Intelligent Artificiality and an Economics of Mental Behavior

Mihnea Moldoveanu
University of Toronto

Brook Lecture, Institute for Cognitive Science Ottawa
April 16, 2013

What I Am Not (A Partial List, Part I)

- I am not an economist (though I work alongside a few);
- I am not a neuroscientist, of either wet or dry kinds (though I will work with many of both, soon);
- I am not a psychologist (though I used to work with one, and even tried to impersonate one for 18 months);
- I am not 'an AI guy (or, gal)' (though my post docs/RA's come from a computer science and artificial intelligence lab);

What I Am Not (A Partial List, Part II)

- I am not a neuro-economist (I do not understand what that means);
- I am not a neuropsychologist (they don't understand what that means);
- I am not an empiricist (but, who is, really?);
- I am not a theorist (see 'I am not an empiricist');
- I am not an epistemologist or 'impartial observer of scientific practice' (an incoherent concept).

A Gap(ing Hole) in the Core of 'Rational Choice' Models

- Choice-theoretic conditions on 'rational choice' (antisymmetry, acyclicity, completeness, identity) 'guarantee' existence of objective function economic agents are said to maximize in virtue of choosing.
- How are we to interpret maximization (optimization)? As a real process whose temporal dynamics refer to something?
- If, so, what is it 'running on'?
- Brains?
- Researchers' desktops? Laptops? iPads?
- 'Turing Machines'? (i.e. an imaginary process running on an imaginary device?)

"The Predictive Apparatus Is Faulty"

Predict how this Creature will choose from among \mathbf{N} options:

INPUTS:

Past choices among
similar options
Revealed preference model
Rationality conditions

OUTPUTS:
Prediction of choice/behavior

Predict behavior of this device:

INPUTS:
Newton' Laws
$F g=G \frac{m_{1} m_{2}}{d^{2}}$
Measured values of $\mathrm{g}, \mathbf{1}, \boldsymbol{\Theta}, \mathrm{m}$

OUTPUTS:

Prediction of movement trajectory, transient and static

(Not) A Trick Question
 (Illuminative of the question: 'How does optimization happen?'

- Suppose Bob must choose between two lotteries:
- Lottery A pays $\$ 1 M M$ with probability 0.1 and $\$ 0$ with probability 0.9 .
- Lottery B pays $\$ 1 \mathrm{MM}$ if the $7^{\text {th }}$ digit in the decimal expansion of $\operatorname{sqrt}(2)$ is an 3 and $\$ 0$ otherwise.
- No calculator, SmartPhone or computer;
- Needs to choose in 2 min .

What If We Know Bob Knows This

- Depends on whether or not Bob sees the problem as one solvable by the algorithm;
- Depends on whether or not Bob can correctly perform required operations quickly enough to generate answer in under 2 minutes.
- Depends on whether or not Bob thinks he can correctly perform the operations quickly enough to generate the answer in under 2 minutes.

Problem: Given x such that $x^{2}=2$, find x [NEWTON'S METHOD]
\Rightarrow Step 1: $\operatorname{Form} f(x)=x^{2}-2$
\Rightarrow Step 2: Compute $f^{\prime}(x)=2 \mathrm{x}$
$>$ Step 3: Make first guess at $x: x_{0}=1$
$>$ Step 4: (Repeat as necessary) $X_{\mathrm{k}+1}=x_{\mathrm{k}}-\quad \frac{f\left(x_{k}\right)}{f^{1}\left(x_{k}\right)}$

$$
\begin{aligned}
\text { e.g. } x_{1} & =1-\frac{(1-2)}{2}=1.5 \\
x_{2} & =1.416667
\end{aligned}
$$

Calculator says $x=1.4142135$. (requires 5 steps)

The Computational Process Model Matters to Whether We Ascribe 'Rationality' to Bob

- Each calculation generates new information (2 bits)...
- ... that reduces Bob's
uncertainty regarding the true value of the answer...
- ...on account of the fact that it actually reduces the instantaneous search space of the problem he is trying too solve.

