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- Abstract -

This paper constitutes an overview of two competing conceptual frameworks in the 

study of cognition, the now standard computational approach and the more recent, 

and controversial, dynamical hypothesis in cognitive science, championed by T. van 

Gelder et al. Through such conceptual and methodological disputes about the nature 

of cognition, a debate about the adequacy of their respective models has been the 

main ground for disagreements. I propose to explore each framework, or paradigm, 

in turn, by focusing on their definition and use of a number of critical characteristics 

of  intelligent  behavior,  namely  that  of  representations,  computation,  and  exactly 

what  is  a  cognitive  feature  or  process.  The  conclusions  that  I  have  reached are 

twofold: firstly, the dynamicist view of the computational approach to cognition in 

no way discredits  its  relevance to cognitive modeling,  since dynamicists  are  not 

concerned with the same features of  mental  processes in  their  models,  and their 

evaluation of what counts as computational is based on a common misconception, 

namely a confusion between the abstract and formal concept of computation with 

that  of  physical  symbol  systems.  Secondly,  the  type  of  explanation  used by  the 

dynamicist  view is  quite  different,  for it  concerns nomological  explanations (i.e. 

explanations  through covering laws),  whereas  the computational  view frames its 

explanations in a mechanistic manner. 
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Of computations and dynamic systems - An overview of the dynamicist 

controversy in cognitive science

- Introduction - Of models and minds

Model (abstract)

From Wikipedia, the free encyclopedia.

An abstract model (or conceptual model) is a theoretical construct that represents physical,  

biological or social processes, with a set of variables and a set of logical and quantitative 

relationships between them. Models in this sense are constructed to enable reasoning within an 

idealized logical framework about these processes and are an important component of scientific  

theories. Idealized here means that the model may make explicit assumptions that are known to be 

false in some detail, but by their simplification of the model allow the production of acceptably 

accurate solutions […]



What  is  a  conceptual  framework?  Epistemologists  and  philosophers  of 

science may not agree on the minutiae of the concepts of concept, knowledge and 

science, but we can roughly sketch an uncontroversial canvas: it is a set of concepts 

and methods through which people generate conjectures and theses, and strive to 

produce  descriptions,  explanations,  and  predictions  about  entities,  events,  and 

phenomena.2 Since we would rather  conceptualize  and  explain phenomena in  an 

interesting  manner,  that  is,  with  teleological  considerations  such  as  accuracy, 

efficiency,  and  consistency,  many  constraints  have  to  be  taken  into  account  to 

establish what constitutes a successful conceptual framework. Science, unarguably 

the  most  demanding conceptual  and  methodological  endeavour  in  the  pursuit  of 

knowledge, has numerous constraints through which are filtered what are considered 

acceptable  theses,  methods,  models,  and  what  counts  as  evidence.  Among these 

constraints, modern philosophy of science commits us to two universal tenets, (i) an 

ontological commitment dubbed materialism, which states that science’s domain is 

the material  world and that  it  should not  bother  itself  with spiritual  or  religious 

phenomena, and (ii) an epistemological claim named naturalism, the view that valid 

explanations or theories ought to make use of,  and only of,  entities accessible to 

natural science. Much is to be said about and within epistemology and philosophy of 

science, such as whether or not paradigms are commensurable and continuous, or if 

there exist radical shifts in conceptual frameworks, on the value of reductionism in 

view of scientific claims of different levels of description, and on what counts as 

criteria of justification or proof for such scientific claims.

Allowing myself the luxury of a metaphor, conceptual frameworks can be 

seen  as  universes  of  discourse,  following  in  that  the  semantic  theories  in  the 

philosophy  of  language,  spawned  from  the  works  of  Frege,  Peirce,  and  their 

successors  of  the  analytic  tradition.  One  semantic  view  of  analytic  philosophy, 

notably, attributes meaning and truth value to propositions validated by models, viz. 

a  larger  set  of  propositions  mirroring  entities  and  relations  between  them,  that 

2 Here I use the term of conceptual framework in a broader sense than a simple matrix of concepts 
and relations, so as to include models and methods, akin to Kuhn’s concept of paradigm.
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represents a ‘possible world’, or complete state of things. Thus we could view the 

scientific discourse concerning biology, for example, as a universe or domain of 

discourse in terms of semantics, and different theories and models of evolutionary 

biology, such as phyletic gradualism, punctuated equilibria, and creationist models 

(if there are any that can achieve a reasonable degree of rigor) would validate or 

invalidate propositions made about the entities, and relations between such entities, 

of  the  biotic  realm3.  Philosophy  of  language  or  otherwise,  the  emphasis  is  that 

models involve a set of entities and relations by which they purport to accurately 

describe, explain (and make predictions about) the phenomena under enquiry.

From  a  somewhat  direct  lineage  of  ancestors  such  as  cybernetics, 

information theory and the study of algorithms in mathematics, computationalism 

has established itself as a predominant conceptual framework to deal with enquiries 

concerned with what we understand by intelligence. Computationalism is our more 

recent  conception  of  intelligence,  the  view that  cognition  can  be  understood  as 

information processing, and has spun models of intelligence inspired by information 

processing technologies. It reaches as far as the study of biological cognition and 

even the whole of life sciences altogether, ubiquitous in a way that finds its way into 

the labelling of our era, the Information Age.

Numerous models of cognition as information processing under the guise of 

computationalism have been suggested, from the already classic seminal works of 

Turing (1936) on formal, discrete and machine-like computation,  and Rumelhart, 

McClelland et al (1986) on parallel and distributed, brain-like computation, to their 

philosophical  critics  and  promoters  like  Fodor  and  Pylyshyn  (1988),  and  P.M. 

Churchland  (1989,  among  many  other  references).  Yet,  for  some  skeptics, 

computationalism is mainly concerned with simulations of informational processes, 

and  while  it  doesn’t  seem  to  be  controversial  for  the  purpose  of  developing 

‘intelligent’ devices and technologies,  it’s being considered as the basis for such 

3 I  chose  the  semantic  conception  of  a  model  for  its  simplicity  and scope,  but  the  issue  is  not 
unproblematic in the details, and much of this paper revolves around the very minutiae of models in 
cognitive science.
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models of cognition does not appeal to everyone. Thus, computationalism has been 

challenged  on  nearly  all  possible  grounds,  with  regards  to  its  structure,  its 

constituents  and  foundations,  and  its  ability  to  stand  for  as  a  qualitative  and/or 

quantitative model of what is meant by cognition (among others, Brooks 1991, Clark 

1992,  1998,  Dreyfus  1992,  Elman  1998,  Freeman & Nuñez  1999,  Giunti  1995, 

Piccinini 2003, Stufflebeam 1998, Thelen 1995, van Gelder & Port 1995, Wertsch 

1998).

Criticizing is one thing, proposing solutions is another. Has anyone come 

forth  with  an  alternative  framework  that  might  deal  with  the  shortcomings  of 

computationalism and yet bear as much, if more, explanatory and predictive power 

as required of a rigorous scientific endeavor? Some believe so, and the answer might 

come from a rather physicalist perspective (it certainly doesn’t get any more natural, 

as in what we mean by naturalism and the naturalization of cognition), that is, the 

theory of systems dynamics. From the conceptual framework of dynamical systems 

theory  and  with  the  help  of  its  formal  and  quantitative  counterpart,  namely 

dynamical modeling, I will try to assess their position by confronting what as been 

dubbed the dynamical hypothesis4 (DH hereafter) about cognition, with the dominant 

yet quite problematic computational hypothesis (CH hereafter) about cognition.

To this  end,  the present dissertation is divided in four chapters.  The first 

presents a quick overview of what the computational and dynamical frameworks are, 

what kind of characteristics and ambiguities define and populate such frameworks, 

as well  as  what  is  entailed by adopting a  computational  hypothesis  in  cognitive 

science (CHCS hereafter), or the dynamical hypothesis in cognitive science (DHCS 

hereafter).  The  second  chapter  is  an  incursion  into  the  cognitive  science  of 

sensorimotor  processes,  which  exposes  the  application  of  the  previously  defined 

frameworks  to  empirical  research.  Through  an  attempt  to  link  the  dynamicists’ 

allegedly revolutionary point of view with neuroscientic findings on the workings of 

a certain class of low-level cognitive processes, namely sensorimotor control and 

4 T. van Gelder (1995, and subsequent work).
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learning, we will then be able to understand the full extent of the claims of both 

frameworks on such evidence. This will also make possible a clear, concise ground 

on which to position ourselves in further characterization of the issues at hand. The 

third chapter presents formal shortcomings and technical issues of both the CHCS 

and  the  DHCS,  from  areas  as  different  as  mathematics  and  neuroscience.  The 

definitions  of  computation  established  in  the  first  chapter,  as  well  as  the 

dynamicist’s conceptual repertoire, will  be confronted with formal considerations 

and empirical evidence. To this end, the chapter exposes criticisms, objections, and 

answers  from  protagonists  of  both  frameworks,  concerning  the  advantages  and 

shortcomings of their respective stance in cognitive science. The fourth and final 

chapter  presents  the  controversial  class  of  models  that  is  connectionism.  Since 

proponents of both frameworks insist on claiming connectionism as part of their own 

view of cognition, the entire chapter is devoted to the clarification of what is at stake 

in connectionist  models,  both formally and empirically.  In the conclusion,  I  will 

attempt to synthesize critical issues of, and possible answers to, the clash of such 

conceptual  frameworks,  driven  by  a  scrupulous  desire  for  univocal  concepts.  I 

advocate the adoption of a rigorous vocabulary concerning cognitive, computational, 

and  dynamical  themes,  a  point  that  unfortunately  needs  to  be  emphasized 

notwithstanding its ubiquity in the requirements of a sound academic enterprise. The 

fact  of  the  matter  is  that  throughout  this  thesis,  I  aim  to  expose  a  number  of 

incorrectly  defended  positions  criticizing  computationalism  and  promoting 

dynamics,  and  such  misconceptions  undermine  the  authority  of  the  supported 

arguments in a way that requires us to redefine the relative advantages, limitations, 

relevance, and scope of both conceptual schemes.

The  debate  on  whether  a  dynamical  framework  is  preferable  to  a 

computational  one  can  be  developed  on  many  avenues,  and  I  have  chosen  to 

emphasize  epistemological  and  semantic  issues.  This  decision  is  based  on  two 

observations,  namely  (i)  since,  as  it  is  exposed  in  chapter  III,  a  solution  to  the 

disagreements  between  these  two  frameworks  may  be  found  in  the  type  of 
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explanation  held dearest  by  their  respective  protagonists,  we may assume that  a 

discussion  of  ontological  and  formal  issues  would  not  focus  on  the  essential 

divergences between the CHCS and the DHCS that this dissertation aims to disclose, 

and (ii) such ontological considerations about the nature of cognition, and formal 

issues  in  the  mathematical  treatment  of  cognitive  modeling,  would  be  sufficient 

grounds  to  motivate  the  writing  of  two  other  extensive  dissertations  altogether. 

Therefore,  while  this  dissertation  indeed  exploits  qualitative  and  quantitative 

mathematical issues, as well as essential ontological topics about the mind, all such 

considerations are secondary to the main line of  argumentation.  The question of 

which  of  the  CHCS  or  the  DHCS  constitutes  the  best  possible  explanatory 

framework may not be entirely independent of formal and ontological issues, it is 

nevertheless in a noncommittal stance on such questions that I intend to conduct my 

examination.

It  is  worth  noting  that  while  I  have  undertaken  an  assessment  of  the 

conflicting views of the computational and dynamical frameworks, I do not pretend 

that this schism is ‘the’ most fundamental issue at hand in cognitive science, with 

respects  to  models.  For  the  sake  of  discussion,  I  will  subsume  the  biophysical 

models  of  neuroscience  to  the  dynamical  view (for  it  is  indeed  concerned with 

systems dynamics, and written in the language of calculus), and such models will be 

a central issue in many parts of the following discussion. The particular status of 

connectionism will also be addressed along the way, and as it turns out, it will be a 

critical element in the assessment of the two paradigms’ claims, but I won’t commit 

myself to its characterization yet. It is less a matter of introducing some element of 

suspense for the reader, than a preoccupation with mathematical issues that do not 

lend themselves to a casual overview.
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- I - Computational and dynamical systems

- I.I - Computation and the computational hypothesis in cognitive science

Calculation

From Wikipedia, the free encyclopedia.

A calculation is a deliberate process for transforming one or more inputs into one or more results.  

The term is used in a variety of senses, from the very definite arithmetical calculation using an 

algorithm to the vague heuristics of calculating a strategy in a competition or calculating the chance 

of a successful relationship between two people […]

Computation

From Wikipedia, the free encyclopedia.

Computation can be defined as finding a solution to a problem from given inputs by means of an 

algorithm. This is what the theory of computation, a subfield of computer science and mathematics,  

deals with. For thousands of years, computing was done with pen and paper, or chalk and slate, or 

mentally, sometimes with the aid of tables […]

In order to give a fair  treatment to the debate between the computational 

framework  in  cognitive  science  and  its  more  recent  contender,  the  dynamical 

framework, we firstly have to present the two positions in some detail, concerning 
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their technicalities and their history. We thus begin with the dominant view, that of 

computation.  Exactly  what  is  it  that  the  computational  hypothesis  entails  in  the 

realm of  cognitive science?  In order  to  answer that  question,  we have to  firstly 

characterize the theory of computation,  secondly,  distinguish two complementary 

yet  different  conceptions  of  computation,  and  thirdly,  link  this  theory  to  the 

exploration of cognition. It will also become evident that the term ‘computational’ 

refers to a great many things, and perhaps unsurprisingly as such, since its mere 

formal origins portrayed the concept in a vague, abstract sense.

- I.I.I - Origins

Mathematics spawned the concept of computation. The issue at hand, at the 

dawn of the twentieth century, was the question of which formal problems could be 

solved,  and  which  couldn’t  be.  Thus  a  formal  method  of  analysis  had  to  be 

developed to this end. The issue wasn’t trivial at all: defining which set of relations 

could be solved was quintessential to formal analysis, and to all of the quantitative 

sciences using such formalisms. Science being dependent on mathematics, defining 

the  class  of  problems  that  could  in  principle  be  effectively  and  quantitatively 

formalized was no mere undertaking. But just what is a formally solvable problem? 

Fregean  logic  (and  its  successors)  and  most  if  not  all  of  mathematics  model 

interesting relations as functional relations between arguments and values. As odd as 

it may appear, the very definition of a function is not that old, it  was coined by 

Leibniz in the late seventeenth century in his development of calculus. Euler later 

(middle of the eighteenth century) extended the concept to all expressions composed 

of arguments. When Weierstrass suggested the adoption of arithmetic as a basis for 

calculus rather than geometry, in the late nineteenth century, Euler’s conception of a 

function took over the entire  field  of  mathematics.  Thus,  functions are a  special 

subset of relations, linking each element of a set to a unique element of another (or 
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the  same)  set.5 Such  relations  permit  effective  quantitative  analysis  and,  by 

extension, effective and workable science.

As  we  mentioned  at  the  beginning  of  this  chapter,  the  most  abstract 

definition of computation involves a procedure by which one finds a solution to a 

problem, given one or more input values (or initial conditions in a broader sense). 

This procedure is commonly named algorithm, and further characterized as a finite 

and well-defined set of instructions that will produce an equally well-defined result. 

Mathematicians thus devised models to meet the challenge of computable problems, 

of which the effective characterization is to be treated as functions and arguments. It 

was eventually assessed by Alonzo Church (1936ab) and  Alan Turing (1936) that 

the class of computable functions is equivalent to the class of functions defined by 

the following models:

- recursive functions

- lambda calculus

and that class of computable functions is also definable as algorithms calculable by:

- Markov algorithms

- register machines

- Post systems

- Turing machines6

In terms of computation, the preceding formalisms, and algorithms operating 

over such formal languages, were shown to be equivalent in computational power. In 

other  words,  any  and  all  computations  that  can  be  ‘performed’  through  one 

formalism, can in principle also be performed through any other. For the sake of 

mathematical  enquiry,  that  means  that  many  classes  of  problems are  effectively 

computable, spanning from partial functions to computable complex numbers, and 

5 Formal definition of a function: a function f from a set X of input values to a set Y of possible output 
values (written as f : X → Y) is a relation between X and Y which satisfies:

1. f is total, or entire: for all x in X, there exists a y in Y such that x f y (x is f-related to y), i.e. 
for each input value, there is at least one output value in Y. 

2. f is many-to-one, or functional: if x f y and x f z, then y = z. i.e., many input values can be 
related to one output value, but one input value cannot be related to many output values.

6 Appendix I describes in details the class of computable functions and its equivalents.
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find applications even into chaos and quantum related problems. On the other hand, 

many  more  magnitudes  of  formal  problems  involved  in  the  construction  of 

mathematical proofs and mind-boggling numbers are said to be uncomputable, for a 

variety of reasons, such as uncountability, computational complexity classes, or the 

apparent  impossibility  of  subsumption  of  interesting  phenomena  under  a 

deterministic formalism (for certain areas of applied mathematics), et caetera. This 

is a very important issue in computability theory with regard to the rest of this essay, 

for part of the controversy at hand between computational and dynamical enthusiasts 

is the relevance and scope of the formal tools of computability theory with respect to 

cognitive science.

- I.I.II - Queering up the concept of computation

It  is  worth  mentioning,  if  not  essential  to  underline  the  computational 

equivalence  in  power  of  computable  functions,  and  the  algorithms  defined  over 

them, to the familiar digital computer, with the relevant yet secondary criterion of 

requiring infinite memory in the definition of an abstract computer, by opposition to 

the finite constraints of implemented computational devices. The Turing machine is 

an abstract model of an algorithm which can calculate any and all of the computable 

functions. But the concept of computation itself is very large, and while a recursive 

function is calculable by a Turing machine, these two concepts are not identical. 

Recursive  functions  are  the  class  of  functions,  from natural  numbers  to  natural 

numbers, that are computable, but they are a matter of discrete mathematics almost 

exclusively, namely number theory and combinatorics (the issue of computable reals 

and complex numbers will be raised in chapter III). The study of algorithms that are 

Turing Machines is an extension of applied mathematics and computer science, and 

as  such  concern  both  empirical  and  formal  matters.  Thus  we  can  draw  a  first 

distinction  between  the  concepts  of  computable  functions  (a  strictly  formal, 

mathematical concept), their computational equivalent classes (formal systems such 

as programming languages in computer science, generative grammars in linguistics, 

etc),  and  the  algorithms  defined  over  Turing  Machines,  which  concern 
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implementation issues and are as such beyond the scope of an exclusively formal 

account.  Yet  another  contrast  worth  mentioning,  related  to  the  aforementioned 

distinction between abstract  and material  computers,  is between universal  Turing 

machines  or  UTMs,  a  definition  of  an  algorithm  given  infinite  resources  of 

calculation,  and  digital  computers,  the  actual  implementation  of  such  abstract 

devices.  For  the  purpose  of  clarification,  further  references  to  systems based on 

computation will  either call  upon a MCS (a mathematical  computational system, 

pertaining to formal models), or a RCS (a real computational system, viz. a system 

which actually performs computations).

We  thus  draw  an  elementary  distinction  between  a  first,  permissive  but 

trivial,  formal  definition  of  computability  (large  computation,  viz. anything 

effectively represented as recursive), versus the narrow, and additionally empirical, 

concept  of  Turing-computation7 (symbolic,  discrete,  and serial  computation,  both 

abstract  and  implemented).  Of  particular  interest  to  us,  then,  the  Church-Turing 

thesis as it  is commonly named, thus concerns the nature of mechanical devices, 

beyond mathematical  problems.  Following Turing,  “Every  function which would 

naturally  be  regarded  as  computable  can  be  computed  by  a  Turing  machine.” 

(Turing,  1936, p.  230) As fundamental  as it  is,  this thesis can  not be proven or 

disproven by formal means, since the concept of computable function used in the 

formulation is too vague. Some view the Church-Turing thesis as a physical law 

(viz. a nomological statement), since it can’t be mathematically or logically proven.

Perhaps  the  problem lies  in  the  fact  that  the  concept  of  computation,  in 

Turing’s sense, relies on another equally vague concept, that of algorithm. A coarse 

characterization of an algorithm states that: (i) the algorithm consists of a finite set 

of simple and precise instructions that are described with a finite number of symbols, 

(ii) the algorithm will always produce the result in a finite number of steps, (iii) the 

algorithm can in principle be carried out by a human being with only paper and 

7 Hereafter, I shall use the term of (symbolic) Turing-computation to refer to symbolic computation, 
and computation or computability to refer to the class of computable functions, as is understood by 
Turing computability.
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pencil, and (iv) the execution of the algorithm requires no intelligence of the human 

being except that which is needed to understand and execute the instructions.8 Now, 

as intuitive as it may be, the concept of algorithm is not formally defined, since there 

is no means to so characterize what is meant by ‘simple and precise instructions’ and 

‘required intelligence for the execution of the instructions’.

Those  conceptual  vagaries,  as  harmless  as  they may seem for  matters  of 

mathematics and information sciences,  are  in my opinion not only the source of 

much of the confusion in the clashes of the many proponents of computationalism in 

areas  such  as  cybernetics,  early  cognitive  psychology  and  classic  artificial 

intelligence9, but also one critical point of dissension between computationalists and 

dynamicists. Such distinctions in matters of computation will thus be essential in the 

following discussion.

- I.I.III - Cognition as computation

What  does  all  of  this  have  to  do  with  cognition?  The  computational 

hypothesis  in  cognitive  science  (CHCS),  the  dominant  conceptual  framework  in 

cognitive  science,  is  based  on  the  complementary  theses  of  (i)  functionalism, 

roughly,  the  philosophical  idea  that  mental  states  are  functional  states  (the 

ontological commitment of cognitive functionalism), and can thus be accounted for 

without  taking  into  account  the  underlying  physical  substrate,  but  instead  by 

attending to (here, representation-laden)10 functional states (the epistemological part 

of  functionalism),  and  (ii)  cognitivism,  the  epistemological  position  in  the 

philosophy  of  mind  which  argues  that  mental  functions  can  be  understood  by 

quantitative, positivist and scientific methods (for instance, that such functions can 

be described through information processing models for the sake of psychological 

modeling).

8 A. Markov (1960).
9 Also coined ‘GOFAI’,  for good old fashioned artificial  intelligence,  by John Haugeland (1985, 
1997).
10 Most important in the case of the CHCS, a notion that we will explore further in chapter 3.
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Intelligent behavior had been, from the early years of the 20th century until 

the 1950s, studied under the dominating paradigm of behaviorism, a strict empirical 

approach  mainly  concerned  with  the  naturalization  of  human  activity  through 

external  observation.  Heralds and leaders of this  paradigm indeed dominated the 

North-American academic scene during the first half of the 20th century, with figures 

such as Watson (1913) and Skinner (1938) in psychology, Bloomfield (1933) in 

linguistics, and the associated endeavors of Carnap (1966) and Hempel (1966), in 

the  form  of  logical  positivism  in  philosophy.  But  the  shortcomings  of  its 

methodology and concepts, along with the evolution of ideas in novel research areas, 

gave way to the rise of cognitivism. Daring and far reaching projects shifted the 

obsession  with  externalism  to  inward  and  mechanistic  exploration,  spawning 

cybernetics11,   information science12,  cognitive linguistics13,  and the foundations of 

artificial intelligence14, to name a few (This list is by no means exhaustive). Further 

works along interdisciplinary boundaries, concerning conceptual and methodological 

issues, have since then both enriched and plagued the computational view.

The functionalist thesis stated above is foundational in cognitive science, as 

mental events are to be distinguished from the physical substrate on some ground 

(be it properties, if not in terms of substance), albeit to some degree of sophistication 

that has evolved beyond the traditional philosophical divide imposed by Descartes. 

Indeed, 20th century sciences of mind and behavior thrived to come to terms with 

what we call the mind-body problem, but could not escape the boundaries imposed 

by  our  intuitions  on  the  matter.  That  is  precisely  what  led  to  the  adoption  of 

cognitivism: the adoption of a scientifically rooted view of the mind, founded on a 

functionalist  stance,  and  drawing  upon  information  science  to  model  language, 

11 championed by Rosenblueth, Wiener, and Bigelow (1943, also Wiener, 1948), von Neumann 
(Aspray & Burks, 1987, for a collection of papers), McCulloch and Pitts (1943)
12 Turing (1950) and Shannon (1948)
13 Chomsky (1957, 1968, among others)
14 pioneered by Newell and Simon (1956, also Newell, 1980), Minsky and Papert (1969, also 
Minksy, 1968)
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memory, perception, sensorimotor processes, etc., or in fewer words (but in a coarse 

way), everything relating to intelligent behavior.

Most  endeavors  traded  on  higher  levels  of  cognitive  processes,  such  as 

semantics, deliberation, decision-making, et caetera, like the works of Chomsky and 

his  generative grammars  (1968),  Fodor  and his  language of  thought  (1975),  and 

some of the abovementioned thinkers in artificial intelligence, too name a few. Such 

proponents are usually dubbed ‘symbolicists’, since they championed philosophical 

and scientific views of cognition in the raw and formal way of Turing, namely the 

view of cognition as the manipulation of symbols, in the likeness of a universal or 

implemented  Turing  machine,  exhibiting  characteristics  such  as  discreteness, 

seriality, and intentional (representational) contents individuated through semantic 

properties.

