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Abstract

Dynamically Structured Holographic Memory (DSHM)
is a cognitive model of associative memory that can be ap-
plied to the problem of recommendation. DSHM uses holo-
graphically reduced representations to encode the associa-
tions between objects that it learns about to generate rec-
ommendations. We compare the recommendations from this
holographic recommender to a user-based collaborative fil-
tering algorithm on several dataset, including MovieLens,
and two bibliographic datasets from a scientific digital li-
brary.

Off-line experiments show that the DSHM recommender
predicts movie ratings as well as collaborative filtering and
much better than collaborative filtering on very sparse bib-
liographic data sets. DSHM also has a unified underlying
model that makes multi-dimensional recommendations and
their explanations easier to develop. However, DSHM re-
quires significant amounts of computational resources to
generate recommendations and it may require a distributed
implementation for it to be practical as a recommender for
large data sets.

1 Introduction

The function of a recommender system is to recommend
items (such as songs, books, movies or merchandise) that
are likely to be of interest to a user given both the prefer-
ences of the user and the collective preferences of the user
community. Recommender systems have been used not
only to enhance personalized e-commerce web sites [12]
but also to offer a richer information retrieval experience in
digital library portals [6].

Most conventional recommender systems operate by
clustering similar items according to some characteristic
of the item (content-based recommendation) [11], by mea-
suring the similarity among ratings that users have given
to items (collaborative filtering — either memory-based or
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model-based) [3] or by combining the two in some man-
ner (hybrid recommenders) [5]. Hybrid recommenders have
been used as a strategy in situations where pure collabora-
tive filtering suffers from well-understood limitations, for
instance in situations where usage or rating data is sparse.

Data sparsity is especially problematic in the context of
recommending journal articles in a digital library, where
a relatively small number of scholars (users) need recom-
mendations from among a relatively large number of arti-
cles (items). Extremely small user-item ratios demand more
than collaborative filtering alone can provide [18]

In addition, recommender systems need to provide ex-
planations to the user about how the recommendation was
made. This allows the user to ascertain the relevance of
recommendations, assume greater control over how the rec-
ommender behaves and have greater confidence in the valid-
ity of its results. However, recommenders that use multiple
sources of information and integrate results from multiple
algorithms generate relatively ad-hoc explanations. Hybrid
recommendation algorithms are typically more difficult to
generate explanations for than ones that have a unified pre-
diction model [5].

This paper describes an approach to recommendation
based on a cognitive model of associative memory — Dy-
namically Structured Holographic Memory (DSHM) (sec-
tion 1.2). This approach is motivated by the intuition that
applying a cognitive model of memory could enhance the
effectiveness of an information retrieval system by making
it behave more like a human expert. In [8] Michael Hugget
et. al. assert that “to make information management sys-
tems more useful to a wider range of people, it seems rea-
sonable to apply functional cognitive principles to data stor-
age and retrieval”.

Thus, the motivation for the experiments described be-
low is grounded in the question of whether a recommender
system can be made to perform more like a human expert.
Often the best way to get a movie recommendation is to ask
the video store clerk to recommend a movie based on what
you have enjoyed viewing recently. Similarly, your best bet



for finding relevant journal articles is to ask an expert in
the field what to read next given a set of articles that you
have found useful. Our objective was not so much to dis-
cover a recommendation technique that was more effective
or efficient for typical recommender tasks in commercial
applications as to verify the intuition that a cognitive model
of memory was a viable alternative to purely statistical or
probabilistic approaches.

We believe that a holographic cognitive model of mem-
ory has two noteworthy features that make it suitable for
addressing the recommendation problem. The first is adapt-
ability. A holographic memory model can be given any item
of information - even properly encoded visual cues - and can
potentially make use of it. The second, which follows from
the first, is novelty. Human beings, with their wide variety
of knowledge sources are often able to integrate information
in a way that produces a novel result. For a recommender
system, this could mean generating serendipitous, but po-
tentially useful and otherwise unlikely recommendations in
ways that could extend beyond the serendipity provided by
collaborative filtering systems.

Measuring the accuracy of a recommender on biblio-
graphic data is difficult because there are no standard off-
line benchmarks for testing recommender quality. Further-
more, for recommending scholarly articles, end-user satis-
faction is a better overall measure of a recommender’s suc-
cess than are the relevance or precision of its underlying
algorithms [17]. Hence we chose first to benchmark DSHM
with off-line experiments on the MovieLens data, which is
often used to benchmark CF recommenders ( 2.1).

We then performed the off-line experiments described in
section 2.2 to compare CF and DSHM on two very sparse
bibliographic datasets taken from a digital library. These
experiments do not directly evaluate the serendipity of the
recommendations provided by DSHM - this is a character-
istic that we intend to study in future work. Here we are
solely concerning ourselves with demonstrating that, as a
starting point, a DSHM based recommender can perform
with competitive accuracy to existing CF systems.

