, adjacency and gene configuration, come 

together at runtime as each active object repeatedly 

times out at discrete intervals (the timeCourse transition 

shown on Figure 10) to perform its simple processing. 
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igure 10 - Enzyme behavior 
awn as a UML state diagram.
me reactions can take various forms. In this paper, we consider the simplest case, in which 

zyme irreversibly converts a single substrate molecule into a different product molecule. By 

rsible is meant that the enzyme cannot also convert the product into the substrate. More 

lex reactions include combining two substrates into one resulting product, splitting a single 

rate into two products, and making use of activators, inhibitors, and coenzymes. These more 

lex reaction types have been implemented in CellAK using the same approach as shown in 

, but are not discussed further in this paper. e 11

 C++ code in Figure 11, which implements irreversible Michaelis-Menten kinetics (Becker, 

 p.148+; Mendes, 2003) sm->  is a reference to the SmallMolecule data structure that in 

ase is located in Cytosol, while gene->  refers to a specific gene in the Chromosome. All 
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processing by active objects makes use of these two types of data, data that they know about 

because of the two types of message exchange that occur during initial configuration. 

1 // Irreversible, 1 Substrate, 1 Product, 0 Activator, 0 Inhibitor, 0 Coenzyme 
2 case Irr_Sb1_Pr1_Ac0_In0_Co0: 
3   s = sm->molecule[gene->substrateId[0]].get(); 
4   nTimes = enzymeLevel * ((gene->substrateV * s) / (gene->substrateK + s)); 
5   sm->molecule[gene->substrateId[0]].dec( nTimes ); 
6   sm->molecule[gene->productId[0]].inc( nTimes ); 
7   break; 

Figure 11 - One of many possible Enzyme reaction types, as implemented in C++. 

Figure 11

 

The gene in CellAK is encoded as a set of features that includes protein kinetic constants. For 

example, in , gene->substrateV refers to V the upper limit of the rate of reaction, 

and gene->substrateK is the Michaelis constant Km that gives the concentration of the 

substrate molecule s at which the reaction will proceed at one-half of its maximum velocity. 

The Gepasi software package (Mendes, 1997) performs the same processing using ODEs. Gepasi 

implements irreversible Michaelis-Menton kinetics by operating on the following formula 

(Mendes, 2003): 

              V * S 
          v = ────── 
              Km + S 
 
 
where v is the amount of change in the quantity of the substrate and product, and S is the initial 

quantity of substrate. This formula is implemented on line 4 of Figure 11.  

The reaction rules could be as simple or as complex as needed. Because RRT can incorporate 

existing C, C++ or Java code, the reaction rules could make use of existing code from other 

biochemistry modeling tools. The combined action of multiple reaction rules over time results in 

the two metabolic pathways that are part of the simple example model. These are the glycolytic 

pathway and the TCA cycle. 

In larger models using CellAK, containing 1000+ cells and varying numbers of organelles, the 

timeCourse transition shown in Figure 10 has been replaced with a simple scheduler 
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implemented in C++. Each active object registers with the scheduler as part of its substrateLevel 

transition, and is subsequently directly invoked at a regular interval. 

Step 5: Validate 
The main focus in CellAK has been on a qualitative model, but this approach also provides 

quantitative results which very closely approximate those computed using Gepasi, a tool that does 

claim to produce accurate quantitative results. In addition to the practical value of having CellAK 

generate accurate results, these also help to validate its design and implementation. 

A simplified Glycolytic Pathway model was run in parallel using CellAK and Gepasi. The model 

includes the ten standard enzymes of glycolysis, and the eleven standard substrate and product 

metabolites (Becker, p. 308). All enzymes are implemented as irreversible, and there are no 

activators, inhibitors or coenzymes. Nine of the enzyme reactions convert one substrate into one 

product. The sole exception is the fourth enzyme reaction (Aldolase) that converts one substrate 

(Fructose-1,6-biphosphate) into two products (DihydroxyacetonePhosphate and Glyceraldehyde-

3-phosphate). The units of time in both models are seconds, but more realistically should be 

thought of simply as discrete timesteps. 