Thus did computationalism provide a framework for cognitive science that 

could account for mental phenomena in many advantageous avenues:

- the age-old problem of the separation between mind and body, which had 

been made quite popular in philosophy through the works of Descartes, was 

tossed  aside  through  a  functionalist  conceptualization,  abandoning  a 

substantiative conception of everything mental to the benefit of a ‘mind is to 

the brain as what  the software is to the computer’  stance,  in an effort  to 

naturalize cognition,

- a formal account of cognition was able to link such mental-related faculties 

like language use, logico-mathematical abilities, memory, categorization,  et 

cetera,  with  the  machine-like  conception  of  a  Turing  machine,  viz. the 

implementation of an effective, formal and generalizable procedure meant to 

carry out operations on functions and arguments,

- the formal and technical properties of computational models were meant to 

reflect cognitive ones, including

o the  representational  nature  of  mental  tokens,  which  exhibited 

intentional, content-bearing states, much like language. The symbolic 
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aspect  of  Turing-like  computation  embraced  by  symbolicists  was 

seen as an essential  property of high-level  cognition,  although the 

case  of  lower-level  cognition  would  eventually  challenge  such  a 

restrictive take on computation,

o the discreteness and seriality of a Turing machine-inspired conception 

of  cognition  also  seemed  to  fit  well  the  aforementioned  mental 

faculties of language and logico-mathematical  performance.  Turing 

machines (and common digital computers) process information in a 

serial  way  (successive  operations),  over  discrete  (distinct,  non 

continuous)  values,  the  content  of  which  is  individuated  by  a 

representational relation, from symbol to object. This relation is thus 

conventional, arbitrary.

Other  thinkers  slowly  but  surely  championed alternative  views,  of  which 

connectionism  is  the  most  popular  inheritor.  On  grounds  of  psychological 

plausibility,  the  parallel  and  distributed  nature  of  information  processing  in  the 

brain,  and  the  implausibility  of  content  individuation  through discrete,  symbolic 

tokens  in  a  significant  manner  even  for  simulated  cognition,  some  theorists15 

resurrected the low profile heritage in cognitive neuroscience of individuals such as 

the  abovementioned  McCulloch  and  Pitts  (1943),  Hebb  (1949),  and  Rosenblatt 

(1962), to name a few. This would lead to a radical turn in computational modeling, 

and the pretences of artificial  intelligence would thereafter be severely modified. 

The issue of whether some sophisticated models of connectionism have more to do 

with computation or dynamical models will be examined throughout this paper, for 

it  has been raised as  an argument  to  support  the  claims of  protagonists  of  both 

frameworks. Chapter IV examines the issue of connectionism comprehensively, and 

with more minutiae.

15 like Churchland (1986) and Churchland (1989), Rumelhart and McClelland (1986, also Rumelhart, 
1989), and Smolensky (1988, 1989)
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- I.II - Dynamics and the dynamical hypothesis in cognitive science

Dynamical system

From Wikipedia, the free encyclopedia.

In engineering and mathematics, a dynamical system is a deterministic process in which a function's 

value changes over time according to a rule that is defined in terms of the function's current value 

[…]

Dynamics (mechanics)

From Wikipedia, the free encyclopedia.

In mathematics and physics, dynamics is the branch of mechanics that is concerned with the effects 

of forces on the motion of objects […]
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The  proponents  of  the  dynamical  approach  to  cognitive  science  are 

dissatisfied with the dominant view of cognition as computation. Some suggest a 

radical  paradigm shift,  pretending  that  dynamical  systems  theory  and dynamical 

modeling, inconsistent with the computational view, bear all of the necessary and 

sufficient concepts and methods for the study of cognition,  while others adopt a 

moderate  position,  suggesting  a  number  of  prescriptions  to  compensate  for  the 

shortcomings  of  the  CHCS,  drawing  from  both  the  mathematical  minutiae  and 

qualitative resources of dynamics. We will firstly characterize what dynamics stand 

for, secondly, observe two varieties of dynamical systems that account for formal 

and  empirical  types  of  systems,  and  thirdly,  expose  the  dynamical  hypothesis 

concerning cognitive science.

- I.II.I - Origins
Calculus

From Merriam-Webster Online Dictionary.

Function:noun Inflected Form(s): plural cal·cu·li also -lus·es Etymology: Latin, stone (used in 

reckoning) 1 a : a method of computation or calculation in a special notation (as of logic or symbolic  

logic) b : the mathematical methods comprising differential and integral calculus […] 4 : a system or 

arrangement of intricate or interrelated parts.

Whereas computability is the domain of applied discrete mathematics and 

computer science (although it also draws on information science), dynamics are a 

subset of applied mathematical analysis and the branch of physics concerned with 

machines  or  machine-like  objects,  in  the  broad  sense  of  the  area  of  study  of 

mechanics, but more specifically within the branch of dynamics, the study of the 

effects of forces on the motion of objects. Thus on one hand, dynamics are derived 

from  empirical  studies  in  the  physics  of  motion  and  forces,  with  their  most 

significant lineage tracing back to Newton, in the late seventeenth century, when he 

proposed  his  three  laws  of  motion  (the  law of  inertia,  the  fundamental  law  of 

dynamics,  and the law of reciprocal actions).  On the other hand, dynamics have 

much to owe to the mathematical formalism that Newton and Leibniz16 developed 

16 Some evidence suggests that calculus-related methods and concepts were known by Egyptian and 
Hellenistic thinkers, notably Eudoxus and Archimedes.
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concurrently, but independently: calculus. For Newton, calculus was the necessary 

means to quantify and express his findings in classical mechanics. Although calculus 

is thus connected to the advent of Newtonian mechanics, it has thereafter evolved 

somewhat  independently,  along  the  lines  of  abstract,  fundamental  mathematics.17 

Calculus is built on studies in algebra and geometry, and relies on the notions of 

functions  and  limits.  It  basically  involves  the  study  of  two  concepts  that  are 

indissociable, essentially complementary: that of rates of change and accumulation 

of quantities. These two concepts are formally expressed by differential and integral 

calculi, respectively.

The developments of infinitesimal calculus, as it is commonly called, were 

expanded to all of physics’ domains in the following centuries, from particle physics 

to astrophysics, but even into the life sciences, humanities, and social sciences. On 

the other hand, mathematicians like Laplace and Lagrange brought the concepts and 

methods of dynamics to a full bearing into the study of mathematical analysis, the 

study of real and complex numbers, and of the functions defined over them. Thus the 

interactions  between  the  empirical  applications  of  dynamics  and  its  formal 

counterpart,  calculus,  have  been  mutually  enriching,  contributing  to  great 

developments in physics and mathematics, while inspiring other disciplines to make 

use of such conceptual and methodological tools. Following Giunti (1995) and van 

Gelder and Port (1995), we can conceive of dynamics’ contribution to other areas of 

science  as  twofold:  through  the  use  of  (i)  dynamical  systems  theory,  we  have 

concepts, qualitative methods and models from which to draw parallels with other 

phenomena,  develop  explanations,  and  make  predictions,  and  (ii)  dynamical 

modeling is  the formal  means by which we express  the  relevant  features  of  the 

phenomena under study, both qualitatively and quantitatively, through infinitesimal 

calculus, ergo differential and integral equations.

- I.II.II - Varieties of dynamical systems18

17 Areas  and  extensions  of  calculus  include:  differential  equations,  vector  calculus,  calculus  of 
variations, complex analysis, time scale calculus, infinitesimal calculus, and differential topology.
18 All references for this section, A. Norton (1995).
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The following characterizations are meant to form a simple introduction and 

overview of the relevant features of dynamics. We must first distinguish between a 

real dynamical system (RDS) and a mathematical dynamical system (MDS), namely 

the  distinction  between  the  phenomenon  under  observation  (a  system  in  which 

features  or  elements change over  time interdependently,  like the weather,  an ant 

colony,  the  cardiovascular  system,  etc.),  and  the  mathematical  model  used  to 

represent  the  system’s  qualitative  changes  through  variations  in  the  features’  or 

elements’  magnitudes.  A broad definition of dynamical systems19 is  that  they are 

deterministic processes in which a function’s value changes over time, according to 

a rule that is defined in terms of the function’s current value. More precisely, in the 

words of Norton (1995, p. 45),

A mathematical dynamical system consists of the space of all possible states of 
the system together with a rule called the  dynamic for determining the state 
which corresponds at a given future time to a given present state.

The algebraic or geometrical representation of the collection of all possible/relevant 

values is called the state space of the system.

Of major hindrance to the study of dynamics are the sensitivity to initial 

conditions and the nonlinearity of most systems. As Poincaré pointed out in the late 

19th century, most systems, even composed of a few variables, do not allow for the 

simple calculation of a solution. Indeed, most nonlinear, and even some piecewise20 

linear  systems,  exhibit  chaotic  behavior,  viz. apparently  random,  unpredictable 

behavior  from  deterministic  systems.  Poincaré  thus  suggested  that  dynamical 

systems theory could be the basis for a serious qualitative method of analysis, with 

regards  to  the  intractability  of  most  systems.  The  concepts  thereafter  developed 

involve  trajectories,  stability,  recurrence,  attractors  and  bifurcations,  and  generic 

behavior, all of which provide us with useful methodological means of studying the 

19 Source: Wikipedia, under ‘dynamical system’.
20 A piecewise linear system is a system whose mathematical characterizations allow certain areas, 
but not its overall state space, to be calculated through simple algebraic functions.
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overall  behavior  of  simple  and complex  systems,  and  generate  explanations  and 

predictions by observing their state space. In Norton’s words again (id., p. 47):

[…]  the  state  of  mathematical  art  dictates  that  any  tractable  mathematical 
model should not have too many variables, and that the variables it does have 
must be very clearly defined. As a result, conceptually understandable models 
are sure to be greatly simplified in comparison with real systems. The goal is 
then to look for simplified models that are nevertheless useful.

The calculus-based formalism of dynamics allows for two specific types of 

systems, if interpreted in terms of continuity and enumerability of time-dependent 

variable evolution, namely continuous dynamics and discrete dynamics. The formal 

descriptions of the former are the (algebraic) differential equations and (geometrical) 

flows,  and  for  the  latter,  the  (algebraic)  difference  equations  and  (geometrical) 

diffeomorphisms.  While  continuous  dynamics  are  essential  to  both  fundamental 

mathematics (analysis) and applied mathematics (mechanics), discrete dynamics are 

a useful tool to predict the qualitative changes of both linear and nonlinear systems. 

Discrete dynamics also have similarities with the large field of discrete mathematics 

and  computability  theory,  but  are  interested  in  describing  and  predicting  time-

dependent changes within the state space of the concerned system. Such similarities 

and differences will play an important role in the following discussions.

A dynamical system is said to be discrete if its time parameter is measured in 

discrete steps,  i.e. that its state space on the time parameter is a metric of evenly 

spaced  discrete  jumps.  Such  systems  are  modeled  through  recursive  relations21. 

Discrete time dynamics use difference equations, equations defined over integers 

(for  time values)  as  well  as  reals  (for  values of  other  parameters),  by means of 

recursive  functions  being  iterated  on  chosen  initial  values.  When  a  system  is 

modeled  has  having  a  continuous  time  parameter,  i.e. its  metric  for  time  is  a 

continuous  progression  over  the  real  numbers,  it  is  expressed  through  ordinary 

21 For reference,  the logistic map is a simple nonlinear second-degree polynomial,  which can be 
expressed discretely: xt+1=axt(1-xt).
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differential equations (ODE) or partial differential equations (PDE)22. A differential 

equation in one variable, or one dimension, is an equation composed of a function x 

and one or  more of  its  derivatives.  Partial  differential  equations  are  much more 

complex, involving partial derivatives of functions of more than one variable. The 

distinction  between  linear  and  nonlinear  systems  is  also  very  important:  linear 

systems have solutions that form a vector space, and allows the reduction of the 

problem from calculus to linear algebra. Indeed, one can solve a continuous linear 

differential equation by reducing it to an algebraic equation, through an algorithm 

called the Laplace transform method. But as mentioned above, most nonlinear, and 

some piecewise linear systems challenge our means of calculation: they can’t be 

solved explicitly.  The vast  majority of natural  phenomena being nonlinear under 

mathematical  formalization,  we  have  to  rely  on  sophisticated  qualitative  and 

quantitative means of analysis.

Geometrical and topological considerations help greatly in the understanding 

of such systems. Given a vector field F, one can find the solution trajectories that 

pass through the field in the proper way (i.e. given some initial parameters and the 

geometrical progression of the relevant differential equations). Each trajectory then 

corresponds to a set of input parameter values and their solution to the equations (see 

figures 1, 2 and 3 below for examples of vector fields and solution trajectories). The 

full solution of an equation is called a flow, using the notation φ(t,x), and describes 

the position of a point x on its solution trajectory for a time t.  Note that not all 

solution trajectories are necessary or relevant, and can be defined over a restricted 

surface, or a manifold for higher dimensional state spaces.

22 For  reference,  the  logistic  map can be  defined  over  the  reals  through the  following ordinary 
differential equation: dx/dt=ax(1-x).
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Two  interesting  concepts  emerging  from  geometrical  and  topological 

characterizations of dynamical systems are attractors and bifurcations. According to 

Norton (id., p. 56),  “attractors are important because they represent the long-term 

states of systems.” Roughly, attractors can be defined in the following way:

Let F be a vector field on Rn, with flow φ. A closed set A ⊂ Rn is an attractor 
for this flow if (i) all initial conditions sufficiently close to A have trajectories 
that tend to  A as time progresses,  (ii)  all  trajectories that start  in  A remain 
there, and (iii) A contains no smaller closed subsets with properties (i) and (ii). 
(id.)

An interesting subset of attractors is that of the strange or chaotic attractors, which 

exhibit  diverging  nearby  trajectories  following  similar  overall  directions,  and 

generally possess a fractal structure, where large scale variations are also found on 

smaller  scales.  Bifurcations  reflect  states  of  transitions  in  a  system,  “when  a 

parameter value is reached at which a sudden change in the qualitative type of the 

attractor occurs.” (id., p. 57) Bifurcations can be seen as thresholds where certain 

parameter values generate different dynamical behaviors. Thus, the system’s overall 

behavior  is  dependent  on  the  conjunction  of  the  dynamic  rule(s)  and  input 

parameters. Attractors and bifurcations are of great importance in even the simplest 

systems.  To  clarify  this  point,  let  us  briefly  consider  Norton’s  example  of  a 

frictionless  mass-and-spring  system,  versus  a  system which  takes  friction  under 

consideration. The passage from a MDS of a frictionless mass-and-spring system, 

whose geometrical representation exhibits a periodic attractor shaped in a circle (for 

it depends on initial values of position and velocity only), to a more complex system 

involving the drag force sliding friction, clearly shows that not only is qualitative 

behavior dependent on the parameters involved, but that the simple addition of a 

significant  real  world feature like friction into the dynamics of  a  system greatly 

complicates both qualitative and quantitative analysis. (see figures 4 and 5 below)
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4 5
Figure 4 (left)  is a geometrical representation of the attractor shape of the frictionless mass-and-
spring system, given three sets of initial parameters. The abscissa x represents the distance from the 
rest position, and ordinate u is the velocity. Figure 5 (right) is the mass-and-spring system influenced 
by a friction parameter, here a constant in the ordinary differential equations.

- I.II.III - Cognition as a real dynamical system
Dynamical systems theory

From Wikipedia, the free encyclopedia.

Dynamical systems theory is an area of mathematics used to describe the behavior of complex 

systems by employing differential equations.

Proponents of the dynamical systems theory approach to cognition […] believe that differential  

equations are the most appropriate tool for modeling human behavior. These equations are 

interpreted to represent an agent's cognitive trajectory through state space. In other words,  

dynamicists argue that psychology should be (or is) the description (via differential equations) of the 

cognitions and behaviors of an agent under certain environmental and internal pressures. The 

language of chaos theory is also frequently adopted.

What does it mean to have a dynamicist’s view of cognition? The DHCS, or 

dynamical hypothesis in cognitive science23, is the view that cognitive processes and 

related states are best described and explained through the conceptual language and 

models of dynamic systems theory and dynamical modeling. While not incompatible 

with one of the main tenets of computationalism, viz. the thesis of functionalism (by 

taking into account the essentially embodied nature of cognition), it does clash with 

the strong claim of cognitivism, in the matter of what type of model best explains 

cognitive  processes.  Against  the  information  processing  models  championed  by 

classic  computation  and  classic  artificial  intelligence  (Haugeland’s  GOFAI view 

mentioned above), dynamicists suggest that the mathematical models of dynamics 
23 The DH, or dynamic hypothesis, was coined by van Gelder (1998b). The DHCS acronym is used 
here to contrast with Piccinini’s CHCS.
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offer  a  more  accurate  depiction  of  cognitive  processes,  and  allows  formal  and 

empirical coherence at all levels of cognitive modeling. This section exposes the 

concepts  championed  by  the  core  assumptions  of  the  majority  of  dynamicists, 

namely  the  interdependence  of  context,  corporeality,  and  cognitive  processes 

(embeddedness/situatedness and embodiment), the simultaneity and time-dependent 

evolution  of  processes,  the  emergence  of  structure  and  behavior  from cognitive 

processes’ interactivity, and the heterogeneity of cognitive time scales.

According to van Gelder (van Gelder and Port, 1995, p. 2)24, “the heart of the 

problem is  time.  Cognitive  processes  and  their  context  unfold  continuously  and 

simultaneously in real time.” Now, intuitions and conceptual issues about cognitive 

processes are one thing, but dynamicists insist that this deeper  a priori problem is 

the  source  of  much  of  the  misconceived  models  of  cognition,  a  legacy  of 

computationally framed cognitivism that favored Turing’s metaphor of calculation 

to generalize it as a theory of mental processes. But computation lacks many features 

that  seem  essential  to  frame  cognition  properly,  according  to  dynamicists.  van 

Gelder et al hold that we already have many reasons to hold on to the DHCS:

We know,  at  least,  these  very  basic  facts:  that  cognitive  processes  always 
unfold in real time; that their behaviors are pervaded by both continuities and 
discretenesses;  that  they  are  composed  of  multiple  subsystems  which  are 
simultaneously active and interacting; that their distinctive kinds of structure 
and complexity are not present from the very first moment, but emerge over 
time; that cognitive processes operate over many time scales, and events at 
different time scales interact; and that they are embedded in a real body and 
environment. (id., p. 18)

The following issues are meant to illustrate what dynamics have to offer in view of 

the shortcomings of the computational theory of mind.

Cognition,  time,  and  the  multiplicity  of  time  scales.  Whereas 

computationalism  models  cognitive  processes  in  sequences  of  discrete  steps, 

dynamics help model processes in real time, specifying not only the states of the 

24 All references for this section are taken from van Gelder and Port (1995).

25



system but also their time evolution. Time is continuous in dynamical models, it is 

also  a  quantity,  or  magnitude,  on  which  other  cognitive  related  magnitudes  are 

dependent, thus providing analyses rich in resolution and detail. Dynamicists stress 

the issue of cognition occurring  in  time, not simply  over  time like computational 

models  frame  cognition.  To  say  that  cognition  unfolds  in  time  is  to  hold  that 

cognitive  processes  are  time  dependent,  and  that  considerations  of  simultaneity, 

embeddedness,  and  interdependence  of  a  multiplicity  of  time scales  (like  neural 

processes time, perceptual time, decision making time, learning time, and maturation 

time)  are  fundamental  to  cognition  itself.  Dynamics  are  precisely  the  kind  of 

mathematical means to formalize processes that occur over time, with differential 

calculus  pertaining  to  rates  of  change,  and  integral  calculus  concerning  the 

accumulation  of  quantities.  The  interdependence  of  multiple  time  scales  is 

formalized  by  using  multiple  variables  within  those  equations,  which  stand  for 

relevant cognitive magnitudes. State variables and parameters can both be seen as 

changing, thus representing the coevolving nature of processes on different scales.

State  continuity,  and  the  multiplicity  and  simultaneity  of  interactions. 

Dynamics provide formal  tools  to model  both the continuity  and discreteness of 

processes  and  states,  whatever  best  suits  the  phenomenon  under  observation. 

Dynamicists are concerned with continuity not only in time, but also in state, of the 

processes underlying cognition. While many cognitive tasks are modeled through 

discrete  dynamics,  such  as  language-related  performances  and  logical  and 

mathematical calculations, a much larger spectrum of processes unfold continuously 

in time and state, such as sensorimotor processes and related procedural tasks. As 

pointed out  by van Gelder,  discreteness  of  states is  also quite  often a  matter  of 

perceiving seemingly discrete qualitative changes in continuous processes, such as it 

is conceptualized in dynamics by the use of the term catastrophe,  viz. sudden and 

dramatic  changes  in  the  behavior  of  a  system,  when  a  parameter’s  change  in 

magnitude causes a bifurcation, as seen in the previous section. Similarly, dynamics 

offers  incomparable  advantages  for  the  formalization  of  simultaneity  and 
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interactivity,  and at all  levels of cognitive processes,  such as in the modeling of 

interactive agents in interpersonal tasks, sensorimotor processes, and neurobiological 

modeling,  to  name  a  few.  The  simultaneity  and  interactivity  of  component 

subsystems,  or  of  cognitive  agents,  is  essential  to  carrying  on  individual  and 

collective tasks, all of which fall under the domain of calculus and dynamics in the 

framing  of  overall  and  local  behavior,  and  allows  predictions  based  on  both 

quantitative and qualitative methods.

Self-organization and emergence. The organization of cognitive systems and 

processes exhibits complex and intricate design, or structure. Dynamicists propose to 

not only describe existing cognitive structures, but also to provide a framework able 

to explain how such structures came to be in the first  place, namely a means to 

explain the emergence of such design. The conceptual and formal tools of dynamics, 

because  they  involve  the  modeling  of  spatial  and  temporal  structures,  offer  the 

possibility of analyzing the time and state evolutions, or morphogenesis, of complex 

structures in physics, chemistry, and biology. There are therefore good reasons to 

believe  that  using  dynamical  systems  theory  and  dynamical  modeling  for  the 

purpose of studying the morphogenesis of cognitive processes and structures is a 

heuristic avenue. Many physical, chemical, and biotic systems are also studied under 

the stance of self-organization principles, which holds that some structures come 

into existence with neither a plan, nor an independent, external builder, but through 

simple formal and empirical principles governing the organization of elements into 

complex and heterogeneous wholes. Here again, dynamics are of great use to model 

such phenomena and to elaborate explanations. Dynamicists interested in the study 

of cognition propose that we have evidence towards such a view of mental processes 

(chapter II will present an application of such theses in the study of ontogenetic 

dynamics), and even purport to link cognition and evolution as emergent structures 

on a shared spectrum,  only pertaining to different time scales dynamics.

Embeddedness  and  embodiment. Dynamicists  refuse  to  hold  on  a 

conservative definition of a cognitive system as a strictly internal structure. In order 
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to  account  for  cognitive  processes,  we must  integrate  considerations  about  their 

neural  correlate,  their  corporeality,  and  their  embeddedness  or  situatedness  in  a 

context,  an  environment.  But  neural  processes,  behaviors,  and  the  whole  of 

environment  are  already quite  efficiently  and  heuristically  modeled  through 

dynamics! It thus appears that dynamics, beyond their being desirable in the study of 

cognition, might even be unavoidable as such. As van Gelder points out, it is also a 

matter of advantage that is put forward here, since accounts in terms of dynamics for 

internal  matters  of cognition find themselves  in continuity  with the dynamics of 

behavior and context, thus facilitating the integration of a variety of systems for 

explanatory and predictive purposes. Such an integration of component systems into 

what constitutes cognition reflects the interdisciplinary endeavors found in cognitive 

science,  since neither neuroscientific,  behavioral  or ethological,  psychological,  or 

social systems can be exhaustive by themselves of what counts as cognitive. The 

supporters of the DHCS propose to study precisely the interactions between internal 

cognitive processes, the body, and different contexts or environments. Dynamicists 

accuse  computationalism  of  having  simply  avoided  the  problems  posed  by  the 

discontinuity and heterogeneity of systems. By tacitly positing the autonomy of the 

study of cognition, computationalists have thus avoided, and failed to account for, 

most, if not all of the abovementioned issues raised by the DHCS. In van Gelder’s 

words,

[…]  whenever  confronted  with  the  problem  of  explaining  how  a  natural 
cognitive system might interact with another that is essentially temporal, one 
finds that the relevant aspect of the cognitive system itself must be given a 
dynamical account. It then becomes a problem how this dynamical component 
of  the  cognitive  system  interacts  with  even  more  ‘central’  processes.  The 
situation repeats itself, and dynamics is driven further inward […] (id., p. 30)
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6   7

Worth  mentioning:  Churchland  (1989)  used  dynamical  representations  (figures  6  and 7)  of  the 
behavior  of  formal  neurons  while  promoting  connectionism against  classical  (symbolic)  Turing-
computation  models  (the  symbolic  view of  cognition).  Why bother,  a  dynamicist  might  ask,  to 
employ  a  computational  framework,  when  we  have  everything  we  need  in  biophysics  and 
neuroscience to characterize the (still very mechanistic) functional decomposition of informational 
processes in nonlinear and differential equations, rightful domain of dynamics? (see Giunti, Piccinini, 
and van Gelder’s arguments in chapter III about that position)
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-  II  -  Case  study:  computational  and  dynamical  accounts  of  sensorimotor  
cognition

Cognitive Science

From Wikipedia, the free encyclopedia.

The term "cognitive" in "cognitive science" is "used for any kind of mental operation or structure that  

can be studied in precise terms." (Lakoff and Johnson 1999) This conceptualization is very broad, 

and should not be confused with how "cognitive" is used in some traditions of analytic philosophy, 

where "cognitive" has to do only with formal rules and truth conditional semantics. (Nonetheless,  

that interpretation would bring one close to the historically dominant school of thought within 

cognitive science on the nature of cognition - that it is essentially symbolic, propositional, and 

logical.)

The earliest entries for the word "cognitive" in the OED take it to mean roughly pertaining to "to the 

action or process of knowing". The first entry, from 1586, shows the word was at one time used in the 

context of discussions of Platonic theories of knowledge. Most in Cognitive science, however,  

presumably do not believe their field is the study of anything as certain as the knowledge sought by 

Plato.
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The  conceptual  frameworks  of  computation  and  dynamics  having  been 

summarily exposed, we have then observed their bearing on the study of cognition. 

