
A holographic model of frequency and interference: 
Rethinking the problem size effect 

Matthew Rutledge-Taylor, Aryn A. Pyke, & Robert L. West 

Carleton University Cognitive Science Technical Report 2010-02 

 

 

 

 

 

cogscitechreports@carleton.ca 

Institute of Cognitive Science 
2201 Dunton Tower 
Carleton University 

1125 Colonel By Drive 
Ottawa, Ontario, K1S 5B6 

Canada 

  
 



A Holographic Model Of Frequency And Interference: Rethinking The Problem 
Size Effect 

 
Matthew F. Rutledge-Taylor (mrtaylo2@connect.carleton.ca) 

Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 
 

Aryn A. Pyke (apyke@connect.carleton.ca) 
Department of Psychology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6 

 
Robert L. West (robert_west@ carleton.ca) 

Department of Psychology, Institute of Cognitive Science, Carleton University, 1125 Colonel By Drive,  
Ottawa, ON, Canada K1S 5B6 

 
 

Abstract 
In this paper we used a holographic memory system to model 
Zbrodoff’s (1995) findings on the problem size effect, a well-
known effect in the area of Math Cognition. The data showed 
the effects of manipulating both frequency and interference.  
We successfully modeled this using DHSM (Rutledge-Taylor 
& West, 2007), which has previously been used to model the 
fan effect (Anderson, 1974; Rutledge-Taylor & West, 2008). 
This demonstrates that frequency and interference effects 
arise naturally as a function of how holographic systems 
work.  
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The Dynamically Structured Holographic Memory system 
(DSHM) uses holographic representations as a way of 
modeling human memory. It is based on Jones and 
Mewhort’s BEAGLE lexicon model (Jones & Mewhort, 
2007). The details of DSHM and the similarities to 
BEAGLE are discussed in Rutledge-Taylor & West (2007). 
One function that DSHM models well is memory 
interference. Rutledge-Taylor & West (2008) showed that 
the fan effect (Anderson, 1974) falls naturally out of the 
DSHM architecture. 

The fan effect is a term used to describe a memory 
phenomenon in which the time needed to verify a fact is 
related to the number of other facts in memory that include 
concepts in common with the target fact  (Anderson, 1974).  
The fan refers to how many facts share memory elements 
with the target. For example, if a person’s declarative 
memory contained three propositions: “the hippie is in the 
park”, “the lawyer is in the store”, and “the lawyer is in the 
bank”, then the fan of the terms ‘hippie’, ‘park’, ‘store’, and 
‘bank’ are one, while the fan of the term ‘lawyer’ is two. As 
first demonstrated by Anderson (1974), larger fans cause 
slower reaction times in human subjects. This result is 
consistent with the theory that similar facts cause 
interference in the retrieval process. 

The DSHM model of the fan effect (Rutledge-Taylor & 
West, 2008) is conceptually similar to the ACT-R model of 
the fan effect (Anderson & Reder, 1999). Specifically, the 
emergent behaviors of the DSHM model can be interpreted 
as being consistent with the spreading activation 

mechanisms used to produce the fan effect in ACT-R. In 
brief, DSHM makes use of Holographic Reduced 
Representations (HRRs) to encode associations between 
concepts.  According to the DSHM model, memory is 
composed of holographic items.  Each item consists, 
primarily, of two large vectors - an "environmental vector" 
and a "memory vector."  The environmental vector is static 
after its creation.  It is used as the system's representation of 
the identity of the item in memory.  In contrast, the memory 
vector is dynamic.  The memory vector of an item is used to 
store all the associations between the item and other items in 
the system.  

Associations between items are formed when a set of 
items is given to the system as input.  Many details aside 
(see Rutledge-Taylor & West, 2008), the memory vector of 
each item in the input becomes more similar to the 
environmental vectors of the items it is associated with. 
Since the vectors can be thought of as coordinates in a high 
dimensional space, this means that the memory vectors of 
items move closer to the environmental vectors of items 
they are associated with. The fan effect results from the 
encoding process. Items with larger fans get pulled in more 
different directions and this impedes them from moving 
particularly close to specific vectors. In the example above, 
the lawyer gets pulled toward both the store and to the bank, 
whereas the other characters move closer to a single 
location. In DSHM the inverse of the distance from the 
question vector to the nearest vector is interpreted as the 
activation level of that vector and, similar to ACT-R, the 
activation level determines the speed of retrieval.  

