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ABSTRACT 

This dissertation builds on previous research on constrained scaling, a technique for 

training individuals to translate mental magnitudes to numeric scales. Constrained scaling 

has been found to reduce significantly the variability in scale use both within and 

between individuals.  A series of 15 brief experiments related to constrained scaling is 

presented.  Specific findings include: (1) loudness constrained scaling experiments can be 

implemented on a conventional personal computer without the need for specialized 

hardware; (2) loudness scaling experiments can be successfully conducted without the 

need for a sound attenuating chamber; (3) cross-modal constrained scaling exhibits scale 

carryover from the training to the testing stimuli; (4) cross-modal constrained scaling is 

also susceptible to stimulus range effects; (5) brightness stimuli should be flashed in 

order to minimize the possibility of participant light adaptation; (6) conventional 

computer monitors are effective for displaying color brightness scaling stimuli; (7) 

constrained scaling of color brightness results in significantly reduced variability 

compared to magnitude estimation; (8) interval stimuli are more effective than ordinal 

stimuli for scale training; (9) random noise should be added to feedback values when 

using ordinal training stimuli; (10) the optimal ratio of training to testing trials is 1:1; (11) 

the ratio of training to testing scaling exponents is constant across scaling modalities; 

(12) there is considerable individual difference in scaling the subjective utility of money; 

(13) constrained scaling increases sensitivity to individual differences in scaling; (14) 

constrained scaling is more sensitive than magnitude estimation for rating the subjective 

visual appeal of Web pages; (15) constrained scaling can be applied successfully to aid 
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software users in making parameter selections for streaming media.  These 15 

experiments demonstrate that constrained scaling is easy to implement without costly or 

specialized psychophysical laboratory equipment.  Further, the experiments highlight the 

current breadth of constrained scaling research, including traditional psychophysical 

domains such as loudness and brightness scaling to novel psychometric domains such as 

rating the subjective utility of money or the visual appeal of Web pages.  Finally, they 

show that constrained scaling offers unmatched reliability in introspective elicitation, 

making it a powerful tool for cognitive research. 
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INTRODUCTION1 
INTRODUCTION 
The Problem Space 

Meister (2001, 2003) points out that many psychological researchers take 

measurement for granted.  While the statistical tools to evaluate psychological measures 

are carefully considered, the actual nature and use of these measures are not.  In the 

following dissertation, I explore this shortcoming in terms of scaling, one of the most 

frequently employed forms of human measurement.  Without a proper understanding of 

scaling, there is the risk that scaling becomes an unreliable measure at best.  With a 

proper understanding of scaling, it is possible to increase the reliability of scaling in 

human psychological research. 

Human psychological scaling involves the process of translating subjective 

experience into quantitative values. Because it is difficult to match overt behaviors or 

physiological responses to subjective experience, scaling serves as a primary method 

available for researchers to assess mental states. Although scaling is an introspective 

technique, the findings from scaling research are empirically robust. In psychophysical 

research, for example, the relationship between the intensity of a physical stimulus and an 

individual’s perception of magnitude follows a lawlike relationship (Stevens, 1975). In 

psychometric research, the Likert scale and its many derivatives provide exceptional 

insight into human mental states (Dumas, 2001), even when those mental states are not 

precipitated by readily identifiable cues in the environment. Psychometric scaling  

                                                 
1 Portions of this introduction first appeared in West, Boring, and Moore (2002) and 
Boring (2003). 
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techniques allow researchers to document dynamic cognitive states as well as enduring 

personality traits and attitudes. 

While psychophysical and psychometric scaling techniques are well-established 

and powerful research methods, they are not without shortcomings. Foremost among 

these shortcomings is the problem of variability between individuals (Algom & Marks, 

1990). With classical scaling methods, there is no guarantee that two users with the same 

subjective experience will use a scale in the same way. The failure of different 

individuals to scale in the same way results in considerable score variability. This score 

variability decreases the effectiveness of scaling in research and necessitates the 

collection of scaling data from many individuals in order to arrive at conclusive research 

findings. 

A problem arises when two users have identical perceptions, but they scale their 

perceptions differently. As Poulton (1989) notes, people exercise different biases when 

scaling. One user might be biased to assign scale values close to the midpoint of the 

scale, regardless of his or her subjective experience. Another user might be biased to use 

extreme low and high scale values, avoiding midpoint values on the scale even when they 

represent the most appropriate match to his or her subjective experience. 

The scaling biases that Poulton (1989) documents can lead to a high level of 

interparticipant scaling variability. When two or more scalers have identical underlying 

perceptions but use a scale differently, there is a divergent range of scale values assigned 

for each level of mental magnitude. In such a case, the mapping between the scale and the 

underlying mental phenomenon is unreliable across scalers.  
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An additional form of scaling variability occurs within individual scalers. 

Intraparticipant scaling variability results when an individual scaler fails to use a scale 

consistently. The scaler may, for example, switch scaling strategies during a scaling 

session, causing an inconsistent mapping between the scale and the individual’s sense of 

mental magnitude. 

The Solution Set 

Any measurement apparatus that lacks consistency and calibration is ineffective. 

The same thing can be said about humans as scalers.  Humans are generally not in the 

regular practice of quantifying subjective experiences. When asked to do so, we often do 

so in an inconsistent manner and without calibration to the scale we are asked to use. We 

simply lack sufficient exposure to our target scale to be effective scalers. 

The goal of any study of scaling is to determine methodologies that allow people 

to communicate accurately the magnitudes of specific dimensions of conscious 

experience.  The goal of perceptual (a.k.a., psychophysical) scaling is to find the 

mathematical functions that map the magnitudes of external stimulus dimensions to the 

conscious perception of magnitude.  In turn, the goal of subjective (a.k.a., psychometric) 

scaling is to unravel the relationship between conscious experience and external 

manifestations of that experience, which is presumed to follow a functional mapping that 

allows researchers to deduce the underlying cognitive state of magnitude elicitations. 

Numerous scaling techniques exist.  Within this dissertation, my focus is on 

constrained scaling, a technique in which participants are trained to use a naturalistic 

measurement scale.  Through a modest amount of training, the participant’s internal 
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perceptions are calibrated to an external numeric scale.  Once the participant establishes 

the relationship between his or her mental magnitudes and the scale, the participant is 

able to translate this scale to represent a number of mental modalities.  Compared to other 

scaling methods, constrained scaling has been demonstrated to reduce significantly both 

intra- and inter-participant variability (Boring, West, & Moore, 2002; West & Ward, 

1994; West, Ward, & Khosla, 2000). 

Fields that rely on human data have a tenuous relationship with psychological 

scaling methods. Although scaling affords the opportunity to gain insight into users’ 

perceptions, it does so at a cost. The traditional cost of scaling is low adherence to a 

common scale and subsequent low scaling reliability.  Constrained scaling offers a simple 

yet effective augmentation to classical scaling methods. Using constrained scaling, 

individuals learn to scale according to a common scale, thereby decreasing idiosyncratic 

variability between scalers. 

Getting There 

Over the course of this dissertation, I explore various facets of constrained 

scaling.  The first chapter presents the central theoretical thesis of this document, namely, 

that the mind is a magnitude processor.  Essentially this chapter sets itself the goals of 

extending the existing information processing framework in cognitive science and 

creating a novel model of mind.  In this chapter, I attempt to highlight a major 

shortcoming in the conventional approach of cognitive science.  

The second chapter is a brief history of scaling, which leads into the next chapter 

on constrained scaling.  If the mind is a magnitude processor, then cognitive science had 
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better have some good ways to measure mental magnitudes.  In this chapter, I suggest 

constrained scaling is the method of choice and justify this claim with an exposition of 

general issues and the solutions that constrained scaling offers. 

The next chapters discuss at length the 15 experiments on constrained scaling that 

I conducted for this dissertation.  The experiments bridge many domains, from loudness 

and color brightness psychophysical scaling, to the psychometric scaling of the subjective 

happiness afforded by different amounts of money, to human factors scaling involving 

visual appeal and streaming media settings.   These fifteen experiments serve to elucidate 

the model, method, and application of constrained scaling through a series of experiments 

that replicate, refine, extend, and apply constrained scaling. 

The final chapter brings together the disparate findings from the 15 experiments 

and articulates the core findings, theoretical bridges, experimental shortcomings, and 

proposed future research.  Finally, a series of appendices complements the content of the 

dissertation by providing technical details about the implementation of the experimental 

control software and about the calibration of the psychophysical stimuli. 

Being There 

The results presented in this dissertation provide compelling evidence that 

cognitively augmenting participants with a learned scale can substantially increase the 

reliability of psychophysical scaling and increase the sensitivity to individual differences 

in psychometric scaling.  It is my hope that the experiments presented in this dissertation 

will strengthen the still emerging cognitive model of psychological scaling and lead to 

further implementation of constrained scaling as a technique to strengthen the role of 
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psychological measurement to have the same reliability and validity as physical 

measurement techniques.   

It has been said that a mind is a terrible thing to waste.2  To this I would add that 

the measurement of a mind is an equally terrible thing to waste.  Many existing 

psychological measurements fail to capture mental magnitudes effectively.  By 

calibrating individual scale use, constrained scaling conduces better psychological 

measurement and thereby a better understanding of human mental processes.  

                                                 
2 Attributed to the United Negro College Fund. 
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MIND AS MAGNITUDE 

Introduction 

The mind is a magnitude processing system.  In this chapter I discuss magnitude 

processing as an important but overlooked component of cognition.  I build upon the 

well-established information processing model of cognition by positing that magnitude is 

at the heart of information processing.  It is my aim that this chapter will clarify 

magnitude as a starting point for cognitive research.  Further, I aim to elucidate the 

fundamental connection between mental magnitude and scaling. 

Cognition as Information Processing 

 Cognitive science has long embraced the information processing model of the 

mind (Dawson, 1998; Fancher, 1996; Gardner, 1985; Johnson-Laird, 1993), in which the 

mind is seen as a type of thoroughfare of mental information analogous to the flow of 

binary data within a computing system.  Historically, the information processing view of 

cognition allowed psychological researchers to maintain many of the findings from the 

stimulus-response framework of the previously dominant behavioristic paradigm, while 

simultaneously shifting emphasis to the actual processing of that information.  Whereas 

behaviorism’s accounts of stimuli and responses served as the informational components 

of psychology, the emerging paradigm of cognition addressed the processing of that 

information.  The transition from behaviorism to cognitive science is often painted in 

terms of a dramatic paradigm shift (Gardner, 1985).  This transition may also be viewed 

less dramatically not as the wholesale abandonment of the behaviorist tradition but rather 

as the reframing of behaviorism’s stimulus-response model in terms of information.  In 
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recasting behaviorism as information, the way was prepared for information processing 

to emerge. 

The information processing model of cognition has not been without criticism 

(Dawson, 1998).  The most succinct and poignant critique comes from Dreyfus (1992), 

who notes that artificial intelligence research based on the information processing model 

of cognition has developed techniques that succeed where humans fail and fail where 

humans succeed.  In other words, there is a significant disconnect between human 

cognition and the type of cognition that has been modeled on an information processing 

system. The information processing approach lends itself well to solving logical 

problems, but it fails to account for the inherent illogic with which the human mind 

approaches its environment.  Similarly, Gardner (1985, p. 385) noted, 

…(A)s one moves to more complex and belief-tainted processes such as 
classification of ontological domains or judgments concerning rival 
courses of action, the computational model becomes less adequate.  
Human beings apparently do not approach these tasks in a manner that can 
be characterized as logical or rational or that entails step-by-step symbolic 
processing.  Rather, they employ heuristics, strategies, biases, images, and 
other vague and approximate approaches.  The kinds of symbol-
manipulation models invoked by Newell, Simon, and others in the first 
generation of cognitivists do not seem optimal for describing such central 
human capacities. 
 

Cognitive science was born out of a tradition of logical, mathematical information 

processing.  But, cognitive science has subsequently struggled to characterize the entirety 

of human cognition according to this model.   

Despite criticisms of the information processing model of the mind, it has 

provided a measure of theoretical cohesiveness to the disparate subdisciplines of 
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cognitive science (Boring, 2002).  It has also proved itself a robust model of the mind in 

that new approaches to cognition have been assimilated into the mold of information 

processing.  For example, the advent of connectionist frameworks has seriously 

challenged the notion that mental information is processed in the serial, central fashion 

akin to early computing systems (Dawkins, 1998; Quinlan, 1991).  Connectionism under 

its many guises (e.g., parallel distributed processing or neural networks) has 

demonstrated that cognition can occur in a distributed and parallel fashion, not just in a 

serial fashion through a single central processing unit.  Connectionist accounts of 

cognition are also more biologically credible than classical information processing 

accounts (Zipser, 1986).  Importantly, even though connectionism has fundamentally 

altered the way researchers perceive cognitive processing, the basic notion of the mind as 

an information processing system endures.  The specific details of how mental 

information is processed have been rearticulated through connectionism, but the basic 

model of cognition as information processing remains unaltered. 

Even the so-called hard problems of cognition such as consciousness have not 

spelled the demise of the information processing model of cognition.  For example, 

Chalmers (1996) suggests that the empirical study of consciousness may have thus far 

proved elusive because researchers have failed to identify that consciousness is a form of 

information that coexists with other mental events.  Chalmers’ model of consciousness 

frames consciousness as information processing.  The challenge for cognitive science 

according to Chalmers is not in creating a cognitive model capable of accounting for 

consciousness but rather in developing tools and techniques that can measure the 
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informational component of consciousness.  Chalmers’ approach can be construed as a 

type of information dualism, in which traditional forms of mental information are readily 

apparent to the researcher but in which the conscious form of information remains 

elusive.  While Chalmers’ approach is problematic, it is nonetheless intriguing in that it 

extends the information processing approach into heretofore elusive domains of 

cognition. 

It is to this robust foundation of cognition as information processing that I append 

the notion of magnitude.  Figure 1 illustrates the emergence of information as a 

psychological concept, from origins in stimulus-response behaviorism, to the nascence of 

information processing in the cognitive era, to my proposed incorporation of magnitude 

as a form of information.  Before I proceed to detail the role of magnitude in cognition, I 

will first review the importance of magnitude in general terms to science. 

Magnitude in Science 

Magnitude is the measurable, countable, or comparative quality of something.  

Magnitude reflects a continuous quantum rather than discrete, categorical membership.  It 

also serves as the basis of the empirical physical sciences, which have developed 

sophisticated methods to quantify physical magnitudes through measurement (Ellis, 

1968). Galileo set the early stage for the importance of measurement by declaring that the 

goal of science was to “measure what is measurable and to try to render measurable what 

is not yet so” (cited in Berka, 1992, p. 181). 

Berka (1992) accords the following characteristics to the materialistic 

measurement used in the physical sciences (p. 182-3): 
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BEHAVIORISM:  STIMULUS-RESPONSE MODEL
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Figure 1.  A comparison of three psychological models. 
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1. Measurement is ontologically committed (i.e., rooted in and, hence,  
grounded by objective reality. 
2. Magnitudes are historically and theoretically determined reflections of 
quantitative aspects of objectively existing entities and not merely 
outcome of metricization or measuring procedures. 
3. The object of measurement exists prior to metricization or measuring 
procedures. 
4. In agreement with the historical determination of every phenomenon, a 
transfer of methods from one universe of discourse into another one is 
adequate only on the objective condition that certain structural similarities 
hold between the domains in question. 
 

These points are derived from Berka’s attempt to define measurement as currently used 

in the physical sciences, not from an a priori historical formalism that has guided 

measurement in practice.  These four axioms roughly translate to mean that measurement 

is based on physical magnitude dimensions and that measurements should be a type of 

natural reflection of physical magnitudes, not a contrived formulation only made possible 

by complex measurement instruments.3   

Historically, the conservative conception of measurement (Savage & Ehrlich, 

1992) first espoused by Helmholtz (1887), conceives of measurement as the one-to-one 

correspondence of a physical property to a real number.  For example, a metal rod of a 

given length might be used as one unit of length measurement.  This rod would 

correspond to a numeric value of 1 in terms of measurement.  A second rod of equal 

length placed adjoining the first rod would equal two units of that measurement.  When 

presented with a novel object, the metal rods may be used to measure the length of the 

                                                 
3 These statements represent strong positions that may not reflect measurement in 
practice, especially in the cognitive sciences.  Those considerations will be discussed 
later in this paper. 
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new object.  In the conservative conception of measurement, there is always a direct 

relationship between the magnitude dimension of an object and a real object that 

represents a numerical quantity.   

The conservative conception of measurement encompasses physical magnitudes 

such as length, weight, angle, and the like (Savage & Ehrlich, 1992).  It, however, fails to 

account for certain magnitude dimensions that cannot be directly linked to a physical 

object.  For example, temperature remains an elusive magnitude to measure directly.  

Instead, temperature must be measured indirectly.  Since it is known that objects expand 

and contract relative to temperature, it is possible to use this expansion and contraction in 

a lawlike manner to measure the effect of temperature on an object.  It is not possible to 

measure temperature directly.  A conventional thermometer actually measures the height 

of a temperature-sensitive fluid like mercury contained in a thin, long, translucent tube.  

As such, conventional measures of temperature are simply measures of the length of a 

fluid.  The measurement relationship between temperature and underlying physical units 

remains indirect.   

In order to account for the necessity of indirect measurements of physical 

magnitudes, more recent formulations of measurement theory use a liberal conception of 

measurement4 (Savage & Ehrlich, 1992).  In this formulation, numbers follow a specified 

functional relationship to magnitudes.  The liberal conception of measurement affords a 

                                                 
4 Savage (1970) also refers to the conservative and liberal conceptions of measurement 
respectively as the narrow and broad views of measurement. 
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more flexible view that accommodates the necessity to measure certain magnitude 

dimensions according to other magnitude dimensions.   

An important concept in measurement in the physical sciences centers on the 

multidimensionality of measurement for any given object.  As Kyburg (1984, p. 17) 

notes: 

Measurement is often characterized as the assignment of numbers to 
objects (or processes).  Thus we may assign one number to a steel rod to 
reflect its length, another to indicate its mass, yet another to correspond to 
its electrical resistance, and so on.  It is thus natural to view a quantity as a 
function whose domain is the set of things that quantity may characterize, 
and whose range is included in the set of real numbers. 
  

Any given object has a multitude of magnitude dimensions in which it may be measured.  

While in many cases these magnitude dimensions may be orthogonal, they are often 

interrelated.  For example, the 1889 definition of the magnitude of a meter was defined 

by the International Bureau of Weights and Measures to be equivalent to a graduated 

platinum-iridium cross section at 0º C (Penzes, 2002).  Note that the fidelity of the 

measurement depended on temperature, another magnitude dimension.  More recently, 

the 1983 definition of a meter is “the length of the path traveled by light in vacuum 

during a time interval of 1/299,792,458 of a second,” where the speed of light is 

299,792,458 m/s and the light is defined as a helium-neon laser with a wavelength equal 

to 632.99139822 nm (cited in Penzes, 2002).  The current definition of the length of a 

meter is thus measured in terms of precisely defined magnitude measurements of time 

and light wavelength.   
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As any middle-school Physics pupil discovers with glee, the gravitational pull of 

the earth on objects accelerates as an inverse function of time (i.e., g = 9.8 m/s2).  The 

physical sciences similarly exercise an increasing enthusiasm for measuring physical 

magnitudes according to interrelated dimensions.  The intention of the increasing 

multidimensionality of standardized measurements is not to obfuscate or to walk a 

precariously close line to recursion.  Rather, these multidimensional measurements serve 

to minimize the variability in measurement.  Whereas a physical object such as a rod 

made out of platinum-iridium might be subject to fluctuations beyond those accounted for 

by temperature, a wavelength of a burst of light measured in time brings a higher 

constancy to the measurement standard.  Increasing the constancy of the standard ensures 

that measures made on physical magnitudes accurately reflect the characteristics of those 

magnitudes.  The precision of empirical laws is necessarily limited by the noisiness of 

magnitude measurements.  Hence, the goal of science is to achieve the highest 

measurement constancy and fidelity that are possible. 

Magnitude in Cognitive Science 

There exists a methodological rift between the physical and psychological 

sciences (Michell, 1997).  While the empiricism of the physical sciences requires 

magnitude measurement, psychological empiricism has eschewed a strict reliance on 

magnitude measurement.  While pre-cognitive methodological texts in psychology 

emphasized the primary importance of the measurement of mental magnitudes (Stevens, 

1951), recent texts on cognitive methods make no reference to the measurement of 

mental magnitudes (Bower & Clapper, 1989). 
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This is not to say, of course, that psychology is not actively engaged in 

measuring mental processes. Measurement is, in fact, an essential part of most 

psychological experimentation.  The key difference between psychological measurement 

and that employed in the physical sciences is that which is purported to be measured.  

With infrequent exception, cognitive psychology does not attempt to measure underlying 

mental magnitudes.  The measurements of interest to cognitive psychologists are those 

measurements that are central to explaining what processing occurs, not what degree of 

processing occurs. 

The research literature in cognition shifts much of the empirical focus from 

mental magnitudes to the process of mental categorization (Estes, 1994).  For example, 

researchers in the field of visual object recognition investigate how shapes are grouped 

into holistic objects (Biederman, 1995), but they often ignore the sensory shape 

intensities that are necessary for shape recognition.  Cognitive linguists focus on 

categorizing words into grammatical units while ignoring the fact that special 

grammatical categories—adjectives and adverbs—serve almost exclusively the role of 

magnitude placeholders (Simpson, 1944).  Likewise, philosophers of mind may discuss 

qualia—what is like to experience a categorical state—while omitting a thorough 

discussion of the mental magnitudes that shape and define that experience.  While I do 

not wish to contest the fact that the mind actively categorizes the information with which 

it is presented, the cognitive literature largely ignores the equally important fact that the 

mind requires magnitudes in order to categorize.  Cognitive categorization is a means of 
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delimiting magnitude information.  As such, magnitude is a crucial component—if not 

the very essence—of cognition. 

Human cognition is dominated by magnitude processing.  For example, humans 

perceive stimulus intensities, whereby those intensities are magnitude representations.  

Humans make subjective judgments, in which the subjectivity culls a variety of 

magnitude information about which the judgment is made.  Humans have emotions of 

various intensities.  (In fact, magnitude is so central to human emotion that many forms 

of mental illness are defined in terms of insufficient or excessive affect.)  Humans 

perform mental arithmetic, a process that involves mental representations of quantity.  

Humans also make relative comparisons, which entail weighing the magnitude 

dimensions of two or more things.  While cognitive science rarely discusses mental 

magnitudes, magnitude is so inherent in human mental operations that the greater 

challenge may, in fact, be to identify mental processes that do not involve magnitude. 

The most common techniques used in cognitive psychological research do not 

produce measures that are sensitive to magnitude.  The staple measures of cognitive 

psychology are reaction time and error rate5 (Bower & Clapper, 1989), which are overt 

manifestations of behavioral performance that can be linked to cognition.  While reaction 

time does, in fact, record temporal magnitude, it may be argued that the time course of 

cognition when measured as reaction time is not an index of the use of magnitude as 

                                                 
5 Human error rates are an inverse measure of learning.  When learning occurs, error 
rates decrease (Reason, 1990).  For this discussion, measures of learning are treated under 
the general umbrella of human error. 
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information.  Unless the topic of investigation is specifically about time perception, 

reaction time serves as an indirect measure of cognition akin to the use of fluid heights to 

measure temperature.  While reaction time certainly yields valuable insights into 

cognitive processes, it typically employed as a measure of cognitive performance, but not 

explicitly as a measure of cognitive magnitudes.  Likewise, error rates are measures of 

cognitive performance that do not directly assess magnitude processing in the mind. 

In order to clarify mental magnitudes, I put forth three levels of magnitude 

processing in the mind.  I call the first level sensation.  This first level involves the 

transformation of stimulus information into neural activity.  Such processing occurs 

sensorially by inputting information about the environment to the mind.  Sensory 

processes are well documented (Coren, Ward, & Enns, 1999; Goldstein, 2001), and the 

use of magnitude information at this stage of processing is widely accepted.6  Unlike 

more malleable cognitive processes, sensation is largely hardwired into the organism.  

Every organism has a particular set of sensory stimuli to which it is receptive, and the 

biological mechanisms of receiving sensory information are largely invariant across 

organisms of the same species.  While some adaptation does occur at the sensory level,7 

sensation is automatic and largely beyond the control of the organism. 

                                                 
6 Magnitude is often relegated to sensory processing.  I argue that magnitude permeates 
all cognitive processes. 
 
7 For example, the human eye adapts to the level of light it encounters.  Light and dark 
adaptation are not under the control of the individual;  the sensory organ—the eye—
adjusts its light sensitivity automatically to meet the environmental context. 
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The second level of magnitude processing is perception.  This level involves the 

interpretation and use of sensory information by the mind.  It is at this level that sensory 

magnitudes are turned into meaningful information.  It is also at this level that 

categorization occurs, in which sensory information is grouped into meaningful 

representations of the environment.8  While perceptual categorization involves the 

parsing of some magnitude information, perception is not solely about categorization.  

Much magnitude information is retained during perception, as evidenced by the high 

degree of salient magnitude information that is available when someone tries to access 

this information.9  While the most apparent focus of the person’s attention is initially on 

categorizing information at the perceptual phase, the person retains full access to 

magnitude information. 

The final level of magnitude processing is cognition.  Cognition involves the use 

of internal information by the mind.  To avoid confusion, what I mean by cognition is this  

                                                 
8 Marr (1982) might argue for a stage of information processing between sensation and 
perception.  Particularly in the case of stereoscopic vision, Marr’s 2½-D sketch is a case 
in which magnitude information such as shading, lightness, and color is used in to create 
a magnitude-rich representation of the external world.  This representation is further 
simplified and categorized in the final perceptual stage of visual information processing. 
 
9 For example, a person who walks through a deciduous forest during the autumn may 
generally perceive that the leaves of the trees are changing color.  This is a form of 
cognitive categorization:  the trees are categorized as a forest and the leaves are 
categorized as fall foliage.  If, however, that person is asked to describe the fall foliage, 
he or she is able to give a reasonably detailed account of the myriad colors that comprise 
the fall foliage.  The magnitude information used to categorize is still consciously 
available. 
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sense is not thinking in general but rather thinking as a self-guided process.  Cognition, 

narrowly defined is this sense, draws heavily on memory, drives, and affective states as 

information input.  Whereas all mental information processing encompasses cognition in 

the broad sense, this narrow definition of cognition only entails self-originating 

information processing.  The information originates inside the head rather than through 

external sensory and perceptual input.  Clearly, it is not possible to have a cognitive 

system that is completely isolated from external factors.  In this case, the external factors 

are construed to have only indirect effects on the mental information involved.  For 

example, external factors may trigger a particular affective state in the person.  That 

affective state in itself promulgates memories and thoughts that are not necessarily 

directly relevant to the external event that triggered it. 

 Figure 2 illustrates the relationship of the three levels of magnitude processing in 

terms of information flow.  While sensation and perception are clearly involved in 

magnitude input, cognition brings internal magnitude states into consciousness.  These 

three levels of magnitude processing straddle the border between unconscious and 

conscious processing.  Sensation, as already discussed, is a largely automatic process that 

serves to take in as much environmental information as possible.  Perception serves as a 

filtering mechanism by which irrelevant information is eliminated.  The point at which 

environmental information becomes perceptual information marks the threshold of 

consciousness.  Cognition, narrowly defined, serves to bring unconscious information 

such as memories, drives, and affective states into consciousness. 
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Figure 2.  A depiction of the three levels of magnitude processing. 

 

 
 
 
 
 
 
 

 

 
 

Figure 3.  The perceptual process of inputting stimulus sensation is mostly understood; 
the generative process of outputting a magnitude on a scale is not. 

We understand the underlying mechanisms of 
how a stimulus is turned into a sensation 

We do not understand how a sensation 
is translated into a scale 
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The Measurement of Mental Magnitude  

The psychological analog to measurement in the physical sciences is scaling.  

While cognition largely overlooks the measurement of mental magnitudes, the 

psychological subfields of psychophysics and psychometrics are built around measuring 

mental magnitudes.  Both subfields use scaling—the process of introspectively accessing 

magnitude information and linking it to a numerical or other scale (see Figure 3).  

Psychophysics is concerned with scaling perceptual magnitudes (Stevens, 1975), while 

psychometrics is concerned with scaling subjective magnitudes (Kline, 1998). 

Both psychophysics and psychometrics make four tacit assumptions about mental 

magnitudes: 

1. The mind is a representational system. 

2. Mental representations have magnitudes. 

3. It is possible to access the level of mental magnitude through conscious introspection. 

4. Mental magnitude maps to a numerical scale. 

Point 1 is a standard assumption in cognitive science, namely that the mind mirrors 

internally what it perceives externally in the world.  The specifics of how the mind 

actually represents this information are still the subject of considerable debate and will 

not be discussed here.  Regarding Point 2, scaling researchers require that the internal 

representations include a magnitude component.  A psychophysicist, for example, 

assumes that the mental representation retains the magnitude qualities of frequency and 

amplitude that are inherent in an actual tone played in the physical world.  Similarly, a 

psychometrician assumes that an internal representation such as an opinion or subjective 
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affect carries with it magnitude information not unlike those representations that reflect 

perceptions of the physical world.  Both psychophysicists and psychometricians make the 

further assumptions that mental representations elicit magnitude information that is 

consciously accessible and that this information can be matched in the mind to a 

representation of numerical magnitude.  Because this information is consciously 

accessible, the numerical magnitude representation can be relayed, thus translating the 

external magnitude into an external measurement. 

Why Magnitude Matters 

I have thus far discussed categorization as if it generally fails to retain magnitude 

information.  Cognitive science treats cognition as the process of taking raw information 

and translating it into high level symbolic representations.  For example, lines on paper 

are categorized into geonic objects (Biederman, 1995) and raw vocal utterances are 

categorized into phonemes (Liberman, Harris, Hoffman, & Griffith, 1957).  In this view, 

meaning is derived from categorization, and meaning is conveyed in terms of concept 

membership.  A categorizational view of cognition does not need magnitude information, 

because magnitude information is at best something to be filtered out in the process of 

forming clear concepts. 

It is unclear why the categorizational view of the mind is so singularly attractive 

to cognitive science.  Perhaps it is a carryover from the propositional logic of the Fregean 

tradition or a byproduct of a too literal embrace of the parallels between the mind and the 

computer.  Regardless of its origins, it has fueled a long line of cognitive inquiry that has 

omitted mental magnitude processing. 
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I have not yet addressed why magnitude matters to cognition.  Clearly, 

magnitude supports categorization, the most well documented aspect of cognitive 

information processing.  But, why does magnitude need to exist beyond categorization?  

Why isn’t categorization sufficient to account for cognition? 

The simple answer to these questions is that categorization is a form of 

representational data reduction.  Categorization impoverishes the information that is 

processed in the mind.  While categorization ultimately eases the processing load on the 

mind, it strips the mental representation of its richness.  Without magnitude in cognition, 

it would be impossible to gauge the uniqueness of a situation, the importance of novel 

information, or the vividness of experience.  Without magnitude there would be no 

subjective experience, no memorable life events, and no rewards.  In some ways, the 

behaviorists got it right, for they understood that a stimulus was not just a stimulus.  A 

stimulus was a laden piece of information that affected the organism depending on the 

magnitude of its importance to that organism.  A piece of chocolate is inherently 

rewarding to most humans, not because it is a categorizable object but because it is an 

object that triggers a variety of physiological and psychological responses that culminate 

in a sense of reward.  This sense of reward results from the interplay of magnitude 

information in the mind, not from the categorization of objects.  Magnitude matters, 

because without it organisms would be information processing automata for whom 

information was of little interest.   

Categorization is, of course, an essential part of cognition.  My intention is not to 

disregard the vital role of categorization.  Instead, I wish to consider for a moment the 
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synergistic role between mental categorization and mental magnitude processing.  

Magnitude processing feeds into categorization, while categorization serves as a 

framework for understanding magnitudes.  Both are necessary facets of everyday mental 

functions.  This dissertation redresses a shortcoming in the research literature by 

exploring the role of magnitude processing in cognition.  The specific domain of 

exploration is scaling. 

Summary 

I have made five key claims in this chapter.  These are: 

1. The mind processes information as magnitudes. 

2. Magnitudes are used to categorize mental information into meaningful composites. 

3. Cognitive categorization does not preclude the possibility that magnitude information 

remains intact to co-exist with other mental representations. 

4. Cognitive science has focused almost exclusively on categorization, ignoring the 

equally interesting cognitive domain of magnitude processing. 

5. Scaling is a means of accessing mental magnitudes. 

In the next chapter, I will explain more about the interaction of scaling and magnitude.  I 

will also introduce a novel method of scaling, which, unlike existing approaches to 

scaling, incorporates cognition as a central component of the scaling process. 
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HISTORICAL OVERVIEW OF SCALING 

Fechnerian Origins 

It has taken considerable time for psychology to arrive at the five premises 

identified in the last chapter.  The origin of psychophysics, and indeed the formal study 

of psychology, was with Gustav Fechner (1860a, 1860b), who suggested that the physical 

world was mirrored in the mental world in a lawlike, measurable fashion.  While the 

notion of mental representation followed millennia-old epistemological and ontological 

traditions, the mathematical formulation that linked the physical world to the mental 

world was novel.  Fechner called these two domains outer and inner psychophysics (die 

Außenpsychophysik and die Innenpsychophysik), respectively, signifying the relationship 

of the physical to the psychological world.  Those representational states that fell within 

the realm of the mental world were inner psychophysics.  Objective reality, which fell 

outside the realm of the mental world, was outer psychophysics. 

Fechner’s lineage as a student of and later collaborator with Helmholtz are 

foundational to the birth of psychology as a discipline (Fancher, 1996).  Helmholtz is 

often considered the founder of measurement theory for his careful formulation of the 

best uses of measurement as a calibrated tool for objective empirical measurement.  Just 

as Helmholtz developed measures to account for the physical world, Fechner developed 

measures to account for the mental world.   

Fechner (1860b) considered the relationship between outer psychophysics and 

innerpsychophysics as the path between the stimulus (der Reiz) and the sensation (die 

Empfindung).  This path was mediated by a lawlike nexus of psychophysical activity 
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(Organ der psychophysischen Tätigkeit), which was influenced by both memory and 

observation.  Outer psychophysics involved translating stimulus information into neural 

information, a process that was unconscious.  Inner psychophysics involved the 

interpretation of these neural messages into a mental representation.  Since the 

relationship between stimulus and sensation was governed by lawlike processes, Fechner 

believed it was possible to measure this relationship with a mathematical equation.  

Weber had earlier discovered that the amount of change necessary to perceive a change in 

stimulus intensity was a constant function: 

k=
∆
φ
φ , 

(1)

where φ  is a stimulus and k is a constant (Gescheider, 1997).  This formula revealed that 

as the stimulus intensity increased, proportionately so did the amount of stimulus change 

necessary to perceive a difference.  Weber’s discovery, now appropriately called Weber’s 

Law, specified only the relationship between stimuli.  It did not yet connect physical 

stimuli with the mental world. 

Fechner (1860a) discovered that stimulus units following Weber’s Law could be 

chained together to create a measurement scale of sensation.  The formal explication of 

the relationship between a stimulus (φ ) and a sensation (ψ )—between outer 

psychophysics and inner psychophysics—was thereby established:  

φψ logk= . (2)
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Fechner’s scale started at the absolute threshold of a stimulus and was measured in 

terms of just noticeable differences.  The logarithmic function accounted for the 

curvilinear relationship between the stimulus and the sensation. 

 The just noticeable difference scale that Fechner proposed became known as 

Fechner’s Law (Gescheider, 1997).  The lawlike relationship between the physical and 

the mental world was an exciting starting point for psychology (Boring, 1950), and it was 

quickly embraced by early proponents of the new discipline of psychology.  One such 

proponent, Wilhelm Wundt, was so intrigued by the fact that it was possible to bridge the 

physical and mental worlds that he developed a series of techniques to allow researchers 

to access the mental world.  The mode of access Wundt developed was introspection, a 

technique fraught with enough controversy so as eventually to render a rift between 

mainstream psychology and the study of mental magnitudes.  In this vein, William James 

influentially concluded that Fechner’s work offered precisely nothing to the field of 

psychology (1890), affirming the split between psychology and psychophysics. This split 

has endured even to the present day’s division between the magnitudinalists in 

psychophysics and the categorists in cognitive psychology. 

Steven’s Power Law 

 Fechner’s Law is a type of indirect measure of mental magnitude.  Fechner’s scale 

measures the levels of stimulus necessary to perceive differences, but it does not actually 

yield the direct magnitude perception triggered by the stimulus.  S.S. Stevens (1975) 

surmised that a direct measure of magnitude was possible.  His approach was simply to 

pair magnitude perceptions to a numeric scale as uttered in the form of a number.  This 
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approach, called magnitude estimation, yields a different relationship between stimulus 

and sensation than Fechner’s scale, requiring a power transformation: 

βφψ k= , (3)

where ψ  is sensation, k is a constant based on the unit of measure, φ  is the stimulus, and 

β is a sensory-specific exponent value.  Equation 3 is now known as Stevens’ Power Law 

to denote the lawlike relationship between stimulus and sensation for direct scaling 

measures. 

 Stevens and Galanter (1957) found that the Power Law approximated Fechner’s 

Law for categorical scaling but not for continuous scaling.  Ward (1974),  among others, 

found that the Power Law holds for categorical judgments but produces an exponent that 

is about half the size of the exponent produced for continuous scale judgments.  Krueger 

(1989) has suggested that to reconcile Fechner’s Law with Steven’s Power Law, it is 

necessary for Fechnerian psychophysics to forfeit its strict reliance on Weber’s Law and 

for Stevensian psychophysics to reconsider the notion that magnitude estimates are a 

direct measure of underlying sensations.  A mathematical treatment that requires less 

compromise is offered by Norwich (1987, 1993; Norwich & Wong, 1997), which 

states:10 

,
2

)1ln( βγφψ +
=

k  (4)

where γ' is a new constant.  For large values of γN$, the equation takes the form:  

                                                 
10 Norwich’s equations have been aligned with Steven’s notation. 
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,
2
ln

2
ln γφβψ kk

+=  (5)

which is a form of Fechner’s Law.  For small values of γN$, the equation takes the form:  

,
2

βγφψ k
=  (6)

which is a form of Stevens’ Power Law.  Norwich’s so-called Informational Law 

successfully reconciles Fechnerian and Stevensian psychophysics under one parent law. 

Psychometrics 

 Measurement of mental magnitudes in psychometrics is similar to psychophysics.  

Psychometrics takes the ideas postulated by Fechner one degree further.  Whereas 

Fechner outlined the measurement course for psychophysics as the relationship between 

the physical world and the mental world, psychometrics omits the physical world.  

Thought is not always a response to stimulus promptings from the physical world.  Thus, 

psychometrics measures the level of internal magnitudes for which there is no clear 

physical stimulus.  The measurements used in psychometrics are necessarily 

unidimensional, because there is no clear secondary dimension to which mental 

magnitudes can be related (Kline, 1998).  Consequently, psychometrics does not benefit 

from the lawlike multidimensional functions characteristic of psychophysics.  

Nonetheless, there exists a rich tradition of psychometric research, starting with early 

attitude scales by Thurstone (1919) and Likert (1932) and extending to a rich variety of 

multivariate techniques currently in practice.  
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Magnitude and Categorization 

 Psychophysics and psychometrics offer scaling techniques to measure mental 

magnitude, but cognitive science seldom counts these among its methods.  While it is 

easy to point at cognitive science for this shortcoming, this methodological oversight is 

actually bi-directional.  While cognitive science has failed to embrace scaling methods, 

psychophysics and psychometrics have likewise failed to embrace insights from cognitive 

science.  In the next chapter I outline how cognition is absolutely necessary to improve 

the scaling fidelity of psychophysical and psychometric methods.  First, however, it is 

important to clarify the co-existence of magnitude and categorization in the mind, for 

these are the domains of psychophysics/psychometrics and cognitive science, 

respectively. 

Holistic and Analytic Information Processing 

I have already discussed the co-occurrence of categorization and magnitude in 

terms of mental information processing.  Before I proceed with further points about 

mental magnitude and scaling, it is important to consider the theoretical basis of the 

distinction between categorization and magnitude processing.   The essence of this 

distinction is with holistic and analytic views of cognition.  Holistic and analytic 

distinctions have been the source of considerable research and discussion in psychology, 

both prior to and concurrent with their emergence in information processing. 

Already early in the history of experimental psychology, there was debate over 

the deconstructability of mental processes.  Edward B. Titchener, chief proponent of the 

structuralist movement in psychology, suggested that consciousness should be 
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investigated in terms of reduced component processes, rather than as a singular, 

irreducible process (Titchener, 1911).11  Titchener’s atomistic view of mental processes 

contrasted strongly with the views of his German mentor, Wilhelm Wundt, who believed 

that the introspective methodology then at psychology’s disposal could not adequately 

analyze the components of higher level mental processes.  Wundt’s critique, however, 

was generally overshadowed by the prominence achieved by Titchener in the English-

speaking world (Schulz & Schulz, 1999).   

It was the Gestalt psychologists, most notably Max Wertheimer, Wolfgang 

Köhler, and Kurt Koffka, who developed the strongest argument against structuralist 

analysis of thought (Fancher, 1996).  Through a series of now famous perceptual 

illustrations, the Gestalt psychologists demonstrated how the mind operated according to 

grouping principles.   No matter how hard a person might try to separate the components 

of visual objects that he or she saw, these objects were unfailingly perceived in groups.  

For example, when looking at a tree in an empty field, the tree would appear as a single 

object in the mind of the perceiver.  Of course, the viewer might also focus on an 

individual aspect of the tree such as its bark, its branches, or its leaves.  However, this 

conscious decomposition could never diminish the wholeness of the tree nor the  

                                                 
11 What Titchener and other introspectionists meant by consciousness is essentially the 
conscious part of cognition.  Because introspectionism was the chief empirical method 
available to structuralist psychologists and because introspectionism relied on conscious 
access to cognition, it can be argued that Titchener’s arguments were not specifically 
meant to preclude unconscious cognitive processes.  Here, I assume that Titchener would 
have meant for his arguments to apply equally well to cognition in general, not simply to 
conscious cognition. 
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subconscious perception that the bark, branches, and leaves were part of a single object.  

The key to the Gestalt argument was that this mental categorization occurred 

automatically, as a subconscious process.  In modern parlance, the process of grouping is 

said to be cognitively impenetrable (Pylyshyn, 1984), meaning the perceiver does not 

have conscious access to the mental processes that caused the perception of a single 

object from the bark, branches, and leaves.  Moreover, because the process is cognitively 

impenetrable, the perceiver is not able to control the categorization processes that are at 

work.  Objects such as bark, branches, and leaves, when arranged in the fashion accorded 

by nature, always comprise a tree.  Normal human object perception can never disconnect 

those components that group together to create a single object.  This is not to say that 

Gestalt psychology believes perceivers can never be aware of the individual items that 

are grouped to make an object.  Gestalt psychologists would never mean to suggest that 

stimuli are indivisible into constituent properties; rather they would suggest that the 

perception of stimuli occurs as the synthesis of these parts rather than as separate 

processes (Smith, 1988).  Using the earlier example, the perceiver is, of course, aware of 

the bark, branches, and leaves.  What the perceiver is not aware of is how the mind joins 

these items to form tree objectness.  It is the process of mental union of these items—

categorization—that is cognitively impenetrable. 