1.1 Collaborative Filtering

Recommender systems typically operate on three kinds
of entities: users, items and the preference ratings that users
have assigned to items. Given a set of ratings for certain
items — whether they are obtained from users explicitly or
implicitly from, for example, browsing patterns — a user-
based collaborative filtering (CF) system will attempt to
predict the rating of a previously unrated item for the active
user based on how other (similar) users previously rated the
same item. In contrast with collaborative filtering methods,
which use algorithmic statistics to generate recommenda-
tions, DSHM encodes the co-occurrence of a set of items

in the representation of the items themselves and uses the
memory model of the items’ history of associations to gen-
erate recommendations.

As noted in the introduction, recommending journal ar-
ticles in a digital library is more problematic than recom-
mending other kinds of items because the usage data is
sparse relative to the number of items in the collection [7].
One remedy for this problem is to use bibliographic cita-
tions as a proxy for user ratings [17]. This was the technique
we used for the experiments described in this paper.

In the experiments with CF we used a user-based CF rec-
ommender that implements k-nearest neighbour and cosine
correlation in the Taste framework (now part of the Apache-
Lucene machine learning library Mahout [1]). Note that, in
this instance, where user preferences are equivalent to arti-
cle citations, a user-based approach is equivalent to an item-
based one.

1.2 DSHM - Dynamically Structured Holographic
Memory

DSHM is a cognitive model of human long-term mem-
ory [14, 15]. It is designed as a tool for understanding how
the human mind organises knowledge, e.g., how it stores,
confuses, forgets and accurately retieves information. The
implementation of DSHM used for the experiments de-
scribed in this paper is a self-contained Python program that
does not depend on any other modeling software. DSHM
has also been reimplemented in Java. The Java version in-
cludes improvements in caching vector computations and in
system state persistence.

DSHM makes use of Holographic Reduced Representa-
tions (HRRs) to encode associations between concepts [13].
It is based on Jones and Mewhort’s BEAGLE model of the
lexicon [10]. DSHM generalizes BEAGLE to apply to any
memory type. BEAGLE can be considered a special case of
DSHM. According to the DSHM model, memory is com-
posed of holographic items, which we will refer to here as
H-items. H-items represent entities to be remembered by
the DSHM system. We refer them as “H-items” to avoid
confusion with the generic term “item” used to refer to rated
entities in a recommender.

Each H-item consists, primarily, of two large vectors - an
“environmental vector” and a “memory vector” - of floating
point numbers, each with a Euclidean length of 1.0. The
numbers that make up the vectors are generated at random,
and adhering to a gaussian distribution. The environmental
vector is static (i.e., it does not change) after its creation. It
is used as the system’s internal representation of the mental
entity corresponding to the H-item. In contrast, the memory
vector is dynamic (i.e., it changes over time). The memory
vector of one H-item is used to store all the associations
between that H-item and other H-items in the system. The
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Figure 1. Learning Associations in DSHM

number of elements in the vectors determines the memory
capacity of the system. This is because the greater numbers
of elements results in less significant collisions between un-
related vectors, on average. Simple models of memory phe-
nomena often use vectors with 128 or 256 elements. The
experiments described in this paper used very large data
sets. Thus, the number of elements in each vector was set to
2048, providing the models with adequate memory capac-
ity to perform the recommendation task. The drawback to
using large vectors is that they take more computational re-
sources to manipulate mathematically. The relationship be-
tween vector size, n, and the computational cost is 7 In(n).

Associations between H-items are formed when a set of
H-items is given to the system as input. From a cogni-
tive perspective this can be interpreted as the H-items co-
occurring in a thought, a verbal utterance or a perception.
The system distinguishes between sets for which the order
of the elements is essential to the content of the set as a
whole (e.g., the words in a sentence) from those that are not
(e.g., the things scattered about my work desk that I am per-
ceiving right now). If the set of H-items is unordered, every
H-item is associated with every subset of the other H-items
in the set, up to a predefined maximum number of elements.
In the experiments presented in this paper, this maximum
was set to the lowest permissible value (namely one); i.e.,
each element of a set is only associated with every other
element of the set, but not with any combinations of pairs
and other n-tuples of elements. The effect of increasing this
maximum is to improve the context sensitivity of the system
at the cost of additional computational resources. A typical
DSHM model of memory[15], applied to smaller data-sets,
would use a value of two or three.

These associations between elements are recorded by
binding the environmental vectors of the H-items in each
subset together, and adding the resulting vector to the mem-
ory vectors of the other H-items in the set (see Figure 1).
A binding is formed by recursively computing the circular
convolution of the environmental vector of an H-item from
the given subset and the binding of the remainder of the sub-
set. The circular convolution of vectors is commutative, and
thus the order in which the H-items of an unordered set are
bound together does not affect the resulting aggregate bind-
ing. However, if the set is an ordered list, the neighbours of
every H-item up to a system-defined maximum distance are
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Figure 2. ltem Similarity in DSHM

associated with the given H-item in a manner that preserves
the order of the H-items [14]. The result of these methods
of associating H-items together is that the memory vector
of each H-item encodes information about all of the other
H-items with which it has co-occurred. The strength of the
association between two items can be determined by cal-
culating the cosine similarity between the memory vector
of one item and the environmental vector of the other (see
Figure 2).