This  chapter  presents  an  application  of  the  previously  defined  frameworks  to 

empirical research on a particular kind of cognitive processes, sensorimotor control 

and learning. This contextualisation of the aforementioned concepts and models of 

computational  theory  and  dynamics  is  essential  to  the  following  discussion, 

presented in chapter III, since it will provide us with a clear picture of the claims and 

allegations  upon  which  are  based  most  of  the  misunderstandings  and  quarrels 

between supporters of both frameworks. Both the CHCS’ and the DHCS’ views on 

such  cognitive  processes  are  presented,  and  the  quantitative  and  qualitative 

properties of the suggested models will be exposed so as to understand their full 

extent,  and  evaluate  their  respective  claims.  Since  computationalism  is  rather 

ubiquitous even in the realm of cognitive neuroscience, I will therefore begin with 

the exposition of the aforementioned evidence dealing with sensorimotor processes. 

In a second section,  I will  then argue about the alleged advantages of switching 

frameworks for a dynamical account of cognitive processes, by opposition to the 

traditional  computational  view.  In  the  last  section,  I  will  present  a  correlated 

dynamical  account  of  sensorimotor  processes  which  bears  explanatory  and 

predictive  significance  to  a  higher  level  of  description,  that  of  developmental 

psychophysiology (more  specifically,  psychophysics)25,  with  the  help  of  Thelen’s 

(Thelen 1995,  Thelen,  Schöner,  Scheier  and Smith 2001,  and Smith and Thelen 

2003) findings and subsequent model. I therefore aim to evaluate the conjectured 

benefits of the adoption of a dynamical perspective on cognition, relative to the (still 

controversial)  shortcomings  of  the  traditional  computational  framework,  while 

25 Psychophysiology is vaguely defined as the science of understanding the link between psychology 
and physiology. Psychophysics appears to be more specific,  defined as the branch of psychology 
dealing with the relationship between physical stimuli and their perception. All references online, 
http://en.wikipedia.org
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showing the relevance of said dynamical account in the rather different studies of 

sensorimotor cognition from neuroscience and psychophysics.

- II.I - The evidence
Kinematics

From Wikipedia, the free encyclopedia.

In physics, kinematics is the branch of mechanics concerned with the motions of objects without 

being concerned with the forces that cause the motion. In this latter respect it differs from dynamics,  

which is concerned with the forces that affect motion […]

Inverse kinematics

From Wikipedia, the free encyclopedia.

Inverse kinematics is the process of determining the movement of interconnected segments of a body 

or model. For example, with a 3D model of a human body, if the hand is moved from a resting 

position to a waving position, how do the connected fingers, forearm, upper arm and main body 

move in response? It is a subject of programming and animating. It is approached often in game 

programming and 3D modeling […]

A  standard  way  to  describe  neuroscientific  evidence  is  through 

neurobiological modeling (Montague & Dayan, 1998), which in turn relies heavily 

on  formal  characterizations  of  more  or  less  sophisticated  computational  design, 

when imported into the arena of cognitive science. By contrasting the conceptual 

language of neuroscientific studies of sensorimotor processes involved in control 

and learning with that of the CHCS, it becomes apparent that neuroscience draws 

upon a mathematical  language that  extends beyond that of computation,  towards 

dynamics. The case study concerns the problem of inverse kinematics, addressed 

from both computational and dynamical perspectives.

Whether we are concerned with what is traditionally considered a high level 

(language  and  decision-making,  to  name  just  a  few)  or  low  level  (emotional 

responses,  sensorimotor  activity)  cognitive  process,  neurobiological  modeling  is 

computation-laden.  As  we  have  seen  in  chapter  I,  both  the  original  forms  and 

contemporary  offshoots  of  cognitive  science  -  including  some  cognitive 

neuroscience - (i) view mental  states as functional states, and (ii) conceive these 

functional  states  as  computational,  viz. to  be  modeled  and  explained  through 
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information processing concepts and schemes.26 Computational functionalism is the 

conjunction  of  the  two,  but  they  are  logically  independent  theses,  according  to 

Piccinini  (2003,  2004b,  2004d).  Part  of  the  ambition  of  this  chapter  is  indeed 

concerned  with  showing  that  while  a  functionalist  account  of  cognition  can  be 

appreciated  from  within  a  computational  framework,  it  does  not  entail  that 

computationalism is the only functionalist model of mental processes, and there are 

different aspects of cognition that are worth scrutinizing.

According to Albright (1993, p. 178), “motion processing serves a number of 

behavioral goals, from which it is possible to infer a  hierarchy of computational  

steps.” (My emphasis) The initial step for motion perception is said to be motion 

detection, more precisely, the perception of motion direction. What purposes might 

motion perception serve? Albright lists a few, such as establishing the volumetric 

structure  of  a  scene,  posture  and  balance  control,  the  appraisal  of  one’s  own 

trajectories  and  possible  collisions,  segregating  visual  inputs  into  objects  and 

background,  and  identifying  and  predicting  the  motion  of  objects  to  respond 

accordingly,  among others.  Each  of  these  sensorimotor  functions  can  be  in  turn 

described computationally and neurophysiologically in detailed steps. Research on 

motion bestows significance to sensorimotor behavior in a causal and mechanistic 

way. For example, parietal cortical stream (areas MT and MST) activity and motor 

control of ocular globes activation (by means of dorsolateral pons) suggests a causal 

relationship from the former to the latter. Functional decomposition is an essential 

part  of  a  mechanistic  explanation,  shared  by  a  plethora  of  sciences,  both 

computational and noncomputational. Thus, following Albright, we can say that the 

main  function  of  motion  perception  for  our  purpose  is  the  affordance  of  motor 

control.  Yet, Albright also attempts to characterize sensorimotor processes in the 

26 A more precise, and therefore different, commitment of cognitivism, which conflates the CHCS 
and  the  possibility  evoked  by  cognitivism  of  a  sound  empirical,  scientific  account  of  mental 
processes. This is not unproblematic, since dynamicists claim to the naturalization of cognition on 
different grounds. It is therefore important to distinguish computationalism as part, but also a stricter 
form, of cognitivism.
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larger  perspective  of  (implicitly)  an  agent  or  organism  and  (explicitly)  an 

environment (this will turn out to be less trivial than it might sound at first):

Detection  and  interpretation  of  these  motions  are  not  only  crucial  for 
predicting the future state  of one’s dynamic world […] but  also provide a 
wealth of information about the 3-D structure of the environment. (id., p. 179)

Can a computational account of cognition, based on functional decomposition, be 

exhaustive of the actual inner workings of sensorimotor processes? What counts as a 

good computational explanation, if not the effectiveness of a simulation inspired by 

neurobiological modeling, with the aim of matching inputs and outputs to and from 

the cognitive unit under scrutiny? Another question that immediately follows, then, 

is: is there any more, or any less computation actually going on in this collection of 

cognitive processes? Perhaps some reversal of perspective is needed to accurately 

characterize these processes.

According to Bizzi, Mussa-Ivaldi and Giszter (1991)27, some neurons must 

calculate  the relative positions of  body/limbs and objects  in  order  to  achieve  an 

adequate  sensorimotor  activity  (based on egocentric  sensorimotor  perception and 

producing  a  behavioral  output).  The  CNS  also  has  neurons  involved  in  the 

calculation of body/limbs- independent perception, or allocentric perception, in the 

representation or signal emission of the concerned objects. In their words:

Recent psychophysical evidence supports the hypothesis that the planning of 
limbs’  movements  constitutes  an  early  and  separate  stage  of  information 
processing.  [...]  during  planning  the  brain  is  mainly  concerned  with 
establishing movement kinematics,  a  sequence of positions that  the hand is 
expected to occupy at different times within the extrapersonal space. […] The 
analysis of arm movements has revealed kinematic invariances. […] The data 
derived  from  straight  and  curved  movements  indicate  that  the  kinematic  

27 See also Bizzi and Mussa-Ivaldi 1998, Bizzi, Tresch, Saltiel, and d’Avella 2000, Mussa-Ivaldi and 
Bizzi 2000, and Gandolfo, Li, Benda, Padoa Schioppa, and Bizzi 2000 for further references on Bizzi 
and colleagues’ research on sensorimotor processes. It should be noted that at no point does Bizzi 
advocate  a  dynamical  stance  over  a  computational  one.  These  orthogonal  considerations  are  the 
author’s designs.
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invariances  could  be  derived  from a  single  organizing  principle  based  on  
optimizing endpoint smoothness. (id., p. 287. My emphases)

Notwithstanding  its  computation-laden  imagery,  this  evidence  is  hardly 

consequent of functional decomposition through a strict computational commitment. 

It translates to computations and interactions between the CNS, afferent visual and 

kinaesthetic inputs, and musculoskeletal outputs – have them calculate on analog or 

discrete  quantities,  whichever  is  more  appealing  –  the  overall  picture  suddenly 

appeals to a different mathematical characterization, that of the changes within and 

outside  a  system according  to  thresholds,  invariants,  nonlinearity  and  obviously, 

motion. Such is the mathematical language of dynamics. We witness the emergence 

of concepts of the likes of optimization gradients, thresholds and invariances (known 

as attractors in systems dynamics), and complex behavioral plasticity resulting from 

simple  nonlinear  ‘organizing  principles’  (which  are  nevertheless  computationally 

mind-boggling for our commonly linear reductivism).

One central theme cherished by proponents of the application of dynamics to 

cognition  is  the  interactivity  between  cognitive  agents  and  their  environment. 

Remarkably, following again Bizzi and his colleagues, the CNS is not the source of 

coordinates in space; it relies on extrinsic information, as in:

[…]  actions  are  planned  in spatial  or  extrinsic  coordinates, [then]  for  the 
execution  of  movements,  the  CNS must  convert  the  desired  direction  and 
velocity of the limbs into signals that control muscles. (id., my emphasis)

This has rather interesting consequences. Given extrinsic coordinates- and kinematic 

invariances- reliance for the CNS to actually ‘do’ something sensorimotorwise, (i) 

sensorimotor cognition is better studied in specific contexts, supporting the claims of 

proponents  of  embodied/situated  cognition,  and  (ii)  the  world  provides  enough 

‘affordances’ in  the language of J.  J.  Gibson (1966, 1979),  and ‘structure’  for  a 

cognitive agent to navigate without having to build a new world from scratch. In the 

equations of dynamicists, the world operates as a whole system itself, albeit not a 
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cognitive one, and influences continuously and inexorably the cognitive agent within 

it, and it works the other way around too, in feedback loops. Granted, discharging 

some of the weight of information and information processing (because the world 

has structural invariants at all levels) does not make cognition any easier to model, 

nor to understand. There is evidence that the CNS calculates inverse kinematic and 

inverse dynamic problems in the generation of motion, so much for the dignity of 

empirical sensorimotor enquiry and even more of a burden for cognitive modeling 

and  simulations.  Is  the  account  of  inverse  dynamics  computation  by  the  CNS 

satisfactory  or,  to  put  the  issue  at  hand  in  other  words:  do  our  brains  and 

computational  models  of  cognitive  processes  deal  the  same  way  with  such 

informational complexities?

8 9 10

    11                       12 
Figures 8, 9, 10  and 11 are geometrical representations of some parameters of inverse kinematics 
problems such as they are studied by computer scientists, engineers and roboticists.  Figure 12 is a 
still frame of a 3D rendered simulation of inverse kinematics where a “tail’ tries to reach and touch a 
small green cube, illustrating the complexity of devising such an algorithm.

No. Just  as  you thought  it  was over  with conceptual  and methodological 

pitfalls, it’s not that simple. In Bizzi’s words:
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One way to compute inverse dynamics is based on carrying out explicitly the 
algebraic  operations  after  representing  variables  such  as  position,  velocity 
acceleration, torque, and inertia. This hypothesis, however, is unsatisfactory 
because  there  is  no  allowance  for  the  inevitable  mechanical  vagaries 
associated with any interaction with the environment. Alternative proposals 
have been made that do not depend on the solution of the complicated inverse-
dynamic  problem.  Specifically,  it  has  been  proposed  that  the  CNS  may 
transform the desired hand motion into a series of equilibrium positions.  […] 
According  to  the  equilibrium-point  hypothesis  […]  (Feldman,  1974)  limb 
movements result from a shift in the neurally specified equilibrium point. (id., 
p. 289. My emphases)

Computation is again constrained by structural invariants of the body, as well as 

invariances in the world.

[…] With  respect  to  control,  the elastic  properties of  the  muscles  provide 
instantaneous correcting forces when a limb is moved away from the intended 
trajectory  by  some external  perturbation.  With  respect  to  computation,  the 
[same]  elastic  properties  offer  the  brain  an  opportunity  to  deal  with  the 
inverse-dynamics problem. (id. My emphases)

Well! There is more to meat than first transpires! Conclusions? (i) Our cognitive 

processes are constrained and mediated by some useful designs and useful physical 

properties  that  afford them  –  much  of  sensorimotor  cognition  does  not  require 

symbolic  processing,  and  (ii)  there  is  less  to  be  paranoid  about  the  amount  of 

computation  and  information  processing  that  the  CNS  must  carry  out  for  the 

information-  and  computation-  obsessed  theorist.  Things  you  can  suddenly  do 

without if  you are a central  nervous system,  vis-à-vis sensorimotor limb control: 

parameters  and  variables  of  inertial  forces,  gravity,  viscosity,  required  effort 

expenditures,  et cetera… How does that fit the simulation model? Worth noting is 

the stubbornness and resilience of computational schemes to be dealt away with, 

even  for  such  cognitive  neuroscientists,  in  saying:  “[…]  in  this  context,  a 

representation in the CNS [of the previous variables] contained in the equations of 

motion is no longer necessary.” (id.) A radical dynamicist’s reply could be: “In this 

context,  a  representation in the CNS of the previously discussed parameters  and 
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variables in the equations of motion is nowhere to be found, there is no such thing, 

bottom line, the brain does not need it, get over it and change your model…”

It is fascinating that psychophysical research models its observations from an 

ambiguous middle  ground in  the midst  of  computational  and dynamical  stances, 

such as in the case of du Lac and colleagues (1995, p. 411): “The iterative process of 

improving  motor  performance  by  executing  movements, identifying errors,  and 

correcting those errors in subsequent movements is called motor learning.” (Note 

the  vernacular  of  intentionally  and  informationally  phrased  definitions  here,  my 

emphasis) Yet, elsewhere and about the same topic:

The simplest form of motor learning is adaptation, in which muscular force 
generation  changes  to  compensate  for  altered  mechanical  loads  or  sensory 
inputs.  Adaptation  can  involve  movements  across  either  a  single  joint  or 
multiple joints, and can occur in both reflexive and voluntary movements. (id., 
p. 418)

It  can  clearly  be  seen  that  whereas  the  first  definition  involves  a  functional 

decomposition that is essentially computational in flavour, the second one is quite 

recoverable by an effective and quantitative dynamical characterization. As we have 

seen with Bizzi and colleagues, the danger of following a model to its deeper logical 

conclusions is falling prey to over-characterization and bearing little into matters of 

empirical correspondence. Consider the following:

For complex movements, motor learning is required to select and coordinate 
the appropriate muscular contractions, to link together motor subroutines, and 
to create new motor synergies by combining forces generated across multiple 
joints in novel spatial and temporal patterns. (id., p. 416)

Well, the illusion here is that there is an ongoing calculation at every single step of 

the described process, and it contradicts the previous precisions on motor control 

intricacies;  what  matters  is  that  the  functional  decomposition  of  sensorimotor 

processes,  as  mechanistic  as  it  gets,  does  not  entail  what  I  will  dub  an 
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omniparametrism,  or  more  specifically,  an  omnicomputationalism of  processes 

under functional scrutiny.

- II.II - The argument

In this second section, we are confronted with the arguments of a proponent 

of the dynamical view of sensorimotor control and learning, Esther Thelen28.  The 

broad range of arguments from the DHCS will be exposed against the treatment of 

sensorimotor learning from a computational perspective29, as Thelen tries to answer a 

most important question: how do we relate sensorimotor ontogenetic dynamics with 

cognition? Dynamicists aim to provide a more biologically plausible framework for 

cognitive science while also aiming for a gain in explanatory and predictive strength 

through  their  models.  Thelen’s  work  is  primarily  concerned  with  setting  up 

empirical  psychophysical  experimentations  to  provide  enough  support  for  the 

following claim: that ontogenetic dynamics are  the very source of cognition.  Her 

premises: (i)  embodiment is a necessary condition for cognition, as we have seen 

time and again, and (ii) as is conceived through the study of infant psychophysical 

development, the major developmental task that tops them all is to gain control of  

the body.

Many  attempts  at  modeling  sensorimotor  processes  from  a  dynamical 

framework have been made, such as those of Bingham on visual event recognition, 

Grossberg on the neurodynamics of motion perception,  recognition learning,  and 

spatial attention, Saltzman on sensorimotor coordination, Thelen on the development 

of sensorimotor (embodied) cognition, and Turvey and Carello on haptic perception 

and coordinated movement30. For the sake of a workable basis of reference, we will 

only explore Thelen’s work on developmental dynamics, an arbitrary choice, albeit a 

perfect exemplar of the relevance of dynamics to cognition.

28 E. Thelen (1995), Thelen, Schöner, Scheier and Smith (2001), and Smith and Thelen (2003).
29 Computational solutions of the inverse kinematics problem, and the dynamical equations of Thelen 
et al concerning sensorimotor dynamics, can be found in appendix II.
30 All of the preceding authors, 1995, found in Port, R. F., and van Gelder, T., Eds., Mind as Motion. 
Cambridge, MA: MIT Press.
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Port and van Gelder (1995, p. 69), say that “[…] Thelen argues that taking up 

the dynamic perspective leads to dramatic reconceptualization of the general nature 

of cognitive development, and indeed of the product of development, mind itself.”

Thelen’s original contribution to developmental psychology has been of integrating 

the theoretical tools of dynamics (that is, dynamical systems theory coupled with 

quantitative  dynamical  modeling)  within  a  research  program  and  setting  up 

experiments to gather empirical support in order to confirm or refute the relevance 

of what van Gelder properly named the dynamical hypothesis in cognitive science, 

as exposed in chapter I. As we have seen before, the dynamical hypothesis is the 

conjecture that cognition and its related processes might better be described in the 

conceptual  framework  of  dynamics,  rather  than,  say,  a  computational  one. 

Obviously, discontent with computational endeavors motivated this departure, and 

as mentioned in the introduction, was spawned by the many shortcomings of such 

models. On Thelen’s take on developmental dynamics again:

Changes in behavior come to be understood in terms of attractors, stability, 
potential  wells,  parameter  adjustment  and  so  forth.  Taking  over  this 
vocabulary facilitates a whole new way of seeing how sophisticated capacities 
emerge. New abilities take shape in a process of gradual adjustment of the 
dynamics  governing  the  range  of  movements  currently  available;  this 
adjustment is effected by exploratory activity itself. (id.)

Thus, the vocabulary of dynamic systems theory might be understood as a bridge 

between outward, externalist descriptions of behavioral changes on one hand, and 

inward,  internalist  descriptions  of  informational  processes  on  the  other  hand. 

Dynamics  is  a  language  of  systematicity,  above  all,  it  groups,  joins,  couples 

homogeneous  (similar  entities  or  processes  understood  as)  systems,  or 

heterogeneous  (different  hierarchical  levels  of  interactions  between  entities  or 

processes understood as) systems.

Let’s develop further on the arguments supporting a dynamical account of 

cognition  where  developmental  psychophysics  and  psychology  are  concerned. 
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Thelen argues that her ambition is to take on not only a noncomputational stance on 

the ontogenesis of cognition, but to go as far as deny the traditional view of genetic 

determination of such development; a view supported by Piagetian objectivism and 

the maturationist account of development. Again, in van Gelder’s words:

Since infants can begin this process of adjustment from very different starting 
points, it is highly unlikely that there is any predetermined, genetically coded 
program  for  development.  It  is  rather  a  self-organizing  process  in  which 
solutions  emerge  to  problems  defined  by  the  particular  constraints  of  the 
infants’ immediate situation. (id.)

The question that begs to be answered is: how do we relate sensorimotor ontogenetic 

dynamics  with  cognition,  though?  Thelen  does  recuperate  a  thesis  of  Piaget’s 

according to which  “thought grows from action, and that activity is the engine of 

change.” (id., p. 73) As such, Piaget’s fundamental thesis is what we nowadays call 

that  of  embodiment.  Piaget’s  mistake,  though,  was  to  admit  a  fundamentally 

Cartesian separation to the end-state  of development  in  the characterization of  a 

mature objective mind, thus recreating a discontinuity essential of what is meant by 

the Cartesian dualism of mind and body. Cognitive dynamics avoid exactly such a 

problem, or it could be said that it is an answer to the very re-enactment of mind-

body  dualism  that  permeates  the  standard  model  of  cognitive  science.  So,  an 

embodied  cognition  appears  to  be  the  only  way  to  solve  the  mind-body 

discontinuities, found even in the weakest form that is positing ‘mental properties’.

Thelen’s  is  a  radical  position:  beyond  a  noncomputational  account  of 

cognition, she also promotes an antirepresentational stance of cognition. Since this 

does not turn out to be a common ground to all or even most dynamicists’ views on 

cognition, we will proceed without making this assumption. It is also not a necessary 

criterion to promote the dynamical hypothesis as such. A better depiction would be 

to  say  that  dynamicists,  up  to  and  including  Thelen,  are  against  symbolic 

representations  when  it  comes  to  characterizing  biological  cognition.  Another 

consequence  of  Thelen’s  arguments  is  that  it  trivializes  such  concepts  like  the 
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modularity of knowledge in cognitive processes, the consequences of which are up 

to interpretation and will not be discussed here. On the other hand, it certainly does 

well in dealing away with the annoyance of the archaic introduction of a distinction 

between semantic and episodic knowledge (know-that knowledge) versus procedural 

knowledge  (know-how  knowledge).  Seemingly  pointless  (excluding  matters  of 

neurological localization of relevant faculties and processes) or irksome distinctions 

of such nature are always a good test to the relevance of a paradigmatic shift from 

one conceptual framework to another. Other problems that might be better solved 

through  a  dynamical  framework  are  ones  concerning  individual  differences  in 

cognitive  processes,  context  sensitivity  of  cognition,  cognitive  tasks  such  as 

categorization,  and  the  integration  and  seamlessness  of  cognition  and  behavior 

(internal  and  external  states),  or  further,  that  of  behavioral  changes,  ontogenetic 

‘learning’,  and ontogenetic physiological changes.  The methodology? Correlating 

continuities in time between ‘physical’ and ‘mental’ events or processes. Thus, it can 

be said that dynamicists aim to provide a more biologically plausible framework for 

cognitive  sciences  while  also  aiming  for  a  gain  in  explanatory  and  predictive 

strength through their models.

But  the  meat  of  Thelen’s  work  in  setting  up  empirical  psychophysical 

experimentations is  that  it  provides enough support  for the following claim: that 

ontogenetic  dynamics are  the very source of  cognition!  The premises are  indeed 

compelling, if not intuitive: (i) embodiment is a necessary condition for cognition, as 

we have seen time and again, and (ii) as is conceived through the study of infant 

psychophysical development, the major developmental task that tops them all is to  

gain  control  of  the  body.31 To  prove  such  claims,  it  is  in  turn  necessary  to 

demonstrate  the  origins  of  certain  mental  processes,  and  Thelen  argues  that  an 

analysis of the various time-scales’ dynamics of psychophysical processes shows 

them to be interdependent and profoundly embedded structures. There is no place 

for discontinuities, in her own words. It should be noted that this is a departure from 

31 Worth noting is that both points (i) and (ii) are not uncontroversial, and only lightly elaborated on 
by dynamicists, including Thelen.
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earlier  positions  concerning  development  in  psychophysically  related  research: 

motor development was mistakenly considered as a strictly biological phenomenon 

and secondary to the brain or CNS development. This thesis, conveniently dubbed 

the  maturationist account  of  development,  thus  viewed  motor  control  as  a  by-

product of autonomous brain development, in a rather Piagetian stage-like process of 

emergence. It is pretty obvious that the spectre of dualism was ubiquitous even in 

the mostly empirical  of ontogenetic accounts of cognitive developments. Piaget’s 

alternative  introduced  the  idea  that  mental  life  is  built  upon  those  sensorimotor 

processes,  but  maintained  the  undesirable  dualism  by  also  claiming  that  mental 

processes  are  distinct,  separate  phenomena  characterized  as  the  end-state 

development  of  abstract  and objective mental  structures.  The whole of cognitive 

science,  it  seems, has a bad tendency of getting drawn back to (or should I  say 

drowned into) Descartes’ legacy.

A dynamical account of cognition necessarily calls onto a deep commitment 

to the thesis of embodied cognition. The legacy of Cartesian dualism is found in 

some assumptions of classic and contemporary forms of cognitive science, like

The denial of the relevance of the physical body in all its instantiations through 
movement,  feeling,  and  emotion  […]  [and]  the  separation  of  intelligent 
behavior from the subjective self, from consciousness, imagination, and from 
commonsense understanding. (id., p. 74)

This legacy has long denied embodiment as a necessary condition for cognition, and 

is a consequence of its sharing continuity with the methodology of a strictly formal 

and functional characterization that is the (classic) computationalist view.
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- II.III - The model
“1. We cast the mental events involved in perception, planning, deciding, and remembering in the 

analogic language of dynamics. This situates cognition within the same continuous, time-based, and 

nonlinear processes as those involved in bodily movement, and in the large-scale processes in the 

nervous system […] Finding a common language for behavior, body, and brain is a first step for 

banishing the specter of dualism once and for all. 

2. Because perception, action, decision, execution, and memory are cast in compatible task 

dynamics, the processes can be continuously meshed together. This changes the information-

processing flow from the traditional input-transduction-output stream to one of time-based and often 

shifting patterns of cooperative and competitive interactions. The advantage is the ability to capture 

the subtle contextual and temporal influences that are the hallmarks of real life behavior in the 

world. 

3. We address specifically the developmental origins of cognition. Since Piaget […], it has been 

widely acknowledged that all forms of human thought must somehow arise from the purely 

sensorimotor activities of infants. But it is also generally assumed that the goal of development is to 

rise above the "mere sensorimotor" into symbolic and conceptual modes of functioning. The task of  

the developmental researcher, in this view, has been to unearth the "real" cognitive competence of  

the child unfettered by performance deficits from immature perception, attention, or motor skills.  