At the heart of the structuralist/Gestaltist debate is holistic and analytic theory.   

Titchener and other structuralists espoused an analytic view of the mind, which is to say 

that a mental process is the sum of its constituent parts.  Conversely, the Gestalt 

psychologists argued for a holistic view of mind in which a mental process is viewed as 
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more than the sum of its parts. At issue is also whether or not thoughts are cognitively 

penetrable.  An analytic model of the mind holds that mental processes are comprised of 

discrete mental steps, which may be accessed on a conscious level.  A holistic model of 

mind holds that mental processes are comprised of automatic processes that are not 

consciously accessible. 

Neither the structuralists nor the Gestaltists expressly discussed mental 

magnitudes.  Nonetheless, these early foundations of the analytic and holistic camps 

implicitly inform the discussion of mental magnitudes.  Analytic theorists, intent on 

finding the atoms of human thought, would tend to espouse a view that incorporated 

magnitude as an essential and cognitively penetrable part of cognition.  Holistic theorists, 

in contrast, would tend toward a view that emphasized categorization as the most 

elemental level at which cognition should be discussed. 

The debate on the holistic-analytic distinction of mental processes has continued, 

but recent research has offered explanations that point to the coexistence of holistic and 

analytic processes.  For example, Smith (1988) suggests that holistic perception is linked 

to automatic, subconscious cognitive processes, whereas analytic perception is a result of 

deliberate, conscious cognitive processes.  Smith points to common two-stage models of 

perception, in which there is typically an initial, fast, and automatic process that functions 

holistically.  There is also a second, slow, and effortful process that works analytically.  

Both processes must occur in order for perception to take place. 

The coexistence of holistic and analytic processes is also found in dual-route 

models of cognition, such as Coltheart’s (1978) dual-route model of written word 
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recognition.  According to these models, when people read aloud, they read words that 

occur frequently in a language automatically, according to a lexical route of processing.  

In this case, the word itself forms a unit of perception that corresponds with a series of 

phonemes to be uttered.  The lexical route operates holistically, since the word itself 

forms the smallest unit of perception in the mental lexicon.  For words that occur less 

frequently in language, people may make use of an effortful naming process according to 

a phonological route of processing.  In phonological processing, a word is sounded out in 

a process that transcribes particular orthographic combinations into phonological 

utterances.12  This process is often considered an analytic process, since word naming 

occurs as a series of discrete, cognitively penetrable mental processes.  Coltheart’s model 

suggests that either holistic or analytic processes are used depending on the context.  

Paap and Noel (1991) demonstrate that the two processes may occur simultaneously, in a 

type of race to see which route names the word the fastest.   Their model extends the 

holistic/analytic framework to suggest that mental processes, particularly in word 

recognition, occur simultaneously in holistic and analytic fashion.  Paap and Noel’s 

findings have not yet been fully explored in terms of their implications for holistic and 

analytic theories of mental processing.  Nonetheless, their model holds important 

implications for establishing a balanced view of holistic and analytic processes. 

                                                 
12 Of course, some level of holistic processing occurs even when reading an individual 
letter of text.  Different lines are grouped together to create a holistic representation of 
that letter.  It is important to note that I am describing a process by which holistic 
Gestalts are successively broken into smaller and smaller units.  The decoding of whole 
Gestalts eventually reaches a level at which the shapes become sensory magnitudes. 
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A unified holistic-analytic approach to cognition holds important implications 

for magnitude processing.  It suggests that there can be a symbiosis between 

categorization and magnitude processing.  While most automatic and conscious mental 

processing results in categorization, underlying this categorization is magnitude 

processing.  This magnitude processing, while generally overshadowed by categorization, 

exists and may be consciously accessed when a person wishes to do so.  Moreover, in 

cases where categorization is not automatic, magnitude information may become 

conscious as the person attempts to make sense of the information at hand. 

A variation on analytic and holistic theory is Fodor’s theory of modularity (1983).  

Fodor holds that the mind necessarily processes information discretely in specialized 

mental organs known as modules.  Fodor does not, however, suggest that these modules 

must be cognitively penetrable.  In fact, Fodor holds that conscious awareness only 

occurs holistically.  The complete mental picture of mental processing only occurs once 

the discrete modules have assembled their information.  Fodor’s view can be considered a 

composite model.  The modules operate very much according to an analytic framework, 

with the exception that modules are encapsulated and not cognitively penetrable.  Once 

the modules assemble all stages of processing, Fodor’s model is akin to a holistic model, 

since he emphasizes that it is only in the composite of modular processes that processing 

becomes meaningful.   

Fodor’s theory of modularity is often contested (Karmiloff-Smith, 1992, 1999; 

Lyons, 2001), but it illustrates some of the complexity that is prevalent when attempting 

to merge holistic and analytic theory.  Fodor’s theory of modularity is also the key to 
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understanding the underlying importance of magnitude to cognition.  The basic question 

concerning modularity is to what extent the modularity model accommodates mental 

magnitudes.  I have suggested that categorization is essentially a holistic process, whereas 

magnitude processing is essentially an analytic process.  I have also suggested that Fodor 

reconciles holistic and analytic approaches through his modularity model.  The question 

remains:  Does modularity reconcile categorization and magnitude processing in 

cognitive science? 

Fodor clearly did not have magnitude in mind when writing The Modularity of the 

Mind (1983).  Fodor’s modularity largely continues the well established tradition in 

cognitive science of equating categorization and cognition.13  Modules are simply means 

to categorize the flow of information in the mind.  To reconcile modularity and 

magnitude, there are three possibilities: 

1. Discount modularity and suggest that it is not a viable model of cognition. 

2. Suggest that magnitude coexists with the categorization that occurs in the modules. 

3. Suggest that there is a magnitude module (or series of modules). 

There is good evidence to suggest that modularity is a viable model of cognition 

(Gazzaniga, 1989).  It would therefore not be a productive avenue to seek to discount  

                                                 
13 Fodor (1998) has recently offered that concept formation—a form of categorization—
is at the heart of cognitive science.  While he suggests that this concept fixation has 
misguided cognitive science, he does not go so far as to offer a magnitude based 
alternative account of cognition.  His point is based on the vacuousness of concept 
representations, a point which certainly holds true if information is represented devoid of 
all magnitude information.  It is unclear, however, to what extent his argument holds if 
magnitude is an intrinsic part of cognition and of concept formation. 
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modularity in favor of magnitude.  Clearly, both need to exist in order to realize a 

sufficient model of cognition.  There is also good evidence to suggest that sensory 

information is processed in multiple modules (Livingstone & Hubel, 1988), which 

implies that at the very least magnitude information serves as input for modules.  

Experiments in perceptual scaling (West et al., 2000) also hint that a common scaling 

process applies to different sensory modalities, suggesting the possibility that there may 

be a magnitude module that is responsible for taking magnitude information and 

translating it into meaningful, consciously accessible quantity information.   There is no 

conclusive account for the role of modularity in a magnitude-based cognition.  I suggest 

that the only feasible account at this point is that magnitude information is either retained 

through modular categorization or coexists to join post-module information in central 

consciousness.  Because magnitude information is consciously accessible and cognitively 

penetrable, it is clear that magnitude information is retained through any modular 

processing. 
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CONSTRAINED SCALING 

Introduction  

In the previous chapter, I explained the centrality of magnitude to cognition.  I 

demonstrated that it is plausible to think of magnitude as occupying three stages of 

information processing, incorporating sensation, perception, and cognition.  I also 

explained how magnitude coexists and supports other cognitive processing such as 

categorization.  In this chapter, I discuss the measurement of mental magnitude in more 

detail. 

The mind processes magnitude information, and psychophysical and 

psychometric scaling are the ways to access these magnitudes.14  What is missing from 

this tidy account is an explanation of how scaling occurs.  Figure 4 illustrates the 

processes involved in scaling the magnitude of a physical stimulus.  Magnitude 

information is first extracted through the process of sensation.  Then, perceptual 

processes create a mental representation of the magnitude.  Finally, cognition translates 

the magnitude representation to a scale.  Commonly, magnitude representations are 

translated into numerical scales, which require the enlistment of mathematical cognitive 

skills to produce a numerical representation to match the magnitude representation in the 

mind.  Note that Figure 4 does not fully incorporate the process of generating a scaling  

                                                 
14 Another class of magnitude measurements consists of physiological measures.  Using 
measures such as galvanic skin response, electrocardiograms, and heart rate, it is possible 
to determine a person’s physiological response to a stimulus.  These measures circumvent 
introspective response in a way that does not necessarily gauge conscious response.  
These are indirect measures, since they do not necessarily measure conscious experience 
directly but rather the effect of conscious experience on the body. 
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Figure 4.  Processes involved in scaling a magnitude perception. 
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response, since this may entail different proficiencies depending on the mode of 

response. To generate a verbal response of the magnitude quantity, spoken language 

processes would be required; to generate a written response of the magnitude quantity, 

written language processes would be required; to generate a response on a line scale, a 

variety of processes including psychomotor processes would be required.  Figure 4 

simply illustrates the basic processes required in any magnitude scaling. 

Calibration and Scale Units 

As I discussed previously, measurement is the key to physical science.  An 

equally important hallmark of physical science is the need to calibrate the measurement 

apparatus.  Calibration refers to the notion that one apparatus will obtain the same 

measurements as another apparatus.  Measurement in physical science is not simply 

about affixing numbers to observations.  Measurement is about affixing numbers to 

observations in a consistent manner across both observations and observers.  Calibration 

allows replication, in that it is possible for one scientist to reproduce the measurements of 

another scientist.  Calibration also facilitates generalization, as the scientist may be sure 

of the connection of one measurement to another measurement.  For example, the 

equality of 1 liter of water and 1 kilogram of mass at 0° C at sea level can be relied upon 

when the measurement instrumentation is calibrated to the metric standard. 

An important distinction needs to be drawn between calibrating a scale and setting 

its unit of measure.  It is possible to use any variety of units for a scale.  The classic 

examples of units of scale are the metric and Imperial measures.  While the metric system 

boasts a cleaner lineage and a wider implementation, there is no measurement advantage 
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of using one system over another.  A metric unit of measure has an exact equivalent 

Imperial unit of measure.   The two measurement systems use different scale units to 

measure the same thing, but a unit on one scale always maps precisely to a unit on the 

other scale.   

Calibration, on the other hand, prescribes the fidelity of that measurement unit.  

Calibration is the extent to which a measurement apparatus matches a predefined 

standard of measurement.  A calibrated metric apparatus will report unit values in 

accordance with metric standards, whereas a calibrated Imperial apparatus will report unit 

values in accordance with Imperial standards.  The degree of fidelity to the predefined 

standard marks the level of calibration, whereas the mapping of a physical entity to a 

specific scale constitutes the process of setting the unit of measure. 

A clear example of the importance of scale calibration and scale units comes from 

the historic chain of events that led to the modern thermometer (Middleton, 1966).   It 

was the Florentine Accademia del Cimento between 1657 and 1667 that first tried to 

match different thermometers to a common scale.  The Florentine Academy produced 

three sizes of spirit-in-glass thermometers with three corresponding temperature ranges of 

50, 100, and 300 degrees.  The smallest of the thermometers, the 50-degree 

thermometers, were observed to have the greatest temperature agreement between 

different thermometers in the series.  Early accounts of this finding suggested that the 

glassblowers had an easier time forming consistent glass tubes for the small 50-degree 

thermometers, whereas the large 100- and 300-degeree thermometers exhibited a high 

level of variability in the manufacture of the glass tubes.  Thus, the earliest account of 
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thermometer calibration links the glassblowers’ consistency in creating thermometers of 

exactly the same size with measurement consistency.   

A different approach to calibration was developed by Robert Hooke in England 

around 1665 (Middleton, 1966).  Instead of trying to make thermometers the same size, 

he calibrated thermometers against each other by changing the temperature of both 

thermometers and marking the corresponding points on the thermometer over time.  

Starting near freezing, he marked the fluid level in each thermometer and then gradually 

increased the temperature, marking the fluid levels on both thermometers as the 

temperature rose.   

Once this method of calibrating thermometers was developed, it was possible for 

subsequent experimenters to devise scales against which thermometers could be 

calibrated (Middleton, 1966).  In the seventeenth century, Daniel Gabriel Fahrenheit 

calibrated his thermometer at two points, the temperature of melting ice (0˚) and the 

temperature of the human body (100˚).  In the eighteenth century, Anders Celsius also 

calibrated his thermometer at two points, which corresponded to the temperature at which 

water freezes (100˚) and the temperature at which water boils (0˚).  Note that the polarity 

of the Celsius scale was later reversed, although his calibration points remained the same. 

Calibration and the unit of measurement are important scientific complements of 

each other.  Combined, they allow scientists to talk about the same observable 

phenomenon in the same manner.  While they are separate concepts, calibration and the 

unit of measurement interact to give consistency to measurement.  Without calibration 

and a common set of measurement units, science is fragmented by its inability to 
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communicate its results.  A similar process is at play in scaling of mental pheneomena.  

Without calibration and a common set of measurement units, psychological scaling 

cannot adequately explain mental phenomena in a consistent or replicable manner. 

The Mind as a Measurement Apparatus 

In the context of scaling, the mind operates much like a measurement apparatus.  

In psychophysical scaling, it senses a physical stimulus and produces a measurement to 

reflect the magnitude of that stimulus.  In psychometric scaling, it produces a 

measurement to reflect mental states that do not necessarily have a clear correlate in the 

external, nonmental world. 

Using the earlier example of thermometers, the analog between a physical 

measurement apparatus and human scaling is clear. Humans are sensitive to temperature 

and can provide approximations of temperature according to the following scale:  

6.1)7.305( −= TkW , (7)

where W is the perceived warmth, k is a constant, and T is the temperature in degrees 

Kelvin (Stevens & Stevens, 1960).  W is an estimate of the temperature of a piece of 

heated aluminum touching the skin.  The exponent value changes to 1.0 when a cooled 

piece of aluminum is applied to the skin.   

Given that humans do not respond consistently to cold vs. warm temperatures, it 

would seem that humans are poor thermometers.  One could imagine that human 

temperature sensing abilities are even more confounded outside the constraints of the 

laboratory.  Physical thermometers provide accurate measures of temperature in degrees 

Celsius or Fahrenheit, yet humans as thermometers often feel the temperature to be a 
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little colder or a little hotter than it actually is.  Humans are especially sensitive to wind 

and humidity, making our subjective perception of temperature sometimes quite different 

than reality.  Meteorologists have developed wind chill factors and humidexes to account 

for our proclivity to stray from objective mercuric temperatures.  While we primarily use 

wind chill factors and humidexes to gauge how much or how little clothing we need to 

wear in order to stay comfortable on a given day, these scale adjustments are actually 

transformations that calibrate human temperature perception to an objective scale.  Given 

a known level of humidity or a known wind speed, it is possible to calibrate subjective 

temperature perception to an objective temperature scale.   

Contrary to first appearances, humans are not poor thermometers.  We are simply 

poorly calibrated thermometers.  Applying a calibration correction for wind speed and 

humidity makes humans into relatively good thermometers. 

What about the scale units that the mind uses to report perceived temperature?  In 

contrast to most mental magnitudes, temperature presents a case in which the units of 

measurement are learned by humans at an early age.15  An American child growing up in 

northern Montana learns to associate 90˚ F with a warm summer day.  A Canadian child 

growing up 50 miles (or 80 km) to the North in southern Alberta learns to associate 32˚ C 

                                                 
15 Other commonly learned units of measure include distance, weight, fluid mass, and 
money.  Interestingly, in places like Canada and Britain that have officially gone to the 
metric system from the Imperial system, it is these units that are the slowest to be 
converted in the minds of that country’s inhabitants.  This phenomenon is especially 
pronounced with the measures that are intimately connected to a person.  While a 
Canadian may talk of a 500 km trip, his or her personal height is still measured in feet 
and inches.  While a Briton may talk about a 1200 kg car, his or her personal weight is 
still measured in stones and pounds. 
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with the same warm summer day.  These two children grow up with an identical 

climate—and, thus, identical temperature calibration points—but they learn two very 

different temperature scales.  Should that American later become an expatriate living in 

Canada, he or she will have great difficulty relearning the Celsius units of measure that 

are ubiquitous to Canada.  Likewise, should the Canadian later become an American 

immigrant, he or she would likely struggle to match Fahrenheit units of measurement to 

the well learned Celsius units of measurement.  These people would eventually become 

adept at converting temperatures according to the following equations (or some quickly 

calculated approximation of these equations): 

32)(
5
9

+= CF oo      or      )32(
9
5

−= FC oo , 
(8)

but the actual relearning of the new temperature scale would be slow at best. 

 This example of humans as thermometers illustrates several important concepts in 

psychophysical and psychometric scaling. 

1. In many cases, it is possible through corrections and transformations to map human 

subjective scaling to objective physical measurement.  This is the case with 

psychophysical scaling. 

2. Human scaling is calibrated according to exposure to the range of the phenomenon.  

For example, a person raised in a cold climate would be calibrated to a colder range 

of temperatures than another person raised in a tropical climate. 

3. Both calibration and the unit of measurement are learned in human scaling. 
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4. It is possible for scaling to occur that is neither calibrated nor attuned to a particular 

unit of measurement. 

It is this latter point that concerns the remainder of this paper.  There are phenomena to 

which we have learned to respond with at least a modicum of accuracy according to a 

physical measurement scale.  Temperature is a prime example of such a phenomenon.  

But, there is a possibly infinite number of mental magnitudes for which there are no 

calibration points and no learned scale units.  What does this lack of mental calibration or 

measurement units mean for psychological scaling?  Just as in physical science, 

calibration and measurement units should be the hallmarks of psychological 

measurement.  A failure to control for these factors would bring into serious question the 

validity of scaling results for mental phenomena.  

Problems with the Mind as a Measurement Instrument 

Given a short, pure tone of average frequency and amplitude (e.g., 1000 Hz at 70 

dB), what scale value would someone assign to represent the loudness of that tone?  The 

answer depends on a number of factors.  First, the scale value depends on the range of the 

scale.  A scale from 1 to 10 would produce quite different results than a scale from 1 to 

100.  Still, even when the range is specified, the reliability of the scale value across 

different people could be quite low.  Assume for the moment that two people have equal 

hearing abilities and the same mental magnitude perception of the loudness of the tone.  

Using a simple ten-point scale, one person’s loudness rating of “5” might mean the same 

thing as another person’s rating of “7.”  Setting the endpoints of a scale does not calibrate 

the mind.  In calibrating a physical measurement apparatus, it is sufficient to calibrate a 
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few points on the scale, especially if the properties of the measurement apparatus are 

known.  For example, when calibrating standard spirit-in-glass thermometers, it is 

sufficient to match a few points for temperature equivalence, because the thermal 

properties of the fluid in the thermometer are understood.  There is no luxury of mental 

equivalence in humans.  Even when humans are given the endpoints on a scale, this does 

not necessarily affect the way in which they scale between those endpoints. 

Poulton (1989) provides a comprehensive list of biases in scaling.  By bias is 

meant the fact that people do not treat a scale in a consistent, linear fashion.  

1. There is, for example, a series of contraction biases, in which people do not use the 

full range of the scale available to them.  A common form of this occurs when people 

scale most magnitudes too closely to a central scale value.   

2. Other biases occur when people use inappropriate units of magnitude.  Such would be 

the case, for example, when judging temperature on a 100-point scale according to 

the already familiar Celsius scale.  The familiar Celsius scale could hamper the ability 

of a person to scale using a different temperature scale. 

3. When people do not use a scale consistently across the scale range, they often exhibit 

a logarithmic response bias.  This may happen when a person does not know how to 

map a magnitude to a scale in a particular range.  For example, if a person scales a 

stimulus in one-step increments in a low range and then uses ten-step increments in a 

high range, this would result in a logarithmic shaped curve.16 

                                                 
16 Note that the logarithmic curve is expected in psychophysical scaling and is, in fact, 
the basis of Fechner’s Law and Stevens’ Power Law. 
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4. In some cases, people scale using the entire range of a scale, even when the stimulus 

does not warrant a full range of responses.   In such cases, people exhibit range 

equalizing biases.  If, for example, a subset of stimuli is presented at around the 

midpoint of a scale yet the person provides responses spanning the full range, then 

that person is equalizing the range of his or her scale response. 

5. When people use all scale responses above and below the midpoint of a scale equally 

often, there are centering biases.  For example, when a person is presented with a 

range of loud stimuli, that person might assign loudness values localized around the 

midpoint of the scale.  When presented with a range of quiet stimuli, the person might 

assign roughly the same range of responses.  Although the stimuli are clearly 

different, the response bias of the individual tends to center the scale responses, 

thereby minimizing the scale differences between the two stimuli.  Helson’s 

adaptation-level theory (1964) accounts for this phenomenon, in which people adapt 

their perceptual response according to the intensity of the stimuli with which they are 

presented. 

Although most of Poulton’s scaling biases are most clearly illustrated through 

psychophysical scaling examples, these basic biases are endemic to psychometric scaling 

as well.  These biases most commonly manifest themselves in the form of a failure to use 

the full range of the psychometric scale (i.e., a contraction bias) or a tendency 

inappropriately to use the extreme ends of a scale (i.e., a range equalizing bias). 

With these many biases coming into play, psychological researchers need to 

exercise caution before treating their measures of mental magnitude with the kind of 
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confidence that a physical scientist might exercise.  Too often, psychological researchers 

correct for biased scaling results without remedying the cause of the biases.  Large 

numbers of participants are enlisted for a study and/or a large number of repeated trials 

are executed to accommodate the need for statistical effect sizes.  Buried in statistically 

significant averages are often individual differences in the use of scales.  The statistical 

tests that are the mainstay of psychological research carry the inherent ability to occlude 

these differences and biases in scale usage.  Without calibrating mental scale usage, 

psychological research risks being an artifact of chance scaling overlap rather than a true 

science of measurement. 

Laming (1997) expounds on the scaling biases identified by Poulton.  He suggests 

that the results found in psychophysical studies are typically an artifact of the scaling 

method more than a reflection of internal sensory states.  Laming argues that magnitude 

estimation, for example, produces results that are a function of the relative judgment of 

the range of stimuli rather than a reflection of sensory percepts.  In his view, without the 

presentation of a range of stimuli, the magnitude estimate does not exist, because the 

estimate cannot occur independent of the context of neighboring stimuli.  As evidence, 

Laming presents the considerable variance found in magnitude estimation results, 

whereby two-thirds of score variance is inherited from the preceding score.  Laming is 

skeptical of the ability of any measurement tool to capture the sensation17 of mental  

                                                 
17 Note that Laming’s use of “sensation” excludes a full account of the cognitive 
representational system that I have classified as “perception.”  Perception is the basis for 
psychological scaling in the present document.  Laming’s blended view of sensation and 
perception seems at odds with a cognitivist view of the mind as a representational system.    
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percepts.  He suggests, “Judgments of sensory magnitudes are known to be much 

subject to bias…. A theory of the measurement procedure would tell us how to avoid 

those biases or, at least, how to correct for them” (p. 25).  As shall be seen in the 

remainder of this chapter, constrained scaling offers exactly such a method to calibrate 

the individual and thereby reduce score variance.  Constrained scaling is both a theory of 

mental measurement as well as a procedure for improving the measurement of 

perception. 

Calibrating the Mind 

Ward (1992) introduced an important consideration into the psychological scaling 

literature.  He suggested that much of psychophysics aims to eliminate biases in order to 

reveal the true psychological scale.  Ward argued that the notion of a true scale was based 

on a static model of the mind.  As an alternative, he offered an account of the mind as 

dynamic and distributed.  Ward believed that the biases that surfaced in scaling were 

clues to the status of the mind at the time it was being measured.  He further suggested 

that when the object of study was not the mind in flux but rather the underlying processes 

that control mental phenomena, it was necessary to control the situation as much as 

possible (p. 220): 

If we want to make precise and repeatable statements about phenomena 
that are mediated by a dynamic distributed mind we must control the 
situation so that the mind we are engaging is both known in detail and as 
invariant as we can make it.  This implies that scales should be defined so 
as to be useful (render laws simple and elegant) and then subjects should 
be taught how to use the scales in situations that have been studied and 
analyzed so as to engage a known and consistent subset of the agents of 
mind. 
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With this statement, a new approach to scaling was initiated, one that subsequently came 

to be known as constrained scaling (West & Ward, 1994). 

 Constrained scaling works by both calibrating the individual to a mental scale 

(West & Ward, 1994) and by providing a natural set of scaling units (West et al., 2000).  

An individual is calibrated to a scale by receiving a set of training stimuli.  Each stimulus 

is presented, after which an experimental participant estimates the magnitude of the 

presented stimulus.  Finally, the actual scale value is presented to the participant.  Over a 

series of training trials, the participant learns to match his or her magnitude perception to 

the scale.  In order that a scale may be readily learned, it must represent a natural scale 

such that it can be fit to Stevens’ Power Law in Equation 3.18  Once the participant has 

learned to match his or her perceptual magnitudes to a scale, the participant receives a 

novel set of stimuli to scale according to the learned scale.  The participant receives no 

feedback for the novel stimuli, but scale learning is supported and enhanced with 

reminder trials in which stimuli from the original scale are presented again with feedback. 

Whether answering the need for a dynamic model of scaling (Ward, 1992, 2002) 

or addressing a way to remove bias in order to arrive at true psychological measures  

                                                 
18 A natural scale refers to a scale that may be readily learned (Ward, 1992), because it 
follows the characteristics of how a stimulus range is mapped to mental magnitudes.  For 
the purposes of this discussion, I assume that power laws using Stevens’ (1975) exponent 
values, derived through magnitude estimation, are natural scales. For some of these it has 
actually been shown that they are easy to learn (Marks, Galanter, & Baird, 1995; West et 
al., 2000). It is interesting to note that these same studies indicate that exponent values 
above Stevens’ values are harder to learn. Teghtsoonian (1971) suggested that the 
function of the exponent value is to compress different stimulus ranges onto a single, 
fixed magnitude range. Under this interpretation, these results could be interpreted to 
mean that people can use less than the full internal range but not more. 
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(Poulton, 1989), constrained scaling offers a method that calibrates the human mind to a 

particular scale.  Initially, the central issue of constrained scaling was to what extent a 

scale could be learned (West & Ward, 1994).  Early results revealed that with a modest 

amount of training to a loudness scale of 1000 Hz, participants were subsequently able to 

apply that scale to different tones.  Note, however, that the object of constrained scaling 

was not that participants could specifically learn one loudness scale to measure a novel 

set of loudness stimuli, but rather that it would be possible to teach participants a general 

scale that could be applied to any domain.  Later research confirmed the generalizability 

of the learned scale, which was applied successfully to evaluate the subjective utility of 

money (West & Ward, 1998) and the subjective brightness of light (West et al., 2000). 

Recent research (West et al., 2000) has found that constrained scaling reduces the 

interparticipant variability in psychophysical response.  To determine the average level of 

response variability, West et al. reviewed the results from 14 previous psychophysical 

studies that had used magnitude estimation or cross-modality matching methods (see 

Table 1).  West et al. used the coefficient of variation, a measure of the percentage of 

variability relative to the mean, expressed in terms of the standard deviation divided by 

the mean (SD/M).  The coefficient of variation provided a standardized measure of 

variability that was suitable for direct comparison across studies that had used different 

scaling ranges.  The average coefficient of variation across the previous studies was 

0.333.  West et al. also used the ratio of highest-to-lowest (H:L) slope values from the 

scale plots as another gauge of variability.  Within each study, the highest slope value  
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Table 1.  Variability in a convenient sample of magnitude estimation and cross-
modality matching experiments. 

 
Study SD/M H:L Method N Stimulus Study 

1 0.286 2.750 ME 11 loudness Stevens & Guirao (1964) 

2 0.436 n.a. ME 32 loudness Teghtsoonian & Teghtsoonian (1983) 

3 0.388 n.a. ME 35 loudness Teghtsoonian & Teghtsoonian (1983) 

4 0.290 3.951 ME 8 loudness Algom & Marks (1990) 

5 0.293 2.296 ME 11 loudness Algom & Marks (1990) 

6 0.444 3.320 ME 8 Loudness Ward (1982) 

7 0.446 6.000 ME 8 brightness Ward (1982) 

8 0.186 1.600 ME 10 loudness Hellman & Meiselman (1988) 

9 0.274 2.267 ME 6 heaviness Luce & Mo (1965) 

10 0.231 1.746 ME 6 loudness Luce & Mo (1965) 

11 0.328 3.368 CMM 20 duration to loudness Lilienthal & Dawson (1976) 

12 0.347 3.808 CMM 20 loudness to duration Lilienthal & Dawson (1976) 

13 0.392 2.435 CMM 5 loudness to line length Zwislocki (1983) 

14 0.326 2.4 CMM 10 duration to loudness Ward (1975) 

 

Definitions:  SD/M = standard deviation of exponent values divided by the mean of the 

exponent values; H:L = the ratio of the highest to lowest individual exponent; N = 

number of participants; ME = magnitude estimation; CMM = cross-modality matching; 

n.a. = not applicable. 

Note:  Table from West, Ward, and Khosla (2000) used by permission of the first author.
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was compared to the lowest slope value.  Again, this relative proportion allowed a direct 

comparison between the different studies.  The average of the highest-to-lowest values  

for the 12 studies for which it could be calculated was 2.995:1.  In contrast, using 

constrained scaling, West et al. found a coefficient of variation equal to 0.086 and a 

highest-to-lowest ratio equal to 1.28:1 across trials for the first reported experiment.  

The use of constrained scaling reduced the interparticipant variability in psychophysical 

scaling nearly fourfold in terms of the coefficient of variation and by nearly two-and-a-

half times in terms of the highest-to-lowest ratios.  Similar results were found for the 

remainder of the constrained scaling experiments in the paper.   

The results by West et al. (2000) suggested that constrained scaling significantly 

reduced the variability in scale usage compared with more conventional scaling methods.  

An analysis of the individual participant data further revealed that no participants 

exhibited the types of response biases described by Poulton (1989).  Moreover, 

constrained scaling proved to be the method that produced the most consistent scaling 

responses by participants of any psychophysical method.  As a measurement apparatus 

for human magnitude perception, constrained scaling exhibited a level of calibration that 

was not found in other scaling methods. 

Constrained Scaling and Cognition 

Constrained scaling is a cognitive model of scaling.  Canonical approaches to 

psychophysical scaling suggest a stimulus-response approach to scaling (Marks, 1991), 

where:  
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RSM =)( , (9)

in which S is the stimulus amplitude, R is the magnitude perception, and M is the 

psychophysical function that relates the two.  Constrained scaling suggests that 

psychophysical scaling, P,  is mediated by cognitive factors, C:  

RSPCSM == )]([)( . (10)

While the canonical approaches to psychophysics attempt to minimize the effects of C, 

West et al. (2000) sought to control for it and to calibrate it. 

 While C is a hypothetical construct, it represents the observable effects of 

cognition on scaling.  West et al. (2000) made four key assumptions about the role of 

cognition in scaling: 

1. C is cognitively penetrable in the sense that it can be controlled under the right 

conditions.  The fundamental assumption of constrained scaling corresponds to this 

point, since constrained scaling assumes that through training, it is possible to 

influence an individual’s cognitive matching of magnitude to a scale. 

2. C is influenced by decisions made early during scaling.  An individual considers 

factors like the stimulus intensity range and the appropriateness of a particular scale 

primarily during early exposure to scaling trials.  It is therefore important that the 

learning trials that are part of constrained scaling be exercised early before response 

biases set in. 

3. C makes heavy demands on the individual.  Since the process of scaling makes heavy 

demands on attention and memory, the nature of the scale can actually result in an 

unstable scale.  In practical terms, this assumption means that a constrained scale 
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needs to be a natural scale that can readily be matched to magnitude perceptions.  A 

scale that does not map naturally to mental magnitudes would be too cognitively 

demanding to be effectively learned by the individual. 

4. C is independent of perceptual modality.  This assumption is important because it 

prescribes the possibility of a type of learned scale that can be used universally for all 

scaling needs, not simply for the stimulus modality in which the individual was first 

trained. 

Again, it must be stressed that C is not a literal construct but rather a symbol of a variety 

of cognitive processes involved in translating a mental magnitude to a scale.  Constrained 

scaling makes these four key assumptions about cognitive processes in scaling not as an 

exhaustive itemization of cognitive factors but as a starting point for the model.19 

Constrained scaling is a cognitive model of scaling, and it continues to evolve.  

The experiments outlined in the next chapter aim to refine the constrained scaling model 

in order to make it a more comprehensive cognitive model.  Among other things, I 

incorporate psychometrics into the constrained scaling model.  Constrained scaling has 

                                                 
19 These concepts are not unique to scaling.  Any learned skill shows similar 
characteristics.  For example, athletic skill requires (1) awareness of one’s proprioceptive 
status and physical capabilities, (2) considerable training to achieve mastery, and (3) 
ongoing training to maintain mastery.  Once mastery is achieved, (4) the athletic 
competence is often readily transferable to other domains involving the body.  The 
process of psychological scaling is not as natural to most humans as is athletic skill, but 
athletic skill is attained over years if not decades of training, traceable to proprioceptive 
first steps in infanthood and childhood.  Constrained scaling, like athleticism, capitalizes 
on humans’ innate adaptability as the cornerstone of mastery.  The domain of mastery in 
constrained scaling is the translation of mental magnitude to an external scale.  Just as an 
athlete has highly honed physical skills, the constrained scaler exercises a condensed 
regimen of training to achieve calibration to a scale. 
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thus far been a model primarily of utility to psychophysical scaling.  In the next chapter, 

I explain how I investigated the relevance of constrained scaling to subjective scaling that 

does not have a clear triggering stimulus in the non-mental world.  Before I proceed, it is 

appropriate to review an example of constrained scaling in practice. 

Reprise:  Minds as Measurement Apparatuses 

The importance of constrained scaling of magnitude is well illustrated in the 

rockumentary movie, This is Spinal Tap (Murphy & Reiner, 1984).  In the film, Marty, a 

film producer, interviews Nigel, the lead guitarist for the heavy metal band, Spinal Tap, 

about his unusual electric guitar amplifier. 

NIGEL: ...This is the top to a…you know…what we use on stage.  But, 

it’s very…very special because if you can see…  

MARTY: Yeah....  

NIGEL: ...the numbers all go to eleven. Look...right across the board.  

MARTY: Ahh...oh, I see....  

NIGEL: Eleven...eleven...eleven....  

MARTY: ...and most of these amps go up to ten....  

NIGEL: Exactly!  

MARTY: Does that mean it's...louder? Is it any louder?  

NIGEL: Well, it's one louder, isn't it? It's not ten. You see, most...most 

blokes, you know, will be playing at ten. You're on ten here...all the way 

up...all the way up....  

MARTY: Yeah....  
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NIGEL: ...all the way up. You're on ten on your guitar...where can you go from 

there? Where?  

MARTY: I don't know....  

NIGEL: Nowhere. Exactly. What we do is if we need that extra...push 

over the cliff...you know what we do?  

MARTY: Put it up to eleven.  

NIGEL: Eleven. Exactly. One louder.  

MARTY: Why don't you just make ten louder and make ten be the top... 

number...and make that a little louder?  

NIGEL: [long pause] ...these go to eleven. 

Clearly, a volume setting of eleven is louder than ten.  Or, is it?  This classic comedic 

scene demonstrates the most important principle of constrained scaling:  the endpoints of 

a scale have no direct relationship to magnitude unless they are calibrated.  Constrained 

scaling is not about scaling physical stimulus intensities to a scale; rather, it is about 

scaling a person’s subjective experience to a scale.  One person’s subjective scaling of 

loudness, for example, will vary considerably from another person’s scaling of the same 

sound.  However, if subjective experience is calibrated to a scale, what one person means 

when they say a volume of ten is subjectively the same as what another person means.  

Subjective experience of magnitude is simply calibrated to a scale in constrained scaling.  

Constrained scaling presents a scenario in which eleven really is louder than ten, at least 

if all guitar players are calibrated to the same scale. Nigel has impeccable logic in the 

world of constrained scaling! 
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OVERVIEW OF THE EXPERIMENTS 

Replication, Refinement, Extension, and Application 

As I discussed in the previous chapter, constrained scaling is both a tool for 

scaling and a cognitive model of how internal magnitude perceptions are translated into 

numeric estimations.  In order better to understand the distinct tool and model 

components of constrained scaling, the present research addresses both facets through 

four types of experiments: replication, refinement, extension, and application.20 Table 2 

provides a rubric of how each proposed experiment falls within this classification.  I 

briefly outline the 15 experiments in this section before providing a more detailed 

individual treatment of the experiments and results in subsequent chapters. 

Experiment 1 is a replication experiment. Replication is simply a way to 

determine that the present experimental apparatus and design are compatible with 

existing research (Hubbard & Ryan, 2000).  In this case, replication is crucial in 

determining that the current implementation of constrained scaling adheres to the tool 

outlined in earlier research.  The ultimate goal of this replication is to ensure the 

robustness of the results from previous research to the present experimental framework.  

Experiment 1 is simply a replication of the method outlined in Experiment 1a and refined 

in Experiment 1b from West et al. (2000).   As shown in Table 2, both the training and 

testing stimuli involved loudness, as measured by the amplitude of tones.  The training 

stimuli in Experiment 1 were 1000 Hz tones, while the testing stimuli were 65 Hz tones. 

                                                 
20 Although I have classified each experiment according to a single type, these four 
classifiers need not be and, in fact, are not mutually exclusive. 



 

 
61 

 

 

Table 2.  List of the experiments classified according to the contribution type of the 
experiment. 
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Experiment 2 is a refinement experiment designed to assess constrained scaling 

as a tool.  Refinement experiments aim to clarify methodology and reveal possible limits 

of constrained scaling.  Experiment 2 repeats the stimuli and experimental apparatus used 

in Experiment 1.  However, Experiment 2 was carried out in a normal room instead of a 

sound attenuating chamber.  This refinement provides insight into the generalizability of 

loudness constrained scaling beyond laboratory facilities with precise acoustic abatement. 

 Likewise, Experiment 3 is a refinement experiment.  In Experiment 3, the 

constrained brightness scaling experiment (Experiment 4) in West et al. (2000) was 

replicated and refined.  Participants first learned a loudness scale and then applied it to 

scale brightness.  The presentation of the brightness stimuli was refined and presented on 

a cathode ray tube (CRT) instead of displayed from a single light source light-emitting 

diode (LED) as had been done previously in West et al.   

 Experiments 8, 9, and 10 are also refinement experiments.21  Experiment 8 

investigates how well constrained scaling functions when the training stimuli are 

categorical (i.e., nominal or ordinal) instead of continuous (i.e., interval or ratio).  

Experiment 9 builds on Experiment 8, by adding random noise to the feedback values 

                                                 
21 Experiments 8, 9, and 10 use a novel implementation of brightness stimuli instead of 
the loudness stimuli more common in previously published constrained scaling 
experiments.  It is assumed that the methods and results would apply equally to a 
different stimulus modality such as loudness.  The rationale for classifying these 
experiments as refinement experiments is because the outlined approach provides 
valuable insights into how to use constrained scaling as a tool.  In other words, these 
experiments refine the constrained scaling method.  They do not replicate previous 
research or extend constrained scaling theory, nor do they represent a specific practical 
application of constrained scaling. 



 

 
63 

 

 

 accompanying the training stimuli.  This random noise prevents rote memorization of 

the scale, a possible factor in learning categorical scale values.  Finally, Experiment 10 

decreases the feedback ratio to determine whether the customary high ratio of training 

trials is necessary to ensure scale learning. 

While this quintet of refinement experiments may not immediately appear central 

to the course of theory building, these experiments reveal important theoretical insights 

into constrained scaling.  For example, Experiment 2 makes the theoretical assumption 

that constrained scaling of loudness works in a variety of settings, even those without 

background noise reduction.  If this is not the case, the current model of constrained 

scaling needs to be adjusted to restrict the training and testing environment.  Experiments 

8 and 9 deal with fundamental issues regarding the type of scale.  Does constrained 

scaling work solely with continuous magnitude scales?  Does it also apply to partition or 

poikilitic22 measurement scales?  If constrained scaling fails to work across scale types, 

this could serve as confirmation for the strict segregation of scale types that Stevens 

(1975) proposes. 

Experiment 3 generalizes the type of light source that may be used in constrained 

brightness scaling experiments and sets the stage for subsequent scaling of brightness 

with a variety of color light sources.  This basic refinement in the method first outlined in 

West et al. (2000) enables an array of experiments on color brightness scaling and further  

                                                 
22 Poikilitic is used by Stevens (1975) to mean a continuous function.  The term implies 
that the function includes a certain amount of variation or scatter, as is characteristic of 
human scaling on a continuous magnitude dimension. 



 

 
64 

 

 

simplifies the apparatus and instrumentation necessary for conducting constrained 

scaling experiments. 

Experiment 10 reveals crucial information about the learnability of a scale.  While 

there existed anecdotal evidence for how many training trials were necessary before a 

person learns a constrained scale, there had previously been no systematic investigation 

about the optimal number of training trials.  Understanding the learnability of a scale is 

important not only for developing a streamlined method for administering constrained 

scaling as a tool but also for understanding the amount of cognitive effort required during 

scaling exercises.  Constrained scaling rests on the premise that people can be trained to 

scale magnitude using a naturalistic scale.  The naturalness of scales may vary, and a 

primary way to determine the naturalness of a particular scale is by the ease with which it  

is learned.  Experiment 10 provides an indication of the learnability of a scale that 

conforms to Stevens’ Power Law (Equation 3, p. 29).  This learnability can serve as a 

baseline for future research on the naturalness of other scales. 

Experiments 4 – 7 and 11 – 13 are extension experiments, in which the cognitive 

model of constrained scaling is further developed.  Extension experiments aim to show 

that constrained scaling is not only a useful tool for perceptual research (as in 

Experiments 4 – 7) but also for the types of subjective scaling that underlie psychometric 

research (as in Experiments 11 – 13). While such an extension obviously adds to the 

versatility of constrained scaling as a tool, it also significantly advances the cognitive 

model.  These experiments determine if there is a common cognitive scaling process that 

applies cross-modally to both perceptual and subjective mental phenomena. 
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Experiments 4 – 7 involved training and testing stimuli of various forms of 

brightness instead of the loudness scaling conventionally used in constrained scaling 

experiments.  In Experiment 4, participants were trained on a basic brightness scale 

consisting of grayscale squares on the screen.  In turn, they used the learned numeric 

scale from the brightness stimulus presentations to scale loudness stimuli.  Experiment 5 

presented a variation of the technique in Experiment 4, in which the duration of the 

brightness stimuli was shortened to more closely match the characteristics of the loudness 

stimuli.  Experiment 6 served as a baseline measure for grayscale, red, green, and blue 

brightness scaling.  Participants performed a standard magnitude estimation of the 

brightness of the monochrome and color stimuli, without a prior constrained scaling 

training session.  In Experiment 7, participants were trained to use the basic grayscale 

brightness scale and subsequently scaled the brightness of red, green, and blue squares.   

