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Abstract

This paper introduces neurally plausible mechanisms for the
basis of active memory and association making without synap-
tic plasticity. After discussing the predominant hebbian view
for memory and learning in cognitive science, its limitations
are presented from an energetic and temporal perspective. In
particular, it is shown that synaptic plasticity cannot account
for short-term mechanisms in memory and association mak-
ing. The foundations of alternative mechanisms based on the
spatiotemporal dynamic properties of neural groups are then
developed and supported by existing work. Finally, how these
alternate mechanisms can address the problem of retrieval is
addressed along with future considerations.
Keywords: online cognition, synaptic plasticity, short-term
memory, active memory, sensory memory, association, learn-
ing, spatiotemporal dynamics, neural groups.

Introduction
In 1949 Donald Hebb emitted a groundbreaking hypothe-
sis: brains remember and learn by virtue of a simple mecha-
nism in which connections between neural cells strengthen
(Hebb, 1949). According to his proposal, this would oc-
cur when both the cell emitting a signal and the cell re-
ceiving the signal fire coincidently. Since Hebb’s origi-
nal postulation a much greater understanding of the mecha-
nisms leading to metabolic changes in synaptic plasticity has
been achieved. In particular, we now know that “synaptic
strengthening” is not manifested as a single metabolic pro-
cess but occurs at a number of loci and timescales in both
pre-synaptic and post-synaptic stages of cell communication
(Debanne et al., 2003). The predominant form of synaptic
plasticity is known as long-term plasticity and can last min-
utes to hours. Here, both ‘strengthening’ (long-term potenti-
ation) and ‘weakening’ (long-term depression) occur via co-
incident firings which induce exocytosis and endocytosis of
both NMDA and AMPA receptors on the post-synaptic mem-
brane (review by Cooke & Bliss, 2006). On the other hand,
short-term plasticity, which lasts only a few milliseconds to
seconds, takes place at the pre-synaptic level in the form of a
change in size, concentration, or efficiency in release of neu-
rotransmitter vesicles in response to incoming frequency of
stimulation (Zucker, 1989; Stevens & Wesseling, 1999).

The simple local characteristics of synaptic plasticity have
increasingly attracted researchers in cognitive science for the
development of sophisticated theories of perception, infor-
mation coding, learning and memory. Indeed, since the ac-
crued popularity of connectionist approaches in the 1980’s, a
principal objective in neural modelling for cognition, aside
from architectural criteria and representational constraints,
has been to focus almost exclusively on finding the set of ad-
equate synaptic weights that will enable an artificial neural

network to perform a desired task (Rumelhart & McClelland,
1986). Because homogeneous network weights would most
often result in unsatisfactory function, individual weight as-
signment must be accomplished for each connection between
any two artificial neurones. Since the early 1980’s, vigor-
ous research efforts in finding effective ways for setting neu-
ral synaptic weights led to the discovery of the now popular
back-propagation method, but also to evolutionary methods
via genetic algorithms, and others (Rumelhart et al., 1986;
Nolfi & Floreano, 2000). Although effective, many of these
techniques either bear little semblance to biological processes
or are not naturally applicable at time scales within the neural
network’s lifetime (such as in evolutionary methods).

Although fixed heterogeneous networks have proven effec-
tive in problems such as pattern completion, function fitting,
multiple representation coding, and others, most cognitive
tasks require complex pluripotent dynamics that allow agents
to transcend simple reactive behaviours. Indeed, over the past
decade it has become clear that a careful investigation of those
neural properties that engender adaptation to high degrees of
variability is necessary. In addition to its unsupervised qual-
ities and biological validity, hebbian learning has been her-
alded as the key mechanism to learning. By adjusting the
connection sensitivity between any two cells based on prior
activity, it becomes possible for neural networks to store rep-
resentations that did not exist before, build new associations,
and generate new functions during their lifetime (Di Paolo,
2000; Cooke & Bliss, 2006).