This division between what children really "know" and what they can demonstrate they know has 

been a persistent theme in developmental psychology [...] We argue here that these discontinuities 

are untenable. Our message is: if we can understand this particular infant task and its myriad 

contextual variations in terms of coupled dynamic processes, then the same kind of analysis can be 

applied to any task at any age. If we can show that "knowing" cannot be separated from perceiving, 

acting, and remembering, then these processes are always linked. There is no time and no task when 

such dynamics cease and some other mode of processing kicks in. Body and world remain ceaselessly  

melded together.”

- Thelen, E., Schöner, G., Scheier, C. & Smith, L. B. (2001) The Dynamics of Embodiment: A Field 

Theory of Infant Perseverative Reaching. Behavioral and Brain Sciences 24 (1)

This  section  develops  a  correlated  dynamical  account  of  sensorimotor 

processes which bears explanatory and predictive significance to a higher level of 
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description, that of developmental psychophysics, with the help of Thelen’s findings 

on infants sensorimotor cognition and the subsequent model developed to deal with 

the empirical findings. Exposed here are the benefits of adopting of a dynamical 

perspective  on  cognition,  relative  to  some  shortcomings  of  a  computational 

framework, while showing the relevance of said dynamical account in the rather 

different  studies  of  sensorimotor  cognition  from  neuroscience  and 

psychophysiology.  The  formal  and qualitative  characterizations  of  the  dynamical 

hypothesis  in  cognitive  science  are  thus  applied  directly  to  the  studies  of 

developmental psychophysics.

Thelen gives  three  examples  of  embodied cognition and the relevance of 

dynamics to characterize cognition: the containment example, one on symmetry, and 

another one on forces. Following Johnson (1987), she points towards psychological 

studies from an embodiment perspective, to show how obviously pervading are the 

recurrent features and constraints of our physical world not only in our actions, but 

even in our language and thoughts as well. Indeed, Johnson puts forward the idea of 

what I call  ‘embodiment semantics’,  such as when we use prepositions like ‘in’, 

‘out’, ‘over’, ‘near’, ‘under’, etc. To see the extent of such implications, consider the 

following: “I don’t want to leave any relevant data out of my argument.” Metaphor? 

Yes, but there’s no chicken-and-egg problem here, the world came first, and then 

this embodiment-laden cognition… that’s containment for you, right there. Similarly 

with physical and bodily symmetry and polarization, we can see the extent of such 

categories as far as in our cultural artifacts, beyond our actual cognitive processes. 

Just take a hint and think about literature and poetry, cinema and music, and if you 

don’t  see  schematic  and  spatial  cognition  in  that,  you  can  keep  hoping  that 

disembodied AI will come up with emergent poetry-writing software... Last but not 

least,  consider  the  concept  of  force  embodiment.  Forces  reach  into  cognition  as 

essentially  as  they  involve  our  every  physiological  interaction:  what  about  the 

semantics of verbs? Language and thought are dynamically-laden, think again of the 

45



following sentence:  “I’m attracted to the ideas of Tim van Gelder.” Johnson calls 

this prelinguistic meaning, semantics drawn from experience.

It should be noted that in Thelen’s view, a dynamical account of cognition is 

still  compatible  with  a  functionalist  account  from  a  mechanistic  perspective.32 

Indeed, attributing characteristics to an entity as being a real dynamical system is an 

ontological commitment as much as a model of such entity; it makes claims about 

the nonlinear,  emergent,  and embedded properties of such an entity,  its  intrinsic 

dynamics. Dynamics are the mathematical study of patterns of flow, expressed in 

nonlinear  calculus  equations.  It  is  concerned  with  motions  and  forces,  quite  a 

physicalist level of description and explanation. Yet, from the design of dynamical 

systems,  complex  structures  and  emergent  properties  arise,  and  a  nontrivial 

qualitative  characterization  is  possible  on  top  of  the  quantitative  bearing  of 

dynamical modeling. Thelen notes that in order to bear any scientific adequacy and 

explanatory power, the dynamical equations must  fit the observed behavioral data. 

The  dynamical  hypothesis  in  cognitive  science  not  only  posits  that  cognition  is 

essentially  a  dynamical  phenomenon,  but  that  dynamics  is  the  best  explanatory 

framework  so  far  for  the  scientific  study  of  cognition.  Thus,  (real)  complex 

nonlinear systems can be studied through mathematical dynamical systems (MDSs), 

and such MDSs can explain changes as the result of coupled magnitudes fluctuating 

interdependently. One fundamental assumption from the adoption of the dynamical 

hypothesis  is  that  pattern  emerges  only  in  process:  it  thus  rejects  symbols, 

computational structures33, and developmental stages in the programmatic view of 

computationalism as ontologically  unacceptable  in  the  study of  the brain and of 

cognitive processes.

32 But the problem lies in that dynamicists such as Thelen would have their formal account replace 
any other formal model of cognition, i.e. they actually believe their dynamical account to be a good 
candidate for a functionalist account. Such a claim is hardly supported, and perhaps ill-fated, as we 
will see in chapter III with the help of Bechtel’s arguments.
33 Or does it? We will explore the claim of compatibility under arguments about the types of 
explanation involved in both frameworks in chapter III, section II.II.
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There  can  be  no  description  of  a  purely  ‘inner  life’:  every  mental  and 
behavioral  act  is  always  emergent  in  context  […]  Perception,  action,  and 
cognition  form a  single  process,  with  no  distinction  between  what  people 
really ‘know’ and what they perform. (van Gelder and Port, 1995, p. 72)

How exactly do cognitive systems translate into dynamical ones?

A fundamental assumption in a dynamical approach to development is that 
behavior and cognition, and their changes during ontogeny, are not represented 
anywhere in the system beforehand either as dedicated structures or symbols in 
the brain or as codes in the genes. (id., p. 76)

Cognitive  processes  and  behavioral  outputs  are  better  thought  of  as  dynamical 

patterns  of  activity,  function  of  the  context  at  hand  coupled  with  the  intrinsic 

dynamics of an agent. These intrinsic dynamics are in turn the product of the current 

architecture  of  the  system and  its  history  of  prior  activity.  Thus,  the  “behavior 

represents a reduction of the degrees of freedom of the contributing subsystems into 

a  pattern  that  has  form  over  time.” (id.)  Every  fascinating  aspect  of  cognitive 

processes finds its place in a compelling dynamical characterization: the stability of 

an action or thought is considered as the intrinsically preferred states, or attractors, 

in  the behavioral  state  space of  a  system. Strong attractors  represent  patterns of 

cognitive  activity  that  are  more  likely  to  be  manifested,  the  more  consistent 

behaviors.  Weaker  attractors  express  instability  and  perturbation,  as  well  as  the 

variability  and unreliability  of  such  patterns.  Development  itself  is  the changing 

landscape of preferred behavioral states. Thelen argues that some of these preferred 

behavioral states are so ubiquitous within and across individuals of our species that 

they are interpreted as discrete developmental stages, such as the ones traditionally 

described by orthodox developmental psychophysics and psychology. These stages 

are merely high probability states in the behavioral space of cognitive processes. But 

attractors in a state space cannot be too rigid and stable, otherwise change wouldn’t 

be possible: the combination of moderate attractors and pattern instability could be a 
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good dynamical translation of the concept of behavioral and neural plasticity, in my 

opinion. Behavior is

The  product  of  the  confluence  of  components  within  a  specific  problem 
context […] [and] development is likewise a series of both gains and losses as 
old ways of solving problems are replaced by more functional forms. (id.,  p. 
78)

Figures  13,  14,  and 15 (following  pages)  are  geometrical  MDS  representations  of  different 
sensorimotor cognitive tasks.  Figure 13 (page 49) represents the performance of  an infant in an 
object-hiding task named the ‘A-not-B error’, with regards to the development of object permanence 
(Smith  and  Thelen  2003).  Figure  14 (page  50)  is  a  general  ontogenetic  landscape,  where 
development is seen as a series of evolving and dissolving attractors over time (Thelen 1995). Figure 
15 (page 51) is a more sophisticated depiction of the ‘A-not-B error’ task. It shows some properties of 
a  movement  field  without  specific  input  (following that  there were no cues  or  training over  the 
decision to make) (Thelen, Schöner, Scheier and Smith 2001).
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(a) Motor field dynamics in non-cooperative regime with task input only (no specific input) at the 
first reach to A (A1). Parameters: Sspec = 0, Stask = 1, Smem = 3 (a). Motor planning field evolution (b) 
Corresponding evolution of memory field. In this figure and subsequent figures, x axis denotes field 
location, y is time, z is activation. On the y axis a letter code indicates the input present at different 
moments in time:  T,  task input,  S,  specific  input (none added here),  and  D,  the delay where no 
specific input is added. (c). Histograms of decisions to A or B from an ensemble of 500 simulations 
per trial showing the read-out of the field as a function of time. The decision to reach to A or B is 
probabilistic; in this case, A or B is equally likely at any point in time.
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Thelen also aims to show the essential chronometric properties of cognitive 

processes, that is, that cognition and behavior are best explained through a set of 

interdependent variables changing at a number of quantitatively different, embedded 

time-scales.  She distinguishes (but to  further reintegrate) what  I  dub ontogenetic 

time (learning and development time scale) and cognitive time (task resolution time 

scale, i.e. real time), time scales that are continuous in her model, for they share the 

same dynamics. The embeddedness of time scales is fundamental to cognition and 

overall development, and is made available to our quantitative proclivity through 

and only through dynamical modeling. Thus is expressed not only the confluence of 

behavior and cognition in a given context, conceptualized as ‘local dynamics’, but 

this  confluence  also  shapes,  affects  the  overall  internal-external  pattern 

configuration, which we have already named ‘intrinsic dynamics’. Shorter version: 

the  cognitive  time  scale  (local  dynamics)  shapes  ontogenetic  time  (intrinsic 

dynamics),  which  feeds  back  on  every  subsequent  local,  real  time  cognitive 

processes. Thelen draws an example from the modeling of a simple damped mass-

spring34 to model early spontaneous limb movements in infants, an activity that leads 

to  coordinated  sensorimotor  control  through  exploration  and  selection  of  values 

matching  the  affordances  (allowing  ourselves  a  Gibsonian  analogy)  of  the 

environment coupled with the goal of the task at hand. See figure 14 for an idea of 

an ontogenetic landscape generated through exploratory and selective experience, 

where coordination is learnt by exploring  “the many different values of the spring 

parameters  generated  by  [the  infant’s]  spontaneous  movements  and  movements 

produced in the presence of a goal.” (id., p. 80)

The values ‘selected’ from exploration become attractors in a given class of 

actions,  the  clearest  depiction  of  the  causal  relationships  between  local  and 

ontogenetic dynamics. The mathematical dynamical system (MDS) fits of course the 

real dynamical system (RDS) that is the infant’s psychophysiological ‘substrate’:

34 The mathematical expression of which is mx + kx + sx = f(t), x being the displacement of the spring 
and its derivatives,  m is the mass,  k is the damping coefficient (friction),  s is the stiffness of the 
spring, and f(t) is the time-dependent quantity of energy produced by the contraction of the muscle.
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Activity changes the biochemistry and the anatomy of muscles and bones […] 
These changes occur over a more prolonged time scale than do changes in 
behavior, but they are part and parcel of the same dynamic. (id., p. 81)

This  model  can  even  explain  phase  shifts  and  discontinuities  of  the  dynamic 

specifications of the sensorimotor system of the infant through the simple damped 

mass-spring analogy: Thelen elaborates on the example where newborns are held 

upright and make step-like movements. These motions then disappear over the next 

few months, which can be explained by an increase in leg mass at a faster rate than 

muscle strength. In terms of the damped mass-spring, the parameter  m (mass) is 

increasing  faster  than  parameter  f (energy  burst  from  muscle  contraction). 

Parameters  m and  k are constant in local time, but they change over ontogenetic 

time, whereas s and f change over both time scales. The consequent behavioral shift 

(disappearance of step-like movements when held upright) in ontogenetic dynamics 

caused by the faster increase in leg mass than muscle strength is again subject to a 

phase shift  at  a later  age (latter  part  of the first  year),  when the gain in muscle 

strength relative to leg mass is reversed, enabling the child not only to lift their legs 

when  held  upright,  but  eventually  to  support  their  own  weight.  To  summarize, 

cognitive time scales are continuous in such a way that doesn’t allow for a clear 

distinction between them, hence the thesis of embeddedness.

Sensorimotor activity urges us to conceive behavior, real time cognition, and 

ontogenetic dynamics as seamless and indissociable even in their conceptualization. 

Isolating one for the sake of analysis is risking a considerable loss of explanatory 

resolution. But Thelen’s plan is to assimilate higher cognitive processes in the same 

way, to show that beyond biomechanics, developmental processes of sensorimotor 

coordination  are  (i)  the  same  for  all psychophysical  and  cognitive  levels  of 

processing,  and (ii)  that  sensorimotor  coordination  itself  is  the  foundation of  all 

mental  activities.  These  serious  conjectures  indeed provide  a  ground  for  further 

empirical enquiry, and for the analysis of the relevance and scope of the dynamical 
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hypothesis concerning cognitive science. But what is under examination here is the 

commensurability of two conceptual frameworks concerning the study of cognition, 

a type of ‘comparative theoretical cognitive science’, if you would allow such an 

exotic epithet, and I will now address the very controversies sustained by proponents 

of  both  stances  towards  cognition.  While  this  chapter  was  meant  to  expose  the 

adoption  of  a  contending  conceptual  framework  in  the  exploitation  of  cognitive 

phenomena,  we  have  but  barely  undertaken  a  rigorous  comparison  between  the 

foundational  arguments  supporting  both  frameworks.  The  arguments  of  Thelen 

concerning embodiment,  embeddedness and the precedence and determination of 

sensorimotor  control  over  higher-level  cognitive  processes  are  most  certainly 

compelling, but we will see that they are only secondary to the epistemological and 

semantic issues opposing computationalism and dynamicism in cognitive science.
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- III - Issues, controversies, and answers concerning the framing of cognition in a 

computational or a dynamical model
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The CHCS and DHCS still raise many debates in cognitive science, and this 

chapter presents some of the formal and empirical issues raised for and against them 

from areas such as mathematics, neuroscience, and philosophy. The definitions of 

computation established in the first chapter, as well as the dynamicist’s conceptual 

repertoire, will be brought into play to assess the significance of such arguments.

In chapter II, I have exposed a certain number of controversial and not-so 

controversial  ideas  concerning  cognitive  science  that  are  related  to  the  issue  of 

conceptual  clashes  between  computationalism  and  dynamicism,  namely:  (i)  the 

extrinsic nature of many variables related to cognitive processes of sensorimotor 

design, versus the interior processing and mapping of everything, leading to (ii) the 

idea  of  environmentally-  and  physiologically-  constrained  cognitive  processes, 

versus an omniparametrism, or rather an omnicomputationalism of such processes, 

(iii) some empirical evidence in neuroscience and psychophysics points toward the 

adoption  of  dynamical  concepts  and  models  to  further  our  understanding  of 

cognition, and also (iv) toward the integration, in the study of cognition, of context, 

corporeality, and systematicity.

But dynamicism is also silent on many things, namely, (i) it does not provide 

a  theoretical  framework  for  implementation:  the  dynamical  hypothesis  is  not  an 

implementation theory, much like the debate from Fodor and Pylyshyn (1988) on 

matters of computationalism  versus connectionism. Indeed, connectionism can be 

conceived as an attempt to model the implementation of informational processes into 

a biologically inspired design. It does not follow that all connectionist models are or 

should be computational, even if we invoke the polysemous concept of computation 

as it is exposed in the first section of chapter I. Some supporters of the DHCS claim 

that  some  nontrivial  types  of  artificial  neural  networks  have  more  to  do  with 

nonlinear  differential  equations  and  dynamics  than  with  digital  computation 

(Grossberg  1995,  van  Gelder  1990,  1998abc,  1999abc),  and  that  will  play  an 

important part in both the following discussion and chapter IV.
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Also, (ii) dynamicism, despite having put forward strong arguments for the 

relevance of dynamics to cognition, does not constitute in itself a definitive rebuttal 

of computationalism or a vindication of the dynamical hypothesis above all other 

frameworks. Much more work is needed to this end, through an assessment of the 

accuracy and explanatory power of the framework,  and the rebuttal of a possible 

compatibility, or coexistence, of both stances towards cognition. This will also turn 

out to be a fundamental issue in the resolution of this comparative analysis.

Finally,  (iii)  although advocates of  dynamicism claim to avoid restricting 

their  framework to mechanistic explanations of cognitive processes by observing 

mathematical  correlations  between  systems,  internal  and  external,  there  are 

accusations from computationalists of dynamics being a sophisticated new avatar of 

behaviorism. This issue will also be addressed in this section, drawing on arguments 

about the types of explanation involved in both frameworks.

- III.I - On the nature of cognition vis-à-vis computation and dynamical systems

This  first  section  deals  with  the  arguments  concerning  the  adequacy  of 

mathematical  formalisms with regards to  cognition and cognitive processes.  The 

main concepts and subject matters under scrutiny are those of cognitive processes 

and  continuous  or  discrete  time  dynamics,  symbolic  representations  and  neural 

computation,  and the role of representations in cognitive dynamics. Here will  be 

argued (i) that the dynamicists’ conceptions of computation and representation are 

inadequate,  on  conceptual  and  methodological  grounds,  (ii)  that  computational 

cognitive science needs not be rejected on grounds that its symbolic avatar, spawned 

from  the  early  days  of  artificial  intelligence,  cannot  account  adequately  for 

biological cognition, and (iii) that while representations in models of cognition may 

be different in format, they are still required to account for cognitive processes, even 

in a dynamical view.
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-  III.I.I  -  Giunti  and  van  Gelder  on  the  mathematical  properties  required  to  

properly model cognitive systems and processes

Giunti  has  presented  many  arguments  to  promote  the  study  of  cognitive 

systems as dynamical systems. While his position has become more moderated with 

time with regards to the relevance of computational models of cognition, we propose 

to expose his earlier arguments on cognition as best studied through dynamics. This 

account will help understand the mathematical issues at stake in modeling cognitive 

processes,  as  well  as  constituting  a  preliminary  acknowledgment  of  flaws  and 

confusions concerning the concepts of computation and cognition. Giunti exposes 

two sufficient conditions for a system not to be computational, and suggests that 

both  the  time  and  state  space  values  of  computational  models  lack  analytical 

resolution  (continuity,  density,  viz. properties  exclusive  to  real  numbers).  The 

remainder of the section follows van Gelder’s discussion with his antagonists on 

objections to  the definitions of  dynamical  systems and digital  computers that  he 

champions. Topics of interest concern the scope of such definitions (too narrow or 

too  broad  definitions),  and  the  minute  distinctions  between  computational  and 

dynamical models concerning the temporality of cognition, their  state space,  and 

considerations on quantification.

Two sufficient  conditions  for  a  system not  to  be  computational.  Giunti’s 

(1995) earlier endeavors in the promotion of the dynamical approach of cognition 

was very clever: in order to support dynamics, he proposed a formal, comparative 

analysis, both qualitative and quantitative, of the two frameworks with respect to 

cognition. His principal thesis, that all cognitive systems are dynamical systems, is 

uncontentious. It is his secondary thesis that poses a problem: that computational 

systems  are  a  subclass  of  restricted  dynamical  systems  that  would  only  gain  in 

explanatory  power,  if  they  were  ‘released’  from  the  shortcomings  of  the 

computational framework. While there is no problem in principle with the analysis 

of mathematical models from other areas within mathematics, it does not follow that 

cognitive science would benefit from the analysis of computational systems in terms 
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of dynamics. Nevertheless, the exercise is original and enlightening, and here is a 

summary of the argument.

As distinguished in the first chapter, there are RCSs and RDSs in the world, 

and the mathematical models are said to ‘realize’ the regularities observed in real 

dynamical  systems.  Giunti  elaborates  on  the  mathematical  characterization  of 

dynamical systems: they have three elements, namely a time set T, a state space M, 

and a set of functions {gt}. Now, both a MDS and a MCS35 instantiate one or more 

aspects of a real system, for purposes of simplification and tractability. Thus, it can 

be said that different MDSs and MCSs can describe the same real world system 

independently,  depending on the parameters and variables  of interest.  A discrete 

MDS,  also  called  a  cascade,  is  thus  a  MDS  <T  M  {gt}> where  functions  are 

expressed in the form gt+1(x)=g(gt(x)), and the time set is a set defined on the (non-

negative  or  complete)  integers.  From  a  dynamical  perspective,  thus,  a  Turing 

machine (the foremost exemplar in the computational theory of mind, according to 

Giunti  and  van  Gelder)  ‘is’  a  cascade,  viz. a  discrete,  mathematical,  dynamical 

system. But dynamicists hold that in order to better understand cognitive processes, 

we have to have access to the time evolution of the state space of such processes.

Now, according to the tools made available by dynamical systems theory, 

discrete dynamical systems, or cascades, only appeal to a limited part of dynamics, 

such as the qualitative concepts of state space, time evolution in terms of periodic, 

eventually periodic, or aperiodic ‘orbits’, and attractors. But that’s it, since Turing 

machines  and  symbolic  processors  lack  any  interesting  topological  and  metric 

properties,  according  to  Giunti.  But  computational  systems  have  an  additional 

essential  characteristic  of  being  effectively  describable.  In  Giunti’s  words: 

“Intuitively, this means that the constitution and operations of the system are purely 

mechanical or that the system can always be identified with an idealized machine.” 

(Giunti, id., p. 559) Thus, a computational system can be more specifically defined 
35 A  mathematical  computational  system.  The  acronym  will  be  used  hereafter.  Note  that  the 
‘mathematical’  part  of the expression MCS is debatable,  since dynamicists specifically appeal to 
(symbolic)  Turing-computation,  which  conflates  symbolic  logic,  mathematical  computation,  and 
essential properties of algorithms.

59



as an effective cascade, or effective discrete dynamical system. This requires, with 

regards to fundamental issues in the mathematics of computation, that the state space 

M must  be  a  decidable  set,  and  that  each  state  transition  function  gt is 

effective/computable. The two sufficient conditions for a (dynamical) system not to 

be computational, then, concern whether its time set or state space is continuous or 

not: a system is not computational if (i) its time set is defined over real numbers, 

and/or (ii) its state space is not effectively denumerable. Apparently, we should be 

satisfied with such scarce formalities.

On the definitions of dynamical and computational systems. Before we move 

to some criticism, I want to complement Giunti’s arguments with van Gelder’s36 on 

similar grounds. van Gelder is struggling with his critics on the topic of the proper 

treatment of dynamical models and computational ones. He argues that dynamical 

systems  are  significantly  different  from  digital  computers,  the  implementation 

exemplar  championed by  proponents  of  the  CHCS,  in  that  the  state  space  of  a 

computational system is quite different from a metric space, such as the integers. For 

a Turing machine, the relevant set of variables is

[…] head state, head position, and locations on the tape. These are the things 
which change over time in the operation of the machine. The state space of the 
Turing machine is the set of all possible combinations of values of this set of 
variables. Ontologically, this is wholly different than the integers. (van Gelder 
1998a, p. 2)

So to speak, van Gelder claims that the state space of a computational model cannot 

be equivalent to a metric space except in a trivial sense, and consequently does not 

constitute a quantitative system. Further, a system’s metric should be independent of 

its behavior, otherwise “we can’t know what the distances are in the state space until 

we know how the system behaves.” (van Gelder, id., p. 3) van Gelder thus accuses 

Turing machines of having entirely  post hoc and uninteresting metric  properties. 

Therefore, the criterion of a dynamical system pertaining to its being quantitative in 

36 van Gelder, 1998abc, 1999abc. For an overall perspective, 1998a.
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state  should  require  the  additional  condition  of  having  a  behavior-  independent 

metric.

Another issue of concern is that of the confusion over dynamical systems 

being continuous or discrete. van Gelder claims that it is not the issue at hand while 

one  attempts  to  discriminate  between computational  and dynamical  systems,  but 

rather a matter of having  quantitative systems, which is a property of dynamical 

systems ‘not’ shared with computational ones. He is perfectly aware that continuity 

or  discreteness  of  states  are  significant  in  dynamics,  but  also claims,  much like 

Giunti,  that  dynamics  allows  the  study  of  both  types  of  systems,  whereas 

computability  theory  is  only  interested  in  discrete  systems,  and  moreover, 

“interpreted formal systems” (van Gelder,  id.,  p. 4) on top of that. On the other 

hand, there are discrete dynamical systems that have been proposed as models in 

cognitive science (van Geert, 1995, for an example), and discreteness alone does not 

make a Turing machine, or a digital computer. The essential temporality of cognition 

is  directly  dependent  on  such  matters  of  quantitative  modeling,  in  van  Gelder’s 

words again:

The fundamental  point  is  that  in  systems exhibiting  quantitative  state-time 
interdependence, the time set is not merely an ordered set used to specify the 
order of change in which system states are occupied. Rather, it  is a metric 
space,  such  that  amounts  of  change  in  state  are  systematically  related  to 
amounts of change in time as measured by that metric. (van Gelder, id., p. 14)

Objections

While Giunti  and van Gelder’s efforts in promoting the dynamical hypothesis in 

cognitive science are bold and appealing, on grounds of what dynamics have to offer 

to cognitive science, there are quite a few foibles in the arguments above, which I 

have split  in  three categories:  (i)  arguments in  the observation of  computational 

systems as dynamical systems, or in the comparative advantages of dynamics and 

computability  for  the  study  of  cognition,  (ii)  matters  of  state  space,  time  sets, 

metrics,  and  on  continuity  and  discreteness,  and  (iii)  methodological  problems 
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related to the interpretation and use of concepts such as cognition and computation. 

The following considerations address such issues.