Experiments 11 – 13 are the theory centerpieces of this dissertation.  These 

experiments compare different scaling modalities in a novel triangulation method.  The 

aim of the experiments is to show that two different constrained scales function 

identically.  Experiment 11 seeks to confirm that a common cognitive process is involved 

when using different perceptual scales.  Participants learned a perceptual brightness scale 

and applied it to novel brightness stimuli.  Participants then learned a second perceptual 

brightness scale and applied it to novel brightness stimuli.  The ratio of the scaling slopes 

between the trained stimulus scale and the untrained stimulus scale was compared 

between the two experimental sessions.  Experiment 13 is a variation of Experiment 11, 

instead using a learned scale to assess a subjective scaling dimension.  Again, training 
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was compared across two time periods using two different learned scales.  Using the 

same participants in Experiments 11 and 13, it was demonstrated that learned scales were 

applied in the same manner for both perceptual (i.e., psychophysical) and subjective (i.e., 

psychometric) scaling modalities.  Experiments 11 and 13 serve as an important bridge 

between the psychophysical and psychometric literature, in that they put forth constrained 

scaling as a valid unifying model to account for both perceptual and subjective mental 

magnitudes.  Finally, an important cornerstone of this psychometric-psychophysical 

triangulation is Experiment 12, which provides a baseline for subjective scaling through 

magnitude estimation, which is compared to the scaling results obtained through 

constrained scaling in Experiment 13. 

The final two experiments are application experiments, demonstrating the real-

world utility of constrained scaling.  Experiment 14 moves the constrained subjective 

scaling framework pioneered in Experiments 11 – 13 to an applied research domain.  

Experiment 14 applies a constrained subjective scale to the domain of affective 

computing.  Affect has been found to be an important contributing factor in the use of 

computers.  Within the field of affective computing, aesthetics represents a topic of 

growing research prominence (Norman, 2004).  Since a standard scaling methodology 

has not been adopted for aesthetics research, there is an excellent and timely opportunity 

to test constrained scales vs. conventional scales for assessing aesthetics in computing.  

In the final experiment, Experiment 15, I looked at using constrained scaling as a tool for 

selecting the quality of service for streamed video broadcasting.  In the face of current 

criticisms about the standard scales for assessing video quality (Watson & Sasse, 1998; 
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West, Boring, Dillon, & Bos, 2001), a critical comparison of constrained scaling to 

other video quality scaling methods is important.  Together, Experiments 14 and 15 

provided a real-word test case for constrained scaling as a tool as well as a glimpse of 

other possible practical uses for constrained scaling. 
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EXPERIMENT 123 
EXPERIMENT 1 

Introduction 

The custom-built apparatus used in West et al. (2000) was not available for use in 

the present experiments.  Consequently, a new apparatus was created to match as closely 

as possible the apparatus used in the earlier experiments.  This experiment served as a 

replication of the general design and apparatus used in Experiments 1a and 1b in West et 

al.  The intent of this replication was to ensure that the new apparatus produced 

comparable results to the earlier published results. 

Method 

Participants 

 Five university students with self-reported normal hearing volunteered as 

participants in the experiment.  The volunteers were remunerated $10 for their 

participation. 

Apparatus 

The experimental control software is described in detail in Appendix A.  The 

experiment was conducted in an Eckoustic sound attenuating chamber using a Windows 

2000-based personal computer with a Creative Labs Sound Blaster Audigy card coupled 

to sealed circumaural headphones by Sennheiser.  The software interface provided a 

customized scrollbar that allowed the user to select values between 0.0 and 99.9, with one 

                                                 
23 A preliminary summary of the findings from Experiment 1 was presented at the 
Twelfth Annual Meeting of the Canadian Society for Brain, Behaviour, and Cognitive 
Science, May 30 – June 1, 2002, in Vancouver, BC (West & Boring, 2002). 
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decimal point of accuracy.  Using a mouse, participants selected the scale value by 

moving the slider on the scrollbar or by using on-screen buttons to increment or 

decrement the scale value by 0.1, 1.0, and 10.0.  The scale value was displayed in a 

textbox above the scrollbar.  To hear a tone, participants used the mouse to press a button 

marked PLAY TONE on the screen.  For feedback trials, after participants selected their 

scale value, the scrollbar slider was automatically moved to the correct scale value 

position and the textbox displayed the correct scale value with five decimal points of 

accuracy.  An on-screen button labeled NEXT allowed participants to advance to the next 

trial.   

Stimulus Materials 

 The creation of loudness stimuli as well as the calibration of loudness levels is 

described in detail in Appendix B.  The loudness stimuli consisted of 65 and 1000 Hz 

pure tones played for 1 second through the right earpiece of the headphones.  The tones 

ranged in amplitude from 33 dB to 100 dB and were stepped at 1 dB intervals, with 6 ms 

ramp-up and ramp-down times.   

Design and Procedure 

As in Experiments 1a and 1b in West et al. (2000), the participants were first 

trained to estimate the magnitude of the 1000 Hz stimuli. The participants were presented 

with 50 training trials during which they heard 1000 Hz pure tones of varying amplitudes. 

The amplitude values were randomly selected for each trial in order to ensure participant 

exposure to a range of loudness stimuli. The participants were instructed to estimate how 

loud the tone was for each trial using the custom scrollbar. After the participants had 
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selected a value, they were shown the correct response and instructed to make a mental 

note of the value. The correct response values were displayed with five decimal points of 

accuracy to encourage the participants to make full use of the numerical precision 

available to them.  The five decimal points of accuracy also discouraged rote 

memorization of the scale.  The correct scale values for the 1000 Hz tone amplitudes 

were calculated according to the following equation:  

60.06.16 PR = , (11)

where R was the correct scale response and P was the amplitude as measured in 

dynes/cm2. As in West et al. (2000), the exponent of the correct response was set to 0.60 

in order to conform to Stevens’ sone scale (1975). Using a multiplier of 16.6 allowed the 

scale to range between 1 and 94, a near full utilization of the 100-point scale available to 

the participants. 

 Figure 5 depicts the design of Experiment 1.  Participants were initially trained on 

50 iterations of randomly selected loudness values of the 1000 Hz tone.  In each training 

trial, they received feedback about the correct loudness value.  Next, the participants 

received a testing block of 100 trials in which they rated the loudness of the 1000 Hz 

tones with feedback and the 65 Hz tones without feedback.  Following a short break to 

prevent fatigue, participants received another block of 50 training trials in which they 

were presented a 1000 Hz tone and asked to scale it.  In these training trials, the 

participants received feedback about the correct response.  After the block of training 

trials, the participants again received a testing block of 100 trials.  The second testing 
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Figure 5.  Schematic flow of the constrained scaling experiment in Experiment 1. 
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block was identical to the first one with the exception that the order of presentation for 

feedback and no feedback trails was counterbalanced. 

Results and Discussion 

As in West et al. (2000), the logarithm of the participant response (R) was 

regressed against the logarithm of the sound pressure (P) in dynes/cm2 according to the 

following equation (Equation 5 from West et al.):  

eaPmR ++= logloglog , (12)

where m represents the slope of the resulting line, a represents the y-axis intercept, and e 

represents residual error.  The residual error term e may be removed to produce the 

general form of the equation: 

aPmR logloglog += . (13)

Transforming Equation 21 from a logarithmic scale to a standard scale produces the 

familiar Power Law form: 

maPR = . (14)

The results of the present experiment are summarized in Table 3.  The graphs for each 

participant according to Equation 14 are found in Figure 6 for 1000 Hz tones with  

feedback and in Figure 7 for 65 Hz tones without feedback.  Those values that were more 

than two standard deviations from the regression line were discarded as outliers.  Outliers 

represented 1.16% of the data and were typically associated with response values during 

initial trials or for low amplitude stimuli.  It was assumed that during initial trials,  

participants had not yet developed a correspondence between the stimuli and the
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Table 3. Summary of participants’ loudness scaling for 65 and 1000 Hz tones in 
Experiment 1. 
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Figure 6.  Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) and 
participant response (R) for 1000 Hz tones with feedback in Experiment 1. 
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Figure 7. Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 65 Hz tones without feedback in Experiment 1.
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response scale, thus resulting in aberrant response values.  For low amplitude stimuli, it 

was assumed that the stimuli were near or below the hearing threshold of the participants, 

resulting in a cluster of values at the response scale nadir. 

Exponent Values 

For the 1000 Hz tones with feedback, the mean exponent value, m, was 0.501, the 

coefficient of variation (standard deviation divided by the mean, or SD/M) was 0.056, and 

the highest-to-lowest (H:L) exponent ratio was 1.145:1.   These results closely replicated 

the results from Experiments 1a and 1b in West et al. (2000).  For 1000 Hz tones with 

feedback in Experiment 1a, the participants in West et al. had a mean exponent value 

equal to 0.56, an SD/M equal to 0.075, and an H:L ratio equal to 1.23:1.24  For 

Experiment 1b, the mean exponent value was equal to 0.56, the SD/M was equal to 0.112, 

and the H:L ratio was equal to 1.35:1.  The present experiment revealed slightly lower 

exponent values but also lower SD/M and H:L ratios, suggesting lower variability 

comparable to that found in West et al.   

For the 65 Hz tones without feedback, the present experiment revealed a mean 

exponent value of 0.596 with an SD/M equal to 0.034 and an H:L ratio equal to 1.090:1.  

For the participants in West et al. (2000), in Experiment 1a the mean exponent value was 

                                                 
24 West et al. (2000) used two significant digits for the mean and H:L and three 
significant digits for SD/M.  Where values are explicitly stated in West et al., the number 
of significant digits has been transferred as in the source.  Where the values are not 
directly provided in West et al. but have been calculated using available information, I 
have used three significant digits. 
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 0.77, the SD/M was 0.132, and the H:L ratio was 1.33:1; in Experiment 1b, the mean 

exponent value was 0.67, the SD/M was 0.096, and the H:L was 1.37:1.  The present 

experiment’s results for 65 Hz tones without feedback closely matched the results from 

the earlier experiment for 65 Hz tones without feedback.  As in West et al., there was a 

slight increase in the exponent value for lower pitched tones without feedback. 

 It should be noted that curves for the 65 Hz tones without feedback exhibit slight 

nonlinearity, primarily at the upper end of the stimulus range.  This slight curvature at the 

endpoints of the data is a deviation from Stevens’ Power Law, which may be accounted 

for by Norwich (1993) as noted earlier in Equations 5 and 6.  Despite this slight deviation 

from linearity, the linearly fitted regression line serves as a useful approximation of the 

data, since this measure allows comparison to earlier data sets.  The nonlinearity is also 

accounted for in the R2 values and noted in terms of scaling reliability. 

Intercept Values 

The average y-axis intercept value, a, is not reported in West et al. (2000).  In 

fact, the line intercept is rarely reported in psychophysical studies.25 The intercept is, 

nonetheless, important, because constrained scaling should effectively reduce the 

variability of the line intercept across participants, just as it reduces the variability of the 

slope values. 

                                                 
25 Stevens’ (1975) seminal work on the Power Law makes only cursory mention of the 
intercept and fails to elaborate on its function. 
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The intercept values reported in Table 3 represent the values for log a.26  For the 

1000 Hz tones with feedback, the mean logarithmic intercept value, log a, was 1.262, 

with SD/M = 0.079 and H:L = 1.204:1.  For the 65 Hz tones without feedback, the mean 

logarithmic intercept value was 1.512, with SD/M = 0.039 and H:L = 1:087:1.  Taking the 

anti-log of these values suggests that the mean intercept value, a, was 18.281 for 1000 Hz 

tones and 32.509 for 65 Hz tones.  These average response values were higher than the 

16.6 multiplier used for training in Equation 11, particularly for the 65 Hz tones without 

feedback.27  As expected from equal loudness contours, this value suggests that 65 Hz 

tones may require adjustment of the intercept at lower amplitudes to match the learned 

scale for 1000 Hz tones.  The slope or exponent values indicate that despite the 

perceptual difference in loudness between the two sets of stimuli, the participants used 

the response scale consistently across both stimulus ranges.  The findings suggest that the 

exponent is the more fundamental measure, indicating that participants learned the 

relationship between stimuli in terms of the exponent and used the intercept to map their 

perception to a number scale. 

Goodness of Fit Coefficients 

The goodness-of-fit coefficient, R2, measures the degree to which the data 

conform to the regression line.  Technically, R2 is the proportion of variance the response  

                                                 
26 To arrive at the actual intercept value, a, it is necessary to take the anti-logarithm of the 
value provided in Table 3. 
 
27 Recall that the logarithmic y-axis intercept is equivalent to the multiplier in the Power 
Law.  



 

 
79 

 

 

scores, R, share with the stimulus scores, P (Cohen & Cohen, 1983).  The higher the 

degree of shared variance is, the higher the conformity of data points to the regression 

line is. 

For 1000 Hz tones with feedback, the mean R2 value was 0.763, SD/M = 0.088, 

H:L = 1.145:1.  In Experiment 1a in West et al. (2000), the mean R2 value for 1000 Hz 

tones was 0.857, SD/M = 0.031, H:L = 1.072:1.  In Experiment 1b, the mean R2 value for 

1000 Hz tones was 0.864, SD/M = 0.083, H:L = 1.274:1.  Overall, the goodness of fit was 

slightly lower in the present experiment than in Experiments 1a and 1b in West et al. 

For 65 Hz tones without feedback, the mean R2 value was 0.770, SD/M = 0.062, 

H:L = 1.181:1.  These results are similar to the results found by West et al. (2000) in 

Experiments 1a and 1b.  In Experiment 1a, the mean R2 value for 65 Hz tones was 0.847, 

SD/M = 0.061, H:L = 1.200:1.  In Experiment 1b, the mean R2 value for 1000 Hz tones 

was 0.791, SD/M = 0.103, H:L = 1.319:1.  As with 1000 Hz tones, the goodness of fit in 

the present experiment was slightly lower for 65 Hz tones than that found in West et al., 

but the level of variability was comparable. 

Ratio Values 

As in West et al. (2000), there is a ratio comparison between the values for the 

1000 Hz tones with feedback and the 65 Hz tones without feedback.  This ratio measures 

the relationship between the responses on the training and test stimuli.  As discussed in 

West et al., this ratio—when comparing scaling exponents—approximates magnitude 

matching of two scaling continua.  Assuming an individual’s inherent scaling bias is 

retained across training and test responses and that this scaling bias is largely constant 
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within a scaling modality (i.e., loudness in this case), the resultant ratio reflects the true 

perceptual ratio of loudness exponents for 65 and 1000 Hz tones.   

In West et al. (2000), the mean ratio of 1000 Hz to 65 Hz exponents in 

Experiment 1a was 0.79, SD/M = 0.086, H:L = 1.28:1.  In Experiment 1b, the equivalent 

mean ratio was 0.84, SD/M = 0.082, H:L = 1.19:1.  The findings from the present 

experiment replicate these earlier experiments.  The mean ratio of 1000 Hz to 65 Hz 

exponents was 0.840, SD/M = 0.031, H:L = 1.091:1. 

This result is compatible with differing hearing sensitivity to different 

frequencies.  Equal loudness contours (Stevens, 1975; Ward, 1990) demonstrate that the 

listener’s sensitivity to 65 Hz tones is less thanhis or her sensitivity to 1000 Hz tones at 

low dB levels.  As the dB level increases, the listener’s hearing sensitivity to 65 and 1000 

Hz tones equalizes.  Thus, perception for 65 Hz tones across the normal hearing loudness 

range results in a steeper rise and consequent greater slope or exponent than hearing 

perception for 1000 Hz tones.  As in West et al. (2000), the results from the present 

experiment confirm the expected larger exponent value for 65 Hz tones compared to 

1000 Hz tones.  

West et al. do not provide ratios for the mean y-axis intercept or the goodness-of-

fit coefficient.  The equivalent ratios are included in Table 3 for the present experiment.  

It is assumed that the intercept ratios provide a comparison of threshold sensitivity to 

1000 Hz and 65 Hz tones.  The mean intercept ratio of 1000 Hz to 65 Hz tones equals 

0.834, with SD/M = 0.045 and H:L = 1.119:1.  These results suggest that the participants 

exhibited less threshold sensitivity to 1000 Hz tones than to 65 Hz tones.  The goodness-
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of-fit ratios provide a measure of how well the data conform to the regression line for 

the training stimuli vs. the testing stimuli.  The mean goodness-of-fit ratio of 1000 Hz to 

65 Hz tones equals 0.989, with SD/M = 0.032 and H:L = 1.084:1.  These results suggest 

that there was very little difference between the training stimuli (i.e., the 1000 Hz tones) 

and the testing stimuli (i.e., the 65 Hz tones). 

Score Distributions 

Figure 8 presents histograms for the frequency distributions of participant scores 

about the averaged regression line for 1000 Hz and 65 Hz tones.  As demonstrated, the 

scores follow approximately normally shaped distributions about the regression line, 

suggesting that participants overall did not display a particular score bias in scaling their 

perception of the stimuli.  Both histograms exhibit high kurtosis with heavy tails.  For the 

65 Hz tones, there is a slight skew on the right tail, which is indicative of the apparent 

curvature in the scatterplot for high stimulus scores.  This ceiling effect in scale values is 

indicative of an upper bound in perceived loudness for the 65 Hz tones. 

General Discussion 

The results from Experiment 1 compare favorably to the earlier results reported in 

West et al. (2000).  Using constrained scaling, participants exhibited good mastery of the 

training scale and good application of that scale to a novel set of stimuli.  This was 

evidenced by the interparticipant variability rates that were comparably low to earlier 

findings in West et al.  Additionally, the ratios of 1000 Hz tones to 65 Hz tones were 

generally low, further demonstrating the participants’ ability to use the learned 1000 
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Figure 8.  Frequency distributions for scores about the average regression line for 
1000 Hz stimuli (top) and 65 Hz stimuli (bottom) in Experiment 1. 
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 Hz scale for reporting their perception of 65 Hz tones.  Experiment 1 was a successful 

replication of Experiments 1a and 1b in West et al. 

Also, importantly, Experiment 1 was a successful replication using the new 

experimental apparatus.  The new apparatus featured a standard personal computer 

configuration with a sound card.  This experiment marked an important transition for 

constrained scaling from specialty psychoacoustic equipment to a readily available and 

easily deployable experimental apparatus. 
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EXPERIMENT 2 

Introduction 

One encumbrance to the utility of constrained scaling is the difficulty with which 

the experimental apparatus is replicated.  Especially loudness experiments can be difficult 

to replicate, given the need to control the acoustic environment in which the experiment 

is conducted.  Background noise abatement is typically accomplished in sound 

attenuating chambers.  Such chambers are not typically portable, requiring a designated 

psychoacoustic laboratory to house the equipment. 

In an effort to overcome the need for a psychoacoustic laboratory in constrained 

scaling research, the present experiment sought to replicate the method and findings from 

Experiment 1 outside a sound attenuating chamber.  The equipment used to conduct 

Experiment 1 was moved outside the sound attenuating chamber into a conventional 

psychological laboratory.  This laboratory featured acoustic properties similar to a 

contemporary office, with ambient noise in the 40 – 45 dB range.  To minimize 

confounding factors such as the variability in ambient noise associated with background 

conversation, no people other than the participant were present in the laboratory during 

the experiment. 

The goal of this experiment was to establish the applicability of the constrained 

scaling of loudness is a minimally controlled environment.  A cornerstone of constrained 

scaling’s utility as a general purpose scaling method is the ability of researchers to use 

the method in research settings that do not feature the tight controls exercised in 

Experiment 1.  If it is possible to use constrained scaling of loudness outside a sound 
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attenuating chamber, there is considerable promise that constrained scaling may be 

employed in a wider array of experiments than those published to date.  In this context, 

Experiment 2 represents a clear refinement of the existing constrained scaling methology.  

Method 

Participants 

Five university students with self-reported normal hearing volunteered for the 

experiment and were remunerated $10 for their participation. 

Apparatus 

The apparatus was identical to the apparatus used in Experiment 1, with the 

exception that the experiment was not carried out in a sound attenuating chamber.  The 

experiment was conducted in a psychological laboratory with ambient noise in the 40 – 

45 dB range.  The Sennheiser sealed circumaural headphones offered approximately 15 

dB in sound isolation.28   

The loudness of sounds over the headphones was calibrated in the sound isolating 

container described in Appendix B.  The use of the sound isolating container for the 

headphones was necessary in order to identify the loudness of tones without the additive 

effect of the background noise level.  At the low dB range of sounds, it was otherwise 

impossible for the dB meter to isolate the amplitude of the 65 and 1000 Hz pure tones 

amid louder ambient noise.  To the human ear, however, these tones were discernable 

                                                 
28 The level of sound isolation varied depending on the frequency of the background 
noise.  The level of sound isolation is averaged to be 15 dB, based on average 
performance across a variety of background noise situations.  



 

 
86 

 

 

from the ambient noise, except as these tones approached the threshold of human 

hearing. 

Design and Procedure 

The design and procedure of Experiment 2 were identical to those in Experiment 

1.  Participants were trained on the loudness scale in Equation 11, with a multiplier of 

16.6 and an exponent of 0.60 for 1000 Hz pure tones.  The participants subsequently 

applied the learned scale to novel 60 Hz pure tones of varying amplitudes. 

Results and Discussion 

 The data were analyzed as in Experiment 1 and are presented in Table 4 and 

Figures 9 – 11.  Those values that were more than two standard deviations from the 

regression line were considered outliers and were discarded.  In the present experiment, 

2.36% of response values were discarded as outliers.  This outlier rate was slightly more 

than double the outlier rate for Experiment 1.  Analysis of the specific outliers revealed 

that the majority were at the bottom of the loudness stimulus presentation range.  These 

low-amplitude sounds typically received a loudness rating of “0.0,” implying that 

participants were unable to here the tones above the background noise.  Figure 11 

presents a comparison of the average regression lines across participants for Experiments 

1 and 2. 

Exponent Values 

 For 1000 Hz tones with feedback, the average exponent value, m, equaled 0.524, 

with SD/M = 0.084 and H:L = 1.193:1.  For 65 Hz tones without feedback, the average 
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Table 4. Summary of participants’ loudness scaling for 65 and 1000 Hz tones in 
Experiment 2. 
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Figure 9. Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 1000 Hz tones with feedback in Experiment 2.
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Figure 10. Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 65 Hz tones without feedback in Experiment 2.
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Figure 11.  A comparison of 65 Hz (solid line) and 1000 Hz (dotted line) tones for 
Experiment 1 (black line) and Experiment 2 (grey line). 

 



 

 
91 

 

 

exponent value equaled 0.616, SD/M = 0.033 and H:L = 1.078:1.  These exponent values 

compared favorably to the values obtained in Experiment 1, with a slight, two-tenths of a 

decimal point increase in the average exponent value in the present experiment.  The 

average ratio of 1000 to 65 Hz tones was nearly identical across experiments (0.840 for 

Experiment 1 vs. 0.849 for Experiment 2). 

Intercept Values 

 For 1000 Hz tones with feedback, the average intercept value, a, was 1.252, with 

SD/M = 0.023 and H:L = 1.051:1.  For 65 Hz tones without feedback, the average 

intercept value was 1.334, with SD/M = 0.041 and H:L = 1.109:1.  These values 

compared favorably to the values in Experiment 1.  For 1000 Hz tones with feedback, the 

average intercept was one-tenth of a decimal point lower in Experiment 2 than in 

Experiment 1.  For 65 Hz tones without feedback, the average intercept was a little more 

than two-tenths of a decimal point lower in Experiment 2 than in Experiment 1.  The 

average intercept ratio of 1000 to 65 Hz tones was higher in Experiment 2 than in 

Experiment 1 (0.939 vs. 0.834). 

These slight differences in intercept values between Experiment 1 and Experiment 

2 are attributed to the background noise present in Experiment 2.  The intercept is a 

reflection of the perceived loudness of tones for low amplitude sounds.  The background 

noise in Experiment 2 exhibited minimal interference for 1000 Hz tones, resulting in a 

close match in average intercepts between the two experiments.  However, the 

background noise interfered with the perceived loudness of the 65 Hz tones.  The 

background noise, characterized primarily by the low-pitched whir of a computer cooling 
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fan, served to mask the perceived loudness of 65 Hz tones. 

The intercept differences are most clearly seen in Figure 11.  The average 

regression lines are nearly parallel, suggesting that the exponent (i.e., line slope) values 

were comparable across the experiments.  In contrast, the intercepts were quite different 

across conditions.  For 1000 Hz tones (see the dotted lines in Figure 11), the average 

regression lines aligned closely across both experiments, suggesting that the exponent 

and intercept values were nearly identical.  In contrast, the average regression lines for 65 

Hz tones (see the solid lines) varied considerably between Experiment 1 (see the black 

line) and Experiment 2 (see the grey line).  The average regression line for the 65 Hz 

tones in Experiment 2 (see the solid grey line) deviated slightly from the general 

parallelism of the regression lines.  The higher amplitude tones were perceived with 

loudness comparable to the loudness perception found in Experiment 1.  As expected, 

this line demonstrates that the masking of loudness for the 65 Hz tones was more 

prevalent for lower amplitude sounds than for higher amplitude sounds.  Once the tones 

exceeded a certain amplitude, the effect of the background noise was diminished.     

Goodness of Fit Coefficients 

The average goodness of fit coefficient, R2, was 0.817 for 1000 Hz tones, with 

SD/M = 0.034 and H:L = 1.096:1.  For 65 Hz tones, the average R2 value was 0.775, with 

SD/M = 0.087 and H:L = 1.212:1.  The average R2 ratio of 1000 to 65 Hz tones was 

1.060. These values were nominally higher than the values reported in Experiment 1, and 

it may be concluded that the goodness of fit values in Experiment 2 closely mirrored 

those values in Experiment 1. 
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General Discussion 

The results in Experiment 2 closely replicated the results in Experiment 1, with 

one exception.  Background noise may mask the experimental stimuli when it overlaps 

the frequency of the experimental stimuli, especially for lower magnitude stimuli.  With 

this caveat in mind, the constrained loudness scaling method produces robust results, 

even outside a sound attenuating chamber.  This experiment clearly demonstrates the 

extension and generalizability of the constrained scaling method beyond the rigid 

controls of a psychoacoustic laboratory.  It is possible for an experimenter to use 

constrained scaling methods to measure loudness perception even in a conventional 

laboratory setting without noise abatement. 
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EXPERIMENT 3 

Introduction 

Initial results are very promising in terms of constrained scaling as a technique to 

reduce scaling variability between individuals. However, as a technique, constrained 

scaling is still relatively new.  Most research involving constrained scaling has so far 

centered on loudness scaling, one of the most frequently investigated and best understood 

areas of psychophysics (Stevens, 1975).  While loudness is an excellent starting point for 

a model of psychological scaling, it is exactly that–a starting point.  This experiment 

extends previous research cross-modally by addressing constrained scaling as a 

measurement tool for the visual sensory modality, namely the scaling of brightness. 

West et al. (2000) briefly touched upon the scaling of brightness.  In Experiment 4 

of their paper, participants were trained to scale loudness according to the familiar 

Equation 11 in this dissertation, ,6.16 60.0PR = where R was the response feedback and P 

was the sound pressure in dynes/cm2. After the participants had learned the loudness 

scale, they were instructed to use the learned scale to rate the brightness of a green, 565 

nm wavelength LED ranging from 0.044 to 272.024 cd/m2 at six luminous intensity 

levels.29  The mean exponent value was 0.33, which corresponds to Stevens’ (1975) 

natural scaling exponent for brightness light sources in the dark.30   The measures of 

                                                 
29 West et al. (2000) presented their values in footlamberts (fL). One fL is equivalent to 
3.426 cd/m2. 
 
30 Stevens’ (1966, 1975) scaling exponents for brightness varied from 0.33 to 1.2, 
depending on the area of brightness source, the brightness contrast between the light 
source and the background, and the duration of the light source presentation. 
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variability were slightly higher than the results typically obtained for loudness measures 

in other constrained scaling experiments, but they were generally lower than the 

variability found in magnitude estimation or cross-modality matching experiments.  The 

coefficient of variation, SD/M, equaled 0.152 and the highest-to-lowest exponent ration, 

H:L, equaled 1.59:1. 

West et al. (2000) used a calibrated LED to generate the brightness stimuli.  The 

LED afforded a limited number of selectable luminance values on a logarithmic scale, 

potentially confounding the experiment by introducing a categorical stimulus scale.  To 

achieve a continuous brightness scale akin to the continuous loudness scale, the present 

experiment used a cathode ray tube (CRT) display for stimulus presentation.  The CRT 

display offered a wider gamut of color and luminance than is possible with a single LED 

as well as a wider display area than the point light source of a LED. Grayscale, the level 

at which the CRT’s three phosphor guns (representing red, green, and blue colors) fire at 

the same luminous intensity, was selected instead of color for training so  that the stimuli 

might be neutral with respect to color sensitivity in participants. 

Method 

Participants 

Five university students with self-reported normal hearing and normal color 

vision were enlisted as participants for the experiment.  The participants did not overlap 

with the participants from the previous experiments.  As in previous experiments, each 

volunteer received $10 for his or her participation in this experiment.   
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Apparatus 

The experimental control software from Experiments 1 and 2 was modified to 

display the brightness stimuli in addition to the loudness stimuli.  The loudness stimuli 

were identical to the 1000 Hz pure tones used in Experiments 1 and 2.  The brightness 

training stimuli consisted of achromatic squares of 4º of visual field displayed on the 

screen directly in front of the participant. 

The brightness stimuli used in the present experiment were displayed on a 

Samsung 19-inch SyncMaster 950P CRT display attached to an ATI Radeon VE graphics 

display adapter at a screen refresh rate of 100 Hz.  The CRT was pre-warmed for one 

hour to stabilize the color luminance levels.  The graphic display adapter was configured 

to 24-bit color resolution, corresponding to 8 bits (256 levels) for each of the red, green, 

and blue color channels.  The CRT display was calibrated using a Spyder colorimeter 

puck to a black point luminance at 0.00 cd/m2 and a white point luminance at 95.0 

cd/m2. The brightness stimuli used in the experiments consisted of 15 squares ranging in 

luminance from 0 to 100 cd/m2 along an equal log-spaced luminance continuum.  The 

grayscale squares were calibrated to be color neutral in accordance with CIE color 

standards (Commission Internationale de L’Eclairage, 1931), with average CIE Yxy 

chromaticity coordinates of x=0.278  and y=0.293.  Appendix C provides the full details 

of the apparatus used in Experiment 3 as well as the calibration technique used for the 

brightness stimuli. 

Design and Procedure 

 Figure 12 depicts the design of Experiment 3.  The design and procedure closely 
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Figure 12. Schematic flow of the constrained scaling experiment in Experiment 3. 
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follow Experiments 1 and 2.  As in Experiment 2, the experiment was not conducted in 

a sound attenuating chamber.  Participants were initially trained on 50 iterations of the 

1000 Hz loudness stimuli with feedback about the correct loudness value.  Subsequently, 

they were presented 100 trials of loudness stimuli with feedback paired with brightness 

stimuli without feedback.  The participants were instructed to scale the brightness stimuli 

according to the learned loudness scale.  Following a short break, the participants 

repeated the same procedure, with 50 additional loudness training trials and 100 pairs of 

loudness and brightness stimuli.  The order of the 100 pairs of brightness and loudness 

stimuli was counterbalanced to the order of the 100 pairs in the first part of the 

experiment. 

Results and Discussion 

The results were analyzed as in Experiments 1 and 2.  For brightness, the 

logarithm of the participant responses (R) was regressed against the logarithm of the 

luminances (L) in cd/m2: 

aLmR logloglog += , (15)

which was transformed to the Power Law form:  

.maLR =  (16)

The mean, coefficient of variation, and highest-to-lowest ratio were calculated for the 

exponent (m), the intercept (a), and the goodness of fit coefficient (R2).  The ratios of 

loudness to brightness for these values were also calculated.  A summary of the results is 

found in Table 5.  The summary graphs for loudness and brightness scaling are found in 

Figures 13 – 15. 
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Table 5. Summary of participants’ loudness and brightness scaling in Experiment 3. 
 

R
2  

1.
04

8 

1.
05

1 

1.
20

1 

1.
07

1 

1.
01

5 

1.
07

7 

0.
07

2 

In
te

rc
ep

t 

0.
81

2 

1.
12

2 

0.
79

8 

1.
21

4 

1.
57

0 

1.
10

3 

0.
31

9 

R
at

io
 o

f L
ou

dn
es

s t
o 

B
ri

gh
tn

es
s 

E
xp

on
en

t 

1.
88

9 

1.
16

1 

2.
38

6 

1.
03

4 

0.
90

6 

1.
47

5 

0.
63

6 

R
2  

0.
84

0 

0.
78

5 

0.
70

2 

0.
76

4 

0.
84

5 

0.
78

7 

0.
05

9 

In
te

rc
ep

t 

1.
50

2 

1.
10

8 

1.
60

2 

1.
07

1 

0.
81

5 

1.
22

0 

0.
32

6 

B
ri

gh
tn

es
s +

 N
o 

Fe
ed

ba
ck

 

E
xp

on
en

t 

0.
27

7 

0.
48

5 

0.
21

8 

0.
49

3 

0.
60

4 

0.
41

5 

0.
16

2 

R
2  

0.
88

1 

0.
82

5 

0.
84

3 

0.
81

8 

0.
85

8 

0.
84

5 

0.
02

5 

In
te

rc
ep

t 

1.
22

0 

1.
24

3 

1.
27

9 

1.
30

0 

1.
28

0 

1.
26

4 

0.
03

2 

L
ou

dn
es

s +
 F

ee
db

ac
k 

E
xp

on
en

t 

0.
52

4 

0.
56

3 

0.
52

0 

0.
51

0 

0.
54

7 

0.
53

3 

0.
02

2 

 

P 1 2 3 4 5 M
 

SD
 



 

 
100 

 

 

 

 
PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
 

Figure 13.  Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 1000 Hz tones with feedback in Experiment 3. 
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Figure 14.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares in Experiment 3. 
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NOTE:  The line through the histograph depicts the normal distribution. 
 

Figure 15.  Frequency distributions for scores about the average regression line for 
brightness stimuli in Experiment 3. 
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Exponent Values 

 For the training stimuli of 1000 Hz tones with feedback, the average exponent, m, 

was 0.533, with SD/M = 0.041 and H:L = 1.103:1.  This exponent value was congruent to 

the values obtained in Experiments 1 and 2.  For the grayscale brightness testing stimuli, 

the average exponent was 0.415, with SD/M = 0.389 and H:L = 2.772:1.  The average 

brightness scaling exponent was lower than the value reported for brightness scaling in 

West et al. (2000).31  There was considerable interparticipant variability in the brightness 

scaling results, comparable to the magnitude estimation and cross-modal matching but 

not the constrained scaling results reported in West et al.  The average exponent ratio of 

loudness to brightness in the present experiment was 1.475:1.  

Intercept Values 

 For the 1000 Hz tones with feedback, the average intercept, a, was 1.264, with 

SD/M = 0.026 and H:L = 1.066:1.  Experiments 1 and 2 provided nearly identical 

intercept and variability results for the loudness training stimuli.  For the grayscale 

brightness testing stimuli, the average intercept was 1.220, with SD/M = 0.267 and H:L =  

1.965:1.  These brightness scaling intercept variability measures were considerably 

higher than the loudness scaling intercept variability values obtained in Experiments 1 

                                                 
31 West et al. (2000) removed one participant’s results as an extreme outlier.  With and 
without the outlying participant in West et al., the present experiment exhibits higher 
variability.  Note that the present exponent value closely matches the brightness exponent 
suggested in Stevens and Hall (1966). 
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and 2.32   The average intercept ratio of loudness to brightness in the present experiment 

was 1.103:1.  

Goodness of Fit Coefficients 

 For the loudness training stimuli, the average goodness of fit coefficient, R2, was 

0.845, with SD/M = 0.030 and H:L = 1.077:1.  For the brightness testing stimuli, the 

average goodness of fit coefficient was 0.781, with SD/M = 0.075 and H:L = 1.204:1.  

The goodness of fit for both loudness and brightness scaling was comparable to that 

found in Experiments 1 and 2.  The goodness of fit ratio of loudness to brightness was 

1.072, suggesting nearly equal goodness of fit for the regression line across loudness and 

brightness scaling conditions. 

Score Distribution 

 As in Experiment 1, it is useful to review the distribution of the participants’ 

scores to determine if they follow a normal distribution.  Figure 15 shows the histogram 

for the frequency distribution of scores about the averaged regression line for brightness 

stimuli.  As with loudness in Experiment 1, there is high kurtosis.  There is a slight skew 

to the upper tail, implying some significant deviations indicative of slight scale curvature.  

Overall, however, the curve follows a roughly normally shaped frequency distribution. 

Range Effects 

By design, constrained scaling calibrates individuals to use scaling in a natural 

manner.  For example, it would be expected that a person who is trained on a loudness 

                                                 
32 A direct comparison to West et al. (2000) is not possible, since West et al. do not report 
intercept values. 
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scale with an exponent equal to 0.60 has learned a natural mapping between loudness 

and a numerical scale.  It is also assumed that this individual learns a more general 

mapping between perceptual continua and a numerical scale.  In Experiment 4 in West et 

al. (2000), it was demonstrated that participants trained on a loudness scale did not repeat 

the exact scale when subsequently scaling brightness.  Instead, they scaled loudness 

according to the natural brightness exponent, 0.33.  This finding was not replicated in the 

present experiment. 

 The effectiveness of cross-modal scaling is contingent on a number of factors, 

including the range of the scale.  Teghtsoonian and Teghtsoonian (1997) suggest that 

Stevens’ natural scaling exponent, m, for any modality is the ratio of the subjective 

response scaling dynamic range (log RR max) to the stimulus dynamic range (log RS 

max):  

,
maxlog
maxlog

S

R

R
Rm =  

(17)

whereby log RR max is a constant across stimulus modalities.33  In most experiments, RS 

max has a dynamic range around 2 log units, which is equivalent to a 100-point 

subjective response scale.  In Teghtsoonian and Teghtsoonian, however, the utilized 

subjective scaling range was 1.53 log units.  Equation 17 was put into practice for five  

stimulus modalities (i.e., loudness, heaviness, sniff vigor, handgrip, and shock intensity).  

Using a magnitude production method to allow participants to select the range of 

                                                 
33 The variable notation used by Teghtsoonian and Teghtsoonian (1997) has been 
changed to concur with the notation used in this dissertation.  The present Equation 17 is 
functionally equivalent to Equation 2 in Teghtsoonian and Teghtsoonian. 
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acceptable stimulus intensities, they found log RS max equal to 2.22 for loudness, 1.12 

for heaviness, 0.89 for sniff vigor, 0.85 for handgrip, and 0.50 for shock intensity.  The 

resulting exponent values were 0.69 for loudness, 1.37 for heaviness, 1.72 for sniff vigor, 

1.81 for handgrip, and 3.06 for shock intensity.  These exponent values generally 

matched exponent values reported in previous scaling literature. 

 Stevens (1975) suggests that the natural scaling exponent for brightness is 0.33.  

Given Equation 17 and Teghtsoonian and Teghtsoonian’s (1997) subjective scaling range  

equal to 1.53, the stimulus range would be calculated as follows:  

maxlog
53.133.0
SR

=  
(18)

.64.4
33.0
53.1maxlog ==∴ SR  

(19)

For Teghtsoonian and Teghtsoonian’s subjective scaling range, the range of acceptable 

stimulus intensities for brightness would be 4.64 log units.34 

An important implication of Teghtsoonian and Teghtsoonian’s exploration of the 

dynamic stimulus and subjective scaling range across modalities is that the dynamic 

range may be prescriptive for constrained scaling.  Constrained scaling provides training  

on the subjective scaling range given a range of stimulus intensities.  When using a 

standard scaling dynamic range of 2 log units and the range of acceptable stimulus  

                                                 
34 Teghtsoonian and Teghtsoonian (1997) do not provide an explanation of the underlying 
stimulus scales used in their experiments.  For example, the log RS max for loudness is 
reported as being 2.22.  The antilog of this number is 165.96.  Presumably this is not the 
range of acceptable stimulus intensities along the decibel scale!  An upper bound of 165 
dB, for example, would considerably exceed the point of pain and hearing damage. 
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intensities, the resulting exponent value would be expected to match Stevens’ (1975) 

natural scaling exponent values for a given modality.  However, what is the expected 

outcome when using a stimulus range that is smaller than the full range of acceptable 

stimulus intensities?  One possibility is that scalers will use the full response scale even 

for a restricted stimulus range.  If the response scale remains constant across different 

stimulus scales, the stimulus range has a potentially large impact on the resultant 

exponent.  A restricted stimulus range would potentially result in a steeper slope (and  

larger exponent) than would the maximized range of acceptable stimulus intensities.   

Due to constraints with the maximum luminous intensity output by the computer display 

used in the present experiment, the maximum brightness displayed was 4.25 times 

dimmer than the maximum brightness displayed using the LED in West et al. (2000). 

Figure 16 shows a comparison of the theoretical brightness plots if participants 

scaled the full range of response, R, across the available stimulus range, L.  For West et 

al., the brightness stimuli ranged from 0 to 274 cd/m2; in the present experiment, the 

brightness stimuli ranged from 0 to 64 cd/m2.  Assuming participants would use the full 

response range (0 to 100) to scale brightness, participants in the experiment by West et al. 

would be expected to respond with a scaling value around 100 for the brightest stimulus 

at 274 cd/m2.  Likewise, participants in the present experiment would be expected to 

respond with a scaling value around 100 for the brightest stimulus at 64 cd/m2.  Since the 

loudness training stimuli had a y-intercept around 16.6, this intercept is assumed to be 

transferred to brightness scaling.  The assumption made in Figure 16 is that participants 

adjust their scaling relative to the range of stimulus intensities they encounter.   
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Figure 16.  Comparison of theoretical brightness scaling results in West et al. (dotted 
line) and in Experiment 3 (solid line). 
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Regressing the line for the theoretical range distribution data35 produces the 

following equation for West et al.:  

,6.16loglog32.0log += LR  (20)

which is equivalent to: 

.6.16 32.0LR =  (21)

Similarly, regressing the line for the theoretical range distribution data produces the 

following equation for the present experiment: 

,6.16loglog40.0log += LR  (22)

which is equivalent to:  

.6.16 40.0LR =  (23)

Note that Equations 21 and 23 nearly exactly match the actual results in West et al. 

(2000) and in the present experiment, respectively.   

One interpretation of this finding is that participants trained on constrained 

scaling matched the response range to the stimulus range.  In the case of West et al., this 

matching was masked by the stimulus range that produced an exponent value in line with 

Stevens’ natural brightness scaling exponent (Stevens, 1975).  One may assume that  

range effects vary between participants, because the mapping of one stimulus range to  

another is subject to individual differences (Teghtsoonian, 1989).  Support for this 

interpretation is found in the increased interparticipant variability of brightness scaling 

                                                 
35 It was necessary to regress the data instead of calculating the exponent value according 
to Equation 17, because Teghtsoonian and Teghtsoonian (1997) did not provide guidance 
on the use of the underlying stimulus scale for this equation. 
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compared to other forms of constrained scaling.36  Another interpretation of these results 

is that they are coincidentally related to a range effect but represent a natural scaling 

exponent for onscreen grayscale, which is different from the natural brightness scaling 

exponent reported in Stevens (1975) and West et al. (2000).  The remaining experiments 

in this dissertation will shed further light on this phenomenon and offer suggestions for 

resolving these two interpretations. 