The fan effect, proper, addresses only the effect of inter-
fact ‘interference’ on the efficiency of fact retrieval.  
However, there is another factor that also strongly impacts 
retrieval speed/efficiency: the person’s frequency of 
exposure to that fact.  For example, if a participant reads 
“the lawyer is in the store” once and “the lawyer is in the 
bank” four times, the fans of ‘store’ and ‘bank’ are each still 
one.  However, one would expect that the association 
between ‘lawyer’ and ‘bank’ to be stronger than the 
association between ‘lawyer’ and ‘store’.  Thus, both fan 
effects and frequency effects impact the efficiency of fact 
retrieval.  



In ACT-R, frequency of exposure is represented 
separately by the base level activation function (Anderson & 
Lebiere, 1998). In DSHM frequency produces an effect by 
causing a fact to be pulled more in one direction than 
another. For example, if the lawyer was in the store more 
often than in the bank, the vector representing the lawyer 
would be end up closer to the store vector than the bank 
vector. To test the interaction of frequency and fan in 
DSHM we modeled the data of Zbrodoff (1995), who 
manipulated both of these in the context of studying 
arithmetic cognition (i.e., retrieving simple facts such as “2 
+ 3 = 5”).   

Zbrodoff's Experiments 
In arithmetic cognition research, it is often found that 

small sums, like 2 + 3 = 5, are more quickly retrieved than 
large sums, like 5 + 7 = 12. This is the so-called problem-
size effect (reviewed by Zbrodoff & Logan, 2005).  It is 
known that small problems are presented more frequently in 
math texts than large problems (Hamann & Ashcraft, 1986), 
so this effect could be due to frequency of exposure, 
however, interference between memory elements has also 
been proposed as an explanation  (Seigler, 1987; Vergats & 
Fias, 2005).  Zbrodoff’s (1995) goal was to investigate the 
extent to which different retrieval times for different math 
facts should be attributed to fan effects (which she termed 
‘interference’) or frequency effects (which she termed 
‘strength’) or an interaction of these two effects 

Zbrodoff (1995) conducted four experiments that 
manipulated the effects of strength and interference to 
assess their relative contribution to the problem-size effect. 
In each experiment participants were shown mathematical 
problems with a potential answer on a computer screen.  
The participant's task was to press one key if the problem 
was correct, and press a different key if the problem was 
false.  To manipulate frequency and interference for facts in 
memory, and to eliminate pre-experimental practice effects, 
instead of using regular arithmetic, Zbrodoff’s stimuli were 
alphabet arithmetic facts (e.g., A + 3 = D, which indicates 
that the number three letters past A is D). The first addend 
was always a letter of the alphabet; the operator was always 
addition; the second addend was 2, 3 or 4; and, the sum was 
a letter of the alphabet.  The problem was considered true if 
translating the letters to numbers according to their index in 
the alphabet resulted in a true math fact.  For example, "A + 
2 = C" is true because translating 'A' to 1 and 'C' to 3, results 
in the true math fact "1 + 2 = 3".  Participants were told that 
they could determine whether a problem was true or false by 
starting with the first addend (e.g., A) and then counting 
through the alphabet the number of letters specified by the 
second addend (e.g., 3).   

In each experiment, participants were exposed to large 
blocks of problems, each of which consisted in repeated 
instances of a group of 12 unique problems.  Each group 
consisted of six true and six false problems.  A False 
problem was a problem for which the answer was incorrect.   

In Experiments 1 and 2, each problem consisted of the 
combination of one of six letter addends with one of the 
digit addends (2, 3 or 4).  Each letter was paired with only 
one digit, and each digit was paired with two letters.  False 
problems were generated by setting the incorrect answer to 
one letter past the correct answer (e.g., B + 3 = F).  The 
groups of problems were counterbalanced so that each letter 
addend was paired with each numerical addend equally 
frequently Table 1 provides an example of a group of 
problems for Experiments 1 and 2. 