On the relative advantage of  dynamics in comparison with computability  

theory, on empirical and pragmatical grounds. There are prima facie two problems 

with Giunti’s argumentation on the promotion of quantitative dynamical  systems 

‘over’  simulation37 models  of  cognition:  (i)  observing  correlations  between 

magnitudes,  and the interdependent  time evolution of  features  of  such processes 

does not make it any more fundamental to cognition in any way, and (ii) dynamics 

still  does  not  answer  what  counts  as  cognition  in  the  first  place,  begging  the 

question of which cognitive magnitudes we are supposed to care about. He admits to 

point (ii) in his conclusions, while not providing a rigorous argument to waive the 

issue raised by the first point. Also, Giunti and van Gelder seem to suggest that the 

relative advantage of dynamics over computation is up for grabs on empirical and 

pragmatical grounds, beyond formal and conceptual matters. Indeed, they concede 

that it may turn out that cognition, or a subset of cognitive processes, might best be 

accounted for in terms of computation, and then argue that it’s not a big deal, since 

computability can also be explained through features and models of dynamics, a 

more powerful and resourceful mathematical language. Roughly, we could make the 

following syllogistic inference to sketch this vague and unconvincing point of view:

- All MCSs are MDSs (not really an issue),

- Some MDSs are MCSs (again, not controversial),

- All cognitive systems (CSs hereafter) are RDSs (we have but to agree with 

that too),

- BUT, I ask, what if most, or all CSs turned out to be possibly modeled as 

MCSs, in a way that is both necessary and sufficient for our concerns?

Remember, the DHCS is appealing for its formal and conceptual resources, but it 

does  not  entail  that  cognitive  phenomena  might  be  relevantly  modeled  through 

dynamics, as empirical and pragmatical concerns may waive dynamics in favor of 

37 Giunti calls quantitative, continuous dynamical systems ‘Galilean models’, by opposition with the 
limited qualitative and discrete character of symbolic models, which he calls ‘simulation models’.
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computability.  Thus,  one  very  critical  epistemological argument  supporting  the 

supremacy of dynamics over computability, as far as cognition is concerned, is the 

following:

- CSs are best described through models that are MDSs,  but  are not  also 

MCSs.

Now, postponing criticism on conceptual and formal matters concerning the proper 

treatment of such mathematical models, here are unanswered questions about the 

aforementioned empirical and pragmatical issues: if both computational models and 

dynamical models can, in principle, account for a given cognitive feature, or set of 

features, which one is preferable, and on what ground? Aren’t mathematical models 

defined with an arbitrary degree of resolution, or precision, and chosen on grounds 

of the type of features, and results, that we are interested in?

On conceptual and formal issues concerning the divergences in explanatory  

power  of  both  mathematical  models.  Piccinini  disagrees  with  the  temporal 

constraints of computational models, by comparison with the alleged advantage of 

mathematical dynamical systems. Piccinini claims that

This  objection  trades  on  an  ambiguity  between  the  mathematical 
representation  of  time  and  real  time.  Computations  are  temporally 
unconstrained in the sense that they can be defined and individuated in terms 
of computational steps, independently of how much time it takes to complete a 
step.  But  this  is  not  due  to  the  fact  that  the  process  being  defined  is 
computational.  The  same  is  true  of  any  mathematically  described  process, 
whether computational or not. Differential equations contain time variables, 
but per se these do not correspond to real time any more than the time steps of 
a Turing machine correspond to any particular real time interval. In order for 
the time variables of differential equations to correspond to any particular real 
time, a temporal scale must be specified (e.g., whether time is being measured 
in seconds, nanoseconds, light years, or what-have-you). By the same token, 
the time steps of a digital computing mechanism can be made to correspond to 
real time by specifying an appropriate time scale. (Piccinini 2004e, p. 10)

Thus,  the temporality  of cognition need not  be exclusive to  dynamics,  since the 

allegedly uninteresting and post hoc properties of the metric of Turing machines can 
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be  made  far  more  interesting  by  incorporating  a  relevant  time  scale  into  the 

computational model. This time metric need not be specified in terms of the actual 

computational steps of the process, and can be made to match the content of what is 

being computed.

Furthermore, computational models can be made to perform over continuous 

values, either by design (analog computation), or in the specification of algorithms 

to this end (computation over continuous values by a digital mechanism, such as 

neural networks). Real computation, that is, a hypothetical mechanism computing 

over real numbers, is simply not possible outside of its abstract formulation, since 

the implementation of such a mechanism defies many levels of physical phenomena, 

from macrophysical noise to quantum uncertainty effects. Giunti claims that

An immediate consequence [of the state space not being denumerable] is that 
any finite neural network whose units have continuous activation levels is not  
a computational system […] A computational system can, of course, be used 
to approximate the transitions of a network [with continuous activation levels]. 
Nevertheless,  if  the  real  numbers  involved  are  not  computable,  we  cannot 
conclude that this approximation can be carried out to an arbitrary degree of  
precision. (Giunti, 1995, p. 561)

But the interdependent evolution of variables defined over reals is itself computable 

for a large enough class of numbers and functions. Indeed, Glymour summarizes:

Suppose we consider a dynamical system as a function  f(w,t), where  t is the 
real  variable  representing  time,  w is  some  n-tuple  of  numerical  quantities, 
including possibly integers, real or complex numbers, taking values in a space 
of  k-tuples,  u,  of  similar  objects  […]  Computable  complex  numbers  are 
defined  in  terms  of  computable  reals;  a  computable  real  number  r can  be 
defined in various ways—as a computable sequence of rationals converging to 
r with a computable bound on the error at  any stage in the sequence; as a 
number whose digits in some base – say 2 – can be computed by an infinitary 
generalization of a Turing machine (essentially a multi-tape Turing machine 
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that need never stop reading input or printing output), and in other ways. 38 

(Glymour 1997, p. 6)

Glymour stresses that not all definitions of computability are equivalent, for they 

depend on the representations involved,  “and for computation on the reals, to the 

measure  of  approximation.” (id.,  pp.  6-7)  For  example,  the  simple  operation  of 

multiplication by 3 is not computable in the decimal notation of reals, but actually is 

in binary notation!

There  are  uncomputable  systems,  including  dynamical  ones.  But  such 

characterizations depend on formal factors that need not concern us here, and in fact 

may not concern cognition at all. For one thing, even many chaotic systems are 

computable, and so are some quantum phenomena. What about cognitive systems? 

Glymour  holds  that  the  functions  proposed  to  model  cognitive  processes  are 

expected  to  be  computable,  if  only  for  the  fact  that  we  may  tend  to  postulate 

computable systems,  “or because natural dynamical systems, including people, are 

mostly  computable.”  (id.,  p.  7) Thus,  although  we  can  obviously  postulate 

uncomputable systems in the world, one has yet to come forward with an empirically 

grounded observation of a cognitive process which can be modeled only through an 

uncomputable dynamical system. The burden of proof should be on the dynamicists, 

as this seems like a logically dubious relation, a variation on a faulty generalization, 

or inductive fallacy: the possibility of uncomputable dynamical systems suspiciously 

supporting the claim that cognitive systems are uncomputable. Note that van Gelder 

seems to be rather unfair to computability when it comes to observing similar claims 

on the relationship between mathematical model and real world phenomena:

The fact that sequences of discretized states of continuous dynamical systems 
can be given (digital) computational descriptions is certainly interesting, but 
all it really shows is that we can set up complicated mappings between the 

38 A real  number  is  said  to  be  computable if  it  can be approximated by some algorithm in  the 
following sense: given any integer n ≥ 1, the algorithm produces an integer k such that: (k-1)/n ≤ a ≤ 
(k+1)/n. Another way is for an algorithm to produce a rational number r, given any real error bound ε 
> 0, such that | r-a ≤ ε |.
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realms  of  dynamics  and  digital  computation.  It  doesn’t  show  that  the 
dynamical system  is a digital computer, any more than the fact that we can 
simulate the solar system on a digital computer shows that the solar system is a 
digital computer. (van Gelder, id., p. 5)

So, according to van Gelder, it is fair to say that a RDS ‘realizes’ a MDS that stands 

as a model of the RDS, but the solar system could not be said to ‘realize’ a MCS? It 

seems that MDSs can realize MCSs, but not the opposite. It’s too bad, I guess, that I 

can’t appreciate why real world phenomena, dynamical models, and computational 

ones, coexist in such an irreconcilable asymmetry…

On the  proper  treatment  of  cognition  and computation.  One  thing  really 

suspicious about the discussion on the comparative advantages of computational and 

dynamical models so far is an apparent lack of consistency in the use of the concepts 

of cognition and computation. Indeed, authors on both sides of the divide move back 

and  forth  along  different  intensions  and  extensions  of  such  concepts,  perhaps 

unknowingly, out of carelessness, or by an outright commitment to the reduction of 

the  many  senses  of  the  concepts  to  some  core  definition  shared  by  all  of  its 

subspecimens. Nevertheless, would the latter case be the actual motivation to do so, 

their lack of explicitness should be proof enough to the contrary. Through all the 

literature  on  computation  and  dynamics,  for  example,  connectionist  models  are 

usually  claimed  by  both  sides  on  grounds  of  characteristics  that  they  share  in 

common,  somewhat  exclusively.  But  as  it  is  becoming  obvious  through  the 

arguments of Giunti,  Thelen,  van Gelder,  and other dynamicists,  their  arguments 

against  computability  rest  on  a  somewhat  archaic  intension  of  the  concept  of 

computation, that is,  Turing computation, or a symbolic view of both functionalist 

and  cognitivist  commitments  to  the  CHCS.  But  as  we  have  seen  in  chapter  I, 

computation  need  not  be  Turing’s  thesis  on  the  implementation  of  decidable 

functions through an abstract mechanism, operating over symbols! That is just one 

of many interesting properties of the theory interested in computability, and does not 

constitute a strictly formal account,  but  also empirical  criteria  on realization and 
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instantiation considerations. Such considerations will be discussed in section I.III of 

this chapter, and the controversial issue of connectionism will be covered in the last 

chapter.

On the issue of cognition, it  seems that different authors switch back and 

forth between what counts as cognitive, be it internal processes, from neurological 

processes  to  higher level  cognition such as decision making or language use,  or 

behavioral and social processes, involving other agents and an environment which 

must be inescapably included to study the relevant cognitive features. It can be said, 

thus,  that  arguments  about,  and  drawn  from,  the  study  of  cognition,  are  very 

sensitive to the level of description with which they are concerned. For one thing, 

arguments about the proper treatment of cognition in matters of modeling may not 

turn  out  to  cover  all  levels  of  what  counts  as  cognitive:  developing  a  symbolic 

information processing model of sensorimotor processes, all things considered, does 

sound superfluous, and so does observing the continuous correlations of external 

cognitive features, whatever they might be, when studying the processes by which 

one performs long division in mathematical problems. Sadly, it  seems that many 

computationalists and dynamicists think that explanations framed in their respective 

concepts and models can deal with any sort of evidence or phenomena. So far, the 

strategy of both sides has been to find some cognitive features that can heuristically 

be explained through their respective framework, and poorly dealt  with from the 

‘adverse’ perspective. Thelen, in championing a radical antirepresentational account 

of cognition, would have all of cognition reduced to basic organizational principles 

of systems dynamics in a largely behavioral viewpoint, focusing on the coevolving 

correlations of internal and external magnitudes. Can all of cognition be reduced to 

dynamical principles? We will see in section II of this chapter that epistemological 

and methodological issues determine, far beyond this type of semantic warfare, an 

accurate account of the relevance of both frameworks. Piccinini is no exception, on 

the matter of computational explanations of neurological processes, and although he 

is  not  a  supporter  of  the  DHCS  explicitly,  he  does  favor  a  departure  from 
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computation-laden models to a more favorable mathematical model. We will see, in 

the next section, how such an account constitutes a clever empirical support to the 

aforementioned  formal  considerations  of  Giunti  and  van  Gelder,  but  that  it 

ultimately avoids the problem altogether by refusing to integrate the full extent of 

computation as a mathematical tool that reaches far beyond symbolicism (in section 

I.III), and constitutes a different type of explanation altogether (in section II.II).

- III.I.II - Piccinini on symbols, strings, and neural spikes

This section deals with Piccinini’s (Piccinini 2004e) account of neuroscientic 

models, which contrasts the biophysical models of Rashevsky et al with McCulloch 

and  Pitts’  computational  endeavors.  Piccinini  considers  that  the  computational 

models  in  neuroscience  are  inadequate,  based on the  definitions  of  the  concepts 

drawn  from  computation  theory.  His  reasoning,  leading  to  the  conclusion  that 

neurons do not compute, is roughly as follows: (i) computation is the manipulation 

of strings or symbols (ii) neural spikes aren’t symbols, spike trains (or sets) aren’t 

strings (iii) the manipulation of spike trains is therefore not computational. He also 

suggests that we have no reason to believe that other aspects of neural activity are 

computational, and that we therefore have no reason to believe that neural activity is 

computation. Some objections will be raised against his conception of what counts 

as computation and cognition, much as in the section about Giunti’s take on the 

same concepts above.

According to van Gelder et al, the dynamical hypothesis in cognitive science 

is not contrived to a mere externalist and observational characterization of cognition, 

it  is  in  fact  a  powerful  qualitative  and  quantitative  framework  that  allows  the 

coupling  of  various  systems,  and  such  systems  can  be  internal  informational 

processes  much  in  the  same  way  that  functional  decomposition  from  a 

computational  perspective  would  have  it.39 Our  own  foray  into  sensorimotor 

cognition  and  behavior,  in  chapter  II,  clearly  hints  towards  the  possibility  of  a 

dynamical  outlook.  Piccinini  elaborates  on how computationalism was absent  of 

39 This issue is actually quite controversial, and is the subject matter of section II.II below.
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pioneering work in biophysics (Rashevsky 1938, Householder and Landahl 1945) 

that provided a framework for neuroscientific modeling. Mathematical biophysics is 

the formal means to model the change in behavior of biological phenomena, inspired 

by  the  concepts  and  methods  applied  in  physical  sciences.  Rashevsky  and  his 

colleagues used such means to complement a full account of neural mechanisms in 

the neuroscience of the 1940s, and of the psychological phenomena that supervene 

on them. Neither the concept of computation, nor any considerations derived from 

computability  theory,  were  involved  in  such  an  undertaking.  Rather,  ordinary 

differential and partial differential equations, along with integral calculus, were the 

formal tools constitutive of biophysical accounts of neuromechanics.

The adoption of computation-laden models was the original contribution of 

Pitts and McCulloch in neuroscience, drawing from their research and interests in 

cybernetics. Since computability theory already meant to a considerable extent the 

modeling  of  informational  processes  through  Turing’s  view of  computation,  i.e. 

through operations on symbols, Pitts and McCulloch purported to explain neural and 

mental  processes  in  a  coherent  framework,  and  thus  viewed  neural  activity  as 

informational processes in much the same way. Neural spikes, namely the activation 

peaks of electrochemical processes in the nervous system, were thus considered as 

mathematical  symbols,  and  spikes  sets  (commonly  dubbed  spikes  trains)  were 

equivalent  to  strings  of  symbols.  Piccinini  grants  that  similarities  between 

mathematical  symbols  and  neural  spikes  were  easily  found,  such  as  their 

discreteness, and unambiguous individuation relative to the processes in which they 

take part. But this account is not satisfactory according to him: we need to look at 

their  inherent  differences  too,  which  are  significant  enough  to  undermine  a 

computational view of neural processing. This observation needs not be surprising at 

all,  since  contemporary  neuroscientific  modeling  is  much  more  similar  to 

Rashevsky’s mathematical biophysics than to McCulloch and Pitts’ computational 

neuroscience. The problem lies in the fact that while today’s neuroscientists seldom 

treat neural spikes as symbols, it has ‘contaminated’ the rest of mainstream cognitive 
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science into adopting such a view according to Piccinini, as the CHCS is exactly the 

view  that  mental  processes  are  computational  processes  realized  by  the  brain. 

Piccinini claims that neuroscience is noncomputational, and gives a detailed account 

of  the  shortcomings  of  identifying  neural  spikes  as  symbols,  and  spikes  sets  as 

strings of symbols.

He starts by elaborating an account of computationalism as the manipulation 

of symbols, and strings of symbols, and emphasizes two properties of (symbolic) 

Turing-computation relevant  to  his  endeavors:  (i)  a  symbol’s  content  or  role40 is 

unambiguous,  relative  to  the  behavior  of  the  system,  and  (ii)  an  output  of  a 

computational  process  depends solely on the following combination:  the internal 

state of the system, the input symbols,  and the way in which those symbols are 

concatenated  in  a  string,  for  a  specific  step  of  the  process  or  a  particular  time 

interval. Piccinini then draws on two features of neural mechanisms that will pave 

the way to support his argument on the ‘noncomputationality’ of neural pathways: 

neural spikes are all-or-none events (that is, neither ‘simply’ symbolic and discrete, 

nor analog, i.e. time-dependent, continuous variables), and neural processes include 

a  large  amount  of  spontaneous  activity,  which  doesn’t  allow  for  the  simple 

individuation  of  input-output  matching  processes,  or  the  identification  of 

functionally relevant media to carry them out. What follows is that points (i) and (ii) 

above  are  simply  not  found  in  neural  processes,  since  it  is  nigh  impossible  to 

individuate either functional units in neural signals, or a concatenation relation that 

would establish sets (strings) of such units. Time-dependence (the absence of clear 

boundaries for the beginning and end of a signal, of  consistency of intervals, of 

synchronicity),  allegedly  nondeterministic  processes,  and  the  unwarranted 

significance of the presence or absence of a token or a string, in view of spontaneous 

activity41, are all disincentives for a computational account of neural processes.

40 Piccinini distinguishes between a semantic view and a functional view of computationalism, an 
issue which is briefly discussed in section II.I.
41 Not to be confused with ‘noise’, as spontaneous activity might in fact be functionally relevant, by 
opposition to the principled irrelevance of noise for functional purposes, in signal processing.
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The worse part of the story, according to Piccinini, is not that neuroscientific 

phenomena has been wrongly given a computational account, but that this account 

has led, through the formulation of the CHCS, to a number of conclusions about 

cognition  that  are  ill-founded.  Among  others,  (i)  that  we  posses  an  explanatory 

framework  that  can  accurately  account  for  mental  processes  through the  Turing 

conception of cognition, (ii) that the Church-Turing thesis puts neural processes on 

the same ground as digital computation for the sake of an explanation of cognition, 

and  (iii)  consequently,  it  is  in  principle  possible  that  digital  computation  might 

eventually realize identical cognitive prowesses. I could not agree more with such 

arguments.  The  problem  is,  as  it  has  been  hinted  in  the  previous  section  on 

mathematics and cognition, every single (contemporary) computationalist knows so. 

Such is the subject matter of the following section.

- III.I.III - Bechtel and Eliasmith on the issue of representations in dynamical 

systems

What transpires so far about the dynamicists’ rebuttal of computation as an 

adequate  framework  for  cognition  is  its  apparent  lack  of  distinction  between 

(symbolic) Turing-computation, championed by the symbolicists quite a while ago 

(the  era  of  GOFAI,  so  to  speak),  and  subsymbolic  or  nonsymbolic  models  of 

cognition that are nevertheless computational, in the much larger (to the extent of 

being somewhat trivial) sense debated on in the first chapter. Piccinini, much like 

Giunti and van Gelder, makes an unarguably good case against symbolic, or Turing 

computation, at the expense of being a bit behind schedule. More a case of a straw 

man argument, then, or as I shall call it specifically, the Don Quixote case against 

computationalism.

The flaw in this line of argumentation is thus a matter of conflating digital 

computers  and  the  mathematical  conception  of  computability.  Piccinini  makes  a 

good case about neural spikes and spikes sets being non- [Turing] computational, 

but does he make a case against computability in its largest sense? Again, like in the 

case of Giunti and van Gelder, we should differentiate between what constitutes a 
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computational  account  of  something,  from the  level  of  explanation at  which  we 

study something. Symbolic computation may account for logico-mathematical skills, 

the use of language, and almost all of the inner workings and behaviors of a digital 

computer,  it  does  not  appear  to  fit  most  of  the  rest  of  biological  cognition. 

Nevertheless, it can be said that we do have computational models of cognition in 

the large, albeit more trivial, sense of the word. Indeed, we have subsymbolic models 

of cognition, realized on digital computers, for one thing. The digital computer, in 

such cases, is  not the model, just  a platform from which we design the relevant 

models, at the relevant level of enquiry, thus symbolic computation is nothing but a 

canvas  on  which  are  painted  appropriate  textures  and  colors  mirroring  our 

conception of cognition, if you allow me the use of such a metaphor.

Bechtel  (Bechtel  1998)  and  Eliasmith  (Eliasmith  1997)  accuse  some 

proponents of the DHCS of being antirepresentationalists, much to the demise of 

cognitive  science,  and  based  on  a  misconception  of  the  very  concept  of 

representation. While it is incorrect that van Gelder et al are against representations 

in the modeling of cognitive processes, much has to be said concerning the role and 

format of representation to clear up this fundamental issue. van Gelder does confuse 

computation and symbol manipulation, and as he unsuccessfully tries to deal away 

with  the  wrong  concept  of  representation  (a  strict,  symbolic  conception  of 

representations not necessary at all for computational cognitive science), he (as are 

most  dynamicists)  is  left  with  a  vague,  non-operational  definition  (one  where 

anything can count as a representation, such as attractors and trajectories in the state 

space of the dynamics of a system). While the DHCS integrates representations in its 

mathematical  characterizations  (by  means  of  interpretation  of  concepts  such  as 

attractors and trajectories), it further requires an implementation theory (in Fodor’s 

and Pylyshyn’s 1988 sense of a cognitive architecture), like connectionism or other 

possible implementation models in cognitive science.

Bechtel  insists  on  two  essential  characteristics  of  representations  in 

information processing systems, independent of the nature of the concerned system: 
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(i) the aspect of representations that we usually express as ‘standing-for’ something 

else, and (ii) the format of such representations. While we can adopt different views 

towards what counts as representations, he argues that the former point is necessary 

as  such,  and  that  dynamics  do  not  deal  away  with  representations  at  all.  But 

supporting the claim of informational systems requiring representations as Bechtel 

does is unnecessary, since van Gelder does not, in fact repudiate their relevance. 

Only  a  number  of  radical  dynamicists,  such  as  Thelen,  repudiate  the  use  of 

representation-laden cognitive systems, and such an ambition trades on a misreading 

of computational models being conflated with symbolicism, as stated above, more 

than a sound account against the very concept of representation. Even van Gelder’s 

landmark example of a  dynamical system, Watt’s  centrifugal  governor,  which is 

used to counter the computational explanation of an allegedly inherent dynamical 

nature  of  cognition,  can  thus  be  said  to  be  representational.  Indeed,  the  various 

components, and interactions, of this type of mechanism nevertheless indicate (stand 

for) magnitudes of physical phenomena, and determine its operation (are meant to 

operate  on,  or  produce,  a  spectrum  of  outcomes  depending  on  the  relevant 

magnitudes determined by the system).

On the latter point, concerning the format of representations, Bechtel agrees 

that dynamicists are innovative in promoting non-symbolic, quantitative values to 

stand for informationally driven systems. Granted, this non-symbolic acceptation of 

the concept of representation makes it otherwise ubiquitous, and can be said to be 

some sort of ‘minimal (as in low-level) representation’. It is nevertheless operational 

for the purpose of the framing explanations, relating to “any organized system which 

has  evolved  or  been  designed  to  coordinate  its  behavior  with  features  of  its 

environment.” (Bechtel, id., p. 16) So representations need not be strictly a matter of 

propositional format, and moreover, static ones. The proposition that trajectories and 

attractors might stand for representations, to the benefit of the overall behavior of a 

system, thus constituting dynamical representations (i.e. representations that change 

over time, influenced by other features of the processes involved) marks this original 
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contribution from dynamics to the study of cognition. Bechtel additionally points out 

that:

van Gelder and Port also stress that in DST systems the processes within the 
system  are  not  defined  over  representations.  […]  DST,  like  connectionist 
modeling  as  well  as  much  work  in  neuroscience  is  concerned  with 
representations that figure in processes. (Bechtel, id., p. 9. My emphases)

Eliasmith’s  criticism is  even less  reverent  towards  van Gelder,  whom he 

accuses  of  being  completely  beside  the  point,  on  his  characterization  of 

connectionism,  for  one  thing.  As  van  Gelder  first  confuses  computation  with 

symbolic  and  digital  processing,  he  then  wrongly  claims that  connectionism has 

more to do with dynamics than computation. Apparently, van Gelder overlooked 

Newell’s (Newell, 1980, 1990) distinction between the type of computer postulated 

to realize cognitive processes, from the  family of universal computers. Newell, as 

did all symbolicists, postulated just that kind of representational systems, i.e. symbol 

systems,  not computational systems.  On the other hand, to say that connectionist 

models are noncomputational on that (misconceived) ground is preposterous: every 

and all connectionists have always considered their models to be computational, for 

it is indeed the very point of connectionism to model information processing in a 

biologically plausible way, in order to better understand cognition. Connectionists 

are committed to complex dynamical analysis, as a means to account for essential 

features of information processing in neural networks, but the ultimate goal is to 

address computational problems (see Churchland and Sejnowski, 1992).

Bottom line is, connectionists, and even symbolicists, have generally had a 

much broader conception of computation than dynamicists, such as van Gelder. As 

such,  there  is  no  computational  versus noncomputational  division  between 

symbolicism and connectionism,  it  is  a  mistaken  characterization  on  the  part  of 

certain dynamicists. On the issue of representations, Eliasmith also sharply disagrees 

with van Gelder’s view of dynamical systems having representations in the loose 

sense of trajectories and attractors, for if any kind of pattern or element of a system 
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might  be  said  to  be  representational,  then  the  very  meaning  and  use  of 

representations become patently trivial. Bechtel’s account of representations, above, 

should  be  the  preferred  view,  since  it  constitutes  a  minimalist  and  deflationist 

account  that  is  nevertheless  operational,  and  allows  for  representations  in  both 

frameworks, their only dissimilarities pertaining to format. 