.. and 'the Logical Depth of Calculative Thinking Matters to Strategic Payoffs... [Cournot-Nash Duopoly Without Logical Omniscience]

Generate using series
$\mathrm{q}_{\mathrm{N}}=\frac{\mathrm{a}-\mathrm{c}}{2}-\mathrm{q}_{\mathrm{N}}-1$;
$\mathrm{q}_{\mathrm{o}}=0$
Which results from joint maximization of profits
$\Pi_{i}=\left(a-c-q_{i}-q_{j}\right) q_{i}$

So, if firm 1 says, "I will sell $\mathrm{a}-\mathrm{c}$, firm 2 will 2
credibly retort, "I will sell a-c "; which would 4
Lead to losses relative to the $\left.\quad \frac{\mathrm{a}-\mathrm{c}}{}, \frac{\mathrm{a}-\mathrm{c}}{3} 3\right]$
solution

Firm 1's quantity choice/
 best response
 !
 Firm 2's quantity choice/ best response

$\frac{a-c}{3}$

Computational Landscapes for Interactive Problem Solving (Duopoly)

- Computational Landscape of Cournot Nash Equilibrium, 2 firms, $a=3, c=1$.
- Horizontal axes represent number of iterations for each firm. Vertical axis is the profit level of firm 1. Profit levels of firm 2 are symmetrical.
- Landscape converges to Nash Equilibrium output of $(\mathrm{a}-\mathrm{c}) / 3$.

If All Problem Solving Processes Had These Dynamics, We Would Be Programming on Brains Rioht Now.

A Model of Calculation as an Information-Producing Process: Each Individual Operation Reduces the Uncertainty (Conditional Entropy of pdf(loc(answer(SearchSpace))) - Associated with Creature's Guess at an Answer, whose exact value is denoted by A.

What if Bob Had to Make a Different Choice with Procedural Implications?

- $\$ 1 M M$ for finding the shortest

Path connecting Canada's 4663 cities in 1 day of less, OR

- One day's consulting fees guaranteec
- Total number of operations required

$$
K \sim 2^{4663} \sim 5 \times 10^{1403}
$$

His computational prowess $R \sim 10^{12} \mathrm{ops} /$ secona
His computational budget
($10^{12} \mathrm{ops} / \mathrm{second}$) ($3600 \mathrm{sec} / \mathrm{H}$) ($24 \mathrm{~h} /$ day)
$\mathbf{x}(365$ days $/ \mathrm{yr}) \sim 3 \times 10^{20} \mathrm{ops}$
He can solve this problem in 1.6×10^{1383} years
\rightarrow not worth it!

UNLESS, Bob Had Some Kind of a Short Cut

- Non-exhaustive
- Non-deterministic
- Non-universal (will not be optimal for other NP-hard optimization problems)
- Locally exportable (to other TSP's)
- Hardware-adaptable (more/less RAM, and operations per I/O cycle);

4663 city TSP, solved using Lin-Kernighan (meta) algorithm

The NP Class Reads like a Who's Who of Everyday Problems (Solved by Creatures with Brains)

'Generalized Problem Solver, Version 2.X'

Modeling Toolkit for Problem Solving Processes: An Associative Map

Payoffs [Problems x Procedures]

What Could Computational Payoffs Look Like? Two Separate Payoff Structures...

Algorithmic advantage: $f_{\mathrm{A}}(\mathrm{a}, \mathrm{s}) \geq f_{\mathrm{B}}(\mathrm{a}, \mathrm{s}) \forall \mathrm{a}, \mathrm{S}$

Algorithmic advantage: $f_{A}(a, p) \neq f_{B}(a, p) \forall a, p$

...Combine into One 3D Measure

Getting Closer: How Would a Chip Designer Think About Embodied Problem Solving?

$$
k \frac{o p s}{s} L \text { e.g. } 100 \mathrm{Gops} / \mathrm{s}
$$

$$
\begin{aligned}
& x[k]=\frac{1}{M} \sum_{n=1}^{M} x[n] e^{j 2 \pi k n / M} ; \mathrm{M}=2048 \\
& A(x)=\text { "Radix }-2 F F T "
\end{aligned}
$$

Using Application-Specific Chip Design as a Paradigm for Mind-Brain Investigation

- No operation without implementation;
- No algorithmic change without architectural consequence;
- Capacity limit (Ops/sec, M) part of every hardware decision;
- Hardware Adaptable to Algorithm/I-O requirements (more/less RAM, operations per I/O cycle, precision of internal representation of coefficients);
- Average-case performance far more important than worst case performance(e.g. dynamic range extremes of the input $x[n]$).