General Discussion 

 The present experiment demonstrated one method of refining constrained scaling 

methodology.  The use of constrained scaling cross-modally from loudness to brightness 

was not supported by the results, in which first training on a loudness scale did not seem 

to reduce the scaling variability beyond the variability expected in a brightness magnitude 

estimation study.  In order to explore brightness scaling, the subsequent series of 

experiments look at the relationship between brightness training and loudness testing 

(Experiments 4 and 5).  Experiment 6 explores brightness scaling across colors, in which 

participants are trained on grayscale brightness and tested on the brightness of red, green, 

and blue colors.  Experiment 7 collects baseline magnitude estimation measures for 

grayscale, red, green, and blue colors.  This series of experiments allows a comparison of 

scaling results, in particular scaling variability, between cross-modal loudness-brightness 

scaling in Experiments 3 – 5 and intramodal brightness scaling in Experiments 6 and 7. 

                                                 
36 The increased variability was more prevalent for the present experiment than for West 
et al. (2000). 
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EXPERIMENT 4 

Introduction 

Whereas Experiment 3 used loudness as the training scale for brightness, the 

present experiment reversed this design.  Brightness was used as the training scale for 

loudness.  The purpose of this experiment was to determine if training scales other than 

loudness would prove effective at generating scaling responses with low interrater 

variability.  Since no experiment has been reported in the constrained scaling literature 

involving training on brightness stimuli and testing on loudness stimuli, this experiment 

is considered an extension of constrained scaling methodology—it presents a novel 

domain for constrained scaling. 

Method 

Participants 

 As in previous experiments, five participants with self-reported normal hearing 

and normal color vision volunteered for this experiment.  The volunteers were paid $10 

for their participation in the experiment. 

Apparatus and Stimulus Materials 

 The apparatus was identical to the apparatus developed and employed in 

Experiment 3.  The experimental control software featured precise calibration of sound 

card amplitude as measured in decibels (see Appendix B) and of the brightness of 

onscreen squares as measured in lumens (see Appendix C). 
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Design and Procedure 

 The schematic flow of Experiment 4 is presented in Figure 17.  The design 

mimicked the design of Experiment 3, except training involved grayscale squares of  

various brightness levels with feedback, and testing involved 1000 Hz tones without 

feedback.  The participants were trained on grayscale squares according to the following 

equation: 

33.08.21 LR =  (24)

where L is the luminous intensity in cd/m2, 0.33 is Stevens’ natural exponent for 

brightness scaling, and the coefficient 21.8 adjusts the scale to fit a 100-point scale range.   

L ranged from 0 to 100 cd/m2 along 15 logarithmically spaced stimulus points (see Table 

C-1 in Appendix C). 

Results and Discussion 

The results of the present experiment are summarized in Tables 6 – 7 and in 

Figures 15 – 22.  Note that the present experiment features a comparison of reaction 

times across brightness and loudness scaling trials, which is featured in Figure 22 and 

Table 7, and is explained later in this section. 

Exponent Values 

The mean exponent value for the brightness training stimuli with feedback was 

0.314, with SD/M equal to 0.054 and H:L equal to 1.100:1.  The participants 

demonstrated good learning of the brightness training stimuli and exhibited low 

variability in line with constrained loudness scaling experiments.  The mean exponent 

value for the loudness testing stimuli without feedback was 0.326, with SD/M equal to 
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Figure 17.  Schematic flow of the constrained scaling experiment in Experiment 4. 
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Table 6.  Summary of participants’ brightness and loudness scaling in Experiment 4. 
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Figure 18.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 4. 

 



 

 
116 

 

 

 
 

PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

log P

lo
g 
R

 
 

Figure 19.  Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 1000 Hz tones without feedback in Experiment 4. 



 

 
117 

 

 

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5

log L

lo
g 
R

 
Figure 20.  Comparison of constrained brightness scaling for Experiment 3 (dotted 
line) and Experiment 4 (solid line). 
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Figure 21. Comparison of constrained loudness scaling for Experiments 1 (dotted line), 
Experiment 4 (solid line), and theoretical loudness with a brightness intercept (dashed 
line). 
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Figure 22.  Reaction time for training (H’s with dotted regression line) and testing (’s 
with solid regression line) stimuli according to distance from the scale midpoint in 
Experiment 4. 
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Table 7.  Average reaction times (ms) for each participant for brightness training and 
loudness testing in Experiment 4. 

  
P Training Testing 

1 4339 3087 

2 6386 4560 

3 5998 6625 

4 4612 4433 

5 8303 7513 

M 5928 5244 

SD 1590 1791 
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0.222 and H:L equal to 1.691:1.  This exponent value was lower than the exponent 

found in constrained loudness scaling experiments.  In fact, the average loudness 

exponent value matched the brightness training exponent, which deviates significantly 

from the expected natural scaling exponent of 0.60 for loudness.  The average ratio of 

brightness to loudness exponents equaled 0.992, whereas the expected ratio would be 

0.55.37  

Intercept Values 

The average intercept for the grayscale training stimuli with feedback was 1.359, 

with SD/M equal to 0.011 and H:L equal to 1.024:1.  This value was very close to the 

training intercept of 21.8, the log of which equals 1.338.  The average intercept for the 

loudness testing stimuli without feedback was 1.670, with SD/M equal to 0.047 and H:L 

equal to 1.092:1.  This intercept was higher than the training intercept and curiously 

higher than the intercepts reported for loudness scaling in previous experiments.  This 

finding is discussed further in the section entitled Range Effects.  The intercept ratio of 

brightness to loudness was 0.815, whereas in Experiment 3, the brightness and loudness 

intercept were nearly identical.  The cross-modal verbatim transfer of the training 

intercept to the testing intercept in Experiment 3 was not found in the present experiment.  

Goodness of Fit Coefficients 

The average goodness of fit coefficient for the brightness training stimuli with 

feedback equaled 0.891, with SD/M equal to 0.054 and H:L equal to 1.125:1.  This value 

                                                 
37 Using Stevens’ (1975) natural scaling exponents of 0.33 for brightness and 0.60 for 
loudness, the ratio of brightness to loudness exponents would equal 0.33/0.60 or 0.55. 
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indicated that participants were quite consistent in scaling the brightness stimuli.  For 

the loudness stimuli, the average goodness of fit coefficient equaled 0.732, with SD/M 

equal to 0.178 and H:L equal to 1.575:1.  The average goodness of fit coefficient was 

comparable to that obtained the training scaling conditions in previous experiments, but 

the variability was somewhat higher, suggesting some inconsistency in scaling across 

participants.  The average ratio of brightness to loudness R2 values was 1.240. 

Reaction Time 

In order to offer possible insights into how scaling works when transferring a 

learned scale to another sensory modality, reaction time data were collected for each 

participant for all trials.  The reaction time data were gathered starting with the 

presentation of the brightness or loudness stimuli.  Reaction time data were collected with 

a millisecond accurate timer, as described in Appendix A. 

During each trial, the starting slider position was always centered on a value of 

50.  It is assumed that it will take the participant longer to select a value at the endpoints 

than toward the center of the slider scale.  Fitts (1954) suggested that movement time was 

a logarithmic function of the movement amplitude and the distance to travel:   







+=

W
AbaMT 2log2 , (25)

where MT is the movement time, a and b are constants related to the regression line for 

line traveling along a straight line, A is the movement amplitude, and W is the target 

width.  To consider the applicability of Fitts’ Law, the reaction time data were plotted as 

a function of the response, R, distance from the center of the slider scale (see Figure 22).  
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The figure illustrates that there was no consistent relationship between the response 

position and the reaction time and that the functional relationship between slider position 

and reaction time is noisy at best.  However, the regression lines do illustrate that there is 

a very slight tendency for the larger response values to have a faster reaction time.  A 

slight decrease in reaction time for higher intensity brightness stimuli is consistent with 

the research literature (Pease, 1964). 

A comparison of the average reaction times for the brightness training and the 

loudness testing stimuli is provided in Table 7.  For the brightness training stimuli, the 

average reaction time was 5928 ms (SD = 1590), while for the loudness testing stimuli, 

the average reaction time was 5244 ms (SD = 1791).  The 628 ms advantage offered for 

the testing stimuli was not statistically significant, t(4) = ±1.610, p = 0.183.  

Range Effects 

In Experiment 3, the possibility was considered that the stimulus range might 

influence the scaling slope or exponent.  Figure 20 illustrates the relationship between 

brightness scaling slopes in Experiment 3 and the present experiment.  As can be seen, 

the two lines follow a similar pattern and are closely related.  The line for the present 

experiment features a larger intercept but a flatter slope, while the line for Experiment 3 

features a smaller intercept but a slightly steeper slope.  The differences between the two 

scaling lines are more pronounced at the lower stimulus end than at the upper stimulus 

end, with an intersection of the two scales in the upper stimuli. 

Figure 21 illustrates the relationship between loudness scaling for Experiment 1 

and the present experiment.  Here are two strikingly different scales.  The present 
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experiment has a considerably larger intercept and a much flatter slope than Experiment 

1.  The flatter loudness slope in the present experiment is not attributable to a stimulus 

range effect, because the same set of loudness stimuli were used in both experiments.  

The different loudness scaling slope in the present experiment is also not attributable to a 

carryover of the brightness scaling intercept to the loudness scale, because the loudness 

intercept was larger than the brightness intercept.   

Figure 21 includes another line to explore a third possibility.  The dashed line 

represents the theoretical scale that would occur if there were a carryover of the 

brightness scaling intercept yet a subjective scaling upper bound equivalent to the 

maximum subjective loudness scaling value from Experiment 1.  This hybrid scale has an 

exponent value equal to 0.388, slightly higher than the actual exponent of 0.326.  Its 

scaling intercept is equal to 1.398, which is lower than the actual intercept of 1.670.  This 

theoretical scale offers a hypothetical assuagement for the unexpected loudness exponent, 

but it fails to explain the elevated loudness intercept in the present experiment. 

General Discussion 

The loudness stimuli without feedback were scaled in a fashion clearly accounted 

for by neither constrained scaling theory nor range effects.  It appears that participants in 

the present experiment scaled loudness according to the same exponent on which they 

were trained to scale brightness.  This would be an unnatural scaling exponent for the 

modality of loudness, which could explain the increase in variability compared to intra-

modal constrained scaling experiments. 
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However, this near perfect match of exponents from brightness to loudness was 

not found in the reverse direction in Experiment 3.  Participants did not appear to use the 

same scaling exponent for brightness as they had been trained upon for loudness.  But, in 

the case of Experiment 3, the intercept value was clearly carried over from loudness to 

brightness.  In the present experiment, the intercept values were quite different between 

brightness and loudness.  The lack of bidirectionality in the findings of Experiments 3 

and 4 muddles the theoretical clarity of cross-modal constrained scaling. 
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EXPERIMENT 5 

Introduction 

Stevens (1975) identifies four separate exponent values for brightness.  These are: 

an exponent of 0.33 for a 5º target in the dark, an exponent of 0.50 for a point light 

source, an exponent of 0.5 for a briefly flashed brightness stimulus, and an exponent of 

1.0 for a point light source that is briefly flashed.  Generally speaking, according to 

Stevens’ findings, flashing a light source has the effect of increasing the exponent. 

The present experiment is a direct follow-on to Experiments 3 and 4 and a near 

replication of Experiment 4.  In Experiments 3 and 4, the brightness stimuli were 

presented for the duration of the scaling trial.  The grayscale square was left on the screen 

until the participant had selected the scaling response value.  In contrast, in West et al. 

(2000), the brightness stimuli were displayed for 1 second and then removed.   To help 

account for the differences in exponents between West et al. and Experiments 3 and 4, a 

variation of Experiment 4 was implemented in which the grayscale boxes were flashed on 

the screen for 1 second. 

Method 

Participants 

As in previous experiments, five paid participants with self-reported normal 

hearing and color vision were enlisted for the experiment. 

Apparatus and Stimulus Materials 

The apparatus was identical to the apparatus in Experiment 4 with the exception 

that the present experiment incorporated a timer for the display of the grayscale squares.  
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After 1 second, the grayscale squares were blacked out.  The experiment control 

software displayed a dark gray border around the square to identify its location.   

Design and Procedure 

The design and procedure were identical to Experiment 4, except participants 

were given cues to indicate that a square was about to be displayed.  The participants 

could begin selecting a scale value as soon as the grayscale square displayed on the 

screen, but the grayscale square disappeared automatically after 1 second.  

Results and Discussion 

The results were analyzed as in Experiment 4 and are summarized in Tables 8 – 9 

and Figures 23 – 25.  As in Experiment 4, reaction time data were analyzed, and are 

presented here in Table 9.  

Exponent Values 

 The average exponent value for the flashed brightness stimuli with feedback was 

0.306, with SD/M equal to 0.073 and H:L equal to 1.195:1.  These values closely matched 

the brightness scaling exponents found in Experiment 4.  For the loudness stimuli without 

feedback, the average exponent value was 0.408, with SD/M equal to 0.228 and H:L 

equal to 1.903:1.  The loudness exponent in the present experiment was higher than the 

exponent in Experiment 4, but variability remained at comparable levels.  Although 

higher than the exponent in Experiment 4, this exponent was still considerably lower than 

the expected exponent of 0.6 for loudness scaling.  The average ratio of brightness to 

loudness exponents equaled 0.749, which was higher than the predicted exponent value 

of 0.55 in Experiment 4.
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Table 8. Summary of participants’ brightness and loudness scaling in Experiment 5. 
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Figure 23.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 5. 
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Figure 24.  Logarithmic scatterplot and regression line for loudness in dynes/cm2 (P) 
and participant response (R) for 1000 Hz tones without feedback in Experiment 5. 
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Figure 25.  Reaction time for training (H’s with dotted regression line) and testing (’s 
with solid regression line) stimuli according to distance from the scale midpoint in 
Experiment 5. 
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Table 9.  Average reaction times (ms) for each participant for brightness training and 
loudness testing in Experiment 5. 

  
P Training Testing 

1 5435 6479 

2 5104 6858 

3 4354 3442 

4 5431 4400 

5 3575 3997 

M 4778 5035 

SD 803 1535 
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Figure 26.  Comparison of constrained loudness scaling for Experiment 5 (solid line) 
and theoretical loudness with a brightness intercept (dashed line). 
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 Intercept Values 

The average scaling intercept value for the brightness stimuli was 1.383, with 

SD/M equal to 0.020 and H:L equal to 1.040:1.  These values were comparable to those 

values found in Experiment 4.  For the loudness stimuli, the average scaling intercept was 

1.493, with SD/M equal to 0.112 and H:L equal to 1.324:1.  This intercept value was 

lower than the intercept found in Experiment 4, although the present experiment featured 

higher variability.  The scaling intercept ratio of brightness to loudness was 0.926, 

suggesting a strong transference from brightness to loudness. 

Goodness of Fit Coefficients 

The average goodness of fit coefficient for the brightness stimuli was 0.786, with 

SD/M equal to 0.174 and H:L equal to 1.559:1.  This goodness of fit coefficient was 

0.105 lower than in Experiment 4, while the variability was considerably higher, where 

SD/M was over three times higher.  For scaling the loudness stimuli, the average 

goodness of fit coefficient equaled 0.788, with SD/M equal to 0.107 and H:L equal to 

1.269:1.  These values represented a marginally better goodness of fit and lower 

variability than loudness scaling in Experiment 4.   

Reaction Time 

The reaction time data were recorded and analyzed as in Experiment 4.  Figure 25 

presents reaction time data as a function of the distance from the slider scale midpoint.  

Table 9 presents the average reaction time data in the present experiment.  The average 

reaction time to select the scaling value was 4778 ms (SD = 803) for the brightness 

stimuli and 5035 ms (SD = 1535) for the loudness stimuli.  There was no significant 
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difference in scaling times for the brightness training stimuli and the loudness testing 

stimuli, t(4) = ±0.473, p = 0.661.  There was also no significant difference between the 

reaction times in Experiment 4 and the present experiment [t(8) = ±1.444, p = 0.187 for 

brightness scaling, and t(8) = ±0.198, p = 0.848 for loudness scaling]. 

General Discussion 

Figure 26 repeats the theoretical loudness scale from Figure 21, in which the 

dashed line represents the scale that would result from a carryover of the brightness 

intercept and the maximum subjective loudness scaling value from Experiment 1.  The 

loudness scaling from the present experiment closely follows the slope and intercept of 

the theoretical line.  However, it remains unclear why there was such transference for the 

flashed brightness stimuli but not for the constant brightness stimuli. 

One possible explanation is that light adaptation plays a role in the subjective 

perception of brightness.  Given the longer duration of the brightness stimuli in 

Experiment 4 than in the present experiment and given the presumed partial dark 

adaptation in the experimental setting, it is possible that participants may light adapt 

when the stimuli are maintained on the screen.  Light adaptation would have the effect of 

decreasing the perceived brightness of the grayscale stimuli.38  Participants would,  

                                                 
38 Recall that Stevens (1975) found that people generally tend to have larger scaling 
exponents for briefly flashed brightness stimuli.  This effect was documented for stimulus 
intensities under 1 second (Aiba and Stevens, 1964), which is shorter than the duration of 
the flashed brightness stimuli in the present experiments.  It has been suggested that there 
is a critical duration under 1 second, over which brightness perception is independent of 
the stimulus duration (Stevens and Hall, 1966).  All brightness stimuli used in the present 
experiments were presented longer than this critical duration.  
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nonetheless, learn to associate certain numeric values with the diminished brightness 

scale due to the training trials.  The decrease in perceived brightness coupled with the 

scale training would have the effect of amplifying the mapping between the perceived 

intensity of the stimulus and the numeric scale.  Participants would need to increase their 

response values—and, consequently, their intercept or exponent values—to align with the 

learned scale.  When participants are presented with stimuli to which there has been no 

adaptation, such as loudness stimuli, the expected result would be higher than normal 

intercept or exponent values. 

Participants did, on average, take over 1 second longer to scale brightness in 

Experiment 4 than in the present experiment (5928 ms for Experiment 4 vs. 4778 ms for 

Experiment 5).  There is nothing in the experimental apparatus that would force 

participants to take more time scaling brightness in Experiment 4 versus the present 

experiment.  This extra scaling time might therefore be a reflection of extra time spent 

studying the brightness stimuli, which could have the indirect effect that the increased 

exposure time could facilitate a moderate degree of light adaptation to the brightness 

stimuli.  Substantial rod light adaptation occurs within a quarter of a second (Adelson, 

1982), while cone light adaptation occurs rapidly in the first 3 seconds of exposure to 

light (Baker, 1949).  Both rods and cones continue to light adapt over an 80 second 

period.  Given the short period required for light adaptation, this remains a plausible 

explanation for the scaling differences encountered in the present experiment for 

shortened brightness exposure times. 
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Another possible explanation is that the differences in the results between 

Experiment 4 and the present experiment may be attributable to separate cognitive 

processes involved in scaling a live stimulus and scaling a stimulus from memory.   The 

concept of reperception—perceiving something in memory—and its effects on scaling 

are well documented (for reviews, see Algom, 1992; and Petrusic, Baranski, & Kennedy, 

1998).  In terms of direct magnitude estimation, the perceived intensity of a remembered 

stimulus (R') is a power function of the perceived intensity of an actual or live stimulus 

(R):  

.maRR =′  (26)

The actual value of the exponent (m) transformation is the subject of discussion.  In many 

cases, R' is less than the original R value, while in other cases R' may be greater than R.  

The lack of a conclusive, systematic relationship between R' and R has been attributed by 

some (e.g., Petrusic et al., 1998) to be the byproduct of shortcomings in magnitude 

estimation.  This has led to the use of alternative methods such as similarity comparisons 

to arrive at the relationship between R' and R. 

Given the present data set and experimental design, it is difficult to determine the 

role that memory might play in the determination of the scaling exponent.39  It is, 

however, clear that the memory implicated in the present experiments would not be the 

type of sustained or long-term memory found in typical experiments on reperception.  

                                                 
39 To test the effect of memory, it would be necessary to remove the stimulus presentation 
even for the longer duration exposure in Experiment 4.  This would ensure that no 
experimental condition received the active stimulus during the process of selecting the 
scale value. 
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Assuming a robust sensory store and a short-term memory that are capable of holding 

stimulus magnitude information for several seconds (Atkinson & Shiffrin, 1968), it is 

doubtful that there would be any discernible difference in stimulus intensity between the 

flashed and the sustained stimulus, especially if the participant is primed to appraise the 

stimulus intensity upon first exposure, as in the present experiments.  While it is 

impossible completely to rule out reperception as the determining factor for the scaling 

differences between Experiments 4 and 5, a more compelling case can be made for the 

influence of light adaptation on the scaling outcome.   
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EXPERIMENT 6 

Introduction 

The previous brightness scaling experiments in this dissertation have addressed 

achromatic or grayscale stimuli but not color stimuli.  Similarly, experiments in the 

research literature have been conducted to scale the brightness of specific color 

wavelengths (Judd, 1951; Marks, 1989; Marks & Stevens, 1966; Stevens & Marks, 1980) 

or to match the perceived brightness of different color wavelengths at a fixed luminance 

level (Chapanis & Halsey, 1955).  However, research has heretofore overlooked the 

comparative brightness scaling functions of separate color wavelengths.40 

The present experiment redressed this gap in the research literature by 

determining the brightness scaling function for red, green, and blue primary luminous 

stimuli as well as for an achromatic (i.e., grayscale) stimulus.  This experiment utilized a 

magnitude estimation method to determine baseline performance for scaling the 

brightness of colors.  Participants were instructed to rate the brightness of squares flashed 

on the screen for 1000 ms by using a 100-point slider on the screen.  Participants received 

no feedback on scale usage across the brightness matching trials.  Experiment 7, in turn, 

featured a comparable experimental design within a constrained scaling framework.  Like 

Experiments 4 and 5, the present experiment was classified as an extension of existing 

scaling methodologies. 

                                                 
40 Stevens (1975) provides a useful discussion of equal brightness contours but fails to 
relate this information to exponent values in magnitude estimation experiments. 
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Method 

Participants 

Five university students with self-reported normal color vision were enlisted as 

participants for the experiment.  The participants had not previously participated in 

scaling experiments.  The volunteers were remunerated $5.00 for their participation. 

Apparatus and Stimulus Materials 

As in previous experiments, an experimental control program to display the 

brightness stimuli and record participant data was developed using Visual Basic 6 

running under Windows 2000.  The display background was set to a luminous intensity 

of 0 cd/m2, and the slider used graphical elements with a maximum luminous intensity of 

24 cd/m2.  The colored squares were framed by a border with a luminous intensity of 95 

cd/m2 covering an area equivalent to 4º of the participant’s field of vision.  Appendix C 

provides additional details about the experimental apparatus as well as the calibration of 

the color brightness stimuli. 

Design and Procedure 

Participants performed the experiment in a dark room illuminated by a single 40 

Watt light bulb reflected on a wall behind the participant.  Participants were allowed to 

dark adapt to the room over a 5-minute period prior to the experiment.  Subsequently, 

participants rated the brightness of the squares flashed on the screen.  Three iterations of 

grey, red, green, and blue squares at 14 luminous intensity levels were flashed on the 

screen for 1000 ms each, resulting in 168 total trials (see Figure 27).  The 14 luminous 

intensity levels were equal across the grayscale and color squares.  
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Figure 27. Schematic flow of the design for color brightness magnitude estimation in 
Experiment 6. 



 

 
142 

 

 

Results and Discussion 

The results were analyzed as in Experiments 3 – 5.  The mean (M), standard 

deviation (SD), coefficient of variation (SD/M), and highest-to-lowest (H:L) ratio were 

calculated for each participant across all colors for the slope of the brightness line (m) 

and the line intercept (log a).  As a measure of variability, the goodness-of-fit coefficient 

(R2) was computed and compared across participants.  Tables 10 – 11 summarize the 

results from the present experiment.  Figures 28 – 31 show the individual participant 

scatterplots and regression lines for the grayscale, red, green, and blue colored squares.  

For each participant, scores that were two or more standard deviations from the 

regression line were treated as outliers and were discarded.  Reaction time data were not 

recorded for the present experiment. 

Exponent Values 

On average, the grayscale squares yielded the largest brightness slope, M = 0.437 

with SD/M = 0.485 and H:L = 3.062:1.  This large exponent, indicative of a steep slope, 

suggesting that participants assigned a broader range of scores between dark and light 

stimuli for grayscale versus the color stimuli.  Red and green squares yielded nearly 

identical brightness exponents to one another, M = 0.363, with SD/M = 0.544 and H:L = 

3.919:1, and M = 0.362 with SD/M = 0.442 and H:L = 2.800:1, respectively.  Note, 

however, that red squares produced greater variability in responses than did the green 

scquares.  The blue squares yielded the smallest brightness exponent and the greatest 

variability, M = 0.202 with SD/M = 0.589 and H:L = 7.054:1.  Using the grayscale 
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Table 10. Summary of participants’ brightness scaling in Experiment 6. 
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Table 11.  Scaling ratios of grayscale stimuli to color stimuli in Experiment 6. 
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Figure 28. Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares in Experiment 6. 
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Figure 29. Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares in Experiment 6. 
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Figure 30. Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for green squares in Experiment 6. 
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Figure 31. Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for blue squares in Experiment 6. 
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exponent as a baseline, the ratio of the average brightness exponent for grayscale squares 

to red squares was 1.324. For green squares, this ratio was 1.274  In the case of the

blue squares, the average brightness exponent was over twice the average brightness 

exponent for grayscale squares, with a grayscale-to-blue exponent-to-exponent ratio 

equal to 2.722. 

Intercept Values 

The intercepts for the color brightness lines followed a pattern in which greater 

exponents produced lower intercepts.  The grayscale brightness intercept was the smallest 

at M = 1.134 with SD/M = 0.262 and H:L = 1.867:1. The grayscale brightness intercept 

was followed by red and green brightness intercepts at M = 1.426 with SD/M = 0.199 and 

H:L = 1.568:1, and M = 1.382, SD/M = 0.190 and H:L = 1.453:1, respectively.  The 

average blue brightness intercept was the largest at M = 1.647 with SD/M = 0.098 and 

H:L = 1.24:1.  The average intercept scaling ratio of grayscale to color stimuli was 0.792 

for red stimuli, 0.815 for green stimuli, and 0.680 for blue stimuli. 

Goodness of Fit Coefficients 

Variability as measured by R2 revealed the best average stimulus-to-response fit 

for green stimuli, R2 = 0.747 with SD/M = 0.114 and H:L = 1.294:1.  The red stimuli 

produced the second best goodness of fit, with R2 = 0.657 and SD/M = 0.082 and H:L = 

1.243:1.  Grayscale stimuli produced an R2 equal to 0.563 with SD/M = 0.317 and H:L = 

2.813:1.  Blue stimuli had an R2 equal to 0.534 with SD/M = 0.500 and H:L = 6.265:1.  

The average R2 scaling ratio from the grayscale to the color stimuli was 0.847 for red 

stimuli, 0.771 for green stimuli, and 1.675 for blue stimuli. 
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General Discussion 

The goodness of fit coefficients for the color scaling exponents were considerably 

larger than those reported for magnitude estimation and cross-modality scaling in West et 

al. (2000).  In West et al., the average goodness of fit coefficient for the 14 cited studies 

was 0.333, whereas the present experiment produced SD/M values ranging from 0.437 for 

grayscale stimuli to 0.589 for blue stimuli.   The H:L ratios revealed similarly high levels 

of variability for scaling the brightness of colors, ranging from 2.800:1 for green stimuli 

to 7.054:1 for blue stimuli.  The average H:L ratio was 2.995:1 in West et al.  The high 

SD/M and, in part, H:L values suggest that color brightness scaling is particularly 

susceptible to scaling biases and inconsistencies.  As such, it is an ideal test bed for the 

application of constrained scaling methodology.  The next experiment addresses this 

possibility. 
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EXPERIMENT 7 

Introduction 

Experiment 6 revealed a high level of variabily for scaling the brightness of 

colors.  This variability represents an ideal set of circumstances for testing the tenet that 

constrained scaling significantly reduces scaling variability compared to magnitude 

estimation (or matching) methods.  The present experiment was identical to the previous 

experiment with the exception that the participants now received initial scale training in 

accordance with constrained scaling methodology. 

Method 

Participants 

As in Experiment 6, five university students with self-reported normal color 

vision were enlisted as participants for the experiment and were paid $5.00 for 

volunteering.  The participants had not previously participated in brightness scaling 

experiments. 

Apparatus and Stimulus Materials 

The apparatus and stimulus materials were identical to Experiment 6, except the 

experimental control software provided scaling feedback for grayscale stimuli. 

Design and Procedure 

The design was identical to Experiment 6, except participants were trained on the 

brightness of the grayscale squares (see Figure 32).  Participants first completed 3 

iterations of training on the 14 luminous intensity values for the grayscale squares.  After 



 

 
152 

42x

GREEN
+

NO FEEDBACK

42x

END

START

GREY
+

FEEDBACK

GREY
+

FEEDBACK

RED
+

NO FEEDBACK

BLUE
+

NO FEEDBACK

GREY
+

FEEDBACK

GREY
+

FEEDBACK

 
 

Figure 32.  Schematic flow of the design for constrained scaling of color brightness in 
Experiment 7.
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rating the brightness of each grayscale square, participants received feedback on the 

actual brightness of the square according to the following equation: 

,6.12 33.0LR =  (27)

where R was the response or feedback value and L was the stimulus luminance in cd/m2.  

As in Experiments 4 and 5, the exponent value of 0.33 was used to represent Stevens’ 

(1975; Marks & Stevens, 1966) measured exponent for the brightness of a 5° target in the 

dark.  The constant, 12.6, was selected such that the maximum feedback value was 

approximately 50 for the brightest stimulus of 64 cd/m2.41  Following completion of the 

initial 42 training trials, participants completed 3 iterations of the 14 luminance 

intensities for red, green, and blue squares.  Participants received no feedback for their 

ratings of the colored squares.  A grayscale square with feedback was interspersed 

between each colored square in order to maintain scale learning. 

Results and Discussion 

The results were analyzed as in Experiment 6 and are summarized in Tables 12 – 

13 and Figures 33 – 36.  A comparison of the results from Experiment 6 and the present 

experiment is presented later in this chapter. 

Exponent Values 

The mean brightness exponent for the grayscale squares with feedback was 0.288 

with SD/M  = 0.090 and H:L = 1.248:1.  For the red squares without feedback, the mean 

                                                 
41 Because the red, green, and blue stimuli could not be produced with enough brightness 
to match the maximum brightness levels for the grayscale stimuli, the training scale in the 
present experiment is different than the training scale used in Experiments 4 and 5. 
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 Table 12. Summary of participants’ brightness scaling in Experiment 7. 
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Table 13.  Scaling ratios of grayscale stimuli to color stimuli in Experiment 7. 
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Figure 33.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 7. 



 

 
157 

 

 

 
 

PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 

PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 
Figure 34.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback in Experiment 7. 
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Figure 35.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for green squares without feedback in Experiment 7. 
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Figure 36.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for blue squares without feedback in Experiment 7. 
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exponent equaled 0.326 with SD/M = 0.149 and H:L = 1.428:1; the mean exponent for 

the green squares equaled 0.363 with SD/M = 0.185 and H:L = 1.428:1;  the mean 

exponent for the blue squares equaled 0.245 with SD/M = 0.260 and H:L = 2.171:1.  The 

average ratio of grayscale to red brightness scaling exponents was 0.892; for grayscale to 

green exponents, it was 0.817; and for grayscale to blue exponents, it was 1.259.   

Intercept Values 

 The average brightness intercept for grayscale squares was 1.177 with SD/M = 

0.039 and H:L = 1.113:1; for red squares, it was 1.226 with SD/M = 0.087 and H:L = 

1.246:1; for green squares, it was 1.154 with SD/M = 0.091 and H:L = 1.232:1; and for 

blue squares, it was 1.376 with SD/M = 0.067 and H:L = 1.159:1.  The average ratio of 

grayscale to red scaling intercepts was 0.964;  for grayscale to green intercepts, it was 

1.025; and for grayscale to blue intercepts, it was 0.857. 

Goodness of Fit Coefficients 

For the goodness of fit of the regression line across participants, scaling of 

grayscale squares with feedback produced an average R2 value equal to 0.702 with SD/M 

= 0.099 and H:L = 1.268:1; red squares without feedback produced an average R2 value 

equal to 0.733 with SD/M = 0.100 and H:L = 1.267:1; green squares produced an average 

R2 value equal to 0.828 with SD/M = 0.035 and H:L = 1.103:1; blue squares produced an 

average R2 value equal to 0.601 with SD/M = 0.243 and H:L = 1.6881.  The average ratio 

of grayscale to red R2 values was 0.960; for grayscale to green R2 values, it was 0.848; 

and for grayscale to blue R2 values, it was 1.202. 
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Comparison of Experiments 6 and 7 

Whereas Experiment 6 used a conventional magnitude estimation method to scale 

the brightness of colors, Experiment 7 used an implementation of the constrained scaling 

methodology.  A close comparison of the two experiments (see Figures 37 – 39) reveals 

that constrained scaling of brightness significantly reduced variability compared to 

magnitude estimation. 

Exponent Values 

Figure 37 contrasts the average exponent values for the brightness stimuli across 

colors between magnitude estimation and constrained scaling.  The magnitude estimation 

participants exhibited a marginally higher average grayscale exponent than the 

constrained scaling participants, t(8) = 1.561, p = 0.079.  Magnitude estimation revealed 

an average grayscale slope of 0.437, whereas constrained scaling revealed an average 

slope of 0.288.  This finding suggests that the appropriate “natural” exponent value for 

scaling the brightness of the achromatic squares may be higher than the exponent value of 

0.33 adopted from Stevens (1975) and that the value may, in fact, be closer to 0.45 as 

suggested in J.C. Stevens and Hall (1966).  However, magnitude estimation had 

significantly higher R2 variability than constrained scaling for scaling the brightness of 

grayscale squares, F(1,8) = 67.193, p < 0.001.  Given the high level of variability in 

magnitude estimation, it would be premature to conclude that the “natural” exponent 

value for brightness scaling should be higher than that prescribed by Stevens.   

For the color squares, there was no significant difference in the mean brightness 

exponent values between magnitude estimation and constrained scaling.  Red brightness  
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NOTE:  The error bars indicate the 95% confidence intervals. 
 

Figure 37.  Comparison of brightness exponents between Experiment 6 (magnitude 
estimation) and Experiment 7 (constrained scaling). 
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NOTE:  The error bars indicate the 95% confidence intervals. 
 

Figure 38.  Comparison of brightness line intercepts between Experiment 6 (magnitude 
estimation) and Experiment 7 (constrained scaling).
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NOTE:  The error bars indicate the 95% confidence intervals. 
 

Figure 39.  Comparison of brightness goodness of fit coefficients (R2) between 
Experiment 6 (magnitude estimation) and Experiment 7 (constrained scaling). 
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scaling had a t value comparing magnitude estimation and constrained scaling equal to 

0.410, p = 0.346; for green brightness, t(8) equaled -0.015, p = 0.494; and, for blue 

brightness, t(8) equaled -0.717, p = 0.247.   

Although the mean brightness exponent values were comparable across colors, 

constrained scaling exhibited generally lower variability than magnitude estimation as 

measured by a statistical F test of variance between the methods.  There was significantly 

lower variance in the constrained scaling condition for grayscale and red stimuli.  For 

grayscale squares, F(1,8) = 67.193, p < 0.001; for red squares, F(1,8) = 16.622, p < 0.01.  

Variance was marginally reduced in the constrained scaling condition for green and blue 

stimuli.  For green squares, F(1,8) = 5.654, p = 0.061; and, for blue squares, F(1,8) = 

3.492, p = 0.127.   

The generally lower variability for the constrained scaling of brightness is further 

demonstrated by comparing the coefficients of variation (SD/M).  For the grayscale 

brightness exponents, SD/M is 5.389 times higher for magnitude estimation than for 

constrained scaling, 0.485 vs. 0.090, respectively; for the red brightness exponents, SD/M 

is 3.651 times higher for magnitude estimation than for constrained scaling, 0.544 vs. 

0.149; for the green brightness exponents, SD/M is 2.389 times higher for magnitude 

estimation than for constrained scaling, 0.442 vs. 0.185; for the blue brightness 

exponents, SD/M is 2.274 times higher for magnitude estimation than for constrained 

scaling, 0.589 vs. 0.260.   

A similar decrease in variability from magnitude estimation to constrained scaling 

is found in the highest-to-lowest (H:L) exponent ratios.  For the grayscale brightness 



 

 
166 

 

 

exponents, H:L is 2.454 times higher for magnitude estimation than for constrained 

scaling, 3.062:1 vs. 1.248:1, respectively; for red brightness exponents, H:L is 2.744 

times higher for magnitude estimation than for constrained scaling, 3.919:1 vs. 1.428:1; 

for green brightness exponents, H:L is 1.619 times higher for magnitude estimation than 

for constrained scaling, 2.800:1 vs. 1.729:1; for blue brightness exponents, H:L is 3.249 

times higher for magnitude estimation than for constrained scaling, 7.054:1 vs. 2.171:1. 

Intercept Values 

Figure 38 shows the relationship between the regression line intercepts across 

colors for magnitude estimation and constrained scaling.  While magnitude estimation 

and constrained scaling methods produced nearly identical intercepts for grayscale 

squares, t(8) = -0.314, p = 0.381, constrained scaling produced lower intercept values for 

colored squares.  For the red squares, t(8) = 1.476, p = 0.089; for the green squares, t(8) = 

1.805, p = 0.054; for the blue squares, t(8) = 3.261, p < 0.01. 

Not only did constrained scaling result in lower brightness intercept values on 

average compared to magnitude estimation, it also resulted in generally lower scaling 

variance.  The constrained scaling intercepts had significantly lower variance than the 

magnitude estimation intercepts for grayscale brightness, F(1,8) = 41.872, p < 0.01; for 

red brightness, F(1,8) = 7.070, p < 0.05; and for green brightness, F(1,8) = 6.233, p = 

0.052.  The difference in variance of the intercepts for scaling the brightness of blue and 

grayscale squares was nonsignificant, F(1,8) = 3.098, p = 0.150.  

This pattern was confirmed by comparing the coefficients of variation for the 

brightness intercepts across colors between magnitude estimation and constrained 
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scaling.  For the grayscale brightness intercepts, the SD/M was 6.718 times higher for 

magnitude estimation than for constrained scaling, 0.262 vs. 0.039, respectively; for the 

red brightness intercepts, the SD/M was 2.287 times higher for magnitude estimation than 

for constrained scaling, 0.199 vs. 0.087; for the green brightness intercepts, the SD/M was 

2.088 times higher for magnitude estimation than for constrained scaling, 0.190 vs. 

0.091; for the blue brightness intercepts, the SD/M was 1.463 times higher for magnitude 

matching than for constrained scaling, 0.098 vs. 0.067.   

To a negligible extent, there was a reduction in the highest-to-lowest ratios for the 

brightness intercepts between magnitude estimation and constrained scaling.  The 

grayscale H:L ratio of the brightness intercept was 1.677 times higher for magnitude 

estimation than for constrained scaling, 1.867:1 vs. 1.113:1, respectively; for red 

brightness, it was 1.258 times higher, 1.568:1 vs. 1.246:1; for green brightness, it was 

1.179 times higher, 1.453:1 vs. 1.232:1; for blue brightness, it was 1.070 times higher, 

1.240:1 vs. 1.159. 

Goodness of Fit Coefficients 

Figure 39 shows the relationship of the average goodness-of-fit coefficient, R2, 

between magnitude estimation and constrained scaling.  The R2 values demonstrate that 

constrained scaling resulted in lower intraparticipant variability for scaling the brightness 

of most colors in the stimulus gamut.  The regression line for grayscale brightness was a 

marginally better fitted line for constrained scaling than magnitude estimation, t(8) = 

,627.1−  p = 0.071.  For both red and green brightness, constrained scaling resulted in a 

significantly better fitting line than did magnitude estimation, t(8) = – 1.869, p < 0.05, 
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and t(8)= – 2.026, p < 0.05, respectively.  In contrast, the regression line for scaling of 

blue brightness was not significantly different in terms of goodness of fit, t(8)= –0.494, p 

= 0.317.  No F-tests of variance were performed on the R2 values, because the R2 values 

were already inherently measures of intraparticipant variance. 

General Discussion 

Comparing the results of Experiments 6 and 7, it is clear that constrained scaling 

succeeded in offering a clear alternative to magnitude estimation for the scaling of 

brightness.  In general, constrained scaling reduced the variability associated with scaling 

the brightness of colors.   

While the results clearly point to constrained scaling as a method for reliable 

brightness color scaling, they also verify that the efficacy of constrained scaling is not 

simply an artifact of loudness scaling.  The findings from Experiment 7 demonstrate that 

scaling brightness can produce coefficients of variation and highest-to-lowest exponent 

ratios comparable to the low levels achieved for scaling loudness using constrained 

scaling.  

The decrease in variability afforded by constrained scaling was not apparent for 

scaling the brightness of blue colored squares.  The reason for this may be attributable to 

the low luminous intensity of the blue phosphor gun in the CRT.  Table C-4 (see 

Appendix C) shows that the maximum luminous intensity that is possible using solely the 

blue phosphor gun (i.e., RGB = [0, 0, 255])was approximately 9 cd/m2).  This luminous 

intensity level contrasts with the much more luminous red and green phosphor guns (see 

Tables C-2 and C-3), which are individually capable of approximately 20 cd/m2 (RGB = 
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[255, 0, 0]) and 60 cd/m2 (RGB = [0, 255, 0]).  As the maximum luminous potential of 

the single phosphor gun is reached, it becomes necessary to add achromatic color to boost 

the luminous intensity of the color.  In adding achromatic color to the blue color signal, 

the color undergoes a considerable shift in its Yxy chromaticity coordinates.  Shifting the 

chromaticity coordinates may have resulted in shifts of saturation or hue, which have 

been demonstrated to have their own scaling functions (Panek & Stevens, 1966; Indow & 

Stevens, 1966).  While red and green also required achromatic color additions to reach 

the desired brightest stimulus value of 64 cd/m2, the red and green pure color signals 

were brighter, requiring a much smaller overall addition of achromatic color. 

Consequently, there was a less pronounced shift in the chromaticity coordinates for red 

and green than for blue.  It is hypothesized that the diminished success of constrained 

scaling to reduce participant variability for scaling the brightness of blue colors is a result 

of a stimulus confound caused by the chromaticity shift for bright blue colors. 
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EXPERIMENT 8 

Introduction 

 Previous research on constrained scaling has centered on teaching and testing 

stimulus intensities that were continuous in nature.  In Stevens’ terminology (1975), these 

stimuli were interval or ratio scales, meaning that the stimulus and response intensities 

followed a more-or-less consistent, continuous sequence from low intensity to high 

intensity with presumed equidistant spacing between scale units. A wealth of scaling data 

available and summarized in Stevens suggests that mental magnitudes follow a similar 

sequence from low magnitude to high magnitude.  So, it would seem that the use of 

interval or ratio scaled stimulus intensities makes for a natural fit to human magnitude 

processing. 