-  III.II - On the type of explanation involved in computational and dynamical  

models

The  second  section  deals  with  methodological  arguments  concerning  the 

motivation and scope of both frameworks, as many writers have tried to dissociate, 

negate, or complement their models in the study of cognitive science. The topics of 

discussion  concern  distinctions  between  functionalism  and  computationalism, 

mechanistic  and  covering  laws  explanations,  and  the  complementary  value  of 

computational and dynamical models. We will firstly consider Piccinini’s account of 

functionalism in cognitive science,  in  light  of  his  conflation of  computation and 

symbolic  processing.  In  a  second  section,  I  will  draw  on  Bechtel’s  clever 

characterization  of  the  types  of  explanation  involved  in  the  two  conceptual 

frameworks, a crucial step in the development of this thesis, if not its main grounds 

for argumentation.

-  III.II.I  -  Piccinini  on  functionalism  and  computationalism  as  independent  

characterizations in cognitive science

Piccinini is concerned with what he calls the semantic view of computation 

(wrongly  carried  into  philosophy,  the  view  that  computational  states  should  be 

individuated  by  their  semantic  properties)  leads  him  to  propose  a  strictly 

functionalist account of computation. However, functionalism and computationalism 

have traditionally been conflated as one concept, and computation turns out to be 

only  one  type  of  functional  explanation,  according  to  the  author.  The  important 

distinction between computational explanation and computational modeling is also 

introduced, but I will argue that here again, and similarly to van Gelder and most 

dynamicists, Piccinini in fact still conflates the empirical thesis of implementation of 
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computer science’s computation (i.e. it’s much stricter symbolic, serial, and discrete 

account  of  what  constitutes  computation),  with  the  mathematical  class  of 

computable functions, along with the related algebraic and geometrical properties of 

its analysis (not to be confused with mathematical analysis’ sense of the study of real 

and complex numbers,  and  related functions).  This  will  turn out  to  be  of  direct 

consequence with respect to Piccinini’s thesis, concerning the CHCS, that (i) (if) any 

nontrivial computational theory of mind is committed to the existence of appropriate 

mechanisms that realize the computations,  and (ii) (if)  the manipulation of spike 

trains, according to neuroscience, is not computational (section I.II), (iii) (then) there 

is no nontrivial computational theory that survives the empirical test (according to 

his definition of the functional account of computationalism).

Having  criticized  above,  in  section  I.II,  Piccinini’s  account  of  neural 

processes with respect to the concepts of computability theory, the section is then 

concerned  with  Piccinini’s  (Piccinini  2003,  2004bcd)  position  on  the  role  of 

computational explanations in cognitive science. As seen before, Piccinini disagrees 

with the type of consequences that can be drawn from the foundational theses of the 

CHCS,  for  he  refuses  a  computational  account  of  neurological  mechanisms  that 

would support cognition. We have already commented on his twofold shortcomings, 

one being his  unwarranted conflation of (symbolic)  Turing-computation with the 

class  of  formal  definitions  of  computable  functions  and  numbers,  the  other 

pertaining  to  his  reluctance  to  address  anything  above  neural  mechanisms  as 

possibly  being  both  cognitive  and  computational.  Indeed,  he  sticks  to  neural 

mechanisms, while debating over the formulation of the CHCS:

According  to  the  [CHCS]42,  neural  mechanisms  perform computations,  and 
neural computations explain mental capacities more or less in the way that the 
computations performed by calculators and computers explain the capacities 
that are peculiar to them.” (Piccinini 2004d, p. 2)

42 Piccinini actually uses the acronym CTMB, for a ‘computational theory of mind and brain’, which 
carries ontological commitments that are not under evaluation here. I therefore consider, as 
mentioned in the introduction, only the epistemological and semantic issues raised by what is meant 
by the CHCS, to be on par with the DHCS, in this dissertation.
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Since I  have already commented on the matter  of  whether  computation has  any 

bearing  on  neurological  processes,  my  endeavors  here  are  to  address  what 

Piccinini’s  insights,  concerning  the  type  of  explanation  involved  by  the  CHCS, 

entail for the debate over the comparative advantages and flaws of the computational 

and dynamical frameworks.

Computational explanations are usually defined as postulating mechanisms 

operating  over  representations.  A  first  formulation  of  computationalism,  which 

Piccinini  names  the  semantic view  of  computational  explanation,  holds  that 

“computations are individuated at least in part by their semantic properties.” (id., p. 

3)  But  such an account  in  untenable,  as  symbolic  ascriptions  to  representational 

processes is arbitrary and observer-relative. This first definition of computationalism 

needs  not  concern  us,  since  (i)  Piccinini  conflates  formal  computation  and 

(symbolic)  Turing-computation,  and  (ii)  to  argue  that  neural  mechanisms  aren’t 

computational  on  grounds  of  not  being  interpretative  mechanisms  operating  on 

arbitrary  symbols  is  patently  evident  to  us  anyways.  How  about  computational 

explanations  being  warranted  in  virtue  of  a  system  possibly  being  modeled  as 

computational?  The  problem  is  that  too  many  things  would  turn  out  to  be 

computational!  That  would  thus  trivialize  computational  explanations,  claims 

Piccinini. Also, it would establish the phenomena of concern, here being cognitive 

processes, as computational a priori, in a dogmatic way. Again, I feel obligated to 

reply  that  some  criteria  on  pragmatical  grounds  can  be  invoked,  such  as 

Stufflebeam’s (Stufflebeam 1998) take on what constitutes intrinsic, versus extrinsic 

computation: Stufflebeam argues that since anything can be modeled as computable, 

that is, given an interpretation as a computational system, we should be concerned 

only with what makes a system computational, viz. intrinsically to such a system. It 

turns out that whatever can be said to perform computations, either by design or by 

an apparently inexorable tendency to be considered as such (thus, on pragmatical 

grounds),  should be considered as such. Information processing models should be 
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involved in, and only in, explanations pertaining to entities that process information 

in a relevant sense. In short, yes, it’s up to us to decide what is computing, but not 

everything need, or should, be considered as a computational process.

So,  which  processes  do deserve  to  be  called  computations  in  a  relevant 

sense? Piccinini feels compelled to peek into physiology and engineering, to parallel 

his study of neural mechanisms and computers, and claims that we must observe the 

type  of  explanation  involved  in  such  scientific  endeavors  to  better  understand 

computation. Now, a general explanatory strategy in applied sciences is to appeal to 

functional explanations:

A functional analysis involves the partition of a mechanism into components, 
the assignment  of  functions  to  those  components,  and  the  identification of 
organizational relations between the functioning components. For any capacity 
of  a  mechanism,  a  functional  explanation  invokes  appropriate  functions  of 
appropriate  components  of  the  mechanism,  which,  when  appropriately 
organized under normal conditions, generate the capacity to be explained. The 
components’ capacities to fulfill their functions may be explained by the same 
strategy,  namely  in  terms  of  the  components’ components,  functions,  and 
organization. The process of functional analysis bottoms out in components 
whose  capacities  are  no  longer  functionally  analyzable;  they  are  to  be 
explained by other explanatory strategies (e.g.,  subsumption under physical 
laws). (id., p. 8)

How then, are computational explanations related to functional explanations?

Mechanistic  and  nomological  explanations  co-occur  quite  abundantly  in 

science: “More generally, mathematical descriptions can be employed in conjunction 

with  functional  analyses  to  yield  theories  and  models  of  functionally  analyzed 

systems.” (id.,  p.  9)  The  relevance  of  mathematical  descriptions,  according  to 

Piccinini,  is  threefold:  (i)  to  specify  the  time evolution  of  mechanisms,  or  their 

features,  (ii)  to  observe  relations  of  dependence  or  interdependence  between 

variables (expressing features of the mechanism),  such as input-output matching, 

and (iii) to observe how the state space of a mechanism changes, or develops, viz. to 

observe  trajectories,  attractors,  and  bifurcations.  So  Piccinini  agrees  that 
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mathematical  descriptions  are  complementary  to  functional  analysis  (id.),  by 

providing a means to observe the behavior of a mechanism, or the relations between 

its components, both qualitatively and quantitatively. He then proceeds to trying to 

convince  us  that  (i)  computational  and  functional  explanations  are  traditionally 

conflated  (in  the  literature  of  cognitive  science,  he  claims),  and  that  (ii) 

computational  explanations  are  but  a  particular  type  of  functional  explanations. 

While I find the latter to be intuitively sound and uncontroversial, I disagree with the 

former point, part of which obviously pertains to Piccinini’s own flawed, conflated 

account of the concept of computation. So, functional explanations appeal to the 

internal states, processes, and inputs of a system. The problem is thus a matter of 

choosing the appropriate type of functional analysis, for refrigeration, digestion, or 

photosynthesis  have little to do with computation,  to name a few. But,  avoiding 

again the debate on matters of formal computation and symbolic processing, is it not 

just stating the obvious, much to the advantage of computational explanations, their 

being  concerned  only  with  information  processing  mechanisms  in  general?  By 

avoiding Piccinini’s flawed concept of computation, we thus have little left to argue 

about, since such derived conclusions were spun by untenable premises.

The fact that Piccinini constantly appeals to (symbolic) Turing-computation 

to prove his point about our functional explanations having to shift towards another 

explanatory framework, when neural mechanisms are concerned, makes it hard to 

disagree with,  for  symbolicism (the GOFAI era)  has faded in popularity  quite a 

while ago. What is  not fair, however, is Piccinini’s treatment of connectionism as 

being  doomed  on  the  same  grounds:  connectionism  is  different  enough  from 

(symbolic) Turing-computation, or symbolicism, to deserve an analysis of its own, 

as we shall see in chapter IV. On the bright side, Piccinini has opened up a very 

important issue about the complementary value of mathematical  descriptions and 

functional analysis, which is the subject of the following section.
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- III.II.II - Bechtel, on mechanistic explanations versus nomological explanations 

in cognitive science

The clash between computationalism and dynamicism may not be about the 

alleged ‘nature’  of  cognition after  all.  As we have seen in  the previous  section, 

methodological concerns turn out to be a preeminent issue when comparing the two 

frameworks  with  respect  to  the  study of  cognition.  For  one  thing,  is  the choice 

between computability theory and dynamics necessarily one of mutual exclusivity, 

or aren’t such concepts and models more a matter of phenomena of concern? Let’s 

rewind  a  bit  and  think  about  the  data  on  which  Thelen  builds  her  arguments 

supporting  dynamics,  in  chapter  II:  the  evidence  of  concern  is  psychophysical 

phenomena. Now, if we pay attention to the very definition of psychophysics,
Psychophysics

From Wikipedia, the free encyclopedia.

Psychophysics is the branch of psychology dealing with the relationship between physical stimuli and 

their perception. […]

Psychophysics studies psychological scales for physical stimuli. Hot and cold, for example, are 

psychological scalings of temperature stimuli for which such physical measures as degrees Celsius 

provide only physical units.

Areas of investigation include sensory thresholds, methods of measurement of sensitivity, and signal 

detection theory. (My emphases)

Is it not now clearer that such a  modus operandi, and the concepts relevant to the 

dynamical  framework  in  cognitive  science,  have  more  to  do  with  behavioral 

observations, and the mathematical description of patterns and regularities of the 

parameters of a system? Psychophysics, for one thing, differs greatly from cognitive 

neuropsychology,  or  task-specific  enquiries  into  psychological  faculties,  for 

example, which are areas of research purporting to identify mechanisms relevant to 

the observed cognitive processes. Psychophysics also incorporate cognitive features, 

of course, but such cognitive features are  already given, the concern is to observe 

correlations of physiological and cognitive magnitudes  already arbitrarily defined 

and  chosen.  One  might  jut  say  that  in  observing  sensory  thresholds,  sensitivity 

measurement, and signal detection, we are observing the dynamics of a cognitive 
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and sensorimotor  system,  but  in  no  way is  such an  endeavor  able  to  produce  a 

constitutive account of the design of a system. As Glymour states about van Gelder’s 

(representative of the DHCS in general) view:

One way of abiding by some of van Gelder’s prohibitions is to adopt a kind of 
neo-behaviorism  […].  Skinner’s  version  of  behaviorism  tried  to  confine 
scientific inquiry and conjecture to functional--indeed dynamical--descriptions 
of  how human and animal  action depends on the environmental  history to 
which  the  creature  has  been  exposed.  Doubtless  van  Gelder’s  behaviorism 
would differ considerably from Skinner’s in what it  lets in, but van Gelder 
appears  to  agree  with  Skinner  in  wishing  to  prohibit  any  inquiry  into  the 
internal mechanisms by which the creature does what it does or thinks what it 
thinks. (Glymour 1997, p. 10)

Dynamicism, thus, in its most radical form (such as Thelen’s), would be some sort 

of  sophisticated  behaviorism,  albeit  integrative  of  some  internal  considerations 

(which are also to be modeled through correlational observations, not through design 

and components).

Bechtel (Bechtel 1998)43 also presents strong arguments about the conception 

of  explanation championed by the dynamicists.  He holds  that  while  it  is  indeed 

compelling  and useful  to  adopt  the  concepts  and  methodologies  of  dynamics  in 

cognitive science, it is in no way a refutation of the CHCS and the computational 

approach in general, since their respective type of explanation are orthogonal ways 

of  conducting  research.  Indeed,  while  computational  models  of  cognition  are 

interested  in  mechanistic  characterizations  of  the  processes  involved,  through 

localization and functional decomposition, dynamical models are of another type of 

explanation,  namely  the  explanation  of  cognition  through  what  Bechtel  calls 

covering laws (following the type of explanation championed by the neopositivists). 

Indeed, a more traditional view of science (Hempel 1966) has been to conceptualize 

scientific laws as universally true statements, also called nomological statements. 

But covering law explanations pose a problem when we depart from physics, such as 

43 See also Craver (forthcoming) for a similar argumentation in favor of mechanistic explanations in 
neuroscience.
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in the domains of life and cognitive sciences, where subsuming phenomena under 

universal laws is not as much the goal as is the discovery of particular processes at 

work  in  a  given  system.  The  main  difficulty,  while  observing  the  behavior  of 

complex phenomena,  lies  in  that  we have no way to  distinguish statements  that 

might  be  universally  true  from  accidentally  true  statements,  and  that  low-level 

physical  laws  are  too  simple  to  be  constitutive  of  nontrivial  accounts  of  such 

complex phenomena. So, by appealing to mechanistic explanations, we can analyze 

the processes of a system through component processes, “described either physically 

or functionally.” (Bechtel, id., p. 10)

Two  underlying  assumptions  of  mechanistic  explanations  are  that  of 

decomposition and localization, that is, (i) “the assumption that the overall activity 

results from the execution of component tasks”, and (ii)  “the assumption that there 

are components in the system that perform these tasks.” (id., pp. 10-11) Complex 

phenomena such as biological and cognitive systems have been studied for quite a 

while through mechanistic explanations, for it narrows down many conjectures in 

testing  them  through  empirical  enquiry,  and  helps  formulate  sound  conclusions 

concerning the role of component processes into the overall behavior of a system. In 

Bechtel’s words:

This  explanatory  strategy  is  common  not  just  in  information  processing 
psychology  but  in  much  of  contemporary  neuroscience;  researchers  try  to 
decompose the tasks performed by the brain into component tasks and then 
seek evidence that these tasks are actually performed by neural components. 
[…] These studies accordingly are seeking to identify hypothesized component 
psychological processes with specific brain regions.” (id., p. 11)

Dynamicists  hold a  somewhat  holistic  view of  cognitive  systems  and processes, 

which they claim is incompatible with mechanistic decomposition and localization 

on conceptual grounds. But mechanistic models need not be simple linear and serial 

processes, they too can (and ultimately do, in both life and cognitive sciences) be 

sophisticated  accounts  of  integrated  and  nonlinear  systems!  The  information 
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processing  metaphor  is  important  to  mechanistic  explanations  in  that  it  models 

“particular  components  in  the  system  as  carrying  information  about  processes 

elsewhere in the system.” (id., p. 13)

Perhaps one of the most enlightening developments in Bechtel’s comment is 

about a contrasting feature of dynamical models, in comparison with computational 

ones, as found in his discussion between connectionist and dynamical models:

The difference  and differential  equations  in  [Townsend and Busemeyer’s44] 
models are  intended to describe patterns of  linked change in  the values of 
specified parameters in the course of the system’s evolution over time. The 
parameters  do  not  correspond to  components  of  the  system which  interact 
causally. They are, rather, features in the phenomenon itself. (id., p. 14)

In other words, the parameters of dynamics refer to magnitudes, themselves drawn 

from features of behavioral concern in a system’s process, but do not pertain to the 

mechanisms’ componential characterization! One links an infant’s capacity to grasp 

objects with regards to coordination factors such as perception, motor control, and 

physiological  features  (mass,  strength,  etc.),  as  Thelen  does,  or  the  arbitrary 

valuation of motivational features relative to particular consequences or expected 

outcomes,  such  as  in  Townsend  and  Busemeyer’s  model.  But  none  of  these 

parameters appeal to the nature or role of the underlying component processes! In 

short,  dynamics  does  well  at  describing  correlations  and  overall  tendencies  of 

arbitrarily chosen magnitudes relevant to a system’s behavior, but do not answer 

‘why’ questions about such processes (since dynamics are not interested in what 

does what, to what else, and for what reason), only  partly ‘how’ questions (since 

causal and organizational issues are not addressed either).

But  Bechtel  favors,  even  supports  as  essential,  the  complementarity  of 

mechanistic and nomological endeavors:

44 In reference to Townsend and Busemeyer’s (1995) study of  decision-making using dynamical 
representations.
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Assume that we have a correct [dynamical] account of motor behavior […], of 
motor development […], of perception […], or of decision-making […]. Each 
of  these  invites  a  further  question:  how  is  the  underlying  system able  to 
instantiate  the  laws  identified  in  these  [dynamical]  accounts?  One  way  to 
answer  this  question  is  to  pursue  a  mechanistic  explanation  by  trying  to 
decompose the overall behavior and localize subtasks. (id., p. 15)

Accordingly, such methodologies are essentially complementary, and one does not 

have any kind of ‘priority’ over the other:

If a [dynamical] account provides an account at this level [of description of 
processes],  its  legitimacy  is  not  undercut  by  learning  how  the  various 
components in the system operate and perform their individual roles. (id.)

Bechtel  even  adds  a  further  value,  or  advantage,  of  co-opting  dynamical 

(nomological) explanations in the study of cognition: some research conjectures may 

be doomed to modeling cognitive processes in a way that is inaccurate, and having a 

fair account of the behavior of a system may warrant a good mechanistic explanation 

of it a fortiori. This argument is equivalent to that of proponents of the need for the 

ecological validity of models in cognitive science (a good example of which is the 

characterization of the inverse kinematics problem as seen in chapter II).

Are  the  CHCS and DHCS incompatible,  mutually  translatable,  or  simply 

orthogonal characterizations of the same phenomena? Bechtel provides us with good 

reasons  to  believe  not  only  in  their  compatibility,  but  even  to  an  essential 

complementarity of both frameworks.

Most cognitive science research has been devoted to determining the nature of 
the  mechanisms  underlying  cognitive  performance,  whereas  some  DST 
(dynamical  systems theory)  accounts  are  rather  directed  toward identifying 
laws  that  relate  different  parameters  in  a  system.  But  while  there  is  a 
difference here between DST accounts and other cognitive accounts, this does 
not render the two approaches incompatible. Indeed, they are complementary. 
We want to know both what the regularities are in the phenomena, and what 
mechanisms underlie them. (id., p. 16)
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- IV - Close encounters of the third kind: connectionism
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This fourth and final chapter presents the controversial class of connectionist 

models. Since proponents from both frameworks insist on claiming connectionism 

as  part  of  their  own  view  of  cognition,  the  entire  chapter  is  devoted  to  the 

clarification  of  what  is  at  stake  in  connectionist  models,  both  formally  and 

empirically, and in what way it has anything to do with the comparative analysis of 

computational and dynamical models.

- IV.I -  Misunderstandings so far: on representation and computation, types of 

explanation, and the special case of connectionism

Now that we have spent a lot of ink on conceptual issues concerning the 

nature,  format,  role,  and explanations involving computation,  representation,  and 

dynamics, we have to assess how all of this might claim lineage with yet another 

type of applied mathematical models, that of connectionism. Connectionism, as we 

have seen throughout this paper, has pretenders on both sides of the computational-

dynamical divide. This chapter’s aim is to show that connectionism can be seen as 

an  exemplar  model  of  a  particular  type  of  cognitive  processes,  namely  neural 

mechanisms,  and  that  such  a  model  combines  elements  of  both  conceptual 

frameworks in an essentially complementary way, in its aim to provide us with an 

accurate account of the biological substrate of psychological processes. But before 

we even start characterizing connectionist models, let us summarize what we have 

gathered from our earlier reflections on computation and cognition. Firstly, we have 

established that computational models need not be (but  can  indeed be) symbolic 

models, as the latter are but a special type of the former, more generic family of 

formal  models.  Secondly,  representations  are  not  only necessary features  of  any 

mechanistic  explanation  involving  information  processing  models,  but  we  can 

conceive them in an operational and minimalist, albeit ubiquitous, way that avoids 

the  aforementioned  symbolic  characterization  and  is  quite  compatible  with  a 

dynamical explanation. Thirdly, cognition is meant to refer to many things, since 

cognitive processes aren’t circumscribed to brain processes, or task performances, 

and  can  pertain  to  environmental  and  social  features  too.  While  connectionism 
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constitutes  a  computational  view  in  a  nonsymbolic  sense,  and  involves 

representations much like in Bechtel’s discussion above, it concerns  only internal, 

low-level  cognitive  processes,  namely  that  of  neural  mechanisms,  and how they 

exhibit features that can be informative about higher level psychological features.

Piccinini’s (Piccinini 2004e) comments on the adequacy of computational 

models to represent neural processes have left us in doubt, since his account of what 

counts as computational is severely biased. But, like everyone else, he still holds that 

a functional account of neural mechanisms should be, in principle, possible, albeit 

not a (symbolicist) Turing-computational one. So, if it  is in principle possible to 

model  neural  mechanisms  through an  adequate  enough mathematical  model,  the 

question that remains is: which one? Connectionist models, much like the ones from 

computational and dynamical theories of cognition, also have a dual commitment to 

a  formal  thesis  (which  involves  both  computable  functions  and  mathematical 

analysis) and an empirical thesis (that the realization of computation in biologically 

inspired  information  processing  involves  parallelism and  large-scale  distribution, 

among  other  things).  Glymour  sketches  the  outlines  of  the  motivations  and 

pretensions pertaining to connectionism, with regard to cognition: 

The most obvious and most important fact about cognitive psychology is that 
on almost every dimension this aim [to figure out cognition], and even more 
specialized pieces of it, are radically underdetermined by this sort of evidence 
[traditional  sorts  of  evidence available  to  psychologists]  […] Psychologists 
have  given  three  sorts  of  responses  to  [various  sources  of]  evidences  of 
underdetemination. One is to ignore alternatives and treat speculation as nearly 
established  fact;  another  is  to  try  to  establish  only  more  modest,  but  still 
relevant, claims about mental processes and their development; and a third is 
to try to connect models of mind, in so far as possible, with biology, in the 
hope that biology will eventually so constrain such mechanisms that together 
with  psychological  experiments  many  of  the  big  questions  about  how 
cognition  works  can  be  answered.  Connectionism  is  the  oldest  and  most 
influential instance of the third strategy. (Glymour 1997, p. 2)

Connectionism is built on the assumption that the brain, in fact the whole 

nervous system, is the substrate of our cognitive, here psychological, processes, and 
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that  such  processes  are  carried  out  in  a  way  that  is  best  captured  through  a 

sophisticated  computational  model,  thus  appealing  to  information  processing 

models. Connectionism is defined as
Connectionism

From Wikipedia, the free encyclopedia.

Connectionism […] refers to an approach in the fields of cognitive psychology, cognitive science and 

philosophy of mind which models mental or behavioral phenomena with neural networks […]

The  main  assumptions  are  that  (i)  a  mental  state  can  be  represented  by  a  n-

dimensional vector of numeric activation values, over neural units interconnected in 

a network, and (ii) psychological processes commonly referred to as learning and 

memory are represented by the modification of the strengths (or weights), or the 

architecture45,  of  the  connections  between  such  units.  Connection  weights  are 

themselves described as NxN-dimensional matrices. The state of a neural unit

is a function of the weighted sums of states of its parents, the function roughly 
approximating how changes in cell potentials depend on inputs. Learning takes 
place  by  any  of  several  essentially  local  algorithms  that  adjust  weights. 
Memory resides in the weight values. (id.)

The  motivation  for  connectionist  modeling  came from the  application  of 

information  processing  concepts  and  methods  to  the  physiology  of  the  nervous 

system, as we have seen in chapter III, section I.II. But we must also be aware of the 

limitations  of  connectionist  models.  For  one  thing,  not  all  of  the  local  learning 

algorithms are representative of real neural processes, and artificial neural networks 

(ANNs  hereafter)  are  simplified,  coarse  grained  versions  of  such  processes. 

Nevertheless,  as  stated  above,  the  aim  is  to  constrain  the  explanations  about 

psychological phenomena through our knowledge of neurobiological processes, an 

endeavor that is still in progress, and has already shown considerable success over 

45 By the creation of new connections (representing synaptogenesis) or new neurons (neurogenesis), 
paralleling actual neurobiological processes. For references on the biological bases of connectionism, 
see Cline (Cline 2001) on neurogenesis and synaptogenesis, Kandel (Kandel, Jessell, and Sanes 2000) 
on  the  neural  mechanisms  underlying  behavior  and  cognition,  Shultz’s  models  of  cognitive 
development  (Shultz  2003),  and  Stein,  Wallace,  and  Stanford  (1998)  on  single  neuron 
electrophysiology.
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the last decades. For example, some neurobiological evidence suggests that local 

neurosynaptic learning might be one of two mechanisms, the other one being global 

processes, which should be featured in our explanations of neural mechanisms. But 

as global processes such as hormonal transmission (Glymour 1997) and interactions 

with  glial  cells  (Fields  2004)  are  modeled  into  neurobiological  and 

neurophysiological  explanations,  they  can  also  find  corresponding  features  in 

connectionist models. Such sciences, and their models, inform each other and evolve 

slowly but surely. Global processes, Glymour argues, might just turn out to make 

connectionist modeling easier, rather than more difficult.