Despite this success it appears that a “synapto-centric”
view has developed in the neuroscientific and cognitive sci-
ence communities with respect to neural mechanisms lead-
ing to memory and learning. Increasingly, there are reasons
to believe that alternate processes could accomplish similar
functions without incurring as high a metabolic, temporal,
and perhaps even functional cost as that caused by synap-
tic plasticity. With respect to memory, O’Reilly and Mu-
nakata, for instance, suggested that an important distinction
be made between ‘weight-based memory’ and ‘activation-
based memory’ (O’Reilly & Munakata, 2000). While weight-
based memory corresponds to classic entrenchment of stim-
uli within synaptic connections, activation-based memory re-
lates to mechanisms by which stimulus patterns are sustained
within recursive or bi-directional networks. Given the general
consensus that forms of memory lie at the base of complex
cognition, activation-based memory is thought to play a cen-
tral role in higher-order processes, such as planning, problem
solving and decision making, in that they can maintain on-
line memories in a readily accessible and quickly updatable



manner.
Though I support this activation-based view, I intend to em-

phasize, to a larger degree than have O’Reilly and Munakata,
the significant informational potential of spatiotemporal dy-
namics without a priori dependency on synaptic weighting.
Here, I defend the view that non-metabolic mechanisms1

based on firing dynamics in groups of neurones can not only
account for forms of memory but also types of learning that
are particularly relevant to sensory and short-term cogni-
tive tasks and perhaps constitute the founding constructs of
higher-order processes.

Cognitive Limits of Synaptic Plasticity
Two major arguments can be made against synaptic plasticity
as the sole mechanism for memory and learning: (1) the level
of energy required, and (2) the temporal constraint that the
metabolic processes impose.

Energy Cost of Synaptic Plasticity
While the brain represents 2% of the body’s mass it consumes
approximately 20% of its energy. With such a high energy
cost there is reason to believe from an evolutionary stand-
point that energy economy would be highly favourable to the
individual. Within the complex circuit of energy regulation
in the brain, LTP and LTD have been shown to depend on
the synthesis of NMDA and AMPA receptors which are regu-
lated by brain-derived neurotrophic factor (BDNF) molecules
(Minichiello et al. 2002). This regulation occurs via de pro-
duction of CREB proteins by BDNF using adenosine triphos-
phate (ATP), the energy source derived from glucose crossing
the blood/brain barrier. Although synaptic transmission alone
also demands BDNF regulation, a diminished requirement
for NMDA and AMPA regulation signifies a much reduced
demand on ATP consumption by the nerve cell. Overall, a
lower energy requirement suggests greater self-sufficiency in
the case of low food availability when favouring active pro-
cesses over expensive metabolic ones.

Temporal Limits
In addition to the energetic limitations that synaptic plastic-
ity imposes, temporal constraints could constitute the most
significant drawback. Synaptic change places a non negli-
gible time constraint for cognitive performance. During the
1990’s intracellular patch-clamp stimulation and recording
techniques have made it possible to accurately measure tem-
poral aspects of cell to cell interaction (Gerstner & Kistler,
2002). Bi and Poo demonstrated with great accuracy the
variation of long-term synaptic potentiation (LTP) and de-
pression (LTD) via stimulation of embryonic rat hippocam-
pal neurones (Bi & Poo, 1998). After 60 pulses at 1Hz, an
important increase in current flux was detected if the presy-
naptic cell fired just before the postsynaptic cell, while de-
crease occurred when firing in the postsynaptic cell preceded
firing in the presynaptic neurone. Importantly, their results

1Or at least scarcely metabolic mechanisms.

further showed that sensitization of the synapses increases
slowly over a period of minutes following firing. This con-
siderable delay in synaptic efficacy suggests that short-term
cognitive tasks cannot rely on LTP and LTD for rapid storage
and rapid association making.