"Simulation" Is Not Just "Modeling":

It Has Bite, Which Is Why We Call It EMULATION

Of Course, Humans Can Choose Whether or Not to Proceed with an Algorithmic Computation at Many Points...

A Goal for Intelligent Artificiality: A Brain Emulator/Co-Processor

- No 'model' of mental behavior without architectural and behavioral consequences;
- Brain states on which mental states supervene can be tracked, not only 'modelled': prediction/control supersedes 'explanation as regulative goal.
- 'Hardware changes' (TMS, ECT, stimulus protocols, psycho-pharm) can be emulated, enabling point predictions about mental behavior.

We Need an Anatomically Informed Model

of
 'Brainware'.

- Layered connectivity for the associative cortices;
- Cross-layer forward and backward connections (sparser), intra-layer connections (denser);
- Some (parametrizable) asymmetry between forward and backward connections;
- Architectural levers include strength of synaptic connections, 'plastic' formation of new circuits.

... That Is 'Emulable’ via a Well Understood Structure (Recurrent Neural Network)

... Which Extremizes an Objective Function Familiar to Self-Organizing (Entropy-Increase-Defying) Systems...

$\min -\{\alpha, s\} F(x, s / \alpha)=-\{\ln p(x, \theta / \alpha)\rangle \downarrow q+\langle$

... to Provide an Extremisand That 'Works' at Different Space-Time Scales and in Different Domains of Being.

Now, If We Could Only Explain Away 'Complexity Mismatches' - Which We Can!

Encoding (p, q) via Kolm (p, g):
$\operatorname{Kolm} \downarrow M(x)=$ length $(A \downarrow M, \min (x))$
"Efficient coding":
$p(x)=2 \uparrow-\operatorname{Kolm} \downarrow M(x)$
[Kraft-McMillan coding]

Information content of $p(x)$:

Let $M=\operatorname{CORT} \rightarrow K \downarrow M(\cdot)=K \downarrow \operatorname{CORT}(\cdot)$

We Can Rebuild a 'Theory of Computation' Using 'Brainware' as the Computational Substrate

and Fill in the Gaps of Both Symbolic Representation and 'Rational Choice' Approaches

$\boldsymbol{n o t} \max +x, y, z, \ldots U(x, y, z, \ldots)$ s.t $B(x, y, z, \ldots ; t) \leq B \uparrow *:$

PROCEDURALLY OPAQUE;
ARCHITECTURALLY INDETERMINATE;
PHYSICALLY UNREALIZABLE IN MANY CASES OF INTEREST
$\boldsymbol{n o t} \max -\{P\},\{A\} V(P \downarrow 1, P \downarrow 2, \ldots P \downarrow m / A \downarrow 11, A \downarrow 12 \ldots A \downarrow m n)$ s.t $\operatorname{Comp}(A \downarrow j k / P \downarrow k) \leq \operatorname{Con}$

PROCEDURALLY UNREALISTIC;
ARCHITECTURALLY INAPPLICABLE;
WORST CASE EMPHASIS UNREASONABLE IN MOST CASES OF INTEREST

Circumventing Logically Deep Equilibrium Calculations: Beauty Contest Example

- N players, 1 period game;
- Each player submits number from 0 to N to a(n honest) clearing house.
- Winner (gets $\$ N \times \$ 1000$) of the game is the player that submits the number that is closest to $2 / 3$ of the average of all the other numbers.
- Iterated dominance reasoning:
if I submit \mathbf{x} and others submit $(y, \approx, 2, \ldots)$ then winner would have had to have submitted \mathbf{z}, so I should have submitted y.
- Equilibrium submission ('strategy') is

$$
\mathbf{0}:(2 / 3)(0)=0
$$

Circumventing Logically Deep Equilibrium Calculations: Beauty Contest Example

- Encode others via Types (Ho, 2004)
- Type 0 players do not think of what others think;
- Type 1 players think only of what others think;
- Type 2 players think of what Type 0 and Type 1 players think only;
- Type k players think of what

Type (k-1, k-2,...) players think only.

- Define \mathbf{Q} (this group type set) as estimate of density of Type k players in this group.
- Refine Q(types) (mode, spread) according to cues.

Intelligent Artificiality

A Foundation for Mind-Brain Design, Diagnostics and Development