The results of this experiment are shown in Figure 12. Initially there are 1000000 units of each 

metabolite. Over the course of the simulation, during 1000 timesteps, for ten out of the eleven 

metabolites, the difference between the CellAK and Gepasi reults is never greater than 0.005%. 
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Figure 12 – Percentage Difference between Gepasi and CellAK Results 

 

here is continuously more Glucose in the CellAK model with the passage of time than in the 

epasi version. In CellAK the cell bilayer constantly replenishes the amount of Glucose in the 

ytosol by transporting it at a low rate from the extra cellular solution. This low rate, as currently 

mplemented, is not sufficient to keep the Glucose quantitty constant in the cytosol. In both the 

epasi and CellAK results, the Glucose level decreases from 1000000 to around 900000 (900160 

epasi, 903893 CellAK) after 1000 seconds. 

. Discussion 

ny model or simulation of a cell must take into account two separate architectures. The first is 

he top-down containment structure - the membranes, the solutions such as Cytosol, the small 

olecules, and the active objects such as enzymes. The other architecture is the bottom-up 

ehavior - the dynamic reactions between molecules, and the rules and parameters that define 

hese reactions.  
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OO, UML, ROOM and RRT make a fundamental distinction between structural modeling and 

behavioral modeling of computer systems (Selic et al., 1994; Harel, 2001, p.55). Feitelson and 

Treinin (2002, p.34) suggest a biological parallel when they state that "the particulars of many 

cellular structures seem not to be encoded in DNA, and they are never created from scratch; 

rather, each cell inherits templates for these structures from its parent cell." Some cellular 

structure (a hierarchy of cell and organelle compartments with collections of small molecules) 

must exist before the DNA-encoded enzymes and other proteins can carry out their behavioral 

work. This structure represents a slow evolution over many millions of years, and it also 

represents the constraints that physics and chemistry enforce on the otherwise open-ended realm 

of possibilities. The behavior comes about through a process of Darwinian evolution and involves 

the genes. This is reflected in the need to separately specify both structure (capsules, 

compartments, components; and objects, molecular species, small molecules) and behavior (state 

machines, operations, rules, reactions) in the startup configuration data for all the computer 

systems mentioned in this paper. Table 1 shows the terminology employed by each of these 

systems. In each case, behavior operates on objects (fine-grained structural elements) within a 

structural architecture.  

System Structure 
Architectural 

Structure 
Fine-grained 

Behavior 

UML, 
ROOM/RRT 

capsule structure attributes, data objects state machine behavior, 
operations 

CellAK capsule hierarchies small molecule objects active object operations, 
gene-specified parameters

SBML compartments species reactions, rules 

E-CELL cell components substances reaction rules 

Gepasi compartments metabolites reactions, kinetics 

Jarnac compartments species nodes reactions 

Virtual Cell regions species reactions, fluxes 

CellML components, groups variables reactions, math 

Table 1 - The terminology used by the various computer systems described in this paper differs 
somewhat, but they all share the same underlying concepts, including a fundamental distinction 
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between structure and behavior, and a secondary distinction between structural architecture and 
fine-grained structure. 

 

Each approach mentioned in this paper has mechanisms to deal with each of these architectures, 

and with how the two come together at run-time. CellAK, with its OO, UML and RRT roots, 

focuses primarily on the structural architecture, but does provide a simple mechanism to simulate 

the time evolution of any number of chemical reactions occurring concurrently within and 

between an arbitrary number of compartments. Tools such as Gepasi, with their roots in 

biochemistry and differential equation modeling, focus primarily on the moment-by-moment time 

evolution of the behavioral architecture, but also provide varying amounts of support for aspects 

of the complex structural architecture. In CellAK, reaction modeling is implemented using 

message passing and Michaelis-Menton kinetics are coded directly into the message processing 

behaviour. Interactions between biological elements are, therefore, directed, as messages are 

passed from one active object to another. This makes it possible to model very detailed, localized 

phenomena in the cell, which are extremely difficult to capture in a differential equation 

representation. Modeling using message passing also makes it straightforward to introduce new 

components to the containment hierarchy, as existing interactions are unaffected by the 

introduction. This is considerably harder with a differential equation representation as extreme 

care must be taken when adding, removing or modifying terms in the dynamical equations for the 

system. Stated another way, CellAK separates containment and interaction; differential equations 

do not. 