A faster form of synaptic plasticity is known as short-term
plasticity. Via high frequency stimulation (HFS), Stevens and
Wesseling provide a reasonable account for short-term pre-
synaptic response latency of hippocampal neurones (Stevens
& Wesseling, 1999). In particular, after stimulation at 9Hz
for 15 seconds, synaptic response does not augment within
the first half second (500ms) and reaches full potential only
a second after high frequency stimulation is complete. Al-
though this shows that the time taken for short-term plasticity
is at a significantly lower order of magnitude than for long-
term plasticity, these metabolic processes still does not ap-
pear to be fast enough to account for fast memory formation
and association making. In sensory memory tasks, for in-
stance, event related potentials (ERPs) can be used to detect
mismatches between a new deviant stimulus from previous
standard stimuli. In auditory tasks, this mismatch negativ-
ity (MMN) response can occur within 150ms of the presen-
tation of the deviant stimulus (Sussman et al., 1998). The
interference produced by the mismatch suggests that, at the
very least, an echoic sensory memory trace can take place
within 150ms. Arguably, this mismatch effect could be ex-
plained by simple disruption of the stored standard stimuli by
the deviant. However, Titinen et al. have recently shown that
MMN response varies with respect to the degree of contrast
of the deviant, where greater contrast leads to shorter MMN
response times (Titinen et al. 2002). This suggests that sen-
sory features (here frequency) are encoded in less time than
short-term plastic mechanisms seem to account for.

Beyond memory, current theories of perceptual categoriza-
tion similarly favour the view that the formation of prototypes
is mediated by a perceptual representation system (Schacter,
1990). This system more generally captures the underlying
principle that MMN indirectly reports, that is, that prior expo-
sure to a stimulus improves performance on subsequent pre-
sentations of a feature-sharing stimulus. Indeed, when ex-
posed to unfamiliar visual patterns, healthy subjects show a
propensity to correctly classify different patterns that share
common features by virtue of the fact that previous stimuli
allowed for the formation of abstract prototypes (Coutinho et
al., 2010). The short time course during which feature in-
tegration for categorization takes place suggests that active,
rather than synaptic, neural processes underly this mecha-
nism.

In recent years, increasing evidence that active mecha-
nisms play a critical role in cognitive capacities has emerged.
Although these have traditionally been associated with work-
ing memory, Curtis and Lee have recently suggested that a
kind of ‘persistent activity’ within cortical regions plays a
role beyond mere working memory integration by also en-
abling planning and decision making (Curtis & Lee, 2010).



Indeed, persistent activity is believed to subserve the inte-
gration and maintenance of spatial locations, object identi-
ties, words, sounds, and other sensory memoranda, as well
as playing a key role in the reinforcement of value functions.
Despite the accrued evidence for the existence of rapid inte-
grating processes without synaptic plasticity, few proposals
with neuro-biological plausibility have been made.

In the following, I introduce elementary mechanisms by
which simple memories and associations can be biologically
instantiated via rapid and low energy consuming processes.
Furthermore, I support this hypothesis by drawing from im-
portant findings in the areas of temporal dynamics and neural
network topology in the biological and theoretical neural sci-
ences.

Spatiotemporal Processes
In recent years, growing attention has been dedicated to the
spatiotemporal properties of neural networks. Perhaps one of
the most comprehensive reviews of this work can be found
in Buzsaki’s “Rythyms of the Brain” (Buzsaki, 2006). De-
spite significant advancements in the observations and analy-
sis of spatiotemporal phenomena in the brain, little is under-
stood with respect to their informational potential and actual
role in cognition. Amongst the better known, neural oscil-
lations and synchrony have attracted greater attention within
the neuroscience community since von der Marlsburg’s pos-
tulation that feature binding can be solved via correlated fir-
ing between cell groups (von der Marlsburg, 1981). Soon af-
ter, experimental evidence has gradually uncovered a number
of functional properties in synergetic group of neurones. Carr
and Konichi, for instance showed that auditory stimuli in barn
owls can initiate a neural response allowing the distinction of
the precise location of a sound source within 3 to 5 millisec-
onds, suggesting that sensory encoding within synchronized
populations of cells constitutes a mechanism that can perform
faster than mere cell-to-cell encoding via firing rates (Carr &
Konishi, 1990). Today, oscillations have become an impor-
tant topic in a number of neurodegenerative diseases such as
parkinson’s and epilepsy (Brown, 2003). Thus, it appears that
fine temporal tuning of firing cells (and sub-threshold cell ac-
tivity) must be regulated within critical bounds so as to per-
form complex information coding operations without incur-
ring cognitive and physiological disorders.