 The purpose of this experiment is to explore what happens when the training scale 

is categorical.  Categorical scales, including nominal and ordinal scales, are those scales 

for which there is no equidistant spacing between units.  Nominal scales are scales that do 

not necessarily represent ascending quantity, while ordinal scales are scales that represent 

a climb in quantity without consistent units between stepwise increases in the scale.  

Stevens (1975) cautions against using categorical scales for psychological measures, 

since they do not map directly to human sensation.   In fact, Stevens suggests that using 

categorical data increases the types of phenomena that Poulton (1989) came to call 

response biases.  In this experiment, I deliberately provided training scales with 

impoverished ranges in order to establish the effectiveness of constrained scaling when 
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using categorical scaling.  As such, this experiment represents a refinement of existing 

constrained scaling methodology.  

Method 

Participants 

 Five participants with self-reported normal color vision served as volunteers for 

the experiment.  Participants who had previously participated in a brightness scaling 

experiment were excluded from the present experiment.  As in previous experiments, the 

participants were remunerated for their participation in the experiment. 

Apparatus and Stimulus Materials 

 The apparatus and stimulus materials were identical to those used in Experiment 

7, except only five brightness levels of the grayscale stimuli with feedback were 

presented.  These levels corresponded to 1, 4, 9, 24, and 64 cd/m2. 42  The red, green, and 

blue stimuli were presented and tested at the same 14 levels found in Experiments 6 and 

7. 

Design and Procedure 

 The design replicates Experiment 7, with the exception that for learning trials, 

participants were presented with five levels of brightness for the grayscale stimuli with 

feedback.  As in Experiment 7, participants received 42 initial training trials, except the  

                                                 
42 This scale was ordinal, in that it represented increasing units for which the distance 
between successive scale units was not equidistant.  However, as a caveat to this 
experiment, it is important to note that since the scale units were approximately 
logarithmically equidistant, it is possible that the scale might have been interpreted to be 
an interval scale by some participants. 
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five training stimuli were repeated with greater frequency in the current experiment, 

thereby reinforcing familiarity with the categorical scale.  Each brightness level of the 

grayscale squares was presented an average of over 8 times during training in the present 

experiment;  in Experiment 7, each brightness level was presented only 3 times during 

training.  

 Results and Discussion 

The data were analyzed as in Experiment 7 and are summarized in Tables 14 – 15 

and Figures 40 – 43.  The results for categorical brightness scaling are presented briefly 

below before they are compared to continuous brightness scaling later in this chapter.  No 

reaction time data were recorded for this experiment. 

Exponent Values 

The average scaling exponent value for the grayscale stimuli with feedback was 

0.316 with SD/M = 0.137 and H:L = 1.442:1.  For red stimuli without feedback, the 

average exponent equaled 0.249 with SD/M = 0.158 and H:L = 1.435:1.  For green 

stimuli without feedback, the average exponent equaled 0.273 with SD/M = 0.181 and 

H:L = 1.623:1.  For blue stimuli without feedback, the average exponent equaled 0.124 

with SD/M = 0.718 and H:L = 4.163:1.  The average ratio of grayscale to red stimulus 

exponents was 1.299; for grayscale to green, it was 1.180; and for grayscale to blue, it 

was 3.332. 

Intercept Values 

The average scaling intercept value for the grayscale stimuli was 1.118 with 

SD/M = 0.050 and H:L = 1.138:1.  For red stimuli, the average intercept equaled 1.376 
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Table 14.  Summary of participants’ brightness scaling in Experiment 8. 
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Table 15.  Scaling ratios of grayscale stimuli to color stimuli in Experiment 8. 
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Figure 40.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 8. 
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Figure 41.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback in Experiment 8. 
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Figure 42.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for green squares without feedback in Experiment 8. 

 



 

 
178 

 

 

 

 
PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

log L

lo
g 
R

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

log L

lo
g 
R

 
 

PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

log L

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

log L

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

log L

lo
g 
R

 
 
Figure 43.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for blue squares without feedback in Experiment 8. 
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with SD/M = 0.082 and H:L = 1.257:1.  For green stimuli, the average intercept equaled 

1.263 with SD/M = 0.091 and H:L = 1.208:1.  For blue stimuli, the average intercept 

equaled 1.502 with SD/M = 0.094 and H:L = 1.267:1.  The average ratio of grayscale to 

red stimulus intercepts was 0.816; for grayscale to green, it was 0.891; and for grayscale 

to blue, it was 0.750. 

Goodness of Fit Coefficients 

The average R2 value for scaling grayscale stimuli was 0.724 with SD/M = 0.127 

and H:L = 1.333:1.  For red stimuli, the average R2 equaled 0.555 with SD/M = 0.127 and 

H:L = 1.380:1.  For green stimuli, the average R2 equaled 0.679 with SD/M = 0.073 and 

H:L = 1.148:1.  For blue stimuli, the average R2 equaled 0.417 with SD/M = 0.353 and 

H:L = 2.448:1.  The average R2 ratio of grayscale to red stimuli was 1.316; for grayscale 

to green, it was 1.069; for grayscale to blue, it was 1.894. 

Comparison of Experiments 7 and 8 

Constrained scaling (Experiment 7) and categorical constrained scaling (the 

present experiment) are compared in Figures 44 – 46.  In general, training using a 

categorical scale resulted in decreased exponent values and goodness of fit coefficients, 

and increased intercept values. 

Exponent Values 

Figure 44 represents the relationship of exponent values between grayscale, red, 

green, and blue color stimuli for conventional and categorical constrained scaling.  There 

was no significant difference in scaling exponents between methods for grayscale stimuli 

[t(8) = 1.246, p = 0.124], but categorical constrained scaling resulted in significantly 
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Figure 44.  Comparison of brightness exponents between Experiment 7 (constrained 
scaling) and Experiment 8 (categorical constrained scaling). 
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Figure 45.  Comparison of brightness intercepts between Experiment 7 (constrained 
scaling) and Experiment 8 (categorical constrained scaling). 
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Figure 46.  Comparison of goodness of fit coefficients between Experiment 7 
(constrained scaling) and Experiment 8 (categorical constrained scaling). 



 

 
183 

 

 

lower exponent values than did conventional constrained scaling for red stimuli [t(8) =  

-2.759, p < 0.05], green stimuli [t(8) = -2.405, p < 0.05], and blue stimuli [t(8) = -2.478, p 

< 0.05].  There was no significantly difference scaling variance between constrained 

scaling methods for grayscale stimuli [F(1,4) = 2.790, p = 0.172], red stimuli [F(1,4) = 

0.659, p = 0.348], green stimuli [F(1,4) = 0.541, p = 0.283], or blue stimuli [F(1,4) = 

1.956, p = 0.266].  This minimal difference in exponent variance was confirmed by the 

similarity of the coefficient of variation between the two methods.  The SD/M was 1.522 

times higher for grayscale stimuli in conventional constrained scaling and 2.766 times 

higher for blue stimuli.  It was nearly identical for red stimuli (1.063 times higher) and 

green stimuli (1.024 times lower).  The highest-to-lowest exponent ratios were nearly 

identical across methods (1.156 and 1.005 times higher for grayscale and red stimuli, 

respectively, and 1.065 times lower for green stimuli), with the exception of the blue 

stimuli (1.918 times higher). 

Intercept Values 

Figure 45 shows the relationship between scaling intercepts for grayscale, red, 

green, and blue stimuli.  Conventional constrained scaling resulted in a significantly 

lower intercept value for red stimuli [t(8) = 2.161, p < 0.05] and a marginally lower 

intercept value for green stimuli [t(8) = 1.573, p = 0.077] and blue stimuli [t(8) = 1.679, p 

= 0.66].  It resulted in a marginally higher intercept value for grayscale stimuli [t(8) = 

,804.1−  p = 0.054].  There were no significant differences across methods in terms of 

variance [F(1,4) = 1.499, p = 0.352 for grayscale stimuli; F(1,4) = 1.122, p = 0.457 for 

red stimuli; F(1,4) = 1.189, p = 0.436 for green stimuli; F(1,4) = 2.376, p = 0.211 for blue 
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stimuli].  The comparable levels of variance between both constrained scaling methods 

were confirmed by negligible differences in the coefficients of variation and the highest-

to-lowest intercept ratios.  For grayscale stimuli, conventional constrained scaling 

resulted in an SD/M for intercept values that was an average of 1.289 times higher than 

categorical constrained scaling.43  For red stimuli, conventional constrained scaling 

resulted an SD/M for intercept values that was an average of 1.060 times lower than 

categorical scaling. For green stimuli, it was 1.004 times lower, and for blue stimuli, it 

was 1.093 times higher.  Similarly, the H:L ratio was 1.023 times lower for grayscale 

stimuli using conventional constrained scaling, 1.010 times lower for red stimuli, 1.020 

times higher for green stimuli, and 1.093 times lower for blue stimuli. 

Goodness of Fit Coefficients 

Figure 46 displays the goodness of fit coefficients for the color stimuli across 

constrained scaling methods.  There was no significant difference in terms of average R2 

values across methods for grayscale stimuli [t(8) = 0.426, p = 0.341].  However, the 

average R2 value was significantly higher using conventional constrained scaling for red 

stimuli [t(8) = -3.705, p < 0.005], green stimuli [t(8) = - 5.797, p < 0.001], and blue 

stimuli [t(8) = -1.982, p < 0.05].  As in Experiment 7, no F-statistic was calculated for the 

R2 values. 

                                                 
43 Slightly lower variability would be expected in the categorical scaling for the grayscale 
training stimuli, since the stimulus set was presented more often than in conventional 
constrained scaling. 
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General Discussion 

Although there were some significant and marginally significant differences in 

terms of scaling exponents, intercepts, and goodness of fit coefficients, there was no 

significant difference between conventional and categorical constrained scaling in terms 

of variance.  These findings suggest that participants, on average, were able to learn the 

ordinal scale and subsequently use it to scale interval stimuli with the same reliability as 

if they had been trained on an interval scale.  However, the resulting scale values, 

especially the exponent values, differed markedly from those values resulting from 

conventional constrained scaling.  With the exception of the grayscale training stimuli, 

color scaling exponents tended to be smaller when using categorical constrained scaling.  

The reason for this difference is not clear.  One possibility is that participants tend to 

memorize categorical scales44 and simply use the learned values as rote anchor points, 

even when they do not fully apply.  To explore this hypothesis, a method will be explored 

in the next experiment to prevent rote memorization of the categorical training scale. 

                                                 
44 In their absolute identification experiments, Shiffrin and Nosofsky (1994) noted a 
memory limitation in terms of labeling unidimensional scales around 7 ± 2 items, similar 
to Miller’s (1956) short-term memory capacity limit.  The present experiment 
complements these earlier findings by demonstrating the learnability of a categorical 
scale and its applicability for scaling novel continuous-type scales. 
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EXPERIMENT 9 

Introduction 

Experiment 8 featured an implementation of constrained scaling, in which an 

ordinal scale was used for training and subsequently applied to ratio scale stimuli.  The 

danger of training with a categorical type scale like an ordinal scale is that it is possible 

for participants to memorize the feedback values.  It is presumed that rote memorization 

of anchor values is not the same cognitive process as learning the range of a scale.  

Compared to conventional constrained scaling, participants in the categorical constrained 

scaling condition had significantly lower exponent values and regression line goodness of 

fit coefficients.  These findings combine to confirm that participants applied the learned 

grayscale differently between categorical and conventional constrained scaling.  Yet, the 

reason for this remains unclear.   

When participants memorize a limited set of stimulus-response combinations and 

are later presented with stimuli that fall outside those anchor points, they must either 

round to the nearest memorized stimulus-response pair or extrapolate between two 

bounding stimulus-response pairs.  Anecdotal evidence from discussions with 

participants during debriefing suggests that participants liberally rounded their response 

rather than inputting the exact value they had memorized for the grayscale stimuli.  This 

was a byproduct of the time required by participants to fine tune the slider scale to exact 

values.  As a timesaver, they approximated the nearest scale value within a few whole 

numbers of the desired response value.  Because of response rounding and the resultant 

response scale noisiness, it was not possible to determine whether participants memorized 
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and categorized novel stimuli into the existing learned scaling categories or extrapolated 

between two memorized anchors. 

In order to determine if rote memorization played a role on constrained scaling in 

Experiment 8, the present experiment attempted to prevent rote memorization.  It 

replicated the same categorical training scale as in Experiment 8 but added ±5% random 

noise to the feedback provided to participants during training.  It was hypothesized that 

the inclusion of random noise would not generally diminish learning of the grayscale 

stimuli but would increase scaling performance for novel brightness stimuli.45  

Specifically, it was hypothesized that the scaling exponent, intercept, and goodness of fit 

coefficient would be comparable for grayscale stimuli but that color measures would 

more closely reflect conventional constrained scaling in the noisy categorical constrained 

scaling condition. 

Method 

Participants 

As in previous brightness scaling experiments, five volunteers with self-reported 

normal color vision were enlisted as participants for the experiment.  Previous 

participants for brightness experiments were precluded from volunteering.  The 

volunteers were paid $5.00 for their participation in the experiment. 

                                                 
45 The feedback provides an anchoring range of scale values for each grayscale stimulus 
intensity value, and this anchoring range should be readily learnable given the high 
number of training iterations provided in the experiment. 
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Apparatus and Stimulus Materials 

The experimental control software was identical to that used in Experiment 8.  

The brightness stimuli consisted only of grayscale and red stimuli.  The green stimuli 

were eliminated from the present experiment, because the results for green stimuli were 

virtually identical to the results for red stimuli and, thus, represented a redundant stimulus 

set.  The blue stimuli were eliminated, because the results for blue stimuli systematically 

differed from the results for the other colors and the grayscale stimuli.46 

Design and Procedure 

The design and procedure of the present experiment replicated Experiment 8 with 

two exceptions.  First, the five grayscale stimuli were presented with feedback that 

contained ±5% random variability.  Second, only grayscale and red stimuli were tested, 

resulting in a shorter experiment than previously.  The design and procedure of the 

present experiment are summarized in Figure 47. 

Results and Discussion 

No reaction time data were recorded for this experiment.  The results were 

analyzed as in Experiment 8 and are summarized in Table 16 and Figures 48 – 49.  The 

results for the exponent values, intercept values, and goodness of fit coefficients are 

discussed next, followed by a summary section comparing the results from the present 

experiment with the results from Experiment 8. 

                                                 
46 As noted earlier, the blue phosphor of the CRT was the faintest and required 
considerable mixing of the red and green phosphors to produce the full brightness range 
used in the experiments.  This mixing of colors may have caused a shift to achromatic 
perception of the blue stimuli. 
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Figure 47.  Schematic flow of the design for noisy categorical constrained scaling in 
Experiment 9.  
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Table 16.  Summary of participants’ brightness scaling in Experiment 9. 
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Figure 48.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 9. 

 



 

 
192 

 

 

 

 
PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 

PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 
Figure 49.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback in Experiment 9. 
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Exponent Values 

 The average scaling exponent for grayscale stimuli with feedback was 0.346 with 

SD/M = 0.056 and H:L = 1.136:1.  The average scaling exponent for red stimuli without 

feedback was 0.319 with SD/M = 0.238 and H:L = 1.991:1.  The average ratio of 

grayscale to red scaling exponents was 1.153. 

Intercept Values 

For grayscale stimuli with feedback, the average scaling intercept was 1.108 with 

SD/M = 0.036 and H:L = 1.096:1.  For red stimuli without feedback, the average scaling 

intercept was 1.244 with SD/M = 0.096 and H:L = 1.284:1.  The average ratio of 

grayscale to red scaling intercepts was 0.899. 

Goodness of Fit Coefficients 

The average goodness of fit coefficient for scaling of the grayscale stimuli was 

0.821 with SD/M = 0.053 and H:L = 1.150:1.  For the red stimuli, R2 averaged 0.723 with 

SD/M = 0.135 and H:L = 1.435:1.  The average ratio of grayscale to red R2 values was 

1.147. 

Comparison of Experiments 8 and 9 

Categorical constrained scaling (Experiment 8) is contrasted with noisy 

categorical constrained scaling (the present experiment) in Figures 50 – 52.  Note that 

since the present experiment only included grayscale and red stimuli, only the grayscale 

and red stimuli are included from the Experiment 8 dataset.  The figures illustrate that the 

addition of noise to the training trial feedback resulted in higher exponent, similar 

intercept, and higher R2 values for the training and testing stimuli. 
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Figure 50.  Comparison of exponents between Experiment 8 (categorical constrained 
scaling) and Experiment 9 (noisy categorical constrained scaling). 
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Figure 51.  Comparison of line intercepts between Experiment 8 (categorical 
constrained scaling) and Experiment 9 (noisy categorical constrained scaling). 

 

 



 

 
196 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Grey Red

COLOR

BR
IG

HT
NE

SS
 R

2

Categorical
Categorical + Noise

 
NOTE:  The error bars represent the 95% confidence intervals. 
 

Figure 52.  Comparison of goodness of fit coefficients between Experiment 8 
(categorical constrained scaling) and Experiment 9 (noisy categorical constrained 
scaling). 
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Exponent Values 

Figure 50 contrasts the scaling exponent values for the categorical and noisy 

categorical constrained scaling experiments.  For the grayscale stimuli, the noisy 

categorical condition resulted in a marginally greater exponent value [t(8) = 1.409, p = 

0.098].  Categorical and noisy categorical constrained scaling results were approximately 

equally far apart from the training exponent of 0.33.  For the red stimuli, the noisy 

categorical condition resulted in a significantly greater exponent value [t(8) = 1.835, p = 

0.052).  The red stimulus scaling exponent for noisy categorical constrained scaling was 

nearly identical to that produced by conventional categorical scaling, 0.319 versus 0.326, 

respectively.   

Noisy categorical constrained scaling had marginally less variance than 

categorical constrained scaling for grayscale stimuli [F(1,4) = 0.201, p = 0.074].  In terms 

of the SD/M for the grayscale scaling exponents, the noisy categorical method was 2.445 

times lower, whereas, in terms of H:L, it was 1.269 times lower.  However, categorical 

constrained scaling exhibited slightly less variance than noisy categorical constrained 

scaling for red stimuli [F(1,4) = 3.733, p = 0.115].  The categorical SD/M for the red 

scaling exponent was 1.507 times lower than the noisy categorical SD/M, and the 

categorical H:L was 1.388 times lower. 

Intercept Values 

Figure 51 illustrates the relationship between scaling intercepts for categorical and 

noisy categorical constrained scaling results.  There was no significant difference in 

average grayscale intercepts between the two methods [t(8) = -0.306, p = 0.384].  The 
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noisy categorical method produced a significantly lower red intercept [t(8) = -1.792, p = 

0.0554], which was nearly identical to the intercept produced by conventional 

constrained scaling, respectively 1.244 vs. 1.226. 

There were no significant differences in terms of intercept variance between 

categorical and noisy categorical constrained scaling for grayscale and red stimuli [F(1,4) 

= 0.493, p = 0.255, and F(1,4) = 1.112, p = 0.460, respectively].  For the grayscale 

stimuli, the SD/M was 1.412 times lower for the noisy categorical method, but the H:L 

ratio was nearly identical at 1.038 times lower.  For the red stimuli, the SD/M was 1.166 

times lower for the categorical method, with the H:L ratio nearly identical (1.021 times 

greater). 

Goodness of Fit Coefficients 

Figure 52 illustrates the relationship of the goodness of fit coefficients for 

categorical and noisy categorical constrained scaling.  For both the grayscale and the red 

stimuli, the noisy categorical method produced significantly higher R2 values [t(8) = 

2.119, p < 0.05, for grayscale stimuli, and t(8) = 3.009, p < 0.01, for red stimuli].  As in 

previous experiments, the variance of the R2 values was not analyzed. 

General Discussion 

The incorporation of noise into the feedback provided in the training trials 

significantly improved the results for categorical constrained scaling.  When noise was 

added, the categorical constrained scaling results closely resembled the results obtained 

through conventional constrained scaling, including better matched exponent and 

intercept values as well as better goodness of fit by the scaling data to the regression line. 
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Noisy categorical constrained scaling provides a useful refinement to the 

repertoire of constrained scaling methodology in that it potentially offers a simplified 

training regimen from which participants can learn a constrained scale.  It further 

provides a technique for training on an ordinal scale for subsequent testing on a ratio 

scale—an approach that may hold application when working within stimulus domains for 

which an interval training scale may be unfeasible.  The use of noisy categorical training 

also effectively eliminates the scaling artifacts of rote memorization, which in 

Experiment 8 may have contributed to deflated testing exponent values, inflated testing 

intercept values, and low goodness of fit coefficients compared to conventional 

constrained scaling.
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EXPERIMENT 10 

Introduction 

An important issue involving constrained scaling is the amount of inculcation that 

is necessary to maintain learning.  The benefit of training on a stimulus scale is clearly 

illustrated with the constrained scaling method.  Training calibrates individual scale use, 

thereby significantly reducing scaling variability.  However, guidelines for the optimal 

level of training are anecdotal, and no systematic study of the effects of reduced or 

increased training exists.  Moreover, the necessity of continued training at regular 

intervals is not clearly documented. 

Training may actually be counterproductive when too much is applied.  This 

would especially be likely given the single-session experiments that are typical for 

constrained scaling.  Increased amounts of training beget increased testing times, which 

may push the bounds of the individual participant’s attention span.  Task vigilance has 

been found to decrease sharply after 30 minutes (Mackworth, 1948).  The four-block (i.e., 

training, testing, training, and testing) experiments common in West et al. (2000) and 

replicated here in Experiments 1 and 2 required up to 60 minutes for completion.  The 

use of a block of initial and intermediate training trials, coupled with a training trial 

interspersed between every testing trial, contributed greatly to this experimental duration.  

Part of this problem was resolved by shortening the number of blocks.  In West et al. and 

here in Experiments 3 onward, only an initial training block and a subsequent testing 

block were performed.  For simpler experiments, this shortened the average experimental 

duration to around 30 minutes.  More complex experiments, such as Experiments 6 – 8, 
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which involved scaling multiple colors, required longer experimental duration.47 

 The effects of experimental duration on performance are illustrated through a 

review of Experiment 1.  Recall that Experiment 1 consisted of an initial training block of 

50 trials of 1000 Hz tones with feedback.  This training block was followed by 100 

interspersed trials of 1000 Hz tones with feedback and 65 Hz tones without feedback.  

This procedure was duplicated with another 50 training trials and 100 interspersed testing 

trials.  Table 17 shows the participants’ absolute error rates48 for blocks of learning trials 

throughout the duration of Experiment 1.  In the table, the training and testing trials are 

subdivided into blocks of 25 trials.  Note that the table only includes results for the 1000 

Hz tones with feedback, and not for the 65 Hz tones without feedback. 

Overall, there is a slight decrease in the error rate from the first block (M = 5.690, 

SD = 1.710) to the second block (M = 4.077, SD = 1.582).  A paired sample two-tailed t-

test revealed that the decrease in error rate between the first and second training blocks 

was not significant, t(4) = 1.584, p = 0.189.  Over the course of the experiment, 

participants’ error rates for learning trials subsequently increased.  While the average 

error rate is 4.883 for the first training blocks, the average error rate increased to 6.867 

for the testing blocks, to 6.956 for the second set of training blocks, to 8.506 for the final  

                                                 
47 It may be tempting to attribute the unusual performance at scaling blue colors in 
Experiments 6 – 8 to the deleterious performance effects of the long experimental 
duration.  However, such deleterious effects would affect the brightness scaling of all 
colors, not just blue colors.  The placement of blue last in the table does not, of course, 
imply the presence of scaling chronology or order effects in the experiment. 
 
48 The absolute error rate is the absolute difference between the feedback value and the 
scale value selected by the participant. 
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  P1 P2 P3 P4 P5 M  ±  SD  

Block 1 5.771 2.760 6.207 7.105 6.605 5.690 ± 1.710 
Training 

Block 2 5.883 3.800 3.369 5.373 1.959 4.077 ± 1.582 
} 4.883 ± 1.770

Block 3 5.196 3.828 10.089 6.033 3.388 5.707 ± 2.668 

Block 4 6.485 4.786 8.885 5.045 7.164 6.473 ± 1.672 

Block 5 7.201 7.846 12.434 3.782 5.648 7.382 ± 3.230 Testing 

Block 6 8.147 5.276 13.956 5.662 6.496 7.907 ± 3.557 

} 6.867 ± 2.774

Block 7 3.112 6.329 13.380 6.462 6.551 7.167 ± 3.762 
Training 

Block 8 4.901 4.896 10.682 7.163 6.087 6.746 ± 2.394 
} 6.956 ± 2.981

Block 9 8.079 4.247 11.152 7.996 6.308 7.556 ± 2.545 

Block 10 12.498 10.295 13.377 4.681 8.276 9.825 ± 3.494 

Block 11 6.329 7.025 14.171 6.001 6.067 7.919 ± 3.519 
Testing 

Block 12 13.039 3.803 14.887 7.066 4.813 8.722 ± 4.971 

} 8.506 ± 3.542

 
Table 17.  Mean error rates for participants per blocks of 25 learning trials of 1000 Hz 
tones in Experiment 1. 
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testing blocks.  There was a significant effect for the error rate across trials, F(3) = 

3.358, p = 0.055, suggesting that, on average, the error rate increased over time.  The 

mean error rate of the initial training blocks compared to the initial testing blocks and 

second training blocks was not significant, t(4) = -1.570, p = 0.10, and t(4) = -1.394, p = 

0.12, respectively.  There was a significant increase in the error rate between first training 

blocks and the final testing blocks, t(4) = -2.575, p = 0.03.  Overall, these results suggest 

that increased training did not improve error rates after the first training blocks.  In fact, 

over time, participants became nominally worse at assigning magnitude values to reflect 

the loudness intensities they heard. 

 The field of human reliability analysis offers useful insights into the interaction of 

training and attention.  Human reliability analysis combines the influences of several 

performance shaping factors to determine the probability of human error (Gertman & 

Blackman, 1994).  One popular method of human reliability analysis, SPAR-H (Gertman, 

Blackman, Marble, Byers, Haney, & Smith, 2004) specifically identifies Experience and 

Training and Fitness for Duty (of which fatigue is a major component) as performance 

shaping factors.  In the SPAR-H method, given cognitively engaging tasks such as 

scaling, training would on average be expected to decrease the participants’ probability of 

error by one-half.  However, any benefit of training is overshadowed by the deleterious 

effect of fatigue.  A moderate amount of fatigue may degrade human performance 

significantly, resulting in a fivefold increase in the probability of human error.  

Composite effects in SPAR-H are calculating by multiplying the effects of individual 

performance shaping factors (i.e., 0.5 H 5 = 2.5, in the present example).  Thus, even with 
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training, fatigue during a lengthy experimental session could result in a two-and-a-half 

times increase in the likelihood of making a scaling error.49  

 Since constrained scaling also works within shorter experimental sessions in 

which fatigue is not expected to play a significant role, the question remains regarding 

the optimal level of training to administer so that participants can master the training 

scale.  In the present experiment, I investigated the effect of the training reinforcement 

trials within the context of color scaling.  The initial block of 41 grayscale training 

stimuli was maintained as in previous brightness scaling experiments.  However, instead 

of a training reinforcement of a brightness stimulus with feedback interspersed between 

every testing stimulus without feedback, the ratio was decreased to a training 

reinforcement stimulus interspersed between every other testing stimulus. 

Method 

Participants 

Five participants with self-reported normal color vision were enlisted to 

participate in the experiment.  Participants who had previously participated in a color 

brightness scaling experiment were excluded.  The participants were paid $5 for taking 

part in the experiment. 

                                                 
49 The human reliability analysis example using the SPAR-H method is intended for 
illustrative purposes only.  The SPAR-H method was developed for the US Nuclear 
Regulatory Commission to model human performance in nuclear power plants.  The 
actual error rate modifiers may be quite different in a non safety critical environment.  
Work is underway to determine the generalizability of the approach to other domains 
(Boring, Gertman, & Marble, 2004). 
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Apparatus and Stimulus Materials 

The experimental control software was based on the software used in Experiment 

9, with the exception that the reinforcement ratio was decreased during the testing trials.  

The stimulus materials consisted of grayscale and red colored squares at 14 levels of 

luminous intensity. 

Design and Procedure 

Figure 53 illustrates the design and procedure of the present experiment.  The 

design is similar to the design of Experiment 9 with two exceptions.  First, unlike the 

categorical constrained scaling experiments (Experiments 8 and 9), feedback was 

provided at all 14 luminous intensity levels for grayscale stimuli.  This use of 

conventional constrained scaling was similar to Experiment 7.  Second, unlike any 

previous experiments, during the testing block, grayscale stimuli with feedback were only 

presented once for every two red stimuli without feedback.  As a consequence, the testing 

block was only repeated 21 times instead of 42 times, since each testing iteration resulted 

in two ratings of red brightness stimuli. 

Results and Discussion 

The results were analyzed as in previous brightness constrained scaling 

experiments.  The results are summarized in Table 18 and Figures 54 – 55 and are 

discussed below.  Later in this chapter, a comparison between the results from 

Experiment 9 and the present Experiment is provided. 
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Figure 53.  Schematic flow of the reduced feedback ratio design in Experiment 10. 
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Table 18.  Summary of participants’ brightness scaling in Experiment 10. 
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Figure 54.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 10. 
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Figure 55.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback in Experiment 10. 
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Exponent Values 

 The average scaling exponent value for grayscale stimuli with feedback was 0.379 

with SD/M = 0.172 and H:L = 1.533:1.  For red stimuli without feedback, the average 

scaling exponent value was 0.333 with SD/M = 0.387 and H:L = 2.974:1.  The average 

exponent ratio of grayscale to red stimuli was 1.333. 

Intercept Values 

 The average scaling intercept for grayscale stimuli was 1.061 with SD/M = 0.078 

and H:L = 1.193:1.  For red stimuli, the average scaling intercept was 1.277 with SD/M = 

0.211 and H:L = 1.612:1.  The average intercept ratio of grayscale to red stimuli was 

0.857. 

Goodness of Fit Coefficients 

 The average goodness of fit coefficient for the regression line of the scaling data 

was 0.652 for grayscale stimuli, with SD/M = 0.245 and H:L = 2.005:1.  For red stimuli, 

the average R2 equaled 0.642 with SD/M = 0.407 and H:L = 4.418:1.  The average ratio of 

grayscale to red stimulus R2 values was 1.753.  

 Comparison of Experiments 9 and 10 

  Although Experiment 9 represented noisy categorical constrained scaling, its 

results were closely aligned with the results from conventional constrained scaling.  Thus, 

to compare the results of the present experiment’s reduced feedback ratio with 

conventional constrained scaling results, Experiment 9 serves as a valid surrogate.  In 

contrast, comparing the present experiment to a true conventional constrained scaling 

experiment, such as Experiment 7, would be fraught with potential confounds due to the 
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extended duration of Experiment 7.  Experiment 7 was a considerably longer experiment 

because of its use of grayscale, red, green, and blue stimuli.  Experiment 9 and the 

present experiment are comparable designs that only utilize grayscale and red stimuli, 

thereby minimizing participant fatigue as a contributing factor to the results.  By 

comparing the present experiment to Experiment 9, it was possible to determine the 

effects solely of the feedback reinforcement rate, without the need to account for 

potential performance differences due to the duration of the experiments. 

 Experiment 9 and the present experiment were compared as in previous 

experiments.  The average exponent, intercept, and R2 values and their variance were 

contrasted between the two experiments to determine if constrained scaling with a 

reduced feedback reinforcement rate was as effective as conventional constrained scaling.  

The comparison results are summarized in Figures 56 – 58. 

Exponent Values 

 Figure 56 contrasts the brightness scaling exponent values for conventional 

constrained scaling and constrained scaling with a reduced feedback reinforcement rate.  

There was no significant difference between Experiment 9 and the current experiment for 

grayscale stimulus [t(8) = 1.092, p = 0.153] or red stimulus [t(8) = 0.203, p = 0.422] 

exponents.  The present experiment produced significantly higher exponent variance for 

grayscale stimuli [F(1,4) = 11.403, p < 0.05] but not for red stimuli [F(1,4) = 2.878, p = 

0.165].  For grayscale stimuli, the SD/M was 3.064 times greater and the H:L ratio was 

1.349 times greater for the present experiment than for Experiment 9.  For red stimuli, the  
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NOTE:  Conventional constrained scaling is represented by noisy categorical constrained scaling 
from Experiment 9. 
 
NOTE:  The error bars represent the 95% confidence intervals. 
 

Figure 56.  Comparison of exponents between Experiment 9 (representing 
conventional constrained scaling) and Experiment 10 (constrained scaling with 
reduced feedback). 
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Figure 57.  Comparison of line intercepts between Experiment 9 (representing 
conventional constrained scaling) and Experiment 10 (constrained scaling with 
reduced feedback). 
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Figure 58.  Comparison of goodness of fit coefficients between Experiment 9 
(representing conventional constrained scaling) and Experiment 10 (constrained 
scaling with reduced feedback). 



 

 
215 

 

 

SD/M was 1.626 times greater and the H:L ratio was 1.494 times greater for the present 

experiment. 

Intercept Values 

 Figure 57 illustrates the relationship between brightness scaling intercepts for 

conventional constrained scaling versus constrained scaling with a reduced feedback 

reinforcement rate.  The average line intercepts did not differ significantly for grayscale 

[t(8) =  -1.138, p = 0.144] or red [t(8) = 0.246, p = 0.406] stimuli.  The variance was 

marginally greater in the present experiment for both grayscale [F(1,4) = 4.425, p = 

0.089] and red [F(1,4) = 5.145, p = 0.071] stimuli.  For the grayscale scaling intercepts, 

the SD/M in the present experiment was 2.193 times greater and the H:L ratio was 1.088 

times greater than in Experiment 9.  For the red intercepts, the SD/M was 2.209 times 

greater and the H:L ratio was 1.256 times greater. 

Goodness of Fit Coefficients 

 Figure 58 illustrates the relationship between R2 values for conventional 

constrained scaling and constrained scaling with a reduced feedback reinforcement rate.  

The average R2 values did not differ significantly for grayscale [t(8) = -0.654, p = 0.266] 

or red [t(8) = -0.654, p = 0.266] stimuli.  As in previous experiments, the variance of the 

goodness of fit coefficients was not analyzed. 

General Discussion 

Reducing the rate at which feedback was provided during testing sessions did not 

affect the average exponent or intercept values for scaling brightness.  However, it 

increased, in some cases quite significantly, participants’ scaling variability.  Since the 
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original tenet of constrained scaling was its effectiveness at reducing scaling variability, 

the benefits of constrained scaling are largely lost when the feedback reinforcement rate 

is decreased during testing trials.50  Based on the findings in this experiment, it is not a 

profitable strategy to increase scaling efficiency by decreasing interspersed training trials.  

Previous experiments have demonstrated that participants learn a scale with fewer 

training trials than originally estimated.  The present experiment demonstrates that it is 

necessary for participants to be reinforced in their scale learning.  The key to optimizing 

constrained scaling as a method resides in the shortening of the overall number of trials, 

not in the reduction of reinforcement training trials. 

                                                 
50 Another advantage of constrained scaling might be exponent and intercept consistency.  
Experiments 6 and 7 revealed notable differences in these values between magnitude 
estimation and constrained scaling.  Those differences were not present in the comparison 
between conventional constrained scaling and constrained scaling with a reduced 
feedback reinforcement rate. 
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EXPERIMENT 11 

Brief Introduction to Experiments 11 – 13 

Experiment 11 deals with perceptual scaling, whereas Experiments 12 and 13 

extend constrained scaling to assess subjective perceptions. Because Experiments 11 – 13 

are methodological complements to each other, I first provide a brief overview of them 

together in this chapter.  I subsequently dedicate the remainder of this chapter to a 

discussion of Experiment 11, and provide separate chapters for Experiments 12 and 13. 

Experiments 11 – 13 share a technique known as methodological triangulation 

(Denzin, 1970).  Triangulation simply refers to the formal process of examining a 

phenomenon from more than one perspective in order to get a complete, or nearly 

complete, understanding of that phenomenon.  Triangulation is commonly used in social 

scientific research as a between-method rationale for combining quantitative and 

qualitative data (Blaikie, 1993).  A traditional between-method triangulation study would 

involve using dissimilar research methods to measure the same underlying phenomenon.  

The specific intent of the multiple methods is to ensure that most or all relevant 

dimensions and nuances of a phenomenon are recorded for subsequent analysis.  In 

contrast, Denzin defined within-method triangulation as the use of variations of a single 

empirical method to measure an underlying phenomenon.   

Here I have extended Denzin’s (1970) categorization to incorporate yet another 

important type of methodological triangulation.  In Experiments 11 – 13, I have used 

constrained scaling to establish the relationship between two types of phenomena.  These 

experiments are special cases of triangulation in which a single empirical method is used 
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to measure more than one type of phenomenon.  I have called this approach 

multiphenomenal within-method triangulation.  Multiphenomenal within-method 

triangulation means that I have used variations within a single method of constrained 

scaling to look at the relationship between two different types of scaling phenomena.  

Table 19 recasts Denzin’s original methodological triangulation to encompass more than 

a single measured phenomenon.  His existing taxonomy comprises what I refer to as 

uniphenomenal within-method and between-method triangulation, while the new 

taxonomy adds multiphenomenal within-method and between-method triangulation. 

Introduction to Experiment 11 

Experiment 11 used multiphenomenal within-method triangulation to determine 

the basic learnability of two different perceptual constrained scales.  This was a test to see 

if constrained scaling as a single method would map two different scaling phenomena. 

The goal was to determine if training on two different brightness scaling exponent values 

translated into two likewise scaled brightness scaling exponents for untrained stimuli.   

This was a two-part experiment.  Both parts of the experiment were similar to the 

method adopted in Experiments 8 – 10, in that brightness scale training was provided 

using grayscale stimuli with feedback and testing was performed using red stimuli 

without feedback.  In one part of the experiment, participants were trained to respond to 

grayscale stimuli according to a brightness scale with an exponent of 0.20:  

20.020LR = . (28)
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Table 19.  Types of methodological triangulation. 

 

 Same Research Method Different Research Methods 
 

Single Phenomenon 
 

uniphenomenal within- 
method triangulation 

 

 
uniphenomenal between- 

method triangulation 

 
Multiple Phenomena 

 
multiphenomenal within- 

method triangulation 
 

 
multiphenomenal between-method 

triangulation 
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 Figure 59.   Representation of the two-stage triangulation in Experiment 11.
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In the second part of the experiment, following a one-week interstice, the same 

participants were trained to respond to the identical grayscale stimuli according to a 

brightness scale with an exponent of 0.46:51  

46.07LR = . (29)

 These two exponent values were equidistant from 0.33, the natural brightness scaling 

exponent (Stevens, 1975) used in previous experiments.52  

 Figure 59 depicts the two stages of Experiment 11.  The variables labeled A1 and 

A2 represent the relationship between the brightness of the grayscale squares 

(BRIGHTNESS1) and the magnitude scale.  This relationship is equivalent to the slope of 

the regression line obtained for each participant when asked to estimate the brightness of 

grayscale stimuli after initial training.  Perfect learning would result in A1 equal to 0.46, 

equivalent to the exponent value for training trials in Equation 29.  Likewise, the 

expected value of A2 would be equal to or near the training trial exponent of 0.20 in 

Equation 28.53  The variables labeled B1 and B2 represent the relationship between the 

brightness of the red squares (BRIGHTNESS2) and the magnitude scale for the different 

exponent values. 

                                                 
51 The order of the exponent training was counterbalanced across participants to prevent 
possible order or practice effects. 
 
52 Note that the intercept values were varied in order to keep the upper end of the 
feedback scale constant.  
 
53 The assignment of Equation 29 to A1 and Equation 28 to A2 is arbitrary.  Remapping 
the equations to different A variables would not change the conclusions made in this 
section. 
 



 

 
221 

 

 

 Since brightness is not perceived entirely equivalently for grayscale and red 

stimuli, the B values are expected to differ from the A values.  Owing to the low  

interparticipant variability afforded by constrained scaling, it is expected that one 

participant’s B values will be very similar to another participant’s B values.  It is, 

however, not expected that B1 and B2 are equivalent.  Since B1 reflects the training 

influences of A1 and since B2 reflects the training influences of A2, B1 and B2 should differ 

considerably. 

The key to triangulation in Experiment 11 is the relationship of the use of the 

scale with an exponent of 0.20 to the use of the scale with an exponent of 0.46.  This 

experiment is designed to determine if the constrained scale is applied in the same 

manner for the novel red stimuli, even when the training scale exponents are different.  

The relationship under review can be expressed more formally as: 

2

2

1

1

B
A

B
A

= , 
(30)

which is to say that the ratio of A1 to B1 is expected to be equivalent to the ratio of A2 to 

B2.  In other words, the scale used for Part 1 of the experiment is expected to be applied 

in the same manner as the scale used in Part 2.  If this conclusion is not true, then it 

brings into question issues surrounding the participants’ ability to generalize a learned 

number scale to perceived magnitudes.  An inherent assumption in constrained scaling is 

that people can learn a naturalistic scale, which they can in turn use to estimate their 

perceptual magnitude.  The present experiment tests the assumption that constrained 

scaling works equivalently for different learned scales.  If participants cannot use the 
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scale with an exponent of 0.20 with the same degree of effectiveness as the scale with an 

exponent of 0.46, or vice versa, this suggests that some scales are inherently more 

learnable than others. 

 In the present experiment, the scaling ratio was expected to differ between the two 

conditions.  I hypothesized that A1 would roughly be equivalent to 0.46 and that A2 would 

roughly be equivalent to 0.20.  Substituting these values into Equation 30 produces the 

following: 

21

20.046.0
BB

= , 
(31)

which simplifies to: 

21 3.2 BB = . (32)

Thus, I hypothesized that the scale exponent for the red stimuli would be more than 

double for the learned scales with exponents of 0.46 than for the learned scales with 

exponents of 0.20. 

Method 

Participants 

Five volunteers with self-reported normal color vision were enlisted to participate 

in the experiment.  The volunteers were drawn from participants who had previously 

taken part in brightness scaling experiments, although not in the previous month.  The 

participants were compensated $5.00 for each half session in which they participated. 

Apparatus and Stimulus Materials 

The experimental control software used in previous experiments was modified to 
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pair participants with the appropriate 0.20 and 0.46 training exponents in successive 

sessions.  Participants were counterbalanced, so that odd-numbered participants began 

with the 0.20 training exponent, and even-numbered participants began with the 0.46 

training exponent.  In the second phase of the experiment, odd-numbered participants 

were paired with the 0.46 training exponent, while even-numbered participants were 

paired with the 0.20 training exponent.  As in Experiment 10, the stimulus materials 

consisted of grayscale and red brightness stimuli at 14 luminous intensity levels. 