 
Table 1: Experiment 1 & 2 group of problems 

 
Letter 
addend 

Number 
addend 

True 
answer 

False 
answer 

A + 2 = C D 
B + 3 = E F 
C + 4 = G H 
D + 2 = F G 
E + 3 = H I 
F + 4 = J K 

  
Groups of problems for Experiments 3 and 4 were similar 

to those for Experiments 1 and 2 with two changes.  In each 
stimulus set only two unique letter addends were used (e.g., 
A and B).  Each letter was paired with each of the three digit 
addends.  The false answers were either one letter past the 
correct answer or one letter before it. Table 2 provides an 
example of a group of problems for Experiments 3 and 4. 

 
Table 2: Experiment 3 & 4 group of problems 

 
Letter 
addend 

Number 
addend 

True 
answer 

False 
answer 

A + 2 = C D 
A + 3 = D E 
A + 4 = E F 
B + 2 = D C 
B + 3 = E D 
B + 4 = F E 

 

Re-Analysis of Zbrodoff's Experiments 
Zbrodoff (1995) used a method of analyzing the data that 
was not useful for our purposes. Specifically, she plotted a 
straight line through the reaction times associated with the 
different addends and used the slope of this as an index of 
the magnitude of the Problem Size effect. This is a common  
 



 
 

 
 

 
 

Figure 1: Data and Simulation for Experiment 4 
 
way of analyzing the Problem Size effect within the area of 
Math Cognition. However, since we were interested in 
testing our model, not the Problem Size effect, we re-
analyzed the reaction time data (which is provided in the 

paper) and came up with a somewhat different interpretation 
of the results.  

Experiment 1 
Experiment 1 was focused on learning in the short term. In 
it participants were presented with three blocks of problems.  
Each consisted of 96 true and 96 false problems. This was 
problematic for us because the learning process involved 
initially doing the calculations to get the answers. Therefore, 
these blocks represent a mixture of calculating and 
memorizing. By the third block we assume subjects were 
using memory, but may have still been relying on 
calculation as well. Since the DSHM models memorizing 
only, we could not represent the effect of calculating.  

Also, we do not as yet have a theory about the 
relationship between presenting a stimulus to a human and 
adding a vector representing that stimulus to DSHM. In our 
simulations we assumed a one to one mapping for 
convenience but there is no theoretical or empirical reason 
to support this. Therefore, our goal was not to model the 
learning curve. Instead we were focused on the long term 
learning trends. Because of this, we did not include 
Experiment 1 in our analysis. However, the results of 
Experiment 1 showed that frequency of exposure to a 
problem eventually resulted in faster reaction times, 
regardless of whether the addend was large or small. This is 
consistent with the DSHM model since, if all other things 
are held equal (as they were in Experiment 1), more 
exposures results in faster recall. 

Experiment 2 
The purpose of Experiment 2 was to determine whether the 
frequency effect demonstrated in Experiment 1 held up once 
performance had reached asymptote.  That is, with enough 
practice does response time performance converge despite 
differences in frequency of exposure. To test this, 
participants were presented with 15 blocks of problems (3  
blocks per day) identical to those from the Standard 
condition of Experiment 1, which was designed to mimic 
real world math learning conditions where smaller numbers 
are encountered more frequently than larger numbers. 
Specifically, the addend 2 was presented 24 times per block, 
the addend 3 was presented 16 times per block, and the 
addend 4 was presented 8 times per block. The results 
showed that performance did converge as it reached an 
asymptote. However, we also noticed that reaction times 
were much lower at asymptote in Experiment 2 than in 
Experiments 3 and 4 (approximately 600 msec in 
Experiment 2; 1000 msec in Experiments 3 and 4). To 
explain this discrepancy we examined the stimuli and found 
that in Experiment 2 each letter-answer was uniquely 
associated with a different letter-addend in the question (see 
Table 1). Therefore subjects could memorize a pairing 
between the letter-addend in the question and the letter-
answer. Given that this was not the case in Experiments 3 
and 4 we feel the learning and use of this strategy is a likely 
explanation for the faster reaction times in Experiment 2.  