Within the past two decades, it has become increasingly
clear that beyond mere oscillation and synchrony, the pre-
cise timing in neural populations of specialized cells may
contribute much more to active processing than previously
thought. In particular, the Dynamical Cell Assembly Hypoth-
esis suggests that coincidence detection2 of incoming spikes
should enable a number of important information coding
properties in virtue of the topological configurations of cells,
their connection delays and other temporal properties (for re-
view see Fujii et al., 1996). Recently, Izhikevich and Hop-

2Not to be confused with synaptic coincidence detection in heb-
bian learning.
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Figure 1: Coincidence Detection: A source neurone A con-
nects to a target neurone C with a 9ms delay, and a source
neurone B connects to target C with a 5ms delay. If neurone
C requires the combined signals from A and B to fire, then C
will only fire if B fires 4 milliseconds after A. C thus ‘detects’
the coincidence of incoming signals.

pensteadt suggested that spatially propagating wavefronts of
propagating action potentials in sheets of coincidence detect-
ing neurones, called neural groups, can in principle perform
temporal signal processing, instantiate reverberating memo-
ries as well as solve logical functions (Izhikevich & Hoppen-
steadt, 2009).

A particularly important insight form this work is that the
informational properties of neural groups would be particu-
larly difficult to identify given the potentially immense vari-
ability in the firing pattern within a population of cells dur-
ing a single stimulus. Moreover, the near chaotic dynamic
properties of such networks suggests that no two presenta-
tions of the same stimulus will trigger the same neural re-
sponse (Buzsaki, 2006). Hence, the development of biologi-
cally relevant neural network models should provide signifi-
cant insight as to the informational capability of networks of
coincidence detecting neurones.

In the following, I aim to introduce how such a network
can, in principle, not only accomplish active memory storage
but also establish active associations between initial stimuli
without the use of synaptic plasticity.

Active Memory via Coincidence Detection
A neurone is a coincidence detector if it only fires when two
or more incident signals trigger simultaneous post synaptic
potentiations. The number of necessary incident spikes varies
with respect to the activation threshold of the target cell.
Hence, the time of firing of the source neurones is only rele-
vant insofar as it affects the time of incidence of the incoming
spikes on the target neurone. This timing is contingent on the
firing time of the source neurones and the propagation delay
of the signal to the target. For example, Figure 1 shows how
a target cell C would only fire if action potentials (APs) from
cells A and B arrived at the same time. For this to happen,
cell A would have to fire 4ms ahead of cell B.

It is difficult to see the functional significance of coin-
cidence detection when looking at a single cell. However,
within the context of a large number of neurones the basis for
a memory mechanism and association making takes shape.
Figure 2 shows a group of coincidence detecting cells. Here,
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Figure 2: Neural population of 12 coincidence detecting neu-
rones. With the initial activation of neurones F, I and K a
firing chain is triggered within the population. All cells par-
ticipating in the firing are part of the neural group. After 18
arbitrary time steps the original F, I, K neurones fire again.
Thus, with the underlying connection topology and delays
the simultaneous activation of F, I, K cells leads to a self-
sustained firing loop.

we see a time plot of firing within a set of 12 cells (cell A to
cell L). Although the topology is arbitrary and precise con-
nection delays are unknown, we notice that if cells F, I, K
fire simultaneously a chain of subsequent firing is initiated
over time. Edges between cells show which connections are
significant for a target cell to fire. The specific pattern of
activation along with the cells that participate in this pattern
constitute was is called a ‘neural group’ (Izhikevich, 2006).
A particularly important aspect of coincidence detection neu-
ral networks is that slight timing differences at which inputs
arrive in a population of cells will lead to the activation of a
different neural group.