Design and Procedure 

The experiment consisted of two phases, as depicted in Figure 60.  As discussed 

above, for one part of the experiment, participants were trained to scale the brightness of 

grayscale squares with a feedback exponent of 0.20.  Participants were subsequently 

tested on the brightness of red squares.  For the other part of the experiment, participants 

were trained to scale the brightness of red squares with a feedback exponent of 0.46 and 

were subsequently tested on the brightness of red squares.  The order of the two phases 

was alternated between participants.  One week separated the two test phases. 

Results and Discussion 

The data were analyzed as in previous experiments, with separate results for the 

exponent, intercept, and R2 values.  These results were calculated for each phase of the 

experiment and then compared to determine the scaling relationship between the two sets 

of scaling exponents.  The results are summarized in Tables 20 – 21 and in Figures 61 – 

64, and are described in detail below. 
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Figure 60.  Schematic flow of the two phases in Experiment 11. 
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Table 20.  Summary of participants’ brightness scaling for 0.20 exponent training in 
Experiment 11. 
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Table 21.  Summary of participants’ brightness scaling for 0.46 exponent training in 
Experiment 11. 
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GRAYSCALE STIMULI 
TRAINING EXPONENT = 0.20 
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Figure 61.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback for a training exponent 
value of 0.20 in Experiment 11. 
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RED STIMULI 
TRAINING EXPONENT = 0.20 
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Figure 62.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback for a training exponent 
value of 0.20 in Experiment 11. 
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GRAYSCALE STIMULI 
TRAINING EXPONENT = 0.46 

 
 

PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 

PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 
Figure 63.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback for a training exponent 
value of 0.46 in Experiment 11. 
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RED STIMULI 
TRAINING EXPONENT = 0.46 
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Figure 64.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for red squares without feedback for a training exponent 
value of 0.46 in Experiment 11. 
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Exponent Values 

For the condition in which the training exponent equaled 0.20, the average scaling 

exponent for grayscale stimuli with feedback was 0.192 with SD/M = 0.161 and H:L = 

1.510:1.  For the red stimuli without feedback in the same condition, the average scaling 

exponent was 0.229 with SD/M = 0.178 and H:L = 1.521:1.  The average ratio of 

grayscale to red stimulus exponents was 0.860.  For the condition in which the training 

exponent equaled 0.46, the average scaling exponent for grayscale stimuli was 0.371 with 

SD/M = 0.156 and H:L = 1.527:1.  For the red stimuli in the same condition, the average 

scaling exponent was 0.436 with SD/M = 0.100 and H:L = 1.326:1.  The average ratio of 

grayscale to red stimulus exponents was 0.860.  The average exponent values cannot be 

compared to the exponent values from previous brightness scaling experiments, because 

the training exponents do not match.  However, the variability in terms of SD/M and H:L 

was comparable to the levels found in the previous brightness scaling experiments. 

Intercept Values 

For the condition in which the training exponent equaled 0.20, the average scaling 

intercept for grayscale stimuli was 1.315 with SD/M = 0.026 and H:L = 1.061:1.  For the 

red stimuli, the average scaling intercept was 1.357 with SD/M = 0.063 and H:L = 

1.181:1.  The average ratio of grayscale to red stimulus intercepts was 0.971.  For the 

condition in which the training exponent equaled 0.46, the average scaling intercept for 

grayscale stimuli was 0.980 with SD/M = 0.062 and H:L = 1.175:1.  The average ratio of 

grayscale to red stimulus intercepts was 0.983.  The scaling variability was low for both 

conditions, indicative of the efficacy of constrained scaling when used with different 



 

 
232 

 

 

training modalities.  As expected, there was a tendency for the intercept to increase the 

lower the exponent value was.  This finding was indicative of the different intercept 

training values, and both conditions provided good matches between the training 

intercepts and the participants’ resultant intercept scaling values. 

Goodness of Fit Coefficients 

For the condition in which the training exponent equaled 0.20, the average 

goodness of fit coefficient was 0.717 for grayscale stimuli, with SD/M = 0.157 and H:L = 

1.849:1.  For red stimuli, the average R2 was 0.839 with SD/M = 0.110 and H:L = 

1.181:1.  The average ratio of grayscale to red stimulus goodness of fit coefficients was 

0.860.  For the condition in which the training exponent equaled 0.46, the average R2 for 

grayscale stimuli was 0.762 with SD/M = 0.105 and H:L = 1.330:1.  For red stimuli, the 

average R2 was 0.861 with SD/M = 0.060 and H:L = 1.175:1.  For this condition, the 

average ratio of grayscale to red stimulus goodness of fit coefficients was 0.889.  The 

average R2 values were well within the range expected for constrained scaling, suggesting 

a successful implementation of the constrained scaling method in the two experimental 

conditions. 

General Discussion 

Recall that Equation 30 hypothesized that 
2

2

1

1

B
A

B
A

= , where A1 is the exponent 

value for grayscale stimulus scaling for training with an exponent equal to 0.46, B1 is the 

related exponent value for red stimulus scaling, A2 is the exponent value for grayscale 

stimulus scaling for training with an exponent equal to 0.20, and B2 is the related 
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exponent value for red stimulus scaling.  Substituting the actual values into Equation 30 

results in the following equation: 

229.0
436.0

192.0
371.0

= , 
(33)

which simplifies as: 

906.1929.1 ≈ . (34)

Similarly, substituting the appropriate intercept values into Equation 30 yields the 

following equation:  

357.1
315.1

003.1
980.0

= , 
(35)

which simplifies as: 

969.0977.0 ≈ . (36)

As the ratios of the exponent and intercept values54 clearly demonstrate, the training scale 

was applied in the same manner to the testing stimuli across the two conditions. This 

finding lends evidence to the notion that different learned scales are used in the same 

manner to estimate the magnitude of novel stimuli. 

                                                 
54 The ratios were not calculated for goodness of fit coefficients, since the goodness of fit 
coefficients are indirect measures of the scale and are not informative to the direct scale 
comparisons in the present experiment. 
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EXPERIMENT 12 

Introduction 

The previous experiments in this dissertation share a common theme—to use 

constrained scaling to match a magnitude scale to a perceptual stimulus.  In previous 

experiments, it was straightforward to show the relationship of a measurable physical 

stimulus to a perception of magnitude.  When scaling psychophysical stimuli, there is 

usually a continuous stimulus magnitude and a continuous response magnitude.  Such 

stimulus-response pairs lend themselves to the types of analysis heretofore described.  

The data are suited to graphing on a two-dimensional Cartesian plane, with the stimulus 

values serving as abscissae and the response values serving as the ordinates.  Using log-

log coordinates, the stimulus-response pairs typically form a linear relationship, making it 

possible to analyze the aggregate data in terms of a parsimonious regression analysis. 

In the previous experiments, constrained scaling worked because people perceive 

physical stimuli in a highly similar way.  For example, the way person X 

neurophysiologically perceives loudness is identical to the way person Y perceives it.  

There may be slight perceptual variations due to differences in hearing sensitivity, shape 

of the ear canal, or other factors.  But, the process of loudness perception is largely 

invariant across humans.  Similarly, there is a high degree of neurophysiological 

invariance in the way a person perceives the brightness of objects.  Factors such as light 

or dark adaptation, age-related diminished visual acuity, color blindness, and other 

factors may contribute to differences between individual humans, but the mechanism by 

which humans encode and perceive brightness is largely biologically determined.  
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Constrained scaling operates in such a way that person X’s perception is scaled to the 

same scale used by person Y.  The variability found in traditional magnitude estimation is 

therefore seen as an artifact of conventional scaling methods and not as a reflection of 

true individual differences. 

Psychometric scaling of subjective experience is a much different phenomenon 

than psychophysical scaling.  To begin, there often exists no underlying physical stimulus 

continuum.  Consider a number of subjective factors that might be scaled:  happiness, 

sadness, satisfaction, interest value, and so forth.  What underlying physical stimulus 

could be used to trigger subjective responses suitable for scaling?  One would not 

typically use loudness as an instigator of affective states such as happiness or sadness; 

nor would one find much merit in scaling cognitive factors such as the satisfaction or 

interest value elicited by pure tones of varying amplitudes.  Subjective experience, 

whether it is primarily affective or cognitive in nature, is the product of complex 

phenomena that are not readily manipulated with the psychometrician’s tool chest of 

experimental methods.  Affective and cognitive responses are caused by the interplay of 

multiple dimensions of physical stimuli as well as internal processes caused by natural 

affinities and learned responses.  While it is possible to develop a continuum of physical 

stimuli to elicit a subjective response, such a task would be fraught with a daunting 

variety of confounds and complications. 

A second consideration in the scaling of subjective experience concerns the very 

nature of that experience.  I have just discussed the difficulties of finding a continuum of 

physical stimuli that could elicit subjective experience.  The next question becomes:  
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what subjective experience?  Subjective experience, by its very nature, is a highly 

individualistic phenomenon.  Suppose a researcher developed a set of stimuli that could 

elicit different levels of happiness in an individual.  There is no reason to assume that one 

person’s level of happiness would equal another person’s level of happiness for that set of 

stimuli.55  Whereas human biology dictates a largely homogenous set of perceptual 

experiences through our perceptual sense organs, affect and cognition are not bound by 

the same constraints as perception.  There are definitely common neurophysiological 

underpinnings for affect and cognition, but the links that bind experience with particular 

affective or cognitive responses are not hardwired.  The same phenomenon may elicit 

very different subjective responses across individuals. 

Therein lays the main difference between Experiments 12 and 13 and the 

preceding experiments.  Experiments 12 and 13 center on the topic of the psychometric 

scaling of subjective experience.  The subjective experience in question is the amount of 

happiness a certain amount of money elicits.  In this case, I have employed money as an 

underlying stimulus dimension.  Money is an emotionally laden stimulus that 

conveniently falls along a continuum. 

The groundwork for Experiments 12 and 13 is in a preliminary study by West and 

Ward (1998).  There, constrained scaling was utilized as a method to determine 

individual differences in the subjective value of money.  Whereas previous research on 

constrained scaling had focused exclusively on the scaling of perceptual phenomena, 

                                                 
55 It can be argued that one persistent driving force (and perhaps folly) of our society is 
the assumption that everyone’s level of happiness should be equal.  
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West and Ward’s study addressed the scaling of affective and cognitive factors. The 

study was set up identically to the cross-modal perceptual studies in West et al. (2000), 

with the exception that participants were trained on a loudness scale and subsequently 

applied that scale to the perceived utility of various amounts of money. 

Perceptual studies using constrained scaling demonstrate a consistent and 

significant decrease in interparticipant variability when using constrained scaling 

compared to traditional psychophysical methods such as magnitude estimation (West, 

1996; West & Ward, 1994; West et al., 2000).  The results for the scaling of subjective 

experience reveal the opposite effect.  In West and Ward (1998), interparticipant 

variability actually increased when using constrained scaling to assess the subjective 

value of money.  The authors noted that this result was expected.  Since constrained 

scaling offers a truer scale expression than other methods of a person’s experience of 

magnitude, one would expect: 

1. Decreased interparticipant variability for psychophysical domains, in which 

perception is a largely hardwired translation of physical stimulus information into a 

scale; 

2. Increased interparticipant variability for subjective domains to reflect the true 

individual differences in subjective experience. 

The latter point is the crucial assumption when applying constrained scaling to subjective 

phenomena.  Where there are real differences between individuals, an accurate 

measurement scale will capture those differences, while minimizing measurement 

differences where no real interparticipant differences exist. 
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This duplicitous definition presents something of an ironic twist for the scaling 

community. A calibrated scale must, on the one hand, virtually eliminate all variability 

when measuring objective psychophysical processes, but, on the other hand, it must also 

highlight variability when measuring subjective psychometric processes.  The calibrated 

scale must serve seemingly opposite ends.   

Consistent with the findings in West and Ward (1998), it is my hypothesis that 

constrained scaling will exhibit greater interparticipant variability than conventional 

scaling for subjective measures.  I conducted two experiments to test this hypothesis.  In 

the present experiment, participants were displayed a sum of money and asked to scale on 

a 100-point scale how happy that sum of money would make them if they were to win 

it.56  This experiment provided a simple baseline of human performance on the task using 

magnitude estimation.  In Experiment 13, the magnitude estimation task is contrasted 

with a constrained scaling task for the same stimulus set.  Experiment 13 borrows the 

triangulation method from Experiment 11 to determine if participants could consistently 

apply learned perceptual scales cross-modally to a psychometric arena.   

The constrained scaling task in Experiment 13 will be discussed in greater depth 

in the next chapter. The present chapter continues with a discussion of the method and 

results for the magnitude estimation experiment.   

                                                 
56 Happiness is used as a convenient label that might more appropriately be called the 
subjective utility of money. 
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Method 

Participants 

Six participants were enlisted for the experiment.  Since the stimuli did not  

involve perceptual stimuli, no screening was necessary to ensure normal hearing or color 

vision.  To prevent carryover effects, the participants were recruited from people who had 

not previously participated in scaling experiments.  The participants were paid $5.00 for 

volunteering to take part in the experiment. 

Apparatus and Stimulus Materials 

The experimental control software used in previous experiments was modified to 

display a monetary sum instead of a colored square.  The sum was kept on the screen 

until the participant selected a happiness level on the 100-point scale.  The stimuli 

consisted of monetary sums ranging from $50.12 to $1,000,000.00, calculated according 

to the following equation: 

1010
x

M = , (37)

where M is the monetary sum and where x ranges from 17 to 60 in whole-number 

increments. 

Design and Procedure 

There were three rounds of the experiment.  In each round, the complete set of 

monetary sums was presented in random order, to which participants responded using the 

100-point scale with a rating of their level of happiness if they had won the displayed 

amount of money. 
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Table 22.  Summary of participants’ happiness scaling using magnitude estimation in 
Experiment 11. 

 

P Exponent Intercept R2 

1 0.337 -0.007 0.713 

2 0.364 -0.282 0.854 

3 0.141 1.300 0.653 

4 0.320 0.278 0.750 

5 0.502 -0.685 0.861 

6 0.320 0.278 0.750 

M 0.331 0.147 0.764 

SD 0.116 0.673 0.081 

 



 

 
241 

 

 

 
 

PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 
 

PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 
 

PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 
PARTICIPANT 6 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

log M

lo
g 
R

 
Figure 65.  Logarithmic scatterplot and regression line for money (M) and participant 
response (R) using magnitude estimation in Experiment 12. 
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Results 

 The results were analyzed as in previous experiments.  The scaling exponent and 

intercept values as well as the goodness of fit coefficient were calculated.  The results are 

summarized in Table 22 and Figure 65. 

Exponent Value 

The average exponent value for the happiness elicited by money was 0.331 with 

SD/M = 0.349 and H:L = 3.560:1.  This level of variability was considerably higher than 

the variability found in constrained scaling experiments, and was comparable to the 

levels of variability found in the magnitude estimation of color brightness in Experiment 

6 and in magnitude estimation experiments in West et al. (2000). 

Intercept Value 

The average intercept value for happiness elicited by money was 0.147 with 

SD/M = 0.458 and H:L = -1.898.  Note that the negative highest-to-lowest ratio was the 

result of some participants having an intercept in logarithmic space that was below 0.  By 

definition, the logarithm of any number between 0 and 1 produces a negative number.  A 

negative highest-to-lowest ratio must be interpreted as a potentially infinitely large 

number, indicative of a great deal of variability in intercept scoring by participants.  

Although participants were within the normal variability range for scaling exponents in 
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magnitude estimation,57 the intercepts exhibited much higher variability, which is likely 

a reflection of individual differences in the scaling of subjective happiness. 

Goodness of Fit Coefficient 

The average goodness of fit for the regression line of money-to-happiness scaling 

was 0.764 with SD/M = 0.106 and H:L = 1.319:1.  There was a strong goodness of fit to 

the data, although a visual inspection of Figure 65 indicates that the goodness of fit might 

be even better for nonlinear curve fitting.  Several of the participants exhibited sharp 

initial rises followed by a ceiling effect. There was a sharp ascent in the response values 

at the lower end of the monetary scale for several participants (see, especially, 

participants 1, 3, and 6 in Figure 65), and there was a flattening or tapering off of 

response values at the upper end of the monetary scale for several participants (see 

participants 3 – 6 in Figure 65).  Such curvilinear data are indicative of the complex 

subjectivity behind happiness that is unlikely to be the product of a single factor such a 

monetary sum.  For many participants, there is the point at which a little money would 

make them a little happier, more money would make them quite happy, and a large 

amount of money would have diminishing returns in terms of increasing their happiness. 

                                                 
57 To understand that a negative number is a large number for the highest-to-lowest 
ratios, consider a hypothetical case in which the highest non-logarithmic value in a list 
was 5.  If the lowest value were 3, H:L would equal log 5/log 3 or 0.699/0.301, which 
equals 2.322:1.  If the lowest value were 1.1, H:L would equal log 5/log 1.1 or 
0.699/0.041, which equals 17.049.  If the lowest value were 0.9, one would expect the 
H:L ratio to be even greater.  But, when translating to logarithmic space, the H:L becomes 
log 5/log 0.9 or 0.699/-0.046, which equals -15.196.  This value, although negative, 
indicates a greater disparity between the highest and lowest values than was the case with 
the other H:L ratios. 
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Anecdotal evidence from discussion with Participant 4 indicated that he 

translated the money in his head into tangible things that he could buy.  Thus, the lower 

range of money would buy certain material niceties (e.g., a computer or a vacation).  As 

the range increased, the material items became larger and more appealing (e.g., a car or a 

house).  At some point, the monetary scale exceeded the material items that the 

participant would like to possess, thus resulting in a flattening of the scale.  The money 

represented the tangible material items plus “money in the bank,” the latter being a perk 

that did not facilitate happiness in the participant. 

General Discussion 

The present experiment demonstrated the magnitude estimation of the relationship 

between the amount of money won and the level of subjective happiness afforded by that 

money.  Participant results for exponent and R2 values did not differ from the expected 

results for magnitude estimation in the perceptual domain of color brightness scaling.  

Nonetheless, there was an especially high degree of variability in the intercept scaling 

values.  Moreover, a closer examination of the scaling indicated that it did not always 

follow the standard Power Law form.  The next experiment pits these results against 

psychometric scaling using constrained scaling to see how training on a perceptual scale 

affects responses on a subjective scale. 
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EXPERIMENT 13 

Introduction 

The purpose of the present experiment is to determine if a perceptual training 

scale can be applied to novel subjective stimuli.  A subjective scale cannot be used for 

training, because subjective matters are, by definition, individual.  It would not, for 

example, make sense to train participants on a happiness scale, because there is no basis 

to assume that two people’s subjective mappings of happiness are equivalent.  A 

reasonable compromise solution is to train individuals on a perceptual scale in order to 

provide participants with a mapping from internal magnitude states to an external scale.  

Once participants have learned this mapping, it is assumed that this mapping will also 

allow them to translate their subjective mental states to an external scale.   

One possible consequence of this constrained scaling extension, as noted in 

Experiment 12, is that the increased fidelity afforded by perceptual scale training may 

actually increase subjective scaling sensitivity to individual differences.  To determine 

the ability of constrained scaling to detect individual differences, the variability from the 

present experiment is compared to the variability levels found for happiness scaling using 

magnitude estimation in Experiment 12.  An increase in variability compared to 

magnitude estimation would be strong evidence that constrained scaling had increased 

the participants’ ability to map subjective mental magnitudes to the numeric scale in a 

way reflective of individual differences.58 

                                                 
58 Another possibility is simply that the perceptual scale confounded participants’ ability 
to map their internal magnitude states to the numeric scale.  Any scaling confusion would 
be expected to interfere with both the subjective and the perceptual scaling results. 
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The present experiment features the subjective counterpart to the perceptual 

triangulation in Experiment 11.  Participants were trained on two sets of perceptual 

exponents for grayscale stimuli.  Then, they applied the learned scale to measure their 

happiness in response to the monetary stimuli from Experiment 12.  Figure 66 depicts the 

two training and testing phases in the present experiment.  As in Experiment 11, the A 

values represent the exponents of the learned scale for the brightness of grayscale 

squares.  Here, the B values represent the exponents of the scale used to scale the 

happiness elicited by certain amounts of money.  The two A and B values represent 

separate training on brightness scales with exponent values of 0.20 (A2) and 0.46 (A1). 

Like Experiment 11, the present experiment is based on multiphenomenal within-

method triangulation.  The use of the multiphenomenal within-method triangulation 

provided the opportunity to determine if the learned perceptual scales are applied in a 

consistent manner.  Triangulation serves as a litmus test of the cross-modal perceptual-to-

subjective scaling method.  The goal in using triangulation is to determine that 

constrained scaling was being applied to scale subjective experience.  Specifically, it was 

hypothesized that the ratio of a learned brightness scale to the scaling of the perceived 

utility of money holds constant for both brightness training scales.  In Experiment 11, I 

found strong agreement in the B values between participants as a reflection of the trained 

A values.  In the present experiment, I expected to find little agreement between 

participants on the individual B values, reflecting individual differences in the subjective 

utility of money.  However, if the constrained scale revealed true differences, I expected 
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Figure 66.  Representation of the two-stage subjective magnitude triangulation in 
Experiment 13. 
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Figure 67.  Schematic flow of the two phases in Experiment 13. 
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those differences to be evident even when a different constrained scale is used.  Thus, I 

expected that the B1 and B2 values would be consistent within each participant but not 

between different participants.  As in Experiment 11, I hypothesized that the ratio of A1 to 

B1 would be the same as the ratio of A2 to B2. 

Method 

Participants 

 Five participants with self-reported normal color vision were enlisted to 

participate in the experiment.  The participants were the same participants who 

volunteered for the perceptual triangulate study in Experiment 11.  The participants were 

paid $5 for each of the two experimental phases. 

Apparatus and Stimulus Materials 

 The experimental control software from Experiments 11 and 12 was combined to 

provide training on the grayscale stimuli and testing on the happiness elicited by 

monetary sums.  The stimulus materials were identical to the grayscale training stimuli in 

Experiment 11 and the monetary testing stimuli in Experiment 12. 

Design and Procedure 

 The design and procedure were a combination of Experiments 11 and 12.  The 

design of the experiment is outlined in Figure 67.  As in Experiment 11, there were two 

experimental phases, separated by a week.  During one phase, participants were trained to 

scale grayscale stimuli according to an exponent equal to 0.20.  In the other phase, 

participants were trained to scale grayscale stimuli according to an exponent equal to 

0.46.  The order of the experimental phases was alternated between participants. In both 
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experimental conditions, the participants were instructed to use the learned scale to 

estimate how happy the displayed amounts of money would make them.  During the 

testing phase, the monetary stimuli without feedback were alternated with the grayscale 

stimuli with feedback. 

Results and Discussion 

 The results were analyzed as in Experiments 11 and 12 and are summarized in 

Tables 23 – 24 and Figures 68 – 71.  Exponent values were obtained by regressing the 

magnitude values against brightness and the happiness values to money for each 

participant.  The coefficient of variation and the highest-to-lowest exponent ratio were 

calculated and compared to the equivalent measures obtained from the baseline study in 

Experiment 12.  It was predicted that these measures of variance would actually increase 

for constrained scaling vs. magnitude estimation to reflect constrained scaling’s greater 

sensitivity to true individual differences across participants. 

Exponent Values 

 In the experimental condition in which the training exponent equaled 0.20, the 

average scaling exponent value for the grayscale stimuli was 0.175 with SD/M = 0.158 

and H:L = 1.524:1.  For the monetary stimuli, the average scaling exponent was 0.195 

with SD/M = 0.505 and H:L = 3.284:1.  The average ratio of the grayscale to the 

monetary exponents was 1.139.  In the experimental condition in which the training 

exponent equaled 0.46, the average scaling exponent value for the grayscale stimuli was 

0.397 with SD/M = 0.076 and H:L = 1.183:1.  The average exponent for the monetary 

stimuli was 0.269 with SD/M = 0.570 and H:L = 4.589:1.  The average ratio of grayscale  
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 Table 23.  Summary of participants’ brightness and happiness scaling for 0.20 
exponent training in Experiment 13. 
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Table 24.  Summary of participants’ brightness and happiness scaling for 0.46 
exponent training in Experiment 13. 
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GRAYSCALE STIMULI 
TRAINING EXPONENT = 0.20 
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Figure 68.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback for a training exponent 
value of 0.20 in Experiment 13. 
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MONETARY STIMULI 
TRAINING EXPONENT = 0.20 
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Figure 69.  Logarithmic scatterplot and regression line for happiness (R) in response 
to monetary sum (M) for a training exponent value of 0.20 in Experiment 13. 
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GRAYSCALE STIMULI 
TRAINING EXPONENT = 0.46 

 
 

PARTICIPANT 1 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 

 
PARTICIPANT 2 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
 

PARTICIPANT 3 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 4 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
PARTICIPANT 5 

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

log L

lo
g 
R

 
Figure 70.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback for a training exponent 
value of 0.46 in Experiment 13. 



 

 
255 

 

 

MONETARY STIMULI 
TRAINING EXPONENT = 0.46 
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Figure 71.  Logarithmic scatterplot and regression line for happiness (R) in response 
to monetary sum (M) for a training exponent value of 0.46 in Experiment 13. 
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to the monetary exponents was 1.877. The average grayscale exponents and their 

variability levels were comparable to or better than the values obtained in Experiment 11.  

The variability for the monetary-to-happiness scale was greater than the variability found 

with magnitude estimation in Experiment 12. 

Intercept Values 

 In the experimental condition in which the training exponent equaled 0.20, the 

average scaling intercept for the grayscale stimuli was 1.334 with SD/M = 0.026 and H:L 

= 1.069:1.  For the monetary stimuli, the average scaling intercept was 0.869 with SD/M 

= 0.523 and H:L = 6.440:1.  The average ratio of grayscale to monetary intercepts was 

2.345.  In the experimental condition in which the training exponent equaled 0.46, the 

average scaling intercept for grayscale stimuli was 0.952 with SD/M = 0.051 and H:L = 

1.121:1.  For the monetary stimuli, the average scaling intercept was 0.193 with SD/M = 

4.449 and H:L = -0.962.59  The average ratio of grayscale to monetary intercepts was 

1.986.  In both conditions, the average intercept values and variability levels for the 

grayscale stimuli were comparable to those obtained in Experiment 11.  Likewise, the 

intercept variability in the present experiment was comparable to that obtained through 

magnitude estimation in Experiment 12. 

Goodness of Fit Coefficients 

 For the experimental condition in which the training exponent equaled 0.20, the 

average scaling R2 value for grayscale stimuli was 0.749 with SD/M = 0.204 and H:L =  

                                                 
59 Recall that a negative highest-to-lowest ratio is indicative of a large ratio. 
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1.830:1.  For the monetary stimuli, the average scaling R2 value was 0.781 with SD/M = 

0.142 and H:L = 1.595:1.  The average ratio of grayscale to monetary goodness of fit 

coefficients was 0.957.  In the experimental condition in which the training exponent 

equaled 0.46, the average R2 value for the grayscale stimuli was 0.824 with SD/M = 0.081 

and H:L = 1.251:1.  For the monetary stimuli, the average R2 value was 0.783 with SD/M 

= 0.224 and H:L = 1.863:1.  The average ratio of grayscale to monetary goodness of fit 

was 1.092.  Across both conditions, the grayscale goodness of fit was actually slightly 

better than in Experiment 11.  The monetary-happiness goodness of fit was nearly 

identical to the fit found through magnitude estimation in Experiment 12. 

General Discussion 

 As predicted, the variability of the happiness scaling actually increased in the 

constrained scaling condition.  Since participants exhibited comparable mastery of the 

grayscale training scale as in previous experiments, it is not assumed that the increased 

variability is a byproduct of a failure to master the perceptual-subjective cross-modal 

scaling.  Instead, it is assumed that the increased variability was a product of the 

constrained scalers’ improved scaling fidelity, making the scale more sensitive to true 

individual differences. 

Referring back to Equation 30 in Experiment 11, it was found that the training to 

different scale exponents (A) carried over to scaling novel stimuli (B), such that 

2

2

1

1

B
A

B
A

= .  The question remains whether this constant relationship also holds when A 

and B represent different modalities, namely perceptual and subjective, respectively.  
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Substituting the appropriate exponent values from the present experiment into Equation 

30, the following equation is produced: 

195.0
269.0

175.0
397.0

= , 
(38)

which simplifies as: 

379.1269.2 ≠ . (39)

The scaling relationship is not constant, suggesting that constrained scaling using a 

perceptual training scale did not consistently map to the subjective domain.60  In terms of 

the intercept values, substituting the appropriate values into Equation 30 yields the 

following equation:  

869.0
193.0

339.1
952.0

= , 
(40)

which simplifies as: 

222.0711.0 ≠ . (41)

Again, the scaling relationship is not constant.  The trained perceptual scale did not map 

to the subjective scale in a consistent manner for exponents or intercepts across the two 

conditions. 

 Two sets of findings must be reconciled.  First, constrained scaling resulted in 

greater variability between participants than did magnitude estimation for the subjective 

domain of scaling happiness.  Second, individual participants’ mapping of the perceptual  

                                                 
60 I have assumed that subjective happiness is relatively constant over time.  If subjective 
happiness changes considerably over time, a two-phase longitudinal experiment like the 
present experiment is not a well suited method for testing how well different perceptual 
scales are applied to subjective domains.  
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scale to the subjective domain did not remain constant over a one-week interval.  The 

utility of constrained scaling for cross-modal perceptual-subjective scaling must be 

punctuated with a question mark.  On the one hand, preliminary findings suggest that this 

methodological extension may hold the key to increasing sensitivity to individual 

differences.  On the other hand, individual differences appear in places where they would 

not necessarily be expected, in the mapping of the learned scale to the testing stimuli. 

 This experiment fails to resolve this quandary, leaving open the ultimate verdict 

on the use of constrained scaling for subjective domains.  However, some resolution may 

be found by looking at the exponent and intercept values of individual participants.  The 

relationship between training and testing exponents does, in fact, hold constant for two of 

the five participants.  If constrained scaling worked in both cases, then the ratio of the 

exponents for the two learned scales (i.e., brightness) divided by the ratio of the 

exponents for the two unlearned scales (i.e., happiness) should equal 1.  For participants 2 

and 4, these ratios were equal to 0.987 and 0.982, respectively.  These ratios suggest that 

the application of the two learned scales held largely constant across the two testing 

phases, although the intercept ratios failed to hold constant.  Participants 1, 3, and 5 also 

showed remarkable consistency, but in a different way.  For them, the ratio of the 

exponents for the unlearned happiness scales was approximately equal to 1 (1.035, 0.955, 

and 1.258, respectively). This indicates that they simply ignored the training in the 

second round of testing and used the same scale they had learned in the first round of 

testing. , in contrast, featured considerably larger variability.  Participants 2 and 4 shared 

a common order for testing phases, having first been trained to scale with an exponent 
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equal to 0.46 and then an exponent of 0.20 in the second phase.  Participants 1, 3, and 5 

received the opposite order.  It remains unclear why there would be a potential order 

effect for participants involved in subjective scaling but not in the psychophysical scaling 

in Experiment 11.  To help resolve unanswered questions regarding cross-modal scaling 

in a subjective domain, the next chapter further explores constrained psychometric 

scaling.
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EXPERIMENT 1461 
EXPERIMENT 14 

Introduction 

The present experiment builds on Experiments 12 and 13 by further determining 

the utility of a constrained scale as a subjective measure.  Experiments 12 and 13 sought 

to establish the validity of using constrained scaling as a method to determine true 

individual differences.  In the present experiment, I investigate constrained scaling vs. 

magnitude estimation for the domain of subjective affect in computing. 

In the field of human-computer interaction (HCI), computer software is evaluated 

in terms of its usability (Dillon, 1983; Dumas & Redish, 1999; Lindgaard, 1994; Nielsen, 

1993; Rubin, 1994).  Usability, in turn, is defined according to several subcomponents.  

Nielsen, for example, proposed that usability should be defined according to interface 

learnability, efficiency of use, interface memorability, user errors, and user satisfaction.  

More recently, the International Standards Organization (1998) has proposed three 

definitional components of usability, which are effectiveness, efficiency, and user 

satisfaction.  Effectiveness of software is typically measured in terms of the user’s 

success rate at completing tasks, whereas the efficiency of software is generally measured 

by the user’s time to complete those tasks.  The third factor, user satisfaction, represents 

an affective component in the use of software.  User satisfaction is commonly measured 

with Likert-style satisfaction scales (Dumas, 2001) such as the Software Usability 

                                                 
61 Portions of Experiment 14 were first presented as papers at the Annual Meeting of the 
Human Factors and Ergonomics Society (Boring, 2003) and the Association for 
Computing Machinery’s CHI Conference on Human Factors in Computing Systems 
(Boring & Fernandes, 2004). 
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Measurement Inventory (Kirakowski, 1996; Kirakowski & Corbett, 1993) or the System 

Usability Scale (Brooke, 1996).   

Frøkær, Hertzum, and Hornbæk (2000) found the three components of usability 

specified by the International Standards Organization (1998) to be orthogonal to one 

another, suggesting that usability should be assessed according to all three dimensions 

simultaneously.  Nonetheless, there is still debate about the best way to assess user 

satisfaction (Dudek & Lindgaard, 2004; Lindgaard & Dudek, 2003).  In particular, while 

user satisfaction continues to be the primary affective metric in usability studies, new 

research has suggested that aesthetic factors may be an important component of usable 

software (Karvonen, 2000; Norman, 2004).  There is a significant relationship between 

perceived usability and aesthetic appeal (Kurosu & Kashimura, 1995; Tractinsky, 1997; 

Traktinsky, Katz, & Ikar, 2000), suggesting that user satisfaction may be related as much 

to aesthetic factors as to ease of use.  Due to the current interest in the role of aesthetics in 

computer software as well as the lack of well-established aesthetics scales for computer 

software, the present experiment investigated the most effective way to scale visual 

aesthetic appeal on computers.  

As part of a larger series of studies, Fernandes (2003) conducted a study to 

evaluate the subjective aesthetic visual appeal of 100 Web pages presented in random 

order.  Using an unmarked line scale with the equivalent of 100 scale units, 22 

participants rated screen shots of each Web page.  In order to gather initial subjective 

impressions by the participants, the Web pages were displayed for 500 ms, a time 

appropriate to gauge the mere exposure effect, the aesthetic first impression of the Web 
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pages (Veryzer, 1999). The participants completed two evaluations of each Web page to 

ensure intraparticipant reliability.  Fernandes standardized the scores and rank ordered the 

Web pages, subsequently using the 25 lowest rated and 25 highest rated Web pages for a 

follow-up study. 

The goal of the present experiment is to utilize constrained scaling in a domain 

where there were documented individual differences.  Fernandes’ (2003) data set 

provides a validated data set in which there are Web pages with a reasonable amount of 

disagreement in terms of visual appeal among participants.  The raw data set was 

obtained from Fernandes and reanalyzed for variability.  The log of each participant’s 

subjective visual appeal rating for each Web page was regressed against the log of the 

average subjective visual appeal rating for the same Web page: 

aWmR logloglog += , (42)

where W represents the average visual appeal rating for a particular Web page and R 

represents the specific participant’s rating of the same Web page.  Transforming Equation 

42 from a logarithmic scale to a standard scale produces the familiar Power Law form: 

maWR = . (43)

The exponent value, m, represents the degree to which the participants’ individual ratings 

match the average ratings.  Averaging m across all 22 participants in Fernandes revealed 

that the average match between the individual ratings and the collective ratings had a 

slope equal to 0.382, with a standard deviation of 0.401.  The coefficient of variation was 

0.953, and the highest-to-lowest exponent ratio was 4.277:1.   
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Note that the interparticipant variability was considerably higher in Fernandes 

(2003) than in the magnitude estimation, cross-modality matching, and constrained 

scaling experiments reviewed in West et al. (2000).  The average coefficient of variation 

for the ten reviewed magnitude estimation studies in West et al. was 0.327, and the 

average highest-to-lowest ratio was 2.991:1.  Similarly, the average coefficient of 

variation for the four reviewed cross-modality matching studies was 0.348, while the 

highest-to-lowest ratio was 3.003:1.  The levels for the constrained scaling experiments 

were significantly lower.  For the subjective visual appeal data, the coefficient of 

variation was approximately three times greater than the coefficients of variation 

obtained from conventional magnitude estimation or cross-modality matching studies.  

The highest-to-lowest ratio is inconclusive.  As West et al. noted, the highest-to-lowest 

ratio is susceptible to outliers, meaning that the large number of participants in 

Fernandes’ study would predict a large highest-to-lowest ratio.  

 The present experiment compared the results from Fernandes (2003) against a 

new set of visual appeal ratings obtained through constrained scaling.  It was possible 

that the participants in the study by Fernandes perceived the same Web pages with equal 

levels of affect but differed in the way they used the scale across the range of possible 

scores.  This conclusion would suggest that the high variability found in aesthetics was an 

artifact of scaling more than the product of differences in aesthetic preference.  If this 

were the case, it would be expected that constrained scaling would result in lower 

variability than was found in the study by Fernandes.  By calibrating individuals to a 

common scale, constrained scaling should minimize differences in scale usage that 
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increase interparticipant variability.  Alternately, it was possible that the participants in 

the study by Fernandes actually perceived the same Web pages with different levels of 

affect.  If this were the case, it would be expected that constrained scaling would result in 

higher variability.  By calibrating individual participants to a common scale, constrained 

scaling would prove more sensitive to true individual differences.  If subjective aesthetic 

visual appeal for Web pages differs across individuals, a constrained scale should prove 

more sensitive than a magnitude estimation scale to those differences. 

Method 

As in Experiment 13, the present experiment uses training on grayscale brightness 

to achieve scale mastery.  Whereas in Experiment 13 participants used the learned scale 

to rate the degree of happiness that would be obtained by different degrees of money, in 

the present experiment participants were then instructed to use the learned scale to rate 

the subjective visual appeal of 100 Web pages. 

Participants 

Because the results in the present experiment would be compared to the results 

from a study with a larger number of participants, the decision was made to incorporate 

more than the customary five participants per study.  Eight volunteers with self-reported 

normal color vision were enlisted to participate in the experiment.  Volunteers who had 

previously participated in constrained scaling brightness experiments were eligible to 

participate, and the final participants were drawn from a pool of existing and new 

volunteers.  The volunteers were paid $10 for their participation. 
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Apparatus and Stimulus Materials 

The experimental control software used in the previous experiments was modified 

to allow the display of screenshots from Web pages.  The training stimuli consisted of 

grayscale squares at the 14 luminous intensity values described in Table C-1 in Appendix 

C.  The training exponent was set at 0.33.  The testing stimuli consisted of the 

screenshots of 100 Web pages of varying levels of visual appeal that were used in 

Fernandes’ earlier study (2003).  As in Fernandes, the screenshots from the Web pages 

were displayed on the screen for 500 ms to create a mere exposure effect suitable for 

gauging the participants’ initial impression of the Web pages.  Precise timing was 

achieved by incorporating a Visual Basic algorithm developed by Bedell (2000). 

Sample screenshots of the Web pages in the present experiment are presented in 

Table 25. The Web pages that were presented were the intellectual property and, in many 

cases, the copyright of their respective owners.  The Web pages were presented for 

educational research purposes only and were in compliance with U.S. “Fair Use” and 

Canadian “Fair Dealing” clauses of copyright statutes [Title 17 of United States Code 

§107 (2000) and Canada Copyright Act, R.S., c. C-42, s. 29 (1985)].  To minimize 

unnecessary reproduction of copyrighted materials, only the sample screenshots in Table 

25 are included in this document.  Note that the original Web pages were presented in 

color.  Web page color selection was a likely contributor to subjective visual appeal.  

Also note that no effort has been made in this document to clarify the reason for 

particular ratings, nor should ratings be construed as a critique or endorsement of 

particular Web pages in terms of their ultimate utility or usability.  Since the time the  
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Table 25.  Sample Web pages of varying levels of aesthetic visual appeal used in 
Fernandes (2003) and in  Experiment 14. 

 
© 2002, http://www.orrfelt.com 

 

© 2002, http://www.turtleshell.com/splash/splash01.html 

 
 

© 2002, http://individual.utoronto.ca/luke_ng 

 

© 2002, http://www.nickydanimo.com 

 

© 2002, http://www.modestmousemusic.com 

 

© 2002, http://www.expage.com/5staragerater 

 
 

 



 

 
268 

 

 

Web pages were captured as screenshots during summer 2002, many Web pages 

presented have undergone considerable revision or have ceased to be available online. 

Design and Procedure 

 The experiment was an extension of the basic design and procedure used in 

Experiment 13.  Participants were trained on grayscale brightness stimuli over 50 initial 

iterations.62  The participants then used this learned scale to evaluate the aesthetic visual 

appeal of the 100 Web pages, interspersed with training trials to reinforce scale learning.  

The experimental design is summarized in Figure 72. 

 Note that the participants in Fernandes (2003) used a line scale to estimate the 

magnitude of visual appeal.  The use of a line scale is a variation of absolute magnitude 

estimation, first suggested by Stevens and Galanter (1957).  The length of the line serves 

as a gauge of the magnitude that is being assessed.  Zwislocki (1983) compared values 

obtained using both line scales and conventional magnitude estimation.  He found slight 

differences between the line scale and magnitude estimation values, which he attributed 

to a failure on the part of the magnitude estimation participants to translate their 

magnitude perceptions to a numerical scale correctly.  The differences in values between 

the two scales did not, however, occur systematically, and those differences were mostly 

eliminated when averaging the results across multiple trials and multiple participants.  

The advantages of using a line scale over a numerical scale are minor and do not 

represent a significant deviation over conventional magnitude estimation techniques.  It  

                                                 
62 Experiment 14 incorporated nine more training trials than in previous brightness 
constrained scaling experiments.  The training trials were randomly sampled. 
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Figure 72.  Schematic flow of design in Experiment 14.  
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should, however, be noted that the method presented in the current experiment compares 

constrained scaling to line length scaling—which may have produced slightly different 

results than conventional magnitude estimation.  No attempt was made in the present 

experiment to adapt the constrained scaling slider to the line length scaling in Fernandes. 

Results and Discussion 

 The results for the grayscale training stimuli were analyzed as in previous 

experiments.  The scores for Web pages were logarithmically regressed against the 

average individual Web page ratings from Fernandes (2003).  This use of average ratings 

afforded a basis for comparison to the results from Fernandes’ magnitude estimation à la 

line-length scaling experiment.  The use of the average ratings as the x-axis for 

scatterplots allows the unidimensional data from the visual appeal ratings to be treated 

similarly to the two-dimensional stimulus-response data from the perceptual constrained 

scaling experiments earlier in this document.  The transformation of unidimensional data 

to the Cartesian coordinate system is controversial;63 therefore, more established 

statistical comparisons appropriate for unidimensional data sets conclude the analyses.  

The results are summarized in Table 26 and Figures 73 – 74. 