The  essential  assumption  of  computation  throughout  such  models  is 

supported not only through formal and conceptual considerations, as we have stated 

on so many occasions, but also on the sheer success of such a perspective, judging 

by the ubiquity  of  computational  explanations in  cognitive science,  and beyond, 

even in life sciences. In Glymour’s words again:

I  think no one  with scientific  experience can read the papers  reviewed by 
Churchland and Sejnowski, or many other sources, and doubt that it  is real 
science, or that computational and representational ideas are essential to it […] 
In  almost  all  of  [the  research  in  cognitive  neuroscience],  an  essential 
assumption  is  that  cognition  depends  on  computable  biological  processes. 
(Glymour 1997, p. 4)

But  connectionism need  not  be  pulled  into  the  allegedly  opposite  directions  of 

computationalism  and  dynamicism,  it  does  actually  constitute  a  field  rich  in 

mathematical  enquiries  that  is  determined  by  its  one  motivation:  to  frame  a 

biologically  adequate  explanation of  cognition.  The end justifies  the means,  and 

such  means  are  drawn  from  many  branches  of  mathematics,  even  statistical 

analysis!46 Bechtel  illustrates  this  through the example of  Elman’s (Elman 1995) 

46 A  remark  from  Glymour  concerning  the  mathematical  inspirations  and  requirements  of 
connectionism:  “[…]  the  two  directions  scarcely  exhaust  the  methods  by  which  people  try  to 
understand why connectionist systems behave the way they do – at least as important, perhaps more 
so,  is  the  application  of  rather  conventional  statistical  techniques  to  try  to  gain  a  qualitative 
understanding of the causal relations among features of a complex connectionist system.” (Glymour 
1997, pp. 4-5, note 2)
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connectionist model of a language related tasks, the prediction of successive words 

in a sentence.

Elman uses a recurrent47 neural network which has both computational and 

dynamical features.  There is  no doubt that such a model is  mechanistic,  for one 

thing,  since  it  appeals  to  neural  mechanisms  and  the  functional  role  of  their 

components. The model is also obviously computational for the same reasons stated 

throughout this paper. But dynamics are here used to analyze the behavior of such 

mechanisms:

The question motivating this research is whether recurrent connections provide 
sufficient  information  for  the  network  to  predict  words  of  grammatically 
appropriate categories. Elman demonstrated that when an appropriate training 
regime was  used  the  network’s  predictions  would  respect  even  fairly  long 
range grammatical dependency relations. (Bechtel 1998, p. 15)

Elman is curious about the way this is achieved. How does the network manage to 

do so? Since his network is significantly complex (involving many neural units, and 

many more connections between them), the ‘information’ stored by the network is 

bound  to  be  massively  distributed,  and  single  unit  investigation  is  therefore 

pointless.  Elman  consequently  uses  formal  strategies  issued  from dynamics  and 

statistics, such as cluster analysis and principal components analysis, to observe a 

reduced state  space  of  its  behavior  (by  observing  the  qualitative  features  of  the 

dynamics  of  a  certain  number  of  variables).  By  comparing  the  behavior  of  the 

network on nearly identical tasks, it is then possible to pinpoint relevant differences 

in processing, and thus give a satisfactory account of the performance of such a 

complex mechanism. Elman’s combination of mechanistic assumptions, viz. that of 

decomposition and localization, with dynamics’ heuristics of cluster and components 

analyses, provides him with compelling information from which he can then give a 

detailed account  of  the phenomena under observation.  Note that  such dynamical 

features need not be strictly methodological, and external, characteristics. For one 

47 The next section develops on such specifications.
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thing, the recurrence of the network itself is a dynamical feature, and so are many of 

the features of component learning algorithms, as we will see in the next section.

To summarize in a more concise, disambiguated vocabulary, connectionist 

models (i)  involve subsymbolic  (a contrasting feature with GOFAI computation) 

computational  models,  (ii)  are  simplified  models  of  real  neural  networks,  but 

nevertheless exhibit many of their interesting features (otherwise, there wouldn’t be 

any  point  to  pursue  such  venture),  (iii)  are  traditionally  simulated  (here, 

implemented) on digital computers to make use of their computational power, (iv) 

realize  a  mathematical  model  that  involves  complex,  nonlinear  algebraic 

calculations, and exhibit parallelism and massively distributed representations, and 

(v)  may,  or  may  not  (at  the  risk  of  excessive  simplicity,  or  triviality)  involve 

essential dynamical features, and/or appeal to dynamics for the purpose of framing 

adequate explanations. We need to put enough emphasis on that last point, as many 

researchers,  such  as  Smolensky  (one  of  the  founders  of  parallel  and  distributed 

processing), have argued that the direction connectionist models will take is towards 

fully continuous, high-dimensional, nonlinear dynamic systems approaches.48

-  IV.II  -  Types  of  connectionist  models,  and  what  makes  them  more  or  less  

dynamical
Neural network

48  On that topic, see Elman, Bates, Johnson, Karmiloff-Smith, Parisi, and Plunkett, 1997, and Elman 
1998.
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From Wikipedia, the free encyclopedia.

A neural network is an interconnected group of neurons. The prime examples are biological neural  

networks, especially the human brain. In modern usage the term most often refers to artificial neural  

networks (ANN) […]

An artificial neural network is a mathematical or computational model for information processing 

based on a connectionist approach to computation.[…] It involves a network of relatively simple 

processing elements, where the global behavior is determined by the connections between the 

processing elements and element parameters. The original inspiration for the technique was from 

examination of bioelectrical networks in the brain formed by neurons and their synapses. In a neural 

network model, simple nodes (or "neurons", or "units") are connected together to form a network of  

nodes — hence the term "neural network".

92



93



Figure 16  (left) A neural network, an interconnected group of nodes, akin to the vast network of 
neurons  in  the  human  brain.  Figure  17 (right)  Neurosynaptic  pathways,  illustrated  through 
immunofluorescence.49

Connectionists are interested in modeling cognitive processes through neural 

networks, which are designed to incorporate a variety of parameters and constraints, 

but their sophistication also depends on the mathematical and informational interests 

of  their  engineers.  Thus  not  all  artificial  neural  networks  are  meant  to  model 

cognitive processes, since ANNs are now general computing tools to facilitate the 

solution of  problems in  any  and all  areas  one might  think of,  from engineering 

design to management, and automated navigation. This section presents an overview 

of  a  number  of  connectionist  models,  with the  aforementioned considerations  in 

mind. The purpose is to assess the potential of connectionism as a model of choice 

for cognitive science, and its ‘situation’ in view of computational and dynamical 

models.

Prima  facie,  what  are  connectionist  models,  namely  ANNs,  used  for 

generally, in cognitive science? Glymour (Glymour 1997) sketches four mainstream 

types  of  connectionist  research  to  link  neural  network  models  and  the  study  of 

cognition: (i)  systems simulation,  which endeavors to  “describe as completely as 

possible  the  nerve  connections  of  very simple animals  and  simulates  them on a 

computer” (id.,  p. 3), (ii)  functional analysis,  which focuses on the physiological 

properties  of  single  neurons,  by  framing  them  into  information  processing 

explanations, constituting a significant part of neurobiological research (also referred 

to as single neuron electrophysiology, e.g. Stein, Wallace, and Stanford, 1998), (iii) 

serial  implementation,  which purports  to establish serial,  and sometimes discrete 

processes  onto  parallel  and  distributed  processes,  and  (iv)  abnormal  cognition 

simulation,  which  attempts  to  simulate  the  evidence  gathered  from  abnormal 

neuropsychology in neural networks through the characterization of similar features, 

49 Sources:  http://www.psych.utoronto.ca/~reingold/courses/ai/nn.html and 
http://www.discip.crdp.ac-caen.fr/svt/cgaulsvt/travaux/travmich/synweb/reseau.html. 
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such as the graceful degradation of artificial networks being quite similar to brain 

lesions.

Now, artificial  neural networks are much simpler and smaller  than actual 

neural subsystems (as can be seen in figures 16 and 17 above, for example), but 

connectionists  are  interested in  bridging functional  features  of  such models with 

actual cognitive features and performances, most prominent of which probably is 

learning,  on  smaller  scales.  Formal  neural  units  operate  similarly  to  biological 

neurons,  typically  in  layers  (at  least  three  layers  are  necessary  to  exhibit  any 

interesting kind of calculation,  namely input,  hidden, and output  layers50),  by the 

summation  of  weighted  synaptic  inputs,  which  may or  may not  be  sufficient  to 

activate a given unit, depending on a given threshold value (usually determined by a 

sigmoid function). The process is repeated on a massive scale, for all interconnected 

units.  Thus,  artificial  networks  are  mathematically  designed  over  ‘transfer’ 

functions,  representing  the  activation  relation  between  biological  neurons.  Such 

calculations span from very simple (algebraically outputting 0s and 1s) to rather 

complex (if they are to be representative of biological processes, or computationally 

useful  in  any way).  Sigmoid and  tanh (hyperbolic tangent)  functions are  usually 

employed as transfer functions since they introduce nonlinearity in the calculations 

of a network, while restricting the domain and codomain’s values to a range of [0,1] 

for the sigmoid function, or [-1,1] for the hyperbolic tangent. A derived advantage of 

such functions is that their derivatives are simple, and as such allow easier error-

correction calculations  for  neural  networks.  Such calculations  are  usually  set  on 

random initial values (the state of a system which has no information), then ‘trained’ 

by feeding input values that are to be matched to output values through the gradual 

modification of synaptic weights, in order to obtain a network that can be said to 

have  ‘learnt’  useful  associative  patterns,  thus  constituting  some  kind  of 

representations, or memory, of relevant data.

50 The information processing usually occurs in both hidden and output layers, as the input layer 
typically only serves the purpose of feeding the information to the rest of the network.
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Neural  networks  exhibit  many  heuristic  features  of  biological  neural 

mechanisms,  as  well  as  their  ‘higher-level’  cognitive  counterparts:  (i)  learning, 

through exposure to an environment by means of sensory inputs, (ii) auto-organized 

representations,  which result from the learning process on repeated exposition to 

diverse sources  of  inputs,  (iii)  fault-tolerance,  as  representations  are  redundantly 

formed as prototypical informations, which are massively distributed, local damage 

to the network does not impair the network’s overall performance, (iv) flexibility and 

scalability, as noisy and partial inputs are handled efficiently through such models, 

and  they  can  handle  different  problems  related  to  a  similar  inputs-outputs 

environment, and (v) real-time processing, as the implementation of an ANN can be 

made to operate on bounded real-valued (continuous) data.  As mentioned above, 

different  types  of  networks  can  achieve  different  types  of  tasks,  with  a 

computational  might  proportional  to  the  degree  of  sophistication  involved  in  its 

mathematical and architectural design. We can sketch the following taxonomy as a 

coarse  characterization  of  the  various  types  of  neural  networks51 (such  a 

classification is by no means exhaustive of the ever expanding field of parallel and 

distributed architectures in computer science):

Feed-forward networks

Feed-forward models are ANNs with inputs to outputs activation, the information 

flowing only in one way. Thus, the outputs from all neurons go to following but not 

preceding layers, so there are no feedback loops. While such networks can be useful 

for simple calculation tasks, they do not qualify as dynamical in the preferred way 

described throughout this paper.

Single-layer perceptron

Frank  Rosenblatt’s  (1958)  first  attempt  at  modeling  parallel  and 

distributed,  neural-like  information  processing,  the  very  simple  single-layer 

perceptron is built as a unique layer of output neurons, to which input values are 

51 All references for such models: Elman 1998, Elman, Bates, Johnson, Karmiloff-Smith, Parisi, and 
Plunkett  1997,  Gurney  1997,  Haykin  1998,  Rumelhart  1989,  Rumelhart  and  McClelland  1986, 
Smolensky 1989, Stein, Wallace, and Stanford 1998, Sun 1998.
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directly  fed,  through  a  set  of  weights.  The  output  values  are  simply  either 

‘activated’,  or  ‘deactivated’,  which  are  given  through  a  rudimentary  learning 

algorithm named the delta rule.  Such networks can only solve linearly separable 

problems.

Multi-layer perceptron

A network usually possessing at least three layers, input, hidden, and 

output, where all the units from one layer are interconnected with each unit in the 

subsequent layer. Learning is formalized through the back-propagation algorithm, 

which  compares  output  values  with  the  expected  values  to  calculate  an  error-

function.  This  error  calculation  is  in  turn  used  to  adjust  the  weights  of  the 

connections in order to minimize the error of further network computations. This 

weight adjustment algorithm is known as gradient descent calculation.

Feedback (recurrent) networks

Recurrent  networks  are  designed  to  include  bi-directional  data  flow,  whereby  a 

function of the output signal of a system is passed (fed back) to the input. This is 

done  in  order  to  control  the  dynamic  behavior  of  the  network.  Such  networks 

obviously fit well into our discussion on the complementarity of computation and 

dynamics.

Simple recurrent network (SRN)

Designed like feed-forward multi-layer networks, such models also 

include ‘context’ units in the input layer. Such units are used to maintain a copy of 

the previous values of the hidden units, allowing complex computations involving 

sequence prediction, for instance.

Fully recurrent network

A non-layered network where every unit  is  connected to everyone 

else.  Some  subset  of  the  network’s  units  also  receives  external  inputs,  whereas 
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another  subset  performs  the  opposite  task  of  outputting  values  outside  of  the 

interconnections.

Hopfield network/Boltzmann machine

Such recurrent networks have symmetrical connections, and exhibit 

dynamical properties quite useful for complex calculations. A Boltzmann machine 

has  the  additional  feature  of  involving  noisy  variables,  making  it  a  stochastic 

network.

Cascade-correlation

Another  example  of  recurrent  networks,  cascade-correlation  is  a 

constructive learning algorithm. It starts as a minimal network, consisting only of an 

input  and  an  output  layer.  Minimizing  the  overall  error  of  the  network  through 

backpropagation, it adds (‘recruits’) at each computational step new hidden units to 

the hidden layer, until the network has assimilated its training input vectors. This 

allows cascade-correlation networks to learn much faster.

Integrated networks

Committee of machines (CoM)

Tricks  of  design  can  be  greatly  beneficial  to  connectionism’s 

computing endeavors, and integrating many networks together is one such clever 

idea.  The  idea  is  to  have  multiple  networks  sharing  the  same  architecture,  but 

different initial random weights and input training values, ‘vote’ together on a given 

problem. While it doesn’t translate into faster processing, it  has the advantage of 

greater output stability over its many calculations.

Time-based networks

Whereas  recurrent  networks  offered  a  first  dynamic  outlook  to  computational 

processes  by  including  feedback  and  continuous,  simultaneous  interactivity, 

networks that integrate the timing and latency of processes have an even greater 

edge in the race to account for cognitive processes. Such networks can thus be said 

to have essential dynamic features, on par with the type of continuous dynamical 

models championed by the proponents of the DHCS.
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Spiking neural networks (SNN)

Spiking  networks  propose  to  model  the  intrinsic  timing  of  neural 

spikes,  and spike trains,  properties essential  to the dynamics of biological neural 

networks. Thus are considered the latency of inputs, the all-or-nothing type of event 

that is neural activation, and the processes are achieved continuously. Such a model 

would probably do well in confronting Piccinini’s arguments in chapter III, section 

I.II.

Adaptive time-delay neural network (ATDNN)

A type  of  multi-layer,  feed-forward  or  recurrent  network,  the 

ATNN’s architecture has a set of neurons which can ‘store’ their energy level, and 

are connected to other neurons. In a standard network, each neuron can be connected 

to  any  number  of  neurons  in  the  next  layer,  but  they  can  only  have  a  single 

connection to any given neuron. The difference with an ATNN is the use of delayed 

weights. That is, a given neuron in a preceding layer can be connected to a neuron in 

further layer many times with different weights. With each weight is associated a 

time delay, which acts as a memory. Thus the ATNN offers a significant gain in 

memory,  but  also  the  possibility  of  changing  the  delay  values  during  training, 

another significant gain in flexibility.

Hybrid networks

Autonomous  robotics  control,  using  Continuous-time  recurrent  neural  

networks (CTRNNs) and genetic algorithms (GAs)

Want to make your artificial neural network even more ‘biologically 

inspired’? No problem, combine it with yet another type of biocomputing model, a 

genetic algorithm. Genetic algorithms are a subset of evolutionary algorithms, which 

find solutions  to  optimization problems through heuristics  inspired  by  biological 

phenomena such as inheritance, mutation, natural selection, and recombination. By 

combining a CTRNN, which is similar to the time-based networks mentioned above 

(with the additional advantage of being capable, in principle, of approximating any 

dynamical  system),  with  a  genetic  algorithm,  one  can  design  very  sophisticated 
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computational  models  to  achieve  an  artificial  sensorimotor  control  system.  The 

genetic algorithm’s input values are the neural networks’ parameters, and fitness is 

measured through the comparative adequacy of outputted motor behaviors.

While the aforementioned list  of  connectionist  models is  by no means as 

nearly sophisticated as are biological neural mechanisms, they do show how much 

progress can be,  and has been,  achieved in modeling cognitive processes,  or for 

other  purposes,  such  as  developing  computing  applications  and  tools.  Are 

connectionist  models  computational?  They  are,  in  fact,  essentially  so,  and  were 

always  meant  to  model  cognition  as  informational  processes.  Some  may  be 

dynamical,  in van Gelder  et al’s view of dynamics,  appealing to the continuous, 

time-based coevolution of variables. Ultimately, connectionist models, as far as they 

can be used in explanatory endeavors in the study of cognition, are but one type of 

models of intelligent processes and behaviors. While we were concerned with the 

comparative  advantages  and  limitations  of  the  computational  and  dynamical 

frameworks at large,  viz. on all levels of description relevant to cognitive science, 

connectionism constitutes  but  one  such  level  of  cognitively  related  phenomena. 

Nevertheless, this examination has only served the purpose of summarily showing 

how  cognition  can  be  appropriately  studied  through  both  computational  and 

dynamical  concepts  and  methods.  The  following  sections  offer  a  more 

comprehensive summary of just how exactly connectionism is both computational 

and dynamical, and moreover, constitutes a good candidate as a model supporting a 

theory of cognition.

Connectionism  as  a  computational  framework.  Connectionism  is  a 

mathematical  model  that  departs  from symbolic  computation,  but  is  nevertheless 

built on the latter. The symbolic approach of the GOFAI, mostly concerned with a 

literal understanding of Turing’s thesis on a formal manipulation of symbols being 

functionally implemented by mechanical means, was a preliminary approach to a 

theory of cognition, emphasizing a strong resemblance between symbolic processors 
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and the linguistic and logico-mathematical competences of natural cognitive agents52. 

But the machine metaphor was too narrow and restrictive, and a more biologically 

inspired model of cognition was needed. Connectionism, with its massively parallel 

and distributed architecture of informational processes, emphasizes on an integrated 

account  of  cognition  spanning  from  neurological,  psychological,  and  linguistic53 

considerations on how mental processes should be modeled, while keeping essential 

features of its computational origin. Most importantly, connectionism is still

- a functionalist account of cognition,

- an information processing model,

- based on representations, albeit not strictly symbolic ones,

- a  model  that  realizes a  formal  representation  of  neural  processes, 

implemented on a computational architecture,

- a good candidate to accommodate higher level symbolic processing as 

originally conceived by symbolicists.

Thus,  connectionism  is a  computational  theory,  because  (i)  its  concepts  are  still 

integral  to  a  functional  and  informational  stance  on  cognition,  while  enjoying  a 

considerable gain in explanatory power in the field of cognitive science (we could 

say that connectionism is a conservative extension of a symbolic theory of cognition, 

with a much larger scope), and (ii) its models,  viz. artificial neural networks, are 

computational ones,  i.e. they perform calculations by means of an idealized formal 

model implemented on a computational machine (a digital computer usually). Those 

calculations are vectorial transformations, which are made in the language of linear 

algebra.  Indeed,  connectionist  computations  usually  involve  algorithms  defining 

functions of linear and nonlinear algebra, and dynamical and statistical analyses are 

generally  used  to  observe  relevant  qualitative  and  quantitative  features  of  such 

algorithms, or enhance their computational performance.

52 Noteworthy is the absence of sensorimotor processes, agency and perception from such an 
approach to cognition, which were relegated to cybernetics and early robotics. Likewise, a theory of 
animal cognition was but awkwardly possible under such a framework, since formal and semantic 
properties of cognition could hardly be attributed to nonhuman animals.
53 I include logical and semantic properties as linguistic ones, for the sake of simplicity.
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Connectionism as a subset of dynamical systems.  Any connectionist theory 

of cognition that pretends to a nontrivial degree of explanatory power must draw 

upon  dynamical  systems  theory  and  dynamical  modeling  to  better  describe 

informational  processes,  and  the  intricate  relationships  between  cognition,  body, 

context, and environment. While there can be dynamical models of cognition that 

deal  with  nonconnectionist  issues,  such  as  behavioral  and  psychophysiological 

phenomena, the opposite is hardly relevant anymore to model cognition, as seen in 

the abovementioned feed-forward models.54 This is due to the intrinsically dynamic 

nature of cognitive processes, including the relevant ones for connectionism, namely 

the  neurobiological  processes  involved  in  natural  cognition.  Neural  information 

processing  occurs  in  feedback  loops,  through  the  reinforcement  of  synaptic 

connections (by means of electrochemical catalysts), or the impoverishment of such 

connections  (by  means  of  inhibitory  electrochemical  reactions),  and  such 

connections may in turn be globally cooperative or antagonistic in the activation of 

yet other neural processes. Since the architecture of any nontrivial artificial neural 

network requires the use of formal concepts and tools drawn from dynamics and 

statistical  analysis,  we  can  support  without  further  ambiguities  the  claim  that 

connectionism is indeed dynamical in nature.

That  connectionist  models  are  dynamical  is  hardly  surprising  then,  and 

computationalists have as such never denied it, as seen in chapter III. Thus was the 

issue  only a  matter  of  emphasis,  as  dynamicists  would have  some connectionist 

models  (the  nontrivial,  relevant  ones  in  cognitive  science,  incidentally)  belong 

exclusively  to  their  view.  We  have  seen  that  such  a  claim  is  untenable,  if  we 

correctly distinguish between the narrow definition of symbolic computation, and 

the  larger  definition  of  computability.  The  fact  is  that  connectionism  is a 

computational theory of cognitive processes, albeit one that is not concerned only 

with symbols, and incorporates formal elements drawn from many areas of pure and 

54 Feed-forward models were a first good approximation of just how neural processes might be 
designed, but are nowadays relegated to purely instrumental purposes, such as the design of inductive 
algorithms for task-specific computational problems.
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applies  mathematics,  both qualitative and quantitative.  It  so  happens that  as real 

cognitive processes are dynamical,  i.e. they happen in time, are complex systems 

whose variables fluctuate interdependently, and can not be reduced to simple linear 

equations. Any pretender to an accurate account of cognition must thus explain (and 

consequently be able to model) the dynamical nature of mental phenomena.

Connectionism as a theory of cognition, and neural networks as models of  

cognitive processes. I had intended to present connectionism as but one example of a 

theory  in  cognitive  science  that  is  both  computational  and  dynamical  for  very 

specific reasons, namely the popularity and dominance of connectionist accounts of 

specific cognitive processes on one hand, but mostly because connectionism was 

claimed on both sides of the controversy concerning which account of cognition is 

more accurate, between the CHCS and the DHCS. A fair and impartial account of 

the  benefits  of  adopting  a  connectionist  theory  of  cognition  must  delimitate  its 

scope:  connectionism  is  concerned  with,  and  only  with,  cognitive  phenomena 

occurring at the level of neurological events, and even then, at the one postulated to 

be relevant to just the kind of phenomena of interest to cognitive science, namely the 

informational level involved in perception, memory, language use, deliberation,  et 

caetera. So on the one hand, connectionism may take into account neurobiological 

processes  of  a  lower  level,  such  as  electrochemical  dynamics,  and  indirect 

neurobiological events such as synaptic reinforcement through interactions with glial 

cells for example, but such lower or indirect levels of biological activity are not the 

focus of such a theory. On the other hand, connectionism is scarcely exhaustive in 

the modeling of all psychological phenomena, and does not pretend to be able to 

explain linguistic, sensorimotor, or social cognition solely through the workings of 

neural processes.

That  connectionism  does  not  offer  a  unified  and  complete  account  of 

cognition is again hardly surprising, as such an account would be quite suspicious 

from a mechanistic outlook anyhow, and more so, what counts as cognitive is rather 
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inclusive,  or  permissive.  Cognitive  science  is  for  this  very  reason  an 

interdisciplinary  endeavor,  and  connectionism  is  but  one  theory  among  many, 

sometimes  competitive,  oftentimes  complementary  accounts  of  cognitive 

phenomena. Being focused on specific aspects of such complex phenomena is but a 

necessity while threading mechanistic explanations.

-  Conclusion  -  Strange  bedfellows?  Computational  and  dynamical  models  in 

cognitive science

“11h15, restate my assumptions: 1. Mathematics is the language of nature. 2. Everything around us 

can be represented and understood through numbers. 3. If you graph these numbers, patterns 

emerge. Therefore: There are patterns everywhere in nature.” - Maximillian Cohen, in the movie Pi 

(Darren Aronofsky, 1998)

“Hold on. You have to slow down. You're losing it. You have to take a breath. Listen to yourself.  

You're connecting a computer bug I had with a computer bug you might have had and some religious 

hogwash. You want to find the number 216 in the world, you will be able to find it everywhere. 216 

steps from a mere street corner to your front door. 216 seconds you spend riding on the elevator.  