From Figure 2 one can see how given a different initial con-
dition the activation of a much different neural group could
form. In fact, each initial input may lead to a different neural
group given that the probability of two connections having
equal delay is sufficiently low. In a population of N cells
the number of possible neural groups that are initiated by the
simultaneous firing of at least one cell is 2N − 1. However,
this assumes only the case where neural groups are formed
via simultaneous input only. If the input can itself be asyn-
chronous, i.e. input spikes arrive at different times, then
the number of possible neural groups jumps drastically. Of
course, the actual presence of neural groups will depend on
the characteristics of the underlying connection delays and
consequently on the topology of the network3.

Interestingly, if the connection topology of a given popu-
lation of cells possess connection delays such that an initial
input pattern is, after a period of time, re-triggered with the
same temporal order, then the neural group is self-sustainable.
Indeed, the neural group shown in Figure 2 illustrates such a

3Note that other factors, such as axonal size and degree of myeli-
nation, can also affect connection delays.

self-sustained neural group. Here, the initially active cells
F, I, K trigger a firing sequence which overtime leads once
more to the simultaneous firing of cells F, I, K. This sug-
gests that the basis for simple, yet active, memories can take
place within a population of coincidence detecting cells that
posses appropriate connection characteristics. The statistical
likelihood that self-sustaining groups are present in a given
population of cells increases given that a significantly greater
number of neural groups than individual cells exist in a given
population, as shown above. This larger number of neural
groups in proportion to cells is further supported by Izhike-
vich and his work on networks of spiking neurones with con-
nection delays (Izhikevich, 2006). Thus, a subset of these
neural groups are likely constituted by distinct self-sustaining
groups; although the precise amount of self-sustained groups
will depend on network and cell characteristics such a con-
nection density, cell activation thresholds, connection delays
etc.

Under appropriate neural and network conditions it now
follows that a foundation for active memory processes can be
instantiated within a network of coincidence detecting cells
without the requirement for synaptic plasticity 4. Still, ques-
tions such as how much information can be stored given a
neural group? and how do neural groups get selected for par-
ticular storage? remain unanswered. These will need to be
addressed with further investigation. Beyond memory, how-
ever, the ability for coincidence detecting cell populations to
account for active forms of association making is also possi-
ble following similar principles. I introduce a potential mech-
anism in what follows.

Active Associations via Coincidence Detection
Upon the presentation of two stimuli within a narrow time
period, two separate neural groups will form. If these two
groups lead to a spatiotemporal pattern that triggers the for-
mation of an available self-sustained group then an active
association of both original stimuli is formed. That is, if
both groups interact at a spatiotemporal location where a self-
sustained pulsating chain is triggered then this newly formed
self-sustained group constitutes an association of the two
originating groups, and thus of the two originating stimuli.
This association will subsist so long as it meets no significant
perturbation. Figure 3 illustrates how two independent neural
groups (group {ABCD} and group {IJKL}) that correspond
to individual input stimuli can be associated if their spa-
tiotemporal patterns happen to trigger a self-sustained neural
group, e.g. group {EFGH}.

The fact that associations are only made contingent on the
spatiotemporal availability of self-sustained groups reflects
the opportunistic nature of this simple association making
mechanism. Fitting well with this, there are reasons to believe
that neural groups will likely interact given what we know

4Izhikevich does show, however, that the application of plastic
rules within a population of coincidence-detecting neurones allows
for a great degree of exploration into the self-organized properties
of neural groups (Izhikevich, 2006).
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Figure 3: Associative neural group triggered by two inde-
pendent input neural groups. Neural groups {ABCD} and
{IJKL} (dark cells) possess cells that happen to trigger, in
virtue of their spike times, the firing of self-sustained group
{EFGH} (segmented cells). Firing group {EFGH} thus con-
stitutes the active association of both stimulus induced groups
{ABCD} and {IJKL}. The dashed looping arrow shows that
group {EFGH} resets after a number of time steps resulting
in a self-sustained group.