The scope or namespace mechanism is standard in software development. An object (or attribute) 

called pyruvate can be simultaneously used within two or more parts of the system, and refer to a 

different entity in each case. If there are pyruvate molecules in Cytosol, 

MitochondrialIntermembranesol, and Matrixsol, all three can simply be called pyruvate and do 

not need to be distinguished by using separate names such as pyruvateCyt, pyruvateInt, and 
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pyruvateMtrx. In an OO system each object is automatically scoped, has its own namespace. This 

is not true with many of the biochemistry modeling tools. E-CELL, Gepasi, Jarnac and StochSim 

do not appear to support a scope or namespace mechanism. All entities are globally scoped and 

belong to the same global namespace. All four of these tools do allow for multiple compartments, 

but the molecular species within each compartment must be given separate names. None of these 

tools can be said to support objects in the OO sense of entities that encapsulate or hide their 

contents. 

The SBML and CellML specifications are neutral on the issue of scoping and namespaces. 

Models can be represented in either of these two markup language syntaxes, with the same 

molecular species name such as pyruvate appearing in more than one compartment. The 

semantics of the modeling tool that reads the SBML or CellML file may allow for separate 

namespaces, or it may concatenate the species and compartment names to derive globally unique 

names. 

None of the biochemistry modeling tools support the OO concepts of class and inheritance. There 

is no mechanism to define a type or class of entity such as Mitochondrion, and then make use of it 

in more than one part of the model by simply naming its type. CellML does provide a simple 

class-like reuse mechanism through its ability for one file to import another file. None of the 

modeling tools provide a concept of subclass, or of a multiplicity of objects of the same type. 

CellAK, as an OO system, does make use of classes, static and dynamic instantiation of objects 

from classes, subclasses, and multiplicity. Once a class such as Enzyme has been designed, any 

number of instances of this class (objects) can be created within Cytoplasm and Matrix. At run-

time each instance of Enzyme can be configured to be a different type of enzyme, new enzymes 

can be dynamically created as conditions in the simulation change (through molecular signaling, 

MRNA transcription from DNA, and ribosomal translation to protein), enzymes can be 

dynamically destroyed as they age, and entities can be dynamically reconfigured (connected to 
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each other, disconnected, and reconnected to other entities). If 100 instances of Mitochondrion 

are defined within Cytoplasm, each will automatically, because of its class definition, point to the 

common small molecule data structure in Cytoplasm and to its own small molecule data structure 

in MitochondrialIntermembranesol. Pyruvate will move to each of these internal compartments 

from the common Cytoplasm, according to the kinetic rate constant defined within the 

MitochondrialOuterBilayer subclass of LipidBilayer. 

A system with 1000 cells each containing 10 instances of Mitochondrion is as easy to run in an 

OO system such as CellAK as in a system with 1 cell and 1 (or 0) Mitochondria. E-Cell, for 

example, with its named components, requires considerably more effort when changing 

configurations in the way described in the previous sentence.  

The use of visual programming in CellAK makes the generated models far more accessible to 

biochemists and biologists. Physical structures are naturally represented in a containment 

hierarchy and interactions are explicitly represented using ports and protocols. The alternative 

differential equation representation hides interactions in terms in equations, which are 

significantly more obscure for the non-mathematician. With interactions “hidden”, it makes 

model reuse more difficult. Reuse is explicitly encouraged with CellAK. 

One way to use CellAK is to develop a library of components with standard interfaces using the 

protocols described in this paper. It then becomes possible to rapidly develop new models and 

simulations by plugging a selection of components together. 

A number of complex simulations have been constructed to test the concepts presented in this 

paper. We will briefly discuss the implementation of a circulatory system, of a circuit of neurons, 

and of an ecology. All of these simulations can be thought of as test harnesses, separate 

environments to test the original EukaryoticCell and the concepts discussed in this paper. 
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In the CirculatorySystem object, instances of a subclass of EukaryoticCell called Erythrocyte 

move within a structure of Vein, Artery, Capillary (three subclasses of BloodVessel), and various 

Heart objects, all implemented as RRT capsules. Each of the 100 or so erythrocytes (each within 

its own unit of BloodPlasma) is continuously reconfigured to refer successively to a cyclical 

series of external spaces including Lung (a compartment containing a high level of oxygen and 

low level of carbon dioxide small molecules), DigestiveSystem (a compartment containing high 

levels of glucose), and Brain (a compartment containing low levels of oxygen and glucose, and 

high levels of carbon dioxide). The reaction rules and kinetic rate constants defined for the 

CellBilayer class determine the relative concentrations of oxygen, carbon dioxide and glucose 

within the BloodPlasma, Lung, DigestiveSystem and Brain compartments during the time 

evolution of the simulation. The entire cell structure described in this paper, as illustrated in 

, was reused without alteration and embedded within each of the 100 cells in the 

CirculatorySystem simulation object. 