Results for Grayscale Training Stimuli 

 As in previous experiments, participants were trained to scale brightness 

according to stimulus values raised to an exponent of 0.333.  Participants exhibited an 

                                                 
63 At issue is the fact that average data are being used to construct an underlying 
“objective” scaling continuum for matching to individual results.  With rare exception, 
this underlying scale has very little to do with individual scaling results, making it less an 
objective scale than an averaged scale for the convenience of analytic comparisons.  
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Table 26.  Summary of participants’ brightness and visual appeal scaling in 
Experiment 14. 
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Figure 73.  Logarithmic scatterplot and regression line for brightness in cd/m2 (L) and 
participant response (R) for grayscale squares with feedback in Experiment 14.
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Figure 74.  Logarithmic scatterplot and regression line for participant aesthetic visual 
appeal of Web pages (R) against average visual appeal of Web pages (W) in 
Experiment 14. 
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average learned exponent of 0.321 for the grayscale brightness squares, with SD/M = 

0.071 and H:L = 1.236:1.  The average learned intercept was 1.343 with SD/M = 0.038 

and H:L = 1.118:1.  The average R2 value was 0.880 with SD/M = 0.039 and H:L = 

1.125:1.  The results were highly consistent with earlier constrained scaling findings, 

suggesting that participants were able to learn the training scale. 

Results for Web Page Visual Appeal Ratings 

 Logarithmically regressing the individual visual appeal ratings against the 

collective ratings from Fernandes (2003) for each Web site revealed an exponent equal to 

1.446 with SD/M = 0.698 and H:L = 13.453:1.  The same participants who first learned 

the brightness scale exhibited a coefficient of variation that was over twice the average 

rate for magnitude estimation and cross-modality matching studies described in West et 

al. (2000) and a highest-to-lowest exponent ratio over ten times the rate for the same 

studies.  Moreover, compared to the classical scaling employed in the Fernandes 

experiment (2003), the coefficient of variation was 1.6 times higher and the highest-to-

lowest ratio was twice as high.  The average exponent value across Fernandes’ 22 

participants was 1.518 with SD/M = 0.424 and H:L = 6.519:1.  In the present experiment, 

the average intercept value was -0.809 with SD/M = -2.274 and H:L = -0.270:1.64  These 

values were comparable to those in Fernandes, where the mean intercept value was -

0.953 with SD/M = -1.282 and H:L = -0.268:1.  For the R2 values, the average value in 

the present experiment was 0.463 with SD/M = 0.513 and H:L = 31.870:1, whereas the 

                                                 
64 Recall that negative values related to the intercept are indicative of higher values than 
positive numbers. 
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average R2 value in Fernandes was 0.325 with SD/M = 0.522 and H:L = 9.500:1.  While 

the average goodness of fit was slightly higher in the present experiment than in 

Fernandes’ study, the variability in terms of the highest-to-lowest ratio was three and a 

half times greater.  The ratio of grayscale to Web page visual appeal ratings is included in 

Table 26 for reference purposes but is not discussed here.65 

Comparison between Constrained Scaling and Magnitude Estimation 

 Further analysis revealed that, on average, constrained scalers assigned 

significantly higher visual appeal values than did the scalers in Fernandes’ (2003) 

experiment, t(195) = 2.770, p < 0.005 (See Figure 75).  Constrained scalers also exhibited 

a significantly better fit to a linear regression line than did the classical scalers in 

Fernandes’ experiment, R2 = 0.463 vs. R2 = 0.325, respectively, t(28) = 1.700, p = 0.05.  

On average, constrained scalers used a narrower range of scale values to rate the visual 

appeal of Web pages.  The average ratio of highest-to-lowest ratings across participants 

for each Web page was 36.986:1 for constrained scalers and 74.703:1 for the classical 

scalers in Fernandes’ experiment.66  Constrained scalers tended to correlate higher on 

average with each other, r = 0.391, than did classical scalers, r = 0.306.  This finding 

suggests that constrained scalers generally agreed on the direction of their ratings,  

                                                 
65 Given the high variability of scaling the visual appeal of Web pages, it is not clear how 
informative the ratio between the grayscale training and the Web page testing is. 
 
66 This highest-to-lowest ratio compares is the average of the highest and lowest ratings 
given for each Web page across all participants in Fernandes (2003) and Experiment 14.  
This value must not be confused with the highest-to-lowest ratios used for the exponent, 
intercept, and R2 values of the regression lines fitting the ratings across all Web pages. 
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Figure 75.  Average ratings for visual appeal of Web pages for classical scalers (solid 
line) and constrained scalers (dotted line). 
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although they may have used different actual scale values to represent the magnitude of 

their affect. 

General Discussion 

 Did constrained scaling affect the scaling responses of participants for the visual 

appeal of Web pages?  When trained to scale brightness, constrained scalers clearly 

exhibited a different scaling response pattern than did classical scalers.  The results, 

however, did not follow the typical pattern for constrained scaling experiments, in which 

a significant reduction in scaling variability would be expected.  The opposite effect was 

demonstrated.  Constrained scalers actually exhibited much higher variability than did 

classical scalers. 

 Given that the constrained scalers demonstrated low variability for the grayscale 

training trials, it is assumed that the constrained scalers did, in fact, learn to match their 

mental magnitudes to the numerical scale.  Further, since the constrained scalers 

demonstrated higher R2 values for their Web page ratings than did classical scalers, it is 

assumed that the increased scaling variability in the constrained scaling condition was not 

due to poor application of the learned scale to the rating of Web pages.  Instead, it can be 

concluded that the increased variability in the constrained scaling condition is a reflection 

of true individual differences in the participants’ affective responses to different Web 

pages. By calibrating participants to map their mental magnitude to a numeric scale in a 

consistent manner, constrained scaling increases scaling sensitivity to true differences in 

subjective response. 
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EXPERIMENT 1567 
EXPERIMENT 15 

To demonstrate the effectiveness of constrained scaling for another real-world 

application, I conducted an experiment in which participants judged the fluidity of 

motion for sample videos across different frame rates.  Constrained scaling was used as a 

tool to facilitate selecting quality parameters for streaming video.   

Streaming media is audio or video that is broadcast from a computer server over 

the Internet to a client media decoder, which typically consists of media player software 

on a personal computer.  Presently, a user who wishes to watch streaming video or listen 

to streaming audio over the Internet faces few choices regarding the streaming quality.  

The speed of the user’s Internet connection is the primary deciding factor for the 

streaming quality.  A user with a slow Internet connection must content him or herself 

with relatively low quality streaming media, whereas a user with a fast Internet 

connection has the luxury of high quality video and audio. 

Internet Protocol 6 (IPv6) introduces quality of service into the user’s Internet 

experience (Hinden, 1996), whereby a required minimum level of bandwidth may be 

specified by the user.  A quality of service contract reflects not only the speed with which 

the user connects to the Internet but also the data throughput across the Internet (West, 

Boring, Dillon, & Bos, 2001).  In the context of streaming media, a quality of service 

contract guarantees that at no time will the speed of the connection between the streaming 

broadcaster and the user go below the level that the user has requested. 

                                                 
67 An abridged version of this experiment first appeared in Boring, West, and Moore 
(2002) and West, Boring, and Moore (2002). 
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With the advent of quality of service, users must pay for Internet bandwidth.68  

Fortunately, bandwidth is not the only way in which users can maximize streaming 

quality.  As the speed and, correspondingly, the user’s cost of accessing streaming 

content increases, the user may be presented with a number of additional quality 

parameters.  Among these parameters, a user may control the compression settings of the 

audio and video, the image size of the video, or even the frame rate at which the video is 

displayed (see Figure 76).   

For example, consider a user who wishes to watch a talk show.  To reflect the 

relatively static video images and primary importance of audio in a talk show, the user 

might select highly compressed video, resulting in poorer image quality.  In exchange, 

the user may opt for minimally compressed, high quality audio (Apteker, Fisher, 

Kisimov, & Neishlos, 1995).  The benefit to the user is that he or she pays primarily for 

the high-quality audio but not for the video.  Such fine-tuning of video and audio allows 

the user to maximize the streaming quality on selective parameters while minimizing 

costs. 

Providing selectable quality parameters affords the user greater control over his or 

her interaction with the streaming system.  Simultaneously, it greatly increases the 

complexity of the user’s interaction with the system.  The complexity of this interaction 

is compounded when the quality parameter scale is not linear to human cognition.  For  

                                                 
68 The discussion of quality of service applies not only to Internet broadcasting but also 
broadcasting over wireless digital information transfer such as is used in mobile 
telephone services. 
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NOTE:  Figure from West, Boring, Dillon, and Bos (2001) used by permission of the authors. 
 

Figure 76.  Representation of some of the factors affecting video streaming quality. 

Audio Codecs 

Video 
Codecs 

Bandwidth

Audio Compression

Video 
Compression 

Frame Rate 



 

 
281 

 

 

example, in a recent study (Bos, 2000), users were allowed to select between four 

compression settings for a streamed video.  Users could select between 25%, 50%, 75%, 

and 100% quality settings allowed by the video compression algorithm.  The problem is 

that the actual perceived quality did not map onto the users’ expected quality for these 

settings.  The users’ perception of video quality jumped dramatically from 25% to 50%, 

but users could not readily differentiate the quality from 75% to 100%.  Users expected 

the perceived quality to increase proportionate to the quality setting.  In reality, the 

settings were a measure of mathematical compression that did not map onto user 

perception.  There is a great disparity between a computer’s video quality settings and 

users’ perception of video quality.  The goal of the present experiment was to present a 

method to help users determine quality settings for streaming video. 

Numerous approaches exist for assessing user perception of video and audio 

quality, from traditional five-point subjective scales used by the International 

Telecommunication Union (1996; 2000a; 2000b) to physiological measures (Wilson & 

Sasse, 2000). Watson and Sasse (1998) point out that there are serious shortcomings with 

the scales used by the International Telecommunication Union, including a general 

inability of the scale labels to translate to different languages.  Wilson (2001) argues that 

the main drawback of using subjective measures to assess video and audio quality is that 

subjective measures are cognitively mediated, meaning factors other than perception 

influence users’ quality judgements.  Wilson’s approach to cognitive mediation is to 

abandon subjective judgments in favor of physiological indicators of stress such as 

galvanic skin response, heart rate, and blood volume pulse.  She suggests that these 
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psychophysiological indicators change reliably according to the level of stress caused by 

perceptually degraded video and media signals.69 

There is merit to Wilson’s (2001) argument against using subjective scaling 

measures.  The cognitive factors that mediate scale usage have not been adequately 

controlled in studies of quality perception.  This limitation is, however, adequately 

addressed by applying constrained scaling.  Rather than discard subjective measures, in 

the present experiment I applied constrained scaling methodology to the domain of 

streaming media quality.  It was hypothesized that constrained scaling would minimize 

the effect of mediating cognitive factors in quality judgements, resulting in lower 

interparticipant variability compared to conventional subjective scaling methods. 

Method 

The present study follows the constrained scaling framework outlined in previous 

experiments by first training participants to use a scale and then asking them to apply the 

learned scale to novel stimuli.  The experiment implements training and testing within the 

same modality, namely video fluidity of motion.  This simple design is implemented to 

demonstrate the utility of single modality constrained scaling for applied human factors 

research.  Whereas Experiment 14 demonstrated how an achromatic training scale could 

be applied cross-modality to rate the subjective visual appeal of Web pages, the present 

                                                 
69 A similar approach has been proposed by Galer and Page (1996) for usability in 
general.  The authors cite the high variability and questionable validity of subjective 
measures in assessing computer interfaces, instead advocating the use of physiological 
measures. 
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experiment demonstrates how a frame rate training scale can be applied to within the 

same stimulus modality for scaling different video content types. 

Participants 

Ten participants70 with self-reported normal vision served as volunteers for the 

experiment.  The participants had not previously participated in a scaling experiment.  

They were paid $10 for volunteering to take part in the experiment. 

Apparatus and Stimulus Materials 

 The experimental control software was modified to feature video playback.  

Videos were played back in a 320 x 240 pixel display area that was centered on the 

screen.  The constrained scaling slider and the selection value display window were 

featured directly below the video display area.  Since audio was not part of the scaling 

stimuli, the experimental control software was not programmed to play audio during the 

video presentations.  Further details on the experimental apparatus are found in Appendix 

A. 

 Apteker et al. (1995) suggested that the video content type affects quality 

judgments.  For example, low-action video content may only require a low frame rate to 

maintain the perception of fluid motion, whereas high-action video content may require a 

high frame rate to maintain an equivalent perception of fluid motion.  In order to control  

                                                 
70 Originally, it was my intention to conduct the experiment with the conventional five 
participants.  However, upon analyzing the results, it became clear that the cognitive 
phenomenon at hand required more participants for proper documentation.  An additional 
five participants were run to provide a larger sample through which to understand the 
results. 
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for video content type, three levels of action have been selected.  A panel of three judges  

selected three video excerpts according to the level of action.  A talking head comedy skit 

served as the low action video clip, a low impact exercise video was selected as the 

medium action video clip, and a video of a group of children running was the high action 

video clip.  

 The three video clips were captured digitally onto computer and manipulated 

using Adobe Premiere 5.1 software (Adobe Systems Incorporated, 1998).  The National 

Television System Committee (NTSC) videos were captured using a Videum Winnov 

video capture card at a resolution of 320 x 240 pixels with 24-bit color resolution at 29.97 

frames per second (fps).  Each video was edited to be exactly 3 s long. 

In order to verify that the videos represented three different action levels, the 

digitized videos were compressed using the MPEG 4 codec.  MPEG 4 compression is 

highly sensitive to the degree of video change between successive frames of video (Puri 

& Eleftheriadis, 1998).  A high level of image change between frames, as is characteristic 

of high action video, requires a high level of data to represent the change.  Accordingly, a 

low level of image change between frames, as is characteristic of low action video, 

requires a low level of data to represent the change.   The MPEG 4 compression analysis 

confirmed the three action levels selected by the judges.  The low action talking head 

comedy skit compressed to an average data rate of 200.15 kilobits per second (kbps); the 

medium action exercise video compressed to an average data rate of 355.65 kbps; the 

high action video of children running compressed to an average data rate of 577.26 kbps. 
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For optimal playback on the testing computer, the video source files were 

encoded using the Sorenson video codec (Sorenson Vision, 1997).  The bitrate for data 

throughput was not constrained, allowing for the highest possible video fidelity by the 

compression algorithm.  The three videos were each encoded at five different frame 

rates—2, 3, 5, 10, and 15 fps.  These frame rate values corresponded closely to a 

loglinear stimulus scale.  

Design and Procedure 

Figure 77 outlines the experimental design for the present experiment.  The 

participants judged slow and fast action videos across five frame rates.  These 

participants were first trained on the medium action video.  They received training on ten 

iterations of the five frame rates, by first making a fluidity judgment and then receiving 

feedback about the actual fluidity.  The training video had a frame rate to fluidity slope of 

1.00.71  The feedback values were calculated according to the following equation: 

00.15FR = , (44)

where R represents the response value and F represents the frame rate.  This equation 

produced a response range from 10.0 to 75.0.  The training scale was actually akin to an 

ordinal scale, with only five response values. To minimize the possibility of categorical 

scaling artifacts, the participants were instructed that the test videos would not 

necessarily have the same video fluidity levels as the training video.  Following training, 

the participants received 100 total trials pairing training and either the low or high action  

                                                 
71 At the time the experiment was conducted, the natural scaling exponent for frame rate 
was not known.  Hence, an exponent value of 1.00 was adopted for training purposes. 
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Figure 77.  Schematic flow of design in Experiment 14. 
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testing videos, corresponding to ten iterations of the training and testing videos.  A 

break followed, after which participants were presented with another block with 5 

iterations of the training video.  The experiment concluded with 100 total trials of the 

training video interspersed with either the low or high action testing videos, 

corresponding to the testing video that had not been presented in the earlier trials. 

Results and Discussion 

As with the previous studies, the coefficient of variation and the highest-to-lowest 

exponent ratios were calculated across the stimulus sets for scaling exponents, intercepts, 

and goodness of fit coefficients.  The results are summarized in Tables 27 – 28 and 

Figures 78a – 79b.  Additional post hoc analyses were conducted to explain findings.  

These analyses are presented at the close of this chapter. 

Exponent Values 

For the medium action training video, the average exponent value was 0.879 with 

SD/M = 0.088 and H:L = 1.348:1.  This average exponent value was 0.121 orders of 

magnitude less than the training exponent.  This represents a 12.1% underrating of the 

fluidity of video movement compared to the feedback values.  However, it is important to 

note that this level of deviation from the training values is not unusual.  For example, in 

Experiment 1, participants on average underrated loudness by 16.5%.72  Importantly, the 

coefficient of variation and the highest-to-lowest exponent values were comparable to  

 

                                                 
72 The lower than trained exponent value may be a reflection of a natural scaling 
exponent that is significantly less than 1.00. 
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Table 27. Summary of participants’ brightness and visual appeal scaling in Experiment 
15. 
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Table 28. Ratio of motion fluidity ratings for medium action training videos to low and 
high action testing videos in Experiment 15. 

 
 Ratio of Mid to Low Action Videos Ratio of Mid to High Action Videos 

P Exponent Intercept R2 Exponent Intercept R2 

1 0.841 1.262 0.818 1.016 1.013 0.929 

2 1.020 0.947 1.133 1.226 0.992 1.119 

3 0.558 54.643 1.368 0.938 0.906 1.133 

4 0.816 1.177 0.747 1.242 0.910 1.240 

5 0.936 1.007 0.933 0.947 0.971 0.915 

6 0.917 1.099 0.913 0.999 0.935 0.938 

7 0.770 1.348 0.935 1.059 0.952 0.936 

8 0.893 1.062 0.957 0.992 1.062 0.971 

9 0.848 1.277 0.942 1.356 0.938 1.022 

10 0.945 1.059 0.931 1.134 0.945 1.125 

M 0.854 6.488 0.968 1.091 0.962 1.033 

SD 0.127 16.920 0.172 0.142 0.048 0.113 
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Figure 78a.  Logarithmic scatterplot and regression line for video training stimuli of 
variable frame rates (F) against average participant rating of video fluidity (R) in 
Experiment 15. 
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Figure 78b. Logarithmic scatterplot and regression line for video training stimuli of 
variable frame rates (F) against average participant rating of video fluidity (R) in 
Experiment 15. 
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Figure 79a. Logarithmic scatterplot and regression line for low action (solid line) and 
high action (dotted line) videos of variable frame rates (F) against average participant 
rating of video fluidity (R) in Experiment 15. 
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Figure 79b. Logarithmic scatterplot and regression line for low action (solid line) and 
high action (dotted line) videos of variable frame rates (F) against average participant 
rating of video fluidity (R) in Experiment 15. 
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other constrained scaling experiments, suggesting that participants successfully learned 

the scale, albeit at a diminished response level. 

For the low action testing video, the average exponent was 1.061 with SD/M = 

0.250 and H:L = 2.187:1.  For the high action testing video, the average exponent was 

0.818 with SD/M = 0.157 and H:L = 1.521:1.  The apparent pattern suggests that the 

fluidity of motion slope flattens out as the level of video action increases.  For both low 

and high action videos, the variability was greater than is typical for constrained scaling 

experiments.  The average exponent ratio of the medium action training video to the slow 

action testing video was 0.854 and to the fast action testing video was 1.091. 

Intercept Values 

The average intercept value for the medium action training video was 0.805 with 

SD/M = 0.077 and H:L = 1.348:1.  The intercept value variability was in line with 

expected constrained scaling results.  For the low action video, the average intercept was 

0.652 with SD/M = 0.382 and H:L =  63.029:1.  Note that the variability is high, 

especially for the highest-to-lowest exponent value, due to the fact that Participant 3 had 

a near zero intercept.  If Participant 3 were excluded from the data set, the average 

intercept value would be 0.723 with SD/M = 0.160 and H:L = 1.667:1.  For the high 

action video, the average intercept was 0.838 with SD/M = 0.088 and H:L = 1.390:1.  

Omitting Participant 3, there was a slight tendency for the intercept to increase as the 

level of action in the video increased.  With the exception of the intercept for low action 

video by Participant 3, the variability fell within the expected range for constrained 

scaling.  The average intercept ratio of the medium action training video to the low action 
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testing video was 6.488 (or 1.138 without Participant 3), and to the high action testing 

video it was 0.962. 

Goodness of Fit Coefficients 

The average R2 value for the medium action training video was 0.778 with SD/M 

= 0.153 and H:L = 1.902:1.  For the low action testing video, the average R2 value was 

0.812 with SD/M = 0.148 and H:L = 1.521:1.  For the high action testing video, the 

average R2 value was 0.765 with SD/M = 0.195 and H:L = 2.309:1.  The average 

goodness of fit was at the expected level for constrained scaling, although variability was 

somewhat greater than expected.  The average R2 ratio of the medium action training 

video to the low action testing video was 0.968, and to the high action testing video, it 

was 1.033. 

Post Hoc Analyses 

Because the testing video variability was greater than expected for a constrained 

scaling experiment, additional analyses were conducted to determine the source of the 

variability.73  To eliminate scaling noise, the response values were averaged for each 

frame rate for each participant.  Figures 80a and 80b illustrate the relationship between 

the variable frame rate stimuli and the response values for low and high action videos.  

Instead of an overall regression line, a connecting line was drawn between each frame 

rate value. 

                                                 
73 It should be clear that these post hoc analyses are designed to elucidate the previous 
results, not supplant them.  The post hoc analyses are provided as exploratory avenues for 
further research and therefore employ a less stringent experimental basis. 
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Figure 80a. Logarithmic scatterplot with connecting lines of the averaged participant 
rating of video fluidity (R) for the five frame rate values (F) for low action (solid line) 
and high action (dotted line) videos in Experiment 15. 
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Figure 80b. Logarithmic scatterplot with connecting lines of the averaged participant 
rating of video fluidity (R) for the five frame rate values (F) for low action (solid line) 
and high action (dotted line) videos in Experiment 15. 

 



 

 
298 

 

 

The connecting line allows a visual inspection of the linearity of the data in 

logarithmic space.  As can be seen, several participants displayed strong deviation from 

linearity.  Nonlinearity is not uncommon when using magnitude estimation (Luce & Mo, 

1965), although its occurrence in a constrained scaling experiment is novel.  The typical 

procedure for these outlying participants would be to discard them or average across 

them.  However, since I am interested in individual differences, I note that these four 

participants were less able than the other participants to exploit the scaling aids offered 

by constrained scaling.  These individual differences may occur in strategy, cognitive 

ability, or the effort invested by the participants—factors that may not be adequately 

controlled for simply by using a constrained scaling method.  Since these deviations from 

linearity were not large by magnitude estimation standards, I analyzed the data both with 

them (as described earlier in this Results and Discussion section) and without them.  The 

analysis excluding the outliers follows. 

The most prominent departure from linearity was found in Participants 4, 6, 7, 9, 

and 10.  Excluding these participants from the analysis, however, did little to ameliorate 

variability in the results.  For example, in terms of the exponent values, the results were 

virtually unchanged for medium action [M = 0.867, SD/M = 0.075, H:L = 1.195:1] and 

high action [M = 0.858, SD/M = 0.155, H:L = 1.562:1] videos, but the variability actually 

increased for low action videos [M = 01.083, SD/M = 0.348, H:L = 2.187:1]. 

A further post-hoc analysis indicated that the participants seemed to fall into two 

different categories—those participants who closely followed the training exponent for 

the medium action video and those participants who deviated from the training exponent 
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for those same videos. The groups were systematically divided based on the exponent of 

their regression lines for the medium action training video. The groups were divided 

depending on their deviation from the exponent 1.0, which indicated perfect learning. 

The first group included individuals whose learning exponent deviated from 1.0 by 0.10 

or less. The second group included individuals whose learning exponent deviated from 

1.0 by 0.10 or more. The former group included Participants 3, 6, 7, and 9, while the 

latter group included Participants 1, 2, 4, 5, 8, and 10.  The participants who closely 

followed the training exponent had an average exponent equal to 0.947 with SD/M = 

0.044 and H:L = 1.102:1.  These same participants showed improved variability for low 

action [M = 1.272, SD/M = 0.250, H:L = 1.722:1] and high action [M = 0.885, SD/M = 

0.141, H:L = 1.405:1] videos.  For the participants who did not closely follow the training 

exponent, the average exponent was 0.833 with SD/M = 0.070 and H:L = 1.205:1.  Again, 

these participants showed improved variability for low action [M = 0.921, SD/M = 0.093, 

H:L = 1.296:1] and high action [M = 0.773, SD/M = 0.156, H:L = 1.503:1] videos.  This 

latter group exhibited considerably lower variability for low and high action videos than 

did the group that closely followed the training exponent.   

This finding suggests that the two groups followed different strategies for scaling, 

but both benefited from the training.  The variability in both groups was congruent with 

findings from other constrained scaling experiments.  As shown in the original analyses, 

a failure to recognize that there were two different scaling strategies resulted in noisy, 

aggregated data that were atypical for constrained scaling results.  By properly 

recognizing the presence of two scaling strategies, it was possible to disentangle the 
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variability levels according to the distinct groups.  The resulting variability levels were 

typical for constrained scaling experiments. 

General Discussion 

Computer users who need to adjust the quality parameters of streaming media will 

want to ensure that the adjustments they make are perceptible and meaningful.  In this 

chapter, I demonstrated that a user trained on a scale for medium action video was able to 

apply that scale to low and high action videos as well.  Arguably, this learning would 

translate directly into making the kind of parameter adjustments required of quality of 

service in streaming media. 

The present experiment provides a compelling case for the utility of constrained 

scaling for practical, applied dimensions.  However, this experiment is only a starting 

point for other application oriented constrained scaling.  Even within streaming media, 

much follow-on research remains.  For example, since different quality parameters scale 

differently to human perception, it would useful to develop a universal scale to which 

user judgments about all quality parameters could be calibrated.  Future work should 

show how scales such as the brightness training scale might be applied cross-modally to 

aid users in making quality judgments across a complete range of streaming media 

parameters.  By reducing variability, such scales would ensure that the selection values 

users selected matched the actual resultant parameters. 
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CONCLUSIONS 

General Findings 

What have these 15 experiments on constrained scaling ultimately revealed?  To 

answer this question, it is necessary to revisit this dissertation in two separate passes.  

The first pass is at the microscopic or analytic level, reviewing the findings from the 

individual experiments.  The second pass is comprised of a macroscopic or holistic 

analysis of what recurrent themes emerged across the experiments.  This second pass 

comes at the end (see the Final Thoughts section in this chapter).  First, I examine the 

individual experiments.  To do so, I consider each experiment according to its 

contribution as a replication, refinement, extension, or application experiment.  A 

summary of the findings from each experiment is also found in Table 29. 

Replication 

Only one experiment was, strictly speaking, a replication experiment.  Experiment 

1 replicated the general loudness constrained scaling design and procedure found in West 

et al. (2000).  The results of Experiment 1 mirrored the results from West et al.  While 

replication is a worthwhile pursuit onto itself, what sets this experiment apart is that it 

featured a new implementation of the experimental apparatus for constrained scaling.  

The experimental apparatus was implemented entirely as software within Microsoft 

Windows, utilizing standard computer hardware.  West et al. had required specialized 

equipment for their experiments.  Apart from the sound meter for stimulus calibration and 

the sound attenuating chamber as a testing environment, Experiment 1 used no special 

equipment.   



 

 
302 

 

 

Table 29.  List of the experiments and corresponding findings. 
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Refinement 

 The hallmark of refinement experiments is that they take the existing constrained 

scaling methodology and incorporate a new element, potentially improving the efficacy 

of the method.  Refinement experiments are not always orthogonal to replication or 

extension experiments.  Within a margin of overlap to these classes of experiments, 

refinement experiments focus on the method of constrained scaling, often replicating 

elements of an existing experiment but not extending into novel scaling domains.  There 

are two clusters of refinement experiments, consisting of Experiments 2 and 3 and 

Experiments 8 – 10.   

 Experiment 2 is closely related to Experiment 1.  It is a complete replication with 

the exception that it features the relocation of the participant outside the sound 

attenuating chamber.  The results mirrored the results obtained within the sound 

attenuating chamber, suggesting that it was feasible to conduct loudness constrained 

scaling experiments without extensive sound dampening efforts. 

 Experiment 3 was closely related to an experiment in West et al. (2000), in which 

a learned scale for loudness was applied cross-modally for scaling brightness stimuli.  

The experiment served as a refinement over the earlier experiment in that it used a 

calibrated computer monitor for displaying brightness stimuli.  The earlier experiment by 

West et al. had used a calibrated light-emitting diode (LED) for displaying brightness 

stimuli.  The results in Experiment 3 failed to replicate the earlier findings, which was 

attributed to the diminished luminous intensity of the cathode ray tube display compared 

to the LED. 



 

 
304 

 

 

 The next cluster of refinement experiments (Experiments 8 – 10) explored the 

nature of the training stimuli.  In Experiment 8, a categorical training scale was used 

instead of the typical continuous training scale.  Participants were trained on only five 

stimulus values along the range of the scale, approximating an ordinal scale.  Compared 

with conventional constrained scaling results using a continuous training scale, 

categorical constrained scaling increased variability and changed the exponent and 

intercept values.  It was concluded that categorical constrained scaling was not as 

effective for training as conventional constrained scaling. 

 Experiment 9 was similar to Experiment 8, except random noise was added to the 

feedback values given to participants.  This random noise served the purpose of 

eliminating rote memorization as the basis for the decreased effectiveness of categorical 

constrained scaling.  The results of noisy categorical constrained scaling closely matched 

the results for conventional constrained scaling, demonstrating that it was possible to 

implement constrained scaling with a reduced number of training stimuli as long as 

participants weren’t able to memorize the training scale.  Memorized training scales 

resulted in decreased scale mastery and generalization to novel stimuli. 

 Experiment 10 explored a final refinement in the presentation of the training 

stimuli.  In Experiment 10, the feedback trials were halved during the testing phase.  

Instead of a training trial between every testing trial, a training trial was presented after 

every second testing trial.  While the decreased feedback ratio did not affect the scaling 

exponent or intercept values, it did significantly increase scaling variability.  It was 

concluded that the optimal feedback ratio should remain at one training trial for every 
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testing trial.  Decreasing the feedback ratio decreased the time required for a constrained 

scaling experiment, but it also decreased the effectiveness of constrained scaling. 

Extension 

 Almost half of the experiments were extensions of constrained scaling into a 

novel scaling domain.  Experiments 4 and 5 extended cross-modal scaling between 

loudness and achromatic brightness stimuli.  Experiments 6 and 7 further extended 

constrained scaling to color stimuli.  Experiments 11 – 13 combined to extend 

constrained scaling to rate the degree of happiness elicited by different amounts of 

money.  This latter triplet of experiments established the utility of constrained scaling for 

psychometric scaling. 

  Experiment 4 reversed the design of Experiment 3 by using achromatic 

brightness stimuli for training and subsequently testing loudness stimuli.  Participants 

appeared to carry over verbatim the learning exponent from the brightness stimuli to the 

loudness stimuli, resulting in unexpected exponent and intercept values and higher than 

expected variability.  This experiment revealed limitations on cross-modality constrained 

scaling, suggesting caution should be exercised when training in one modality and testing 

in another modality. 

 Experiment 5 was similar to Experiment 3, except the display time for the 

brightness stimuli was shortened to test the possible effect of light adaptation on the 

results.  The results approximated the results from Experiment 3, exhibiting substantial 

scaling carryover from the training modality to the testing modality. 
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 To avoid the complications of cross-modal scaling, Experiments 6 and 7 focused 

on a single modality.  Experiment 6 was a magnitude estimation experiment on the 

perceived brightness of grayscale, red, green, and blue stimuli.  In Experiment 7, 

participants were trained on a brightness scale for grayscale stimuli and then tested on the 

color stimuli.  The results showed significant improvement in scaling consistency for 

constrained scaling vs. magnitude estimation.  The results were not as conclusive for the 

blue stimuli.  However, confounds were noted for the display of the blue stimuli. 

 Finally, Experiments 11 – 13 utilized a multiphenomenal within-method 

triangulation technique to determine the efficacy of constrained scaling for a 

psychometric domain.  Experiment 11 consisted of two phases in which participants were 

trained on grayscale stimuli and tested on color stimuli.  The training exponents were 

varied across the test phases.  Participants were successful at learning both training 

exponents and using both learned scales on the color stimuli.  The purpose of this 

triangulation experiment was to establish the relationship between scaling exponents.  

The hypothesized relationship between training and testing exponents held constant 

across both experimental phases. 

 Experiment 13 segued directly from Experiment 11.  Instead of testing a 

perceptual stimulus, Experiment 13 tested the subjective utility of various amounts of 

money.  Because the level of happiness elicited by money is a matter of subjective 

perception, it was not expected that there would be consistency across participants.  It 

was, however, expected that the participants’ subjective perceptions would hold relatively 

constant from one testing phase to the next.  Therefore, the scaling ratio of brightness 
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training to money testing was expected to hold across the two testing phases, 

demonstrating the mapping of a learned perceptual scale to a subjective domain.  This 

ratio did not hold across all participants, bringing into question the role of constrained 

scaling in psychometric scaling.   

 The matter is not cut and dry, since there was evidence in support of the value of 

constrained scaling for psychometrics.  Experiment 12 featured a simple magnitude 

estimation of the relationship between monetary amounts and happiness, which was a 

baseline experiment against which to compare the results from Experiment 13.  

Constrained scaling in Experiment 13 resulted in higher variability than constrained 

scaling in Experiment 12.  Further, the results for the brightness training scaling in 

Experiment 13 exhibited minimal variability and strong evidence of exponent and 

intercept mastery.  These two findings combine to suggest that constrained scaling may 

have, in fact, helped to capture individual differences in psychometric scaling.  

Consistent mastery of the perceptual training scale and increased scaling variability for 

the psychometric domain compared to magnitude estimation point to the possibility that 

constrained scaling may have acted to increase scaling sensitivity to individual 

differences.  The cross-modal mapping of the perceptual training scale to the subjective 

domain either failed to function in a linear manner across the two experimental phases.  

Given the dramatically different performance in psychometric scaling in Experiment 13 

compared to Experiment 12, it would be premature to dismiss psychometric constrained 

scaling. 
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Application 

 The final two experiments demonstrated how constrained scaling could be 

applied.  Application is a special case of extension, in which the novel scaling domain 

corresponds to real-world utility.  In this case, both applications were related to software 

human factors.   

 In Experiment 14, constrained scaling was used to evaluate the subjective visual 

appeal of Web pages.  The results, when compared to conventional magnitude estimation 

scaling in Fernandes (2003), revealed successful mastery of the training scale coupled 

with increased scaling variability for visual appeal.  Borrowing on the logic of 

Experiment 13, the results suggested that constrained scaling increased the sensitivity to 

true individual differences.   

 Experiment 15 featured constrained scaling in the rating of frame rate in 

streaming video.  The experiment revealed higher than expected variability.  Post hoc 

analyses showed that there were two apparent scaling strategies employed across 

participants.   Both of these strategies resulted in the low variability typical of constrained 

perceptual scaling and showed the benefit of training for helping users select quality 

parameters.     

Limitations 

The many insights gained through these constrained scaling experiments are 

necessarily seen against a backdrop of pragmatic limitations.  Limitations do not 

represent critical flaws so much as lessons learned for improving future iterations of the 

experiments.  Four main limitations were present across many of the experiments: 
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1. Small sample size.  A priori, I opted for the use of a small sample size for the 

experiments on the grounds that five participants would be sufficient for descriptive 

analyses and that the large effect size afforded by constrained scaling allowed 

sufficient statistical power for inferential analyses.  Given the finite budget available 

for paying participants, the use of small sample sizes allowed more experiments to be 

conducted and a greater number of evidential insights to be gained than would have 

been possible if more participants had been required for each experiment.  

Nonetheless, even with large effect sizes, there are limits in the generalizability of the 

results from the experiments.  However sound the experimental design, there is 

questionable face validity in generalizing from a sample of five participants to the 

population.  Now that the basic findings have been established, all experiments in this 

dissertation would certainly benefit from the inclusion of additional participants to 

reconfirm the results and corroborate the conclusions. 

2. Restricted scale range.  The original constrained scaling experiments (West & Ward, 

1994; West et al., 2000) featured a loudness scale that covered a wide range of the 

decibel scale and mapped well to low and high mental magnitudes.  As discussed in 

Experiments 3 and 4, the grayscale training scale used throughout much of this 

dissertation was punctuated by hardware limitations in terms of maximal display 

brightness.  As such, the magnitude presentation range was not as wide as in the 

loudness experiments, potentially creating a bounded mapping of mental magnitudes 

to the numeric scale.  If the participant were subsequently presented with a secondary 

stimulus range for tested scaling, the learned scale would not necessarily provide a 
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perspicuous comparison to the novel testing scale.  The present experiments failed to 

determine the transferability of a restricted training scale range to a domain with a 

larger perceptual or subjective magnitude range. 

3. Alternate scaling strategies.  In the final experiment, there were participants who did 

not exhibit the same degree of scale mastery as the majority of participants.  In the 

case of psychometric scaling, such results would be expected on the basis of 

individual differences in subjective experience.  The potential reasons for such 

differences when scaling a perceptual domain are unclear.  The present experiments 

were not operationalized in such a way to highlight possible differences in scaling 

strategies, and they do not provide clear explanations of alternate scaling strategies 

adopted by participants.  Understanding why, when, and how participants adopt 

alternate scaling strategies would directly inform efforts to model the cognitive 

underpinnings of scaling. 

4. Cross-modal constrained scaling.  The experiments failed to provide a definitive 

account of cross-modal constrained scaling.  Experiments 3 – 5, which focused on the 

cross-modal scaling of loudness and brightness, failed to produce a consistent 

mapping, with clear evidence of some direct exponent and intercept carryover from 

the training stimuli to the testing stimuli.  Similarly, Experiments 13 and 14 showed a 

seemingly contradictory set of results, in which participants exhibited excellent 

mastery of the training scale yet exhibited considerable variability for scaling the test 

stimuli.  This result was attributed to the expected individual differences in the testing 

stimuli.  This compelling argument was undermined by the failure of over half of the 
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participants to be consistent in their subjective scaling across two phases in 

Experiment 13.  There is considerable ambiguity associated with cross-modal 

constrained scaling results, making it impossible to provide a parsimonious account 

of this type of scaling or to come to a verdict about the benefit of constrained scaling 

for cross-modal research.  

Future Research 

Future research should address the limitations that are found in the present 

experiments.  As well, the present experiments are but the starting point for the type of 

questions that can be asked about mental magnitudes and scaling.  There are several 

topics that I foresee as having long-term importance to the enterprise of calibrated mental 

scaling.  These areas of research will drive future efforts at cognitive modeling and 

theory building in the domain of scaling. 

1. There are still many interesting questions about the role of consciousness in scaling 

that remain unaddressed by the present research.  It is unclear, for example, to what 

extent scaling would be possible without conscious awareness.  It is equally unclear 

what role magnitudes play in consciousness.  Future research should aim to determine 

the interplay of introspective scaling, mental magnitudes, and consciousness. 

2. There is currently no definitive neuroscientific account of psychological scaling, nor 

has there been an attempt to sketch a neuropsychological account of magnitude vs. 

categorical cognition.  It would be fruitful to bridge neuropsychological models of 

scaling as well as neuropsychological models of classification and categorization.   

Until current models of cognition and scaling are merged with insights from 
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neuroscientific studies, there will necessarily remain an element of functionalist 

black boxism to the theory behind constrained scaling. 

3. I have not fully explored the topic of dynamic vs. steady state cognition and its role in 

scaling.  Ward (2002) has sketched a useful account of dynamical cognitive science 

with interesting links to dynamical psychophysics.  At this point, constrained scaling 

appeals to both dynamic and steady state theorists in cognition, since it both controls 

for dynamic processes and minimizes constant response biases.  With the right 

manipulations, constrained scaling may ultimately help reconcile these two views or 

clarify which view better accounts for the mental phenomena of calibrating a mental 

scale. 

4. As more insight is gained into the cognitive constraints of scaling, this information 

may begin reaching the fertile point where it is possible to model the mental 

processes involved in translating mental magnitudes into scale values.  A good 

cognitive model of scaling would go a long way toward understanding the effects of 

constrained scaling on the mind and accounting for categorical and magnitude-based 

aspects of the mind. 

5. Finally, it should be noted that these experiments, like earlier constrained scaling 

experiments, focused on unidimensional scaling.  Much interesting research has been 

conducted in the field of multidimensional scaling.  Future research should attempt to 

apply constrained scaling within a multidimensional scaling framework to determine 

its applicability and potentional contribution to this important type of scaling. 
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 There are certainly countless other research questions regarding mental 

magnitudes or scaling.  But, there are clearly many more questions than there is time to 

answer them in this or other monographs on scaling.  In this dissertation, I have simply 

attempted to pick a few of the most methodologically and theoretically interesting and 

relevant questions to answer through my research, leaving many inroads for future 

research.  

Final Thoughts 

Over the past 312 pages, I have demonstrated the importance of mental magnitude 

to cognition.  I have illustrated the importance of a cognitive-based model of scaling for 

improving the quality of mental measures cognitive scientists are able to obtain.  Through 

a series of 15 experiments, I clarified and extended constrained scaling as a method and 

expanded it as a model that incorporates psychometric as well as psychophysical data.  

Constrained scaling was hypothesized to have a double-edged effect for scaling 

modalities.  For those domains in which there are minimal individual differences, such as 

perception, constrained scaling works to minimize scaling variability.  In contrast, where 

real individual differences exist, such as in psychometric research, constrained scaling 

seems to increase the sensitivity for scaling those differences.  Finally, constrained 

scaling was shown to have real-world applicability.  Experiments 14 and 15 demonstrated 

human factors applications of constrained scaling, in which scaling augmented current 

approaches to investigating novel technological domains. 

The experiments in this dissertation make three important points: 
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1. Constrained scaling is easy to implement.  Previous research on constrained scaling 

had focused primarily on the scaling of loudness stimuli in a sound attenuating 

chamber, a process that was aversive for some participants as well as difficult for 

researchers to implement.  The experiments in this dissertation showed how other, 

more easily implemented scales such as the brightness scale could be implemented 

for training purposes and applied to a variety of scaling domains.  This dissertation 

demonstrated that constrained scaling need not exist solely in a highly controlled 

psychophysical laboratory environment, nor does constrained scaling require an 

experimental apparatus beyond the standard personal computer that is ubiquitous in 

psychological research facilities and office work environments.  The method was 

refined and found to be robust even as the experimental constraints on testing were 

loosened.  As a result, the perceived cost in terms of effort required for conducting 

constrained scaling experiments no longer exceeds the actual benefit of improved 

scaling reliability. 

2. Constrained scaling is flexible across domains.  This dissertation featured several 

extension experiments, which were designed to showcase how constrained scaling 

might be used across a variety of domains.  Constrained scaling was applied to color 

perception, the subjective utility of money, the visual appeal of Web pages, and the 

frame rate settings for streaming video.  These extensions are examples of the 

potential for constrained scaling to be implemented in a broad range of 

psychophysical and psychometric domains. 
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3. Constrained scaling is an important key to unraveling mental processes.  

Psychological measurement, including psychophysical and psychometric scaling, 

attempt to reveal cognitive functioning.  Poor measurement methods can be sentinels 

to the mind, providing titillating hints of cognition but ultimately failing to reveal the 

nature of mental processes because of measurement noise, biases, and artifacts.  