 

 
 

 
 

 
 

Figure 2: Data and Simulation for Experiment 3 
 
The DSHM could model this but doing a simulation was 
unnecessary. Because this strategy ignores the addend 
manipulation the model would predict no differences at the 

asymptote because there would be nothing to produce a 
difference. 

Experiment 4 
We begin our modeling results with Experiment 4, because 
it is less complex than Experiment 3. In Experiment 4 all of 
the problems in Table 2 were presented with equal 
frequency. To model this, each problem, including the 
answer and whether the answer was true or false, was 
represented as a random vector and entered into the DSHM, 
so that one entry equaled one presentation to a subject. As 
noted above, this was done for convenience. The actual 
correspondence between presenting to subjects and placing 
vectors in DSHM may be greater or smaller than this.  

There were two ways the model could decide if a 
question was true. One was to submit a question vector with 
the problem plus the answer and a blank for whether it was 
true or false. The model would then return whether or not it 
believed the question was true or false. The second way was 
to submit the question with the answer as a blank and 
whether or not it was true filled in with true. In this case the 
model would return what it believed to be the correct 
answer (note, the model can make errors but this data is not 
presented here). The second method fit the data better than 
the first, suggesting that people were recalling the answers 
to see if the questions were true or false. In this case the 
model makes the same predictions for true and false 
questions. Consistent with this, the human data was very 
similar for the true and false questions. To get accurate 
reaction times from the model the inverse of the activation 
levels were scaled up by a factor of 400. Note that this 
represents a claim that the activation levels of the model 
translate directly into reaction times. 

Figure 1 presents the results. Note that the reaction time 
for the addend 3 questions is slowest in both the human data 
and the simulation. Zbrodoff (1994) concluded that there 
were no differences because the method of taking the slopes 
of the reaction times across the addends only works if 
reaction time goes up or down linearly with the addends. 
Because the reaction time went up then down with the 
addends the method was inappropriate and occluded the 
results. The reason for the result is that the fans of the 
questions are not equal if you consider the answers as 
contributing toward the fan. In particular, the fans for the 
addends 2 and 4 are lower than 3. We can also see that 
model learns faster than the human subjects and very 
quickly asymptotes. As noted above, this is because the 
model does not calculate the answers. To avoid making the 
graphs too small only the first six blocks are presented. 
However, after 6 blocks the human data was at asymptote. 

Experiment 3 
Experiment 3 was the same as Experiment 4 except that 
frequency was manipulated in the same way as in 
Experiment 2. That is, the questions with the smaller 
numerical addends were presented more frequently. The 
model used here was exactly the same as the one used to 



model Experiment 4, where only the fan was manipulated. 
No parameters were altered! 

Figure 2 shows the human data and the simulation 
results. Overall, the model does a good job of accounting for 
the results. The only exception occurs in the later blocks 
(not shown on the graphs) where the model continues to 
have the addends 2 and 4 close together with the addend 3 
higher. In contrast, in the human data, the addend 4 moves 
back up closer to the addend 3. This result is difficult to 
interpret. It could be that the model does not predict well for 
long term learning, although it did accurately predict long-
term learning for Experiment 4. Another possibility is that 
subjects were using a rehearsal strategy between sessions. If 
subjects were recalling the questions and checking them by 
calculation, or rehearsing them, it could produce this effect 
since the addend-4 questions would be harder to recall due 
to the low frequency of presentation (for random recall 
without a cue, interference should not play a role). 
Therefore, the addend-4 questions would not be practiced as 
much. Given that the model fits well in every other respect, 
further tests using other sources of human data need to be 
done. 

Conclusions 
Frequency and interference are key predictors of human 
memory performance (e.g., retrieval time) in many 
cognitive tasks. The individual and joint effects of these 
factors are clearly evidenced in arithmetic fact learning. The 
present simulations demonstrated that the DSHM modeling 
system is not only well suited to capture interference (fan) 
effects (see also Rutledge-Taylor & West, 2008) but also 
frequency effects in conjunction with fan effects.  Both of 
these effects arise naturally out of the holographic system, 
suggesting that this way of representing memory is in some 
way analogous to the way memories are represented in the 
human brain. Our results also suggest that cognitive 
modeling may be the way to move ahead in the Math 
Cognition area. 
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