Figure 9

igure 5 igure 8

This ability to embed an object created for one simulation within a larger simulation is possible 

because of the mechanisms provided by OO, UML and RRT, and by the simple SubstrateRequest 

- SubstrateLevel protocol (interface) that all active objects and small molecule compartments 

have in common (see F  and F ). 

Another test involved EukaryoticCell specialized as a NeuronCellBody, as part of a Neuron. 

Neuron and Synapse objects were combined to form a neural circuit that could transmit neural 

(chemical and electrical) messages. The resulting Brain, a separately developed DigestiveSystem 

containing EukaryoticCell subclasses called MucosalCell, and CirculatorySystem were combined 

into a HumanBeing (subclass of Animal) simulation. HumanBeing was subsequently combined 

with Plant, Atmosphere, Lake and Sun to produce a simulation of a simple ecology. 
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7. Future Work 
CellAK is currently implemented using a proprietary commercial toolset, Rational Rose 

RealTime (RRT). The architectural approach and process described in this paper should be ported 

to a non-proprietary environment, which would make it more accessible to a larger community. 

Specific configurations, such as that shown in F , are currently hardcoded using RRT. It 

should be possible to read in and write out a configuration using an XML specification, 

preferably either SBML (Hucka et a l., 2003b) or CellML (Hedley et al., 2001). This would allow 

model exchange with tools such as Gepasi, thus helping to automate the validation process. It is 

our view that the creation of an interface to the System Biology Workbench would also be 

beneficial. 

igure 9

CellAK, as described in this paper, is a top-down approach, in keeping with the process normally 

followed when using the OO paradigm, the UML and ROOM visual formalisms, and the RRT 

toolset. CellAK configurations could instead be implemented in a more generic way, to allow 

them to be manipulated using bottom-up evolutionary mechanisms. This becomes possible if the 

approach described in this paper is reinterpreted as the following alternative five steps: 

1. Manipulate the containment hierarchy by representing it explicitly as a tree, and then operating 

on it using evolutionary mechanisms (Koza, 2001). Although the RRT containment hierarchy is 

already tree-like, it cannot be dynamically manipulated at run-time. An inheritance hierarchy 

could optionally also be implemented to provide names for node types, and to help constrain the 

range of configuration and runtime behaviors available for each node type. 

2. Create additional lateral connections between nodes in the tree. Replace the RRT mechanism 

of static ports, protocols and connections with a set of algorithms that nodes could follow to 

dynamically configure themselves by navigating the tree structure to locate adjacent nodes. These 

would be the nodes with which they would subsequently dynamically interact. 
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3 and 4. Provide primitives from which active objects could evolve simple behaviors such as the 

enzyme behavior shown in . Allow higher-level patterns of interaction including 

metabolic and other networks to emerge from local interactions, rather than having these 

prespecified. 

Figure 11

5. Validate. 

8. Conclusion 
Simulation tools for non-mathematicians using visual modeling and programming are needed in 

order to increase the accessibility of modeling in biology. CellAK is a step towards the realization 

of Harel’s “full reactive modeling” and Tomita’s “whole cell simulation”. This paper has 

suggested that biochemical modeling and simulation tools will need to provide a richer set of 

mechanisms for top-down structural architecture if they truly wish to construct whole-cell 

simulations. It is our hypothesis that the approaches currently in use by the software development 

community, the OO paradigm, the UML methodological formalism, and the specifics of tools 

such as RRT, can be advantageously applied to the problem of whole-cell simulation. A hybrid 

approach would combine the most successful top-down architectural mechanisms used within the 

commercial software industry, with proven bottom-up algorithmic mechanisms provided by the 

biochemistry modeling community. This paper has proposed a tentative five-step process for the 

development of such hybrid systems. 
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