Constrained scaling is unique as a psychological method in that it controls the 

communicative aspect of cognition while leaving other cognitive processes to proceed 

along their normal course.  It calibrates the production of scale values without 

impinging on the natural permeation of mental magnitudes.  By increasing the 

reliability of participants’ introspective elicitations, constrained scaling brings 

researchers one step closer to illuminating the black boxes of cognition. 

 Constrained scaling is not a panacea for psychological measurement; constrained 

scaling is simply a method for improving human scaling reliability.  It infuses a cognitive 

approach into the scaling literature, modeling the interchange of mental magnitudes and 

numeric expression.  As such, constrained scaling is a useful tool to be employed in the 

cognitivist’s tool chest of methods.  It is my hope that this dissertation effectively 

illustrates the multifaceted capabilities for psychological elicitation available through the 

constrained scaling method.  Constrained scaling has sufficiently improved on magnitude 

estimation to become the veritable Swiss Army knife of scaling.  Perhaps it is poised to 

take on a similar role in other cognitive research. 
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APPENDIX A 

EXPERIMENTAL CONTROL SOFTWARE 
 

Programming and Interface Description 

The experimental control software (ECS) was developed using Microsoft Visual 

Basic Version 6 (Microsoft Corporation, 1998) with the most current service packs 

installed.  The software was developed in the Windows 2000 operating system platform 

(Microsoft Corporation, 2000) and executed under a mixture of Windows 2000 and 

Windows XP (Microsoft Corporation, 2001) platforms.  The ECS for the 15 experiments 

averaged 1700 lines of Visual Basic code split across three independent code modules.  

While each experiment required slightly different code, there was significant underlying 

similarity across the experiments, and much of the programming code was reused from 

one experiment to the next. 

Note that in the interest of document parsimony, the code for the individual 

experiments is not included in this dissertation.  The complete code for all 15 

experiments, including the nuances that differentiated the individual experiments, 

requires approximately 425 single-spaced pages to reproduce.  The functioning of the 

ECS is described in detail in this appendix, and suitable screenshots are provided to 

demonstrate the characteristics of the ECS.   

The three ECS code modules included the splash screen, the instructions page, and 

the main portion of the experiment.  The splash screen appeared upon starting the 

experiment (see Figure A-1).  The primary purpose of the splash screen was to verify the  
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Figure A-1.  A sample splash screen used in the experimental control software. 

 
 

 

Figure A-2.  A sample screenshot produced by the instruction module in the 
experimental control software. 
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Figure A-3.  Sample screen from Experiment 1, in which the participant initiates the 
stimulus presentation. 

 

 

Figure A-4.  Sample screen from Experiment 1, in which the participant rates the 
intensity of the stimulus presentation. 
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Figure A-5.  Sample screen from Experiment 1, in which the participant receives 
feedback about the actual intensity of the stimulus. 

 

 

Figure A-6. Sample screen from Experiment 3, in which the participant rated the 
brightness of a box displayed briefly on the screen. 
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experiment name for the experimenter.  While the splash screen displayed, the ECS 

loaded stimulus and calibration files while randomizing the stimulus presentation order.  

During the splash screen, the ECS automatically incremented the participant number and, 

in some cases, assigned the experimental condition based on the participant number.  For 

example, in Experiments 11 and 13, the odd-numbered participants received the low 

coefficient stimuli for the first phase of the experiment, while the even-numbered 

participants received the high coefficient stimuli.  The splash screen displayed for ten 

seconds, after which the ECS proceeded to display instructions. 

 The instruction module provided an opportunity to display instructions to the 

participant (see Figure A-2).  The instruction module featured an imbedded Web browser 

capable of displaying any document encoded in HyperText Markup Language (HTML). 

The use of HTML provided a flexible way to display formatted text instructions and to 

change the content of the instructions easily from one experiment to another.  The  

instruction module was activated initially to provide the participant with overview 

instructions for the experiment and was typically activated several times subsequently, 

whenever the ECS needed to provide additional instructions.  A similar textual display 

was provided at the conclusion of the experiment to debrief the participants on the 

experiment. When the instructions exceeded the screen’s display capacity, the participant 

was able to scroll down the page for additional text using the scroll bars at the right of the 

window.  When the participant had finished reading the instructions, he or she pressed the 

“Start” button at the bottom right of the display. 
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  The third and final module of the ECS code contained the actual experiment.  

This portion of the ECS varied considerably, depending on whether an experiment called 

for magnitude estimation or constrained scaling, which type of stimulus was used (i.e., 

loudness of sounds, brightness of squares, value of money, visual appeal of Web pages, 

or fluidity of video movement), and whether or not a trial included feedback.  Figures A-

3 through A-5 illustrate the output of the ECS for Experiment 1 during the training trials.  

Figure A-3 shows the initial screen, in which the participant must press the “Play Tone” 

button on the screen to hear the sound.  The display is deliberately kept sparse, to avoid 

visual clutter (Tullis, 1997) that might distract the participant from the experimental task.  

While the onscreen buttons and slider were presented in shades of grey and white, the 

display background was set to a dark red color in order to disambiguate background and 

foreground elements in the display.  In the center of the display was a custom designed 

slider control, which was dubbed the IntelliSlider.   

The IntelliSlider functions much like a conventional Windows slider, with two 

exceptions.  First, a conventional Windows slider has a single button at each end of the 

slider bar.  These buttons allow the user to decrement or increment the slider position 

(and value) by a pre-specified amount.  Based on previous experience (West, 1996), users 

prefer to have a finer control over the slider than is present in a conventional slider. 

Hence, the IntelliSlider features three levels of decrement and increment.  The three 

buttons at either end of the slider bar allow the user to change the value down or up by  

0.1, 1, and 10 units, respectively.  The user can also click at any point on the slider bar to 

decrease or increase the position indicator (and value), or the user can click and drag the 
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slider position indicator to a new position.  The value is signified by both the position of 

the slider indicator and by the synchronized numeric value presented in the small window 

located on the display directly above the slider.  The second unique feature of the 

IntelliSlider is that it scales to an approximated 101-point scale.  The scale ranges from 

0.1 to 99.9, and scale values are adjusted to this scale regardless of the stimulus modality.  

Thus, whereas in the loudness experiments, the scale is calibrated to an underlying dB 

scale, in the brightness experiments, the scale represents an underlying scale in cd/m2.     

In order to maintain display simplicity, no help instructions were initially 

provided on the experimental screen.  However, to assist the participant, brief instructions 

were flashed on the display after six seconds of inactivity.  The instructions remained in 

place for another six seconds.  The instructions were repeated following another six 

seconds if the participant had not selected one of the appropriate onscreen buttons.  In 

this manner, the participant benefited from additional but unobtrusive usage cues. 

After the stimulus presentation in Figure A-3, the participant was presented with a 

screen in which he or she was instructed to rate the intensity of the previously presented  

stimulus (see Figure A-4).  The participant used the IntelliSlider to set the value and then 

pressed the “Next” button on the screen.  The IntelliSlider was always positioned at the 

midpoint value of 50.0.  As in the previous screen, the ECS flashed brief instructions to 

assist the user after six seconds.  

Following selection of the stimulus intensity value in screen A-4, the participant 

would either advance to the next stimulus presentation or receive feedback in accordance 

with constrained scaling methodology.  In a typical feedback screen (see Figure A-5), the 
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ECS displayed the actual stimulus value according to the IntelliSlider scale.  The value 

was displayed positionally on the IntelliSlider as well as numerically in the display above 

the IntelliSlider.  To differentiate between data entry mode and feedback mode, the 

position indicator on the IntelliSlider as well as the numerical display were colored light 

green.  The participant acknowledged seeing the actual stimulus intensity value by 

clicking on the “Next” button on the screen, which advanced the participant to the next 

trial or next portion of the experiment. 

As mentioned earlier, the main experimental interface varied depending on the 

type of experiment.  For loudness experiments, the stimulus was presented audibly, with 

no visible stimulus presentation element.  Most of the experiments featured an on-screen 

stimulus display element.  For example, experiments involving grayscale featured the 

display found in Figure A-6.  Since the scaling in question involved the brightness of an 

object displayed on the screen, the colors of the display were darkened.  The background 

was black, while on-screen objects such as the slider were set to varying levels of grey.  

The stimulus was displayed directly above the IntelliSlider and value indicator box.  

Except for in Experiment 3 and 4, this square of varying intensities was flashed on the 

display for 1000 ms.   

The square was framed by a lighter colored border.   When the box was not 

illuminated with a greyscale box, it matched the black background of the display 

window.  To reflect the nature of the scaling task, the on-screen instructions reminded the 

participant to estimate the brightness of the on-screen box. 
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 Similar customizations were implemented to accommodate the display and 

scaling requirements for the full range of the experiments.  For example, for the color 

brightness scaling experiments, the on-screen box displayed red, green, and blue colored 

squares in addition to the grayscale squares.  For the subjective utility of money 

experiments, the display featured a sum of money above the IntelliSlider.  The 

IntelliSlider, in turn, served as a rating scale for subjective happiness.  In the experiment 

to determine the visual appeal of Web pages, the individual Web pages were flashed at 

the full dimensions of the screen, after which the ECS displayed the standard IntelliSlider 

display with a rating scale for judging the visual appeal of the Web page.  Finally, in the 

experiments involving video frame rate, the ECS featured a box, similar to the grayscale  

box in Figure A-6, in which a 320x240 pixel video was displayed (see Figure A-7). 

Timing Accuracy 

 Several reaction time measures were obtained throughout the experiments.  

However, obtaining accurate reaction time measures in Microsoft Windows operating 

system environments has been a problematic programming endeavor.  As a preemptive 

multitasking operating system, the Windows family allots slices of time to each 

concurrent process.  The result is that, when chained together, these individual time slices 

give the appearance of simultaneous processing of multiple processes.   From a timing 

standpoint, time slicing introduces considerable variability into processing time, meaning 

that applications that are time sensitive are best implemented in an operating system 

environment that does not  utilize preemptive multitasking. 
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Figure A-7. Sample screen from Experiment 15, in which the participant rated the 
fluidity of video displayed on the screen.  
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 Factors beyond the operating system also significantly hinder the timing 

accuracy of standard personal computers.  Highly accurate timing presents an obstacle for 

the hardware architecture established by the IBM PC in 1981 and compatibly maintained 

by subsequent generations of personal computers that are based on the Intel 80x86 

chipset, including current generation Pentium processors.  Although this architecture 

includes a highly accurate timer chip (the Intel 825x series of chips) integral to every 

system board, its purpose is primarily to maintain the time-of-day status for the computer.  

The 825x chip is invariably set at a frequency of 18.2 Hz, which gives a timer resolution 

equivalent to 55 ms.  Although this resolution is more than sufficient to maintain the 

time-of-day clock (Bührer, Sparrer, & Weitkunat, 1987), such a resolution is nonetheless 

too slow for the exacting millisecond accurate reaction time experiments common in 

psychology.  Given this hardware constraint, the challenge is whether or not this single 

timer may be harnessed in a way so as to achieve higher accuracy without the need for 

additional timer hardware.  Two solutions to this challenge have emerged. 

 The first solution is to increase the frequency of the timer.  The frequency of the 

825x timer may be increased via software control to 1000.1522Hz, which provides 

accuracy around 1 ms (Brysbaert, Bovens, d’Ydewalle, & Van Calster, 1989).  This 

solution at first seems ideal, but closer consideration reveals some limitations of this 

approach.  Fine-tuning the frequency of the timer chip results in significantly slowed 

overall system performance, because the hardware timer interrupt is issued 60 times more 

frequently than normally.  This ultimately results in the operating system and main 

program being able to perform their operations 60 fewer times per second.   Especially in 
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Windows-based programs, the dependence on timing routines is critical to overall 

system functioning.  Upsetting the frequency of Windows time slices can easily halt 

system operation.  Furthermore, by manipulating the 825x default parameters, the time-

of-day routines are rendered inoperable to normal system operation, since the system 

advances the internal time of day 60 times faster than normal. 

 The second and typically preferred solution maintains the frequency of the timer.  

Extended timer resolution is possible by setting the 825x timer chip mode to maintain an 

internal residual time count between two timer events.  Graves and Bradley (1987, 1988) 

first devised assembly language routines that read the time-of-day counter and the 

residual counter to achieve millisecond accuracy.  By this method it is possible to derive 

the elapsed time since midnight in milliseconds. 

 Bedell (2000) offers an alternative method to derive accurate timing measures.  

Since most Windows based personal computers are equipped with a multimedia player, 

and since these players require millisecond accuracy timing for the playback of Musical 

Instrument Digital Interface (MIDI) files, it is possible to access the multimedia timer to 

achieve accurate timing.  Bedell presents a series of routines in Visual Basic that can be 

used to derive elapsed time or to trigger events at frequency intervals faster than that 

otherwise achieved in Windows.   

The routines in Bedell (2000) served as the basis for the timing code in the ECS.  

While specific routines recorded the elapsed time since a starting point (i.e., the time at 

the presentation of a stimulus), other routines were used to set the trigger point for the 

presentation of on-screen help, and still other routines were used to add a delay function 
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to the ECS.  This delay function was used for timing the duration of the initial splash 

screen as well as the duration of stimulus presentations. 

It should be noted that the reaction time measures in this dissertation do not 

purport true millisecond accuracy.  Despite efforts to control for timing accuracy, several 

possible confounds exist.   Considerably timing latency was introduced due to the input 

devices.  The typical personal computer keyboard, for example, has a built-in delay of 

between 10 ms (Segalowitz & Graves, 1990) and 36.7 ms (Brybaert, 1990).  Moreover, 

the circuitry of keyboards is highly variable, resulting in different delays in different 

computers.  Because of the large number of keys on a keyboard, the delay is also variable 

depending on the particular key pressed.  Nonetheless, mean values do exist, and most 

PCs scan the keyboard for a keypress about every 15 ms, with a variance up to ±7.5ms 

(Segalowitz et al., 1990).   

In contrast to the keyboard, the response time of the serial PC mouse has been 

shown to be highly invariable (Segalowitz et al., 1990; Beringer, 1992).  The serial PC 

mouse transmits information consistently to the PC at a rate of 1200 baud or greater.  

There is a consistent 31 to 33 ms response delay between the actual press of the mouse 

button and the issuance of a hardware interrupt.  Thus, the actual reaction time may be 

calculated by subtracting 32 ms from the recorded reaction time.  Similar characteristics 

can be expected of mice designed to work with the Universal Serial Bus (USB).  

Although the serial PC mouse affords great timing accuracy, a dominant mouse design in 

personal computers is the PS/2 mouse, which connects directly to the keyboard port.  As 
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expected, the PS/2 mouse shows the same timing inconsistencies as the keyboard 

(Beringer, 1992). 

The PC mouse, whether serial, USB, or PS/2, transmits information in variable 

blocks.  If there is only movement or only a button press, the mouse does not need to 

transmit a very large block of data to the PC in order to establish the change in its status.  

If, however, there are mouse movements and button presses, the block of information to 

be transmitted is increased substantially, thereby increasing the reaction time 

proportionately (Segalowitz et al., 1990; Beringer, 1992).  Thus, the overlap of mouse 

movement and button pressing as required to use the IntelliSlider results in considerable 

variability in the amount of information and the time to transmit that information.  

Another issue limiting the timing accuracy of the ECS stems from the video 

screen refresh cycle.  Achieving millisecond accuracy in the system time or the response 

input apparatus is of no use if the screen output is not synchronized with these 

millisecond counters.  Screens are not refreshed every millisecond.  Taking a typical 

monitor refresh rate of 70 Hz, the display is updated once every 14.3 ms (Segalowitz et 

al., 1990).  Hence, it is possible that on-screen stimulus information may be written to 

video memory and the ECS may start the timer during the refresh cycle, resulting in up to 

a 14.3 ms delay between the activation of the timer and the time when the experimental 

participant actually sees the stimulus.  If that potential delay is not considered, the overall 

average variability of an experiment is increased by 14.3 ms for each stimulus 

presentation.  This problem is further compounded if the stimulus takes longer than a 

single refresh cycle to display, since then it will not be displayed in its entirety and the 
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participant may register only part of the image.  This would increase the overall 

variability of the experiment by 28.6 ms or more for each stimulus presentation 

(Haussmann, 1992). 

The solution to this problem is to display information as quickly as possible 

during the screen refresh cycle (Heathcote, 1988; Haussmann, 1992).  The memory 

address at segment 64 (hexadecimal 0040) and offset 99 (hexadecimal 0063) contains the 

address of the 6845 video chip commonly found in video adapters and maintained for 

backward compatibility in most PC video systems.  Six bytes from the address provided 

therein is the byte that contains the video display vertical retrace status, located on bit 3.  

If the bit is on, then the screen is in vertical retrace.  During vertical retrace, information 

may be safely written to the screen, because no new information will be displayed until 

the retrace is complete (Haussman, 1992). 

Windows display programming is complex, because the amount of information to 

be displayed graphically is much greater than in DOS text mode.  The short duration of 

the vertical retrace makes it difficult to transfer large amounts of information to the 

screen memory.  Further, since the standard Windows graphical interface libraries do not 

control for screen refresh, the programmer must code custom graphical controls for all 

on-screen functions.  Alternately, it is possible for the programmer to use an extended 

graphics library like Microsoft’s DirectDraw.  The use of such a library adds considerable 

complexity to the coding required to perform tasks in the ECS. 

In the present ECS, screen refresh rates were not controlled for.  An attempt was 

made to generate stimuli in the computer’s random access memory (RAM), from which it 
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could be transferred rapidly to video memory.  This process eliminated the generation of 

visual stimuli directly in video memory, where they would likely be generated over one 

or more screen retrace periods.  The transfer of stimulus information from system RAM 

to video RAM did not, however, guarantee that stimuli would be displayed within a 

single screen retrace.  The accuracy of the reaction time measures should be viewed in 

light of this potential display latency.  

Usability and Design Considerations 

Boring (2001, p. 400) offers six guidelines for designing experimental control 

software (ECS).  These are quoted below: 

• Follow standard user-interface design principles when designing for 
ECS. Computer controlled psychology experiments should be viewed 
as simplified interfaces that are subject to the same need for usability 
as would be more complex interfaces. 

• Design the ECS to support both the experimental participant and the 
experimenter. Make it easy for the participant to take part in the 
experiment, but don’t forget to make it easy for the experimenter to 
administer the experiment. 

• Automate tasks as much as possible. Currently, much ECS does not 
fully utilize automation and is thereby error prone. When feasible, 
provide on-screen instructions to the experimental participants; 
automate the numbering of experimental participants; assign 
participants to experimental conditions automatically. 

• Make the data appropriate to the analysis tools. Formatting the output 
of the ECS to match the standard input of the analysis software can 
save time and reduce data handling errors. 

• Simplify the mode of response. Participants in experiments will 
perform best if the mode of response is intuitive and natural. As the 
mode of response becomes less natural, the artificiality of the results 
increases. 

• Give feedback. Creating situations in which there is little, no, or 
punitive feedback establishes a barrier between the participant and the 
ECS. This interaction barrier can impact the experimental findings. 
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The  ECS used in the experiments in this dissertation was designed specifically 

to adhere to these guidelines.  The following considerations influenced the design of the 

ECS. 

Standard Microsoft Windows user-interface conventions were used throughout 

the software.  The IntelliSlider control, for example, followed closely the conventions of 

the standard Windows slider, in that software users could click on the appropriate arrows 

to decrement or increment the slider value, click on an area of the slider to change the 

slider value, or click and drag the slider to a new position.  Other Windows conventions 

included the use of a software wizard format to guide the software user through 

successive steps in the experiment.  Special attention was paid to using standard button 

labels such as “Next” and “Ok.” 

The ECS supported both the participant and the experimenter.  The ECS was 

designed to include a minimum of items on the screen, so that the on-screen interface 

elements afforded simple and natural interaction.  To this end, the experimental windows 

were displayed such as to fill the entire screen.  On-screen help was provided to assist the 

participant during the experimental task.  The experiment was started easily by double-

clicking on an icon on the screen.  The ECS splash screen clearly identified the 

experiment to the experimenter. 

Many tasks were automated to minimize the change of experimenter error.  

Participant numbering and the selection of experimental conditions was handled 

automatically by the ECS.  The instructions were incorporated into the ECS as was the 

experimental debriefing after the experiment. 
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The data were collected automatically throughout the experiment and were 

recorded in a simple columnar format that was compatible with all statistical software 

packages that were used to analyze the data. 

A simple mode of response was offered in the form of the IntelliSlider.  The 

IntelliSlider functioned identically to existing Windows slider controls with the exception 

that the IntelliSlider offered additional functionality to simply the scaling task for 

participants. 

Three types of feedback were implemented in the ECS.  Instructions were 

provided at the beginning of experimental sessions and at periodic junctures throughout 

the experiment.  Feedback was also provided in the form of unobtrusive help messages 

that were displayed on the screen after a period of inactivity.  These help messages 

guided the participant on the proper course of action.  Finally, in the constrained scaling 

conditions, feedback was provided while participants learned the scale.  This feedback, as 

was demonstrated throughout this dissertation, provided not only a usability advantage 

but also allowed participants to calibrate their scale usage in a manner that could be 

generalized to new stimulus presentations. 

These design considerations helped mitigate usability issues that might otherwise 

have resulted in experimenter or participant error.  These design considerations also 

minimized the possibility of experimental artifacts and confounds that might have arisen 

if interface characteristics of the ECS had detracted from the basic scaling task being 

investigated in this series of experiments. 
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APPENDIX B 

LOUDNESS CALIBRATION 

 Pure tone sinusoidal waveform files were generated as stimuli for the loudness 

scaling experiments using Cool Edit 2000 software (Syntrillium Corporation, 2000).  The 

files consisted of compact disk quality 16-bit samples at a sampling rate of 44.1 kHz 

monaurally over the right sound channel.   Sound files were generated for 65 and 1000 

Hz tones with amplitude settings in 1 dB increments from 50 to 99 dB SPL and in 0.1 dB 

increments from 99 to 100 dB SPL.  The tones were 1 s in duration with 6 ms ramp-up 

and ramp-down times.  

Figure B-1 illustrates the configuration for calibrating the loudness of the stimuli 

for use in the loudness experiments.  The amplitude of the playback tones was calibrated 

using a Sper Scientific IEC 60651 Type 1 certified sound level meter (International 

Electrotechnical Commision, 2001) fast time-weighted to the “A” frequency range74 [see 

(i) in Figure B-1], a custom acoustic coupler [see (ii) in Figure B-1], sealed circumaural 

headphones by Sennheiser  [see (iii) in Figure B-1], and a sound insulating container [see 

(iv) in Figure B-1].   The custom acoustic coupler was manufactured out of ceramic 

modeling clay and plaster, with a felt-lined opening for securely inserting the sound level 

meter’s microphone.  The acoustic coupler featured a narrow opening from the 

headphone earpiece to the sound level meter’s microphone, simulating the human  

                                                 
74 The IEC 60651 Type 1 designation specifies that the sound level meter has a 
measurement accuracy of ± 1 dB.  Time-weighting refers to the sound frequency sample 
rate, whereby the “fast” setting results in a fast measurement response.  Frequency 
weighting refers to the sensitivity of the sound level meter to sound intensity across the 
frequency spectrum, whereby the “A” weighting approximates human hearing. 
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(A)  

                                

                                                          (i) 

                            (ii) 

 

           (iii) 

              (iv) 

 

(B) 

 

 

 

              (i) 

 

              (iv) 

 

Figure B-1.  Configuration for calibrating the loudness experiment stimuli. 
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auditory  canal.  The sound insulating container consisted of a canvas backpack filled 

with a heavy, 800 fill down coat.  When the headphones and acoustic coupler were 

wrapped in the down coat and placed inside the backpack (see Part B of Figure B-1), the 

backpack could be zipped closed while allowing a sufficient aperture for the stem of 

sound level meter.  The sound insulating container offered approximately 40 dB sound 

attenuation while making it possible to read the display of the sound level meter.  In this 

manner, it was possible to calibrate the loudness stimuli in an environment without 

special sound dampening. 

 The sound files were played through a Sound Blaster Audigy (Creative Labs, 

2000) sound card, providing a sound-to-noise ratio of 100 dB.  The Sound Blaster 

Audigy, like preceding Sound Blaster sound cards, offers three volume controls for sound 

playback within Windows operating systems.  The sound card features an overall volume 

control called main volume with a resolution of 16 bits, or 65536 levels.  The main 

volume is fed by mixer input from multiple sound channels, including the right and left 

volume channels for waveform file playback called wave volume.  The wave volume 

similarly features a resolution of 16 bits.  Within wave volume, the waveform file is 

characterized by sound samples of varying amplitudes.  The current sound stimulus files 

featured 16-bit samples, corresponding to a volume resolution of 65536 levels.   

By combining the three independent volume levels, it was possible to adjust the 

output sound level of the sound card with a resolution greater than the measuring 

accuracy offered by the sound level meter.  Main and wave volume levels have a direct 

relationship to the sound output volume in dB.  Using the calibration method depicted in 
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Figure B-1, the volume level in dB was found to be a function of the main or wave 

volume level setting (V) according to the following equation:75 
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(45)

When tested across a variety of system configurations, it was found that in some cases the 

main and wave volume output levels followed a step function for Equation 45, while in 

other cases the main and wave volume levels followed a linear function.  However, in no 

configurations did the waveform file volume levels follow a step function.  Therefore, 

some configurations required the inclusion of waveform file volume levels in order to 

make output adjustments smaller than whole dB steps. 

 A program was created in Microsoft Visual Basic 6 (Microsoft Corporation, 

1998) to create sound calibration lookup tables for use by the experimental control 

software.  The program permitted the experimenter to set the volume levels of the main 

volume, the wave volume, and the sound file volume samples and to peg those values to a 

specific dB setting.  The settings were, in turn, stored in a data file that was used by the 

experimental control software when playing sounds.  Figure B-2 illustrates the interface 

for making the sound level adjustments.   The three volume levels could be set, the tone 

played through the headphones, the volume level read from the sound level meter, and 

this value set and saved in the interface.  Table B-1 shows the three volume settings for  

                                                 
75 I thank Matthew Rutledge-Taylor of Carleton University’s Institute of Cognitive 
Science for identifying this relationship. 



 

 
357 

 

 

 

Figure B-2.  The sound card calibration software used for loudness experiments. 
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each dB level used in the experiment for 65 Hz tones.  Table B-2 shows the 

corresponding settings for 1000 Hz tones. 
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Table B-1. Loudness calibration values for 65 Hz tones. 

 
Actual 

Loudness 
Master 
Volume 

Wave 
Volume 

File 
Volume 

30dB 24358 30738 45 
31dB 24358 30738 44 
32dB 24358 30738 43 
33dB 24358 30738 42 
34dB 24358 30738 40 
35dB 24358 30738 38 
36dB 24358 30738 36 
37dB 24358 30738 35 
38dB 24358 30738 33 
39dB 24358 30738 32 
40dB 24358 30738 31 
41dB 24358 30738 29 
42dB 24358 30738 28 
43dB 24358 30738 27 
44dB 24358 30738 26 
45dB 24358 30738 25 
46dB 24358 30738 24 
47dB 24358 30738 23 
48dB 24358 30738 22 
49dB 24358 30738 21 
50dB 24358 30738 20 
51dB 24358 30738 19 
52dB 24358 30738 18 
53dB 24358 30738 17 
54dB 24358 30738 16 
55dB 24358 30738 15 
56dB 24358 30738 14 
57dB 24358 30738 13 
58dB 24358 30738 12 
59dB 24358 30738 11 
60dB 24358 30738 10 
61dB 24358 30738 9 
62dB 24358 30738 8 
63dB 24358 30738 7 
64dB 51036 53936 28 
65dB 51036 53936 27 

Actual 
Loudness 

Master 
Volume 

Wave 
Volume 

File 
Volume 

66dB 51036 53936 26 
67dB 51036 53936 25 
68dB 51036 53936 24 
69dB 51036 53936 23 
70dB 51036 53936 22 
71dB 51036 53936 21 
72dB 51036 53936 20 
73dB 51036 53936 19 
74dB 51036 53936 18 
75dB 51036 53936 17 
76dB 51036 53936 16 
77dB 51036 53936 15 
78dB 51036 53936 14 
79dB 51036 53936 13 
80dB 56836 53936 14 
81dB 56836 53936 13 
82dB 56836 53936 12 
83dB 56836 53936 11 
84dB 56836 53936 10 
85dB 56836 53936 9 
86dB 56836 53936 8 
87dB 56836 58576 7 
88dB 56256 65535 6 
89dB 56256 65535 5 
90dB 56256 65535 4 
91dB 56256 65535 3 
92dB 56256 65535 2 
93dB 56256 65535 1 
94dB 59735 65535 1 
95dB 59735 65535 0 
96dB 65535 65535 1 
97dB 65535 65535 0 
98dB 65535 65535 0 
99dB 65535 65535 0 

100dB 65535 65535 0 
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Table B-2.  Loudness calibration values for 1000 Hz tones. 

 
Actual 

Loudness 
Master 
Volume 

Wave 
Volume 

File 
Volume 

30dB 9279 4060 19 
31dB 9279 4060 18 
32dB 9279 4060 17 
33dB 9279 4060 16 
34dB 9279 4060 15 
35dB 9279 4060 14 
36dB 9279 4060 13 
37dB 9279 4060 12 
38dB 9279 4060 11 
39dB 9279 4060 10 
40dB 9279 4060 9 
41dB 9279 4060 8 
42dB 9279 4060 7 
43dB 9279 4060 6 
44dB 9279 4060 5 
45dB 9279 4060 4 
46dB 9279 4060 3 
47dB 9279 4060 2 
48dB 9279 8699 7 
49dB 9279 8699 6 
50dB 9279 8699 5 
51dB 10439 8699 5 
52dB 10439 8699 4 
53dB 46976 44077 46 
54dB 46976 44077 45 
55dB 46976 44077 44 
56dB 46976 44077 43 
57dB 46976 44077 42 
58dB 46976 44077 41 
59dB 46976 44077 40 
60dB 46976 44077 39 
61dB 46976 44077 38 
62dB 46396 42917 37 
63dB 46396 42917 36 
64dB 50456 44077 37 
65dB 50456 44077 36 

Actual 
Loudness 

Master 
Volume 

Wave 
Volume 

File 
Volume 

66dB 50456 44077 35 
67dB 50456 44077 34 
68dB 50456 44077 33 
69dB 50456 44077 32 
70dB 50456 44077 31 
71dB 50456 44077 30 
72dB 50456 44077 29 
73dB 50456 44077 28 
74dB 50456 44077 27 
75dB 50456 44077 26 
76dB 50456 44077 25 
77dB 50456 44077 24 
78dB 50456 44077 23 
79dB 50456 44077 22 
80dB 50456 44077 21 
81dB 53356 45817 22 
82dB 53356 45817 21 
83dB 53356 45817 20 
84dB 53356 45817 19 
85dB 53356 45817 18 
86dB 53356 45817 17 
87dB 53356 45817 16 
88dB 53356 45817 15 
89dB 53356 45817 14 
90dB 53356 44657 13 
91dB 53356 44657 12 
92dB 53356 44657 11 
93dB 53356 44657 10 
94dB 52208 48136 9 
95dB 52208 48136 8 
96dB 52208 48136 7 
97dB 52208 48136 6 
98dB 52208 48136 5 
99dB 52208 48136 4 
100dB 52208 48136 3 
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APPENDIX C 

BRIGHTNESS CALIBRATION 

 In accordance with CIE color standards (Commission Internationale de 

L’Eclairage, 1986), the brightness stimuli consisted of achromatic squares of 4° of visual 

field displayed on the screen directly in front of the participant.  As depicted in Figure C-

1, given the distance, d, between the participant and the display, the height, h, of a visual 

field, α, was calculated according to the following equation: 

αtandh =  (46)

Given α equal to 4° and d measured in cm, it was possible to calculate the height, h, of 

the square in cm.  By definition, the width, w, of the square was equal to h. 

A program was written in Visual Basic 6 (Microsoft Corporation, 1998) in order 

to simplify the process of calibrating the screen for the display of the appropriately sized  

squares (see Figure C-2).  This screen calibration tool required four steps in order to 

determine the proper location and size of the onscreen squares.  In the first step, the 

experimenter moved the location of the program window around the screen until the 

crosshatch was directly centered between the eyes and at eye level.  In this manner, the 

program determined the screen coordinates, x and y, of the center of the screen relative to 

the experimenter’s field of vision.  In the second step, the experimenter measured the 

distance, d, between the eyes and the crosshatch.  This was readily accomplished through 

the use of a standard tape measure.  In the third step, the experimenter adjusted the size of 

an onscreen square to measure 1 cm wide by 1 cm high.  Again, this measurement was 

readily determined through the use of a standard tape measure.  In this manner, the ratio 
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Figure C-1.  Measurements used for determining squares of 4° field of vision on a 
computer display. 
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Figure C-2.  Program for calibrating the coordinates of onscreen squares. 
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of horizontal and vertical screen pixels to cm, px and py respectively, was obtained. 

Using Equation 46, the height and width, h and w, of the square were obtained.  

Multiplying h by px and w by py gave the dimensions of the square in screen pixels, 

which, along with the center coordinates of the screen, were saved as a file for 

subsequent retrieval by the experimental control software. 

The squares were color calibrated in accordance with the 1931 CIE Standard 

Observer Model (Commission Internationale de L’Eclairage, 1986).  According to this 

standard, color is classified into tristimulus values, XYZ, which are transformed to the 

chromaticity values, Yxy, where Y represents perceived luminance and x and y represent a 

two-dimensional color chromaticity classification scheme (see Figure C-3).  The CIE 

color model affords a device independent unified color classification scheme based on the 

color sensitivity of standard human observers.  Any color that can be perceived by 

standard human observers can be classified according to the CIE chromaticity diagram by 

mixing the red ( λr = 700 nm), green ( λg = 546.1 nm), and blue ( λb = 435.8 nm) primary 

color wavelengths.  The CIE color model also allows for an achromatic color space in 

which all colors are perceived with equal intensity.  The CIE standard illuminant D65 

denotes neutral daylight chromaticity, represented by x = 0.313 and y = 0.329 on the CIE 

Yxy chromaticity diagram.  Similarly, the CIE standard illuminant E denotes true 

achromaticity, represented by the diagram midpoint at x = 0.333 and y = 0.333.  Any 

achromatic color space remains color neutral even as the luminance value, Y, is 

increased.  The chromaticity coordinates for red, green, blue, and grayscale stimuli are 

depicted in Figure C-4.  Note that with the exception of grayscale stimuli, it was 
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Figure C-3.  CIE 1931 Yxy chromaticity diagram with major wavelengths and color 
areas indicated. 
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Figure C-4.  Chromaticity coordinates in CIE Yxy color space for red ( ), green ( ), 
blue ( ), and grayscale ( ) stimuli.    
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impossible to retain chromaticity constancy as the luminance of the stimulus was 

increased.  As the luminance of the stimulus increased, chromaticity tended to become 

more achromatic. 

On a calibrated display, the CIE Y values are a close approximation of physical 

luminance as measured in cd/m2.  Nonetheless, it should be noted that the CIE Yxy values 

are not direct physical measures of luminance and color, but rather a perceptually 

constant ratio of color and luminance with respect to the gamut of the display device. The 

luminance of the Y value on a calibrated monitor can be approximated by converting the 

device independent Yxy values to device specific red, green, and blue (RGB) phosphor 

values corresponding to the electrical current required to drive the CRT’s three electron 

guns.  The mapping of chromaticity coordinates to red, green, and blue phosphor values 

is accomplished through a color lookup table (CLUT).  The CLUTs for the red, green, 

blue, and grayscale stimuli used in the brightness scaling experiments are found in Tables 

C-1 through C-5.  Note that Table C-1 represents the CLUT for grayscale stimuli in 

Experiments 3 – 6 and 14, and Tables C-2 through C-5 represent the CLUT for color and 

grayscale stimuli in the remaining brightness experiments.   

For the squares, the computer’s graphic display adapter was configured to 24-bit 

color resolution, corresponding to 8 bits (256 levels) for each of the RGB color channels.  

The CRT display was calibrated using a ColorVision Spyder colorimeter puck to a 

standard daylight temperature of 6500° K with a black point luminance targeted at 0.00 

cd/m2 and with a white point luminance targeted at 100.0 cd/m2.  For experiments 3 – 6, 

which only involved grayscale stimuli, a CLUT was generated for grayscale squares 
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Table C-1.  Color lookup table for grayscale stimuli in Experiments 3 – 6 and 14, 
featuring luminance (L) measured in cd/m2 and red (R), green (G), and blue (B) screen 
phosphor values. 

 

L R G B 

0 0 0 0 

1 34 34 34 

2 46 46 46 

3 54 56 56 

4 62 63 62 

5 69 69 69 

7 79 79 79 

10 93 92 93 

14 107 107 107 

19 120 121 121 

27 140 140 140 

37 161 161 161 

52 187 187 188 

72 216 217 216 

100 251 250 250 

 

Note:  The CIE chromaticity coordinates, x and y, were not recorded for each luminance 

level for Experiments 3 – 6 and 14. 
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Table C-2.  Color lookup table for red stimuli, featuring luminance (L) measured in 
cd/m2; red (R), green (G), and blue (B) screen phosphor values; and CIE x and y 
chromaticity coordinates. 

 
 

L R G B x Y 

1 33 0 0 0.411 0.302 

2 62 0 0 0.502 0.317 

3 83 0 0 0.535 0.323 

4 100 0 0 0.554 0.324 

5 115 0 0 0.569 0.329 

7 141 0 0 0.581 0.327 

9 160 0 0 0.583 0.329 

13 193 0 0 0.591 0.332 

18 227 0 0 0.595 0.329 

24 255 18 18 0.579 0.328 

34 255 92 92 0.456 0.314 

46 255 139 139 0.385 0.307 

64 255 189 189 0.330 0.300 
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Table C-3.  Color lookup table for green stimuli, featuring luminance (L) measured in 
cd/m2; red (R), green (G), and blue (B) screen phosphor values; and CIE x and y 
chromaticity coordinates. 

 
 

L R G B x Y 

1 0 13 0 0.258 0.373 

2 0 29 0 0.265 0.455 

3 0 41 0 0.268 0.492 

4 0 51 0 0.270 0.513 

5 0 59 0 0.271 0.526 

7 0 74 0 0.272 0.543 

9 0 88 0 0.274 0.554 

13 0 109 0 0.274 0.564 

18 0 132 0 0.275 0.571 

24 0 154 0 0.275 0.575 

34 0 185 0 0.275 0.583 

46 0 218 0 0.275 0.582 

64 26 255 0 0.274 0.568 
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Table C-4.  Color lookup table for blue stimuli, featuring luminance (L) measured in 
cd/m2; red (R), green (G), and blue (B) screen phosphor values; and CIE x and y 
chromaticity coordinates. 

 
 

L R G B x Y 

1 0 0 46 0.172 0.114 

2 0 0 91 0.158 0.086 

3 0 0 122 0.153 0.079 

4 0 0 149 0.151 0.075 

5 0 0 172 0.149 0.072 

7 0 0 213 0.146 0.067 

9 0 0 253 0.142 0.062 

13 46 46 255 0.155 0084 

18 76 76 255 0.169 0.108 

24 102 102 255 0.185 0.134 

34 137 137 255 0.208 0.172 

46 167 167 255 0.228 0.206 

64 205 205 255 0.254 0.246 
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Table C-5.  Color lookup table for grayscale stimuli, featuring luminance (L) measured 
in cd/m2; red (R), green (G), and blue (B) screen phosphor values; and CIE x and y 
chromaticity coordinates. 

 
 

L R G B x Y 

1 10 10 10 0.262 0.280 

2 22 22 22 0.270 0.289 

3 32 32 32 0.273 0.295 

4 40 40 40 0.277 0.296 

5 48 48 48 0.278 0.295 

7 60 60 60 0.280 0.295 

9 71 71 71 0.281 0.292 

13 89 89 89 0.281 0.292 

18 107 107 107 0.282 0.294 

24 125 125 125 0.283 0.295 

34 151 151 151 0.283 0.295 

46 178 178 178 0.285 0.295 

64 211 211 211 0.285 0.294 
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ranging from 1 to 100 cd/m2 using equal logarithmic spacing.  For subsequent 

experiments, the CLUTs were generated for the red, green, blue, and grayscale squares 

ranging from 1 to 64 cd/m2 using equal logarithmic spacing.  The restricted brightness 

range for the latter experiments was necessary because it was not possible to produce red, 

green, and blue squares with the same maximum brightness as the grayscale squares.   

The stimulus values, S, were calculated according to the following equation: 

( ) 



= N

N

NN SS
..1

..1 , 
(47)

Where N is the total number of logarithmically spaced units desired, S1..N represents a 

vector containing the stimulus values, and SN is the maximum stimulus value.  It is 

assumed that the starting stimulus corresponds to 1 and that N is greater than 1.   For the 

present purposes, SN was assumed to be 100 cd/m2 for Experiments 3 – 6 and 14, and 64 

cd/m2 for the other brightness experiments.  Note that the square brackets, [ ], signify 

rounding down, l m, or up, j k, to the nearest integer.  The maximum number, N, of 

logarithmically spaced units possible corresponds to the greatest number for which no 

stimulus values overlap.  For example, if S10 and S11 both equaled 42, it would be 

necessary to decrement N until they no longer equaled the same value and no other S 

values were equal. 

The CRT display was allowed a one-hour warm-up period prior to beginning 

experimental trials.  As is shown in Figure C-5, the one-hour warm-up period allowed the 

phosphor brightness levels to stabilize in order to minimize potential brightness 

fluctuations over the duration of an experimental session.  The settings shown in Figure  
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Figure C-5.  CRT display phosphor luminance over time across low ( ), medium ( ), 
and high ( ) RGB settings. 
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C-5 were taken with a Samsung 19-inch SyncMaster 950P CRT display attached to an 

ATI Radeon VE graphics display adapter.  The measurements were obtained with a 

display resolution of 1024 x 768 pixels at a screen refresh rate of 100 Hz.76    

Participants in the brightness experiments were seated in a dark room for five minutes 

prior to the beginning of the experiment.  The room was reflectively lit from behind the 

participant, resulting in an approximately 10 cd/m2 light reflectance in the area around the 

display.   

The level of lighting ensured that participants retained photopic visual sensitivity 

comparable to normal daylight vision.  In photopic vision, the cones are maximally 

sensitive, ensuring full color vision.  Often, brightness experiments make use of dark 

adaptation, in which the eyes have scotopic or mesopic visual sensitivity.  In scotopic 

vision, which occurs in near to full darkness from 10-6 to 10-3 cd/m2 (Plainis, Chauhan, 

Murray, & Charman, 1999), the rods are maximally sensitive and the cones are minimally 

sensitive, resulting in monochromatic vision.  In mesopic vision, which  occurs in dusk-

like lighting conditions from 10-3 to 3 cd/m2 (Plainis et al., 1999), the rods and cones 

share color sensitivity, resulting in a generally degraded perception of colors.  In avoiding 

dark adaptation, the brightness experiments reflected the participants’ typical daylight 

sensitivity to brightness and color.  

                                                 
76 Similar results were obtained for Experiments 3 – 6 and 14, although the screen refresh 
rate was set at 75 Hz, which produced brighter display values across the color gamut. 