about the properties of brain connectivity. Indeed, the appar-
ent small world network properties of the central nervous sys-
tem suggest that there is a low degree of separation between
any two neurones (Watts, 1999; Buzsaki, 2006). Hence the
probability that two neural groups can jointly trigger a self-
sustained group is relatively high. Although the possibility
for such groups to interact due to their spatiotemporal proper-
ties is probable, this process requires that self-sustained neu-
ral groups exist in sufficient quantities for associations to be
maintained. Fortunately, the small world hypothesis states
that the brain is primarily composed of highly interconnected
clusters with few inter-cluster connections. If cluster connec-
tivity is sufficiently high then a large number of self-sustained
neural groups can potentially form. Further investigation via
neural simulation could help narrow down the actual topo-
logical and connective properties that a neural network must
possess to sustain these processes.

The mechanism proposed here suggests that associations
can be made without changing synaptic weights. Hence it
seems that some preliminary form of learning can arise with-
out short-term or long-term plasticity. Despite this, a number
of principles related to learning are not obviously attainable
by using this approach. In the following I discuss how coin-
cidence based active memories and associations can be used
within the larger context of the nervous system.

Contextual Application
A central concern with the solutions to active memory and as-
sociation making provided above is retrieval. How can mem-
ories be retrieved for further cognitive use and how can an
association be retrieved given the presentation of one of the
two original stimuli? To address these, it is important to place
active processing via neural groups into perspective.

One of the major advantages of this approach is that when-
ever an arbitrary firing pattern triggers a cascade of action
potentials in a population of cells a memory can be retrieved
as soon as a subset of this originating pattern fits a spatiotem-
poral pattern that is common to the memory. For example,
the memory instantiated by the neural group in Figure 2 can
be re-activated if, for instance, some ambient firing triggers
cell C at time step t, cell G at t+1, and cell J at t+2 (start
with t=6 in Figure 2). Of course, re-activation is an incom-
plete form of retrieval, however, by seeing how self-sustained
neural groups can be embedded within larger neural groups,
it should be possible for such memories to play the roles of
pattern generators for further downstream processing. In ad-
dition, these active loops could serve as efficient mechanisms
for the entrenchment of longer term memories by facilitating
synaptic plasticity. The proposal that active memories can
be instantiated within a population of coincidence detecting
cells thus makes the prediction that specialized neighbouring
structures and cells must be present so to integrate projecting
outputs from the clusters of coincidence detection cells.

With respect to the retrieval of associations, a similar
mechanism of re-activation can be applied. Retrieval typi-
cally implies that if two signals S1 and S2 are encoded in sig-
nal S3, then there must be a mechanism by which S1 can be
retrieved from S3 given S2, and S2 can be retrieved from S3
given S1. In the approached proposed here, retrieval is pos-
sible if there exists joint projections from groups {ABCD}
and {EFGH} that match a spatiotemporal configuration to re-
activate the original stimulus group {IJKL}. This would re-
quire that some organizational processes guarantee that newly
formed associative groups also possess re-entering projec-
tions to the source stimulus neural group in such a way that
they are sufficiently tuned to participate in this retrieval pro-
cess. This approach thus further predicts that a high degree
of recurrent connections between clusters of coincidence de-
tection cells must be present for active association making to
occur.

Conclusion

Overall, the mechanisms of active processing presented
herein offer a rather novel way of solving the problem of basic
information storage and coding. By enabling the nervous sys-
tem to ‘opportunistically’ establish new constructs from sen-
sory signals and motor feedback it removes the conceptual
hurdle of having to look for intentional or attentional pro-
cesses that seek to organize information according to some
overarching rules. Instead, the rules of organization from
this perspective are decentralized local phenomena that take
advantage of the temporal and topological configuration of
their environment. Hence, by further exploring the biological
conditions under which these mechanisms may take place, it
should be possible, via simulation and analysis, to determine
the extent to which coincidence detecting neurones can ac-
count for cognitive faculties.
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