When your mind becomes obsessed with anything, you will filter everything else out and find that  

thing everywhere […] But, Max, as soon as you discard scientific rigor you are no longer a 
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mathematician. You become a numerologist.” - Sol Robeson, in the movie Pi (Darren Aronofsky, 

1998)

Cleaning up: dealing with some conceptual vagaries in cognitive science

Early on in the course of my argumentation, I have exposed fine distinctions 

pertaining to the definitions of concepts like cognition,  computation,  and that of 

representation, concepts that find themselves equivocal in the literature of cognitive 

science. I have also argued that part of the conflict between the proponents of both 

computational and dynamical models of cognition originated from such conceptual 

vagaries.

Quining (some) concepts. In an entertaining take on the problem of qualia in 

philosophy  and  cognitive  science,  Daniel  Dennett  (Dennett  1988)  advocated  a 

radical position by pretending to simply eliminate such a problem, or in his own 

sarcastic vernacular, by ‘quining’ it, that is, by refusing to deal with a seemingly 

important issue on grounds of its not being a real problem in the first place: "quine,  

v. To deny resolutely the existence or importance of something real or significant". 

While I do not pretend to do the same about concepts relevant to cognitive science, I 

do want to adopt a rigorous and strict, positivist-like view on the aforementioned 

conceptual  vagaries:  we  simply  can  not allow  ourselves  the  extravagance  of 

polysemic  references  in  science,  however  useful  that  might  turn  out  to  be  for 

analogical  reasoning  and  scientific  revolutions.  We  thus  need  necessary  and 

sufficient criteria for concepts like cognition, computation, and representation, an 

issue which has only been covered superficially in the present paper. Many of the 

arguments  proposed  by  supporters  of  the  CHCS  and  the  DHCS  are  based  on 

conveniently vague and questionable definitions of what such concepts stand for. 

For mechanists, there simply isn’t a question of whether cognition extends outside 
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the  brain,  or  the  body,  since  most  of  them are  strictly  interested  in  design  and 

functional issues of the internal structures underlying intelligent behavior. Not that it 

need  be  so,  but  the  point  is  that  you  can’t  accuse  someone  of  neglecting 

embeddedness or social cognition on the basis of their choice of a level of enquiry 

that  focuses  on  internal  processes.  Granted,  it  may  turn  out  (and  is  a  liable 

hypothesis) that social and environmental factors have direct consequences in the 

shaping  of  cognitive  processes,  but  the  study  of  neural  pathways  or  syntactical 

performance does not entail that one has to include such top-down considerations in 

every aspect of their studies. Better start rigorously at the bottom and work your way 

up, while nevertheless be wary of external factors that might turn out to be essential 

in the understanding of your domain of enquiry. Dynamicists, on the other hand, 

seem  to  often  toss  away  considerations  about  the  underlying  mechanisms  of 

cognition  in  favor  of  behavioral  and  systematic  descriptions  of  what  counts  as 

cognitive  to  them,  but  neither  can  they  be  guilty  of  being  concerned with  such 

factors. What both sides are guilty of, if it is the case, is being parsimonious in their 

conception of what counts as cognitive, and to what extent one should be concerned 

with it. This intransigence towards different intensions of cognition doesn’t indeed 

facilitate the debate. Cognitive science doesn’t restrict itself to a theory of behavior, 

a theory of brain, or a theory of mental faculties, it aims to integrate such endeavors.

Don  Quixote’s  take  on  computation.  Likewise,  computation  has  been 

mistreated from the very beginning of the discussion, since the dynamicists’ take on 

the CHCS was obstinately directed towards  one very narrow characterization of 

computability,  namely  symbolic  computation,  or  Turing’s  formal  account  of 

computable  systems.  The  formal  and  empirical  components  of  both  frameworks 

aren’t  equivalent,  and  some theoretical  exemplars  of  such  frameworks  (such  as 

digital computers and Watt’s centrifugal governor) translate poorly as exemplars of 

biological  cognition.  By  focusing  strictly  on  symbolicism,  and  conflating 

computation  and  symbolic  processes,  supporters  of  the  DHCS  did  little  in 

discrediting  computational  endeavors  in  cognitive  science,  struggling  with  straw 
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men. Not only did most of the dynamicists’ arsenal of arguments not hold the road in 

convincing us of potential shortcomings in computability theory with regards to the 

study of cognition, it also marks an embarrassing anachronism in that such an issue 

was  already  being  debated  decades  before,  in  the  discussion  on  the  relative 

advantages of connectionism  versus symbolicism. More so, connectionists always 

explicitly endorsed a commitment to the use of dynamics in modeling the cognitive 

processes  of  concern.  So  much  for  a  revolutionary  stance.  On  the  issue  of 

representations,  we have seen that while such a problem did indeed pervade the 

arguments supporting both stances towards cognition, it was necessary to posit them 

in  mechanistic  explanations.  By  simply  adopting  a  minimalist  concept  of 

representation, we can then only concern ourselves on matters of representational 

format, which seems to indeed play a significant role into the framing of accurate 

explanations of cognitive phenomena.

Everything you’ve always wanted to know about maths but never dared to  

ask. Another important issue concerns the mathematics involved in both conceptual 

repertoires. Time and again, we have seen that cognitivists clash on formal issues 

supporting their respective position. Some of those arguments are essential to the 

debate on the relative advantages of such and such model of cognition,  but find 

themselves  squarely  regressing  back  to  foundational  issues  in  theoretical 

mathematics.  Continuity  and  discreteness,  integers  and  reals,  algorithms  and 

computable  functions,  isomorphism  and  effective  representations,  and  the 

formalisation of time are many such grounds of dispute. It comes down to a petitio  

principii on the possibility of adequately representing cognitive phenomena through 

a  given  mathematical  model,  and  connectionism has  been  shown  to  develop  in 

heuristic avenues, to mention only one such model.

What about the symbolic view? So much has been said against an essentially 

symbolic approach to cognition, but is there still a place for it in cognitive science? 

Indeed, since no one would reasonably doubt the fundamentally symbolic nature of 

some aspects of cognition, namely the acquisition and use of language, high-level 
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processes  such  as  deliberation  and  logical  reasoning,  parts  of  mnemonic  and 

perceptual processes, social cognition, et caetera. Regardless of one’s semiotic take 

on the role  of  icons,  indices,  and symbols,  deeply representation-laden topics  in 

cognitive science are as important as concerns about psychophysics and neurological 

studies. Since today’s cognitive science has a broader conception of what constitutes 

cognitive phenomena, it should be considered as a conservative extension of older 

definitions of what is involved in the realm of the mental.

Of evidence and use

If the recipe works, why change it? Dynamicism, flawed logical reasoning,  

and the burden of proof. van Gelder  et al profess the openness of the dynamical 

hypothesis,  viz. that only future research and evidence in cognitive will prove the 

righteousness of adopting a dynamic stance towards cognition. On the other hand, 

dynamicicts  accuse  computational  models  of  failing  to  meet  the  standards  of 

cognitive  science,  two rather  dubiously  prejudiced  takes  on  the  same ground of 

argumentation. As Glymour most acerbically states it:

In  almost  all  of  [cognitive science’s]  work,  an essential  assumption is  that 
cognition depends on computable biological processes. And here is where the 
radical character of van Gelder's thesis begins to come home: van Gelder's 
thesis is that the thousands of papers on the computational biology of nervous 
systems  relevant  to  cognition  are  scientific  junk,  pursued  under  some 
fundamental metaphysical error. […] make no mistake about the boldness (or, 
to  be  less  generous,  the  crankiness)  of  his  claim.  What  should  replace  a 
century's scientific investigation of cognitive physiology and its computational 
aspects is ‘dynamical systems’. (Glymour 1997, pp. 4-5)

Likewise, on the issue of cognitive systems possibly belonging to the class of 

uncomputable dynamical systems, the burden of proof should be on the dynamicists, 

for the successes so far gathered in computation-based cognitive science don’t seem 

to stress any cognitivist’s possible angst towards such an issue. In fact, since most 

radical  dynamicists  rely  on  the  promotion  of  dynamics  as  a  ‘larger’  framework, 

encompassing even computable  systems, and then taking credit  in  that cognitive 
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processes might be uncomputable but nevertheless still always dynamical processes. 

Such  a  line  of  thinking  has  more  to  do  with  rhetoric  than  a  sound,  reasonable 

position. Promoting the DH as an open empirical investigation project is reasonable, 

as is bearing in mind some pragmatical concerns about the evolution of empirical 

enquiry  in  cognitive  science  anyway.  But  doing  so,  far  from  invalidating  the 

computational  stance  towards  cognition,  actually  bestows  additional  merit  to 

computability theory, having progressed that far, and through controversies spanning 

more than half a century already. A more lenient pragmatical position would be to 

say, as Bechtel does, that it has proven to be useful to adopt both views towards 

cognitive  processes,  and  that  their  complementarity  promises  even  more 

sophisticated means of explanation in the study of cognition.

(Not so) strange bedfellows?

The best of both worlds. After behaviorism’s downfall around the middle of 

the twentieth century, mentalistic explanations, of which the CHCS is an offspring, 

gained  popularity  because  they  offered  more  and  more  accurate  and  useful 

depictions  of  cognitive  phenomena.  Obviously,  the  paradigmatic  shift  was  to 

eventually reintegrate what it had tossed away, by means of a renewed interest in 

matters of cognitive performances in given contexts and environments. Dynamics 

offer one such opportunity of explaining cognition in a systematic, embodied and 

embedded way. The mechanists that are computationalists posit  actual functional 

features and components in cognitive systems, bearing a strong realism in their type 

of explanation, while the more nomologically inclined dynamicists have a skeptical 

outlook to their humean empiricist take on causal explanations. It would seem that 

this  whole  debate  might  revolve  around  the  philosophical  problem  of  causal 

relations, with optimistic realists clashing with noncommittal empiricists. Indeed, the 

whole  debate  might  just  be  formulated  as  following:  is  it  preferable  to  be 

noncommittal towards causal explanations such as the ones involved in mechanistic 

explanations,  by  simply  sticking  to  a  correlational  stance,  for  a  wide  array  of 

phenomena?

109



Or maybe we should shed some dennettian light on the debate, by drawing 

on an analogy derived from Dennett’s (Dennett 1987) take on explanations in the 

philosophy of mind and cognitive science. Dennett’s classic argument consisted of a 

harmonious division in three ‘stances’ towards cognitive phenomena, an intentional 

stance, a design stance, and a physical stance. Now, the intentional stance appeals to 

mentalistic explanations, ones involving the intentional vernacular of propositional 

attitudes, such as the attribution of beliefs, desires, and intentions. Unlikely to be 

dismissed  on  pragmatical  grounds,  such  a  level  of  explanation  of  cognition  is 

nevertheless not the preferred means of scientific enquiry in cognitive science. The 

design stance, on the other hand, posits causal relations and functional roles much in 

the same way that the aforementioned mechanistic type of explanation involved in 

the CHCS does, and it was indeed the motivation of Dennett to segregate it in view 

of the role of computational explanations. The third stance, that of physicalism, is 

interested in the properties of the substrate of cognition, and appeals to the covering 

laws of physics and the regularities observed in the life sciences. Obviously, the 

design and physical  stances translate well  into our ‘competing’ schemes that  are 

computational and dynamical explanations. But just as Dennett, some twenty years 

ago,  advocated  the  complementarity  of  all  such  stances  both  on  conceptual  and 

pragmatical  grounds,  so  do  I  for  computability  and  dynamics,  in  the  wake  of 

Bechtel. All such distinctions, from Dennett to Bechtel, were meant to emphasize 

the  various  contributions  championed  in  the  name  of  cognition,  and  their 

complementarity is also consequent of just how far reaching the concept of cognition 

can be, as discussed above. Cognitive science is said to be interdisciplinary precisely 

for such reasons, bearing on many levels of description, and drawing on concepts 

and methodologies from all concerned areas of research. 
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- Finale  -

To summarize our concluding position regarding the comparative advantages 

and limitations of the computational and dynamical stances in the study of cognition, 

we can say firstly that much of the dispute between proponents of computationalism 

and dynamicism is based on conceptual confusions of the nature of what counts as 

cognitive, on the nature and role of computation, and also on the nature, role, and 

format of representations. Secondly, that the complementarity of computational and 

dynamical  models  of  cognition  has  been  established  by  virtue  of  the  type  of 

explanation involved through such characterization, and as such, no exclusive claim 

on cognition can be made by their respective proponents. Such explanations have 

been segregated as mechanistic and nomological types of analysis, and find their 

place in the study of cognition by means of integration. Thirdly, the aforementioned 

integration has a theoretical exemplar in the form of the applied mathematical and 

informational  theory  that  is  connectionism.  While  we  do  not  claim  that  such  a 

framework is an exclusive means to model cognition, our endeavors were to show 

the possibility of drawing upon all available formal and empirical tools and evidence 

to  frame  cognitive  phenomena  in  a  heuristic,  informative  manner.  Fourthly,  the 

functional account of connectionism can be reciprocally constrained and informed 

by and with psychophysical evidence, as behavior and internal processing must be 

integrated  into  a  coherent  framework,  should  there  be  any  claim  of  an 

interdisciplinary  account  of  cognition.  Similarly,  mechanistic  and  nomological 

concepts  and  methods  should  be  employed in  concert  even  where  behavior  and 
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psychophysical enquiries are concerned, as computational and dynamical tools of 

analysis are not restricted to the study of internal processes.

- Appendices -

112



- Appendix I - Definitions of computation 55

The class  of  computable  functions is  equivalent  to  the class  of  functions 

defined by the following models:

- recursive functions

Class of functions from natural numbers to natural numbers.

Axioms and operators:

(i) The constant function 0 is primitive recursive;

(ii) The successor function S, which takes one argument and returns the succeeding 

number as given by the Peano postulates, is primitive recursive;

(iii)  The  projection  functions  Pi
n,  which  take  n arguments  and  return  their  ith 

argument, are primitive recursive;

(iv) Composition: Given f, a k-ary primitive recursive function, and k l-ary primitive 

recursive functions  g0,...,gk-1,  the composition of  f with  g0,...,gk-1,  i.e.  the function 

h(x0,...,xl-1) = f(g0(x0,...,xl-1),...,gk-1(x 0,...,xl-1)), is primitive recursive;

(v) Primitive recursion: Given f a k-ary primitive recursive function and g a (k+2)-

ary  primitive  recursive  function,  the  (k+1)-ary  function  defined  as  the  primitive 

recursion  of  f and  g,  i.e.  the  function  h where  h(0,x0,...,xk-1)  =  f(x0,...,xk-1)  and 

h(S(n),x0,...,xk-1) = g(h(n,x0,...,xk-1),n,x0,...,x k-1), is primitive recursive;

(vi) Extension to partial functions: f is many-to-one, or functional: if x f y and x f z, 

then y = z. i.e., many input values can be related to one output value, but one input 

value cannot be related to many output values. The function f need not be total, or 

entire (for all x in X, there exists a y in Y such that x f y (x is f-related to y), i.e. for 

each input value, there is at least one output value in Y);

55 References for computable functions equivalents and algorithms: J. L. Hein (1996), and R. G. 
Taylor (1998).

113



(vii) Unbounded search operator: If f(x,z1,z2,...,zn) is a partial function on the natural 

numbers with n+1 arguments x, z1,...,zn, then the function μx f is the partial function 

with arguments z1,...,zn that returns the least x such that f(0,z1,z2,...,zn), f(1,z1,z2,...,zn), 

..., f(x,z1,z2,...,zn) are all defined and f(x,z1,z2,...,zn) = 0, if such an x exists; if no such x 

exists, then μx f is not defined for the particular arguments z1,...,zn.

- lambda calculus

A formal system designed to investigate the definition and applications of 

functions, as well as the concept of recursion. The lambda calculus consists of a 

single  transformation rule  (variable  substitution)  and  a  single  function  definition 

scheme.

Axioms and operators:

(i) Composed of a countably infinite set of identifiers, for example, {a, b, c, ..., x, y, 

z, x1, x2, ...};

(ii) The set of all lambda expressions can be described by the following context-free 

grammar:

1) <expr> ::= <identifier> 

2) <expr> ::= (λ <identifier> . <expr>) 

3) <expr> ::= (<expr> <expr>)

The first two rules generate functions, while the third describes the application of a 

function to an argument. Usually the brackets for lambda abstraction (rule 2) and 

function  application  (rule  3)  are  omitted  if  there  is  no  ambiguity  under  the 

assumptions that (1) function application is left-associative, and (2) a lambda binds 

to the entire expression following it. For example, the expression ((λ x. (x x)) (λ y. 

y)) can be simply written as (λ x. x x) λ y.y;

(iii)  Lambda expressions such as λ  x.  (x y) do not define a function because the 

occurrence of the variable y is free, i.e., it is not bound by any λ in the expression. 

The binding of occurrences of variables is (with induction upon the structure of the 

lambda expression) defined by the following rules:
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1) In an expression of the form V where V is a variable this  V is the single free 

occurrence. 

2) In  an  expression  of  the  form  λ  V.  E the  free  occurrences  are  the  free 

occurrences in E except those of V. In this case the occurrences of V in E are 

said to be bound by the λ before V. 

3) In  an  expression  of  the  form  (E E' )  the  free  occurrences  are  the  free 

occurrences in E and E' ;

(iv) Over the set of lambda expressions an equivalence relation (here denoted as ==) 

is defined that captures the intuition that two expressions denote the same function. 

This equivalence relation is defined by the so-called alpha-conversion rule (v) and 

the beta-reduction rule (vi);

(v) alpha-conversion rule (expresses the idea that the names of the bound variables 

are unimportant): if  V and  W are variables,  E is a lambda expression, and  E[V/W] 

means the expression E with every free occurrence of V in E replaced with W, then λ 

V. E == λ W. E[V/W];

(vi) beta-reduction rule (expresses the idea of function application): ((λ V. E ) E' ) == 

E [V/E' ] if all free occurrences in E' remain free in E [V/E' ]. The relation == is then 

defined as the smallest equivalence relation that satisfies these two rules;

(vii) Eta-conversion rule (expresses the idea of extensionality): two functions are the 

same  iff  they  give  the  same  result  for  all  arguments.  Eta-conversion  converts 

between λ x . f x and f, whenever x does not appear free in f.

The class of computable functions is also definable as algorithms calculable 

by:

- Markov algorithms

A string rewriting system that uses grammar-like rules to operate on strings 

of symbols.

Vocabulary and operations:

(elements of the Markov algorithm)

(i) A vocabulary composed of symbols/strings of symbols, and
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(ii) grammatical rules;

(operations)

(iii) Check the rules in order from top to bottom to see whether any of the strings to 

the left of the arrow can be found in the symbol string;

(iv) If none are found, stop executing the algorithm;

(v) If one or more is found, replace the leftmost matching text in the Symbol string 

with the text to the right of the arrow in the first corresponding Rule;

(vi) Return to step (iii) of operations and iterate.

- register machines

An abstract machine used to study decision problems. Also called counter 

machines, Minsky machines, or program machines.

Vocabulary and operations:

(i) A register machine consists of a finite set of registers r1 ... rn, each of which can 

hold a non-negative integer, and

(ii) a finite list of instructions I1 ... Im. Each instruction can only be either:

a) INC (j, k) — increment the value of rj by 1, then jump to instruction Ik;

b) DEC (j, k, z) — check if the value of rj is zero. If so, jump to instruction Iz; 

otherwise, decrement rj by 1 and jump to Ik;

c) HALT — halts the computation.

- Post systems

A  deterministic finite automaton with a queue. There is no separate input 

tape.

(mechanical description)

(i) At the start of the computation, the input string x is loaded on the queue. The 

input string is followed by a special symbol Zo. At the start of the computation, the 

contents of the queue are xZo. The first symbol of x is at the front of the queue and 

Zo is at the end of the queue;

(ii) A transition of a Post machine depends on the symbol at the front of the queue 

and on the state. Each transition will delete the symbol at the front of the queue. A 
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transition has two components: the next state and the string to be added at the end of 

the queue;

(iii) This string can be the empty string.

- Turing machines

An abstract machine introduced by Turing to give a mathematically precise 

definition of an algorithm.

(mechanical description)

(i) A Turing machine consists of:

1) A tape which is divided into cells, one next to the other. Each cell contains a 

symbol  from some finite  alphabet.  The  alphabet  contains  a  special  blank 

symbol  (here  written as '0')  and one  or  more other  symbols.  The tape is 

assumed to  be  arbitrarily  extendible  to  the  left  and  to  the  right,  i.e.,  the 

Turing machine is  always supplied with as much tape as  it  needs  for  its 

computation. Cells that have not been written to before are assumed to be 

filled with the blank symbol;

2) A head that can read and write symbols on the tape and move left and right;

3) A state register that stores the state of the Turing machine. The number of 

different states is always finite and there is one special start state with which 

the state register is initialized;

4) An action table (or transition function) that tells the machine what symbol to 

write, how to move the head ('L' for one step left, and 'R' for one step right) 

and what its new state will be, given the symbol it has just read on the tape 

and the state it is currently in. If there is no entry in the table for the current 

combination of symbol and state then the machine will halt. 

(ii) Note that every part of the machine is finite, but it is the potentially unlimited 

amount of tape that gives it an unbounded amount of storage space.

(formal definition)

(iii) A (one-tape) Turing machine is a 7-tuple M = (Q,Γ,Σ,s,b,F,δ), where

a) Q is a finite set of states ;
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b) Γ is a finite set of the tape alphabet ;

c) Σ is a finite set of the input alphabet (Σ ⊆ Γ) ;

d) s ∈ Q is the initial state ;

e) b is the blank symbol (b ∈ Γ \ Σ) ;

f) F ⊆ Q is the set of final or accepting states ;

g) (for a one-tape Turing machine) δ :  Q X Γ → Q X Γ X {L, R} is a partial 

function called the transition function, where L is left shift, R is right shift, or

h) (for a k-tape Turing machine) δ : Q X Γk → Q X (Γ X {L, R, S})k is a partial 

function called the transition function, where L is left shift, R is right shift, S 

is no shift. 
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-  Appendix  II  -  Computational  and  dynamical  models  of  low-level  cognitive  

processes

What  follows  are  formal  representations  of,  respectively,  an  inverse 

kinematics problem from a computational perspective (related to figures 8, 9, 10, 

and 11 in chapter II), and a MDS (mathematical dynamical system) of the ‘A-not-B 

error’ task (figures 13 and 15 in chapter II).56

Partial  code  for  the  inverse  kinematics  problem:  (a)  gradient  by  

measurement, (b) gradient by calculation, (c) alternative (faster) gradient following,  

(d)  defining  a  target  through  a  vector  field.  One  can  think  of  a  simple  neural  

network that would implement such algorithms rather easily.
(a)
function Calc_Distance(angle_A, angle_B)
        work out the tip position for joint A = angle_A  and  joint B = angle_B  
        return distance from calculated tip position to target
    end function
    dist = Calc_Distance(a, b)
    while (dist > 0.1)
    {
        gradient_a = Calc_Distance(a+1, b) - Calc_Distance(a-1, b)    
        gradient_b = Calc_Distance(a, b+1) - Calc_Distance(a, b-1)
        a -= gradient_a
        b -= gradient_b
        dist = Calc_Distance(a, b)
    }
(b)
for each joint
        if 3D:  axis = axis of rotation for this joint 
        if 2D: axis = (0, 0, 1)
        ToTip = tip - joint_centre
        ToTarget = target - tip
        movement_vector = crossproduct(ToTip, axis)
        gradient = dotproduct(movement_vector, ToTarget)    
    end loop
(c)
dist = Calc_Distance(a, b)

56 The  references  for  these  codes  and  formulas  are 
http://freespace.virgin.net/hugo.elias/models/m_ik.htm, 
http://freespace.virgin.net/hugo.elias/models/m_ik2.htm,  and  Thelen,  Schöner,  Scheier  and  Smith 
2001.
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    old_gradient_a = 0
    old_gradient_b = 0
    while (dist > 0.1)
    {
        gradient_a = Calc_Distance(a+1, b) - Calc_Distance(a-1, b)    
        gradient_b = Calc_Distance(a, b+1) - Calc_Distance(a, b-1)
        have we gone past it?
        if sign(old_gradient_a) != sign(gradient_a) then
            a -= speeda * old_gradient_a / (gradient_a-old_gradient_a)
            speeda = 0
        else
            speeda += ga
        if sign(old_gradient_b) != sign(gradient_b) then
            b -= speeda * old_gradient_b / (gradient_b-old_gradient_b)
            speedb = 0
        else
            speedb += gb
        move
        a -= speed_a
        b -= speed_b
        dist = Calc_Distance(a, b)
    }

(d)
constant  POINT = 1
    constant  PLANE = 2
    constant  RING  = 3
    structure TARGET
        integer   Target_Type
        vector    centre
        vector    axis
        number    size
    end structure
    function to_target(TARGET T, vector Tip_Position)    
        if T.Target_Type = POINT
            v = T.centre - Tip_Position
            return v
        end if
        if T.Target_Type = PLANE
            p = T.centre - Tip_Position
            v = T.axis * dotproduct(p, T.axis)
            return v
        end if
        if T.Target_Type = VECTOR_FIELD
            return vector at this Tip_Position
        end if
    end function
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Algebraic  characterizations of  the MDS for the ‘A-not-B error’ task (see 

figures 13 and 15): equation (i) is the dynamic field of the ‘A-not-B error’ task when  

inputs are added together,  (ii)  time scale parameter, (iii)  interactions within the  

dynamic  field  (cooperation),  (iv)  interaction  kernel  of  cooperation  function,  (v)  

threshold function of cooperation function, (vi) isolated cooperation function, (vii)  

motor  field  evolution  function,  including  time  scale,  cooperativity,  inertia,  and 

sensory  inputs,  (viii)  overall  field  dynamics  (precedent  function  coupled  with  

Gaussian noise), (ix) input sources function for motor planning field dynamics, (x)  

task input specification function for ‘A-not-B error’ task, (xi) specific input function  

during time interval T, (xii) memory field dynamics (another bias of the dynamic  

field for the ‘A-not-B error’ task).
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)
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(ix)

(x)                 

(xi)

(xii)
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