Conceptually, DSHM shares properties in common with,
but distinct from computationally inspired cognitive archi-
tectures such as ACT-R and neural networks that make use
of unsupervised learning. We have argued elsewhere that
DSHM may help bridge incompatibilities between these
two general frameworks [15].

1.2.1 The structure of DSHM

A collection of H-items in a DSHM system defines a
multi-dimensional state-space where each environmental
and memory vector is a point on the surface of a hyper-
sphere with radius 1.0. This state-space implements a com-
plex semantic network occupied by the items represented in
the system . One property of this organisation of H-items is
that given an incomplete pattern, the provided, known, H-
items from the pattern can be used to predict the most likely
candidates for completing the pattern. This is done first by
generating a set of “probe” vectors based on the memory
vectors of the known H-items in the pattern. Each probe is
computed by reversing the binding process described above
and predicts an environmental vector that approximates the
vector of the item that best completes the pattern [14]. We
refer to this method of prediction as “decoding”.

These probes are compared to the environmental vectors
of the H-items that might be completions of the pattern.
Each candidate H-item in the system is then ranked accord-
ing to a score based on the sum of the cosines of the candi-
date H-items’ environmental vector and each of the probes.
The H-items with the greatest combined scores are those
proposed by the system as the most likely completions of
the pattern.

By leveraging this pattern-completion property, DSHM
has been successfully applied to modeling human memory



recall and recognition [15].

Another interesting property of the organisation of H-
items in the system is the relationships between H-items’
memory vectors. When a large set of patterns has been en-
tered into the DSHM system, and the associations between
H-items have been computed, the memory vectors of the H-
items in the system will cluster. These clusters are usually
open to a meaningful interpretation relating to the content
represented by the H-items in the sets of patterns originally
presented to the system. For example, as is the case with
BEAGLE - where the patterns are sentences and the items
are words — the H-items will cluster according to seman-
tic similarity, or synonymy [10]. The reason for this is that
items, which are in some way equivalent and can be inter-
changed for one another, will tend to have the same sets of
neighbours, and will therefore develop similar memory vec-
tors. Thus, given an H-item, its memory vector can be used
as a probe to be compared to other H-items’ memory vec-
tors. The matches found will be the H-items that are similar
to the one providing the probe. We refer to this method
of prediction as “clustering”. It is important to emphasize
that the similarity between two H-items discussed here is
not based on any content about the items provided to the
DSHM system. Rather, the system is inducing the similar-
ity of H-items based only on the patterns in which the items
occur. This ability is, of course, part of what make DSHM
an interesting cognitive model of memory.

The following section describes how DSHM can exhibit
collaborative filtering effects by making use of these prop-
erties of DSHM systems.

1.2.2 Recommendation in DSHM

Given a set of items (e.g., books, movies, or journal arti-
cles), and a set of users who are defined by what subset of
the items they have rated, the purpose of a CF system is to
accurately predict what rating a user is likely to assign an
item that he or she has not yet rated. Given a test item and
a test user, CF assigns to the item a value based on two fac-
tors. The first (in user-based CF) is the similarity of the test
user to a neighbourhood of other users who have also rated
the item and the second is the ratings assigned to the item
by the other users. There are various functions that can be
used to compute this value. What such a function provides
is a metric for how consistent the test item is with the items
rated by the test user. In the absence of any other consider-
ations, the concept of “user” is inessential and serves only
as a container for his or her rated items.

In contrast, CF methods which use algorithmic statistics
to generate recommendations, the most natural way to rec-
ommend items in DSHM, in a manner equivalent to user-
based CF, is to treat a user as simply a set of unordered
ratings. The ratings are considered to be unordered because
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Figure 3. DSHM State Space

we assume that the value given to an item is highly, although
not completely, independent of any considerations that may
impose an order on the ratings, such as the dates the rat-
ings were provided. We define a rating as the combina-
tion of an item and a preference value. When imported into
the DSHM system, the ratings are converted into H-items,
which we will refer to as H-ratings, and are associated with
one another by the binding process described above. Thus,
for each H-rating, information about other H-ratings with
which it has co-occurred is stored in the memory vector
of the H-rating. Once all of the users’ ratings have been
imported into the system, the state-space defined by the H-
ratings’ memory vectors will cluster as described above.

Hence, H-ratings that occur in similar sets of ratings will
be located together. This does not only mean that ratings
by the same user will be located together in the state-space
(this may or may not be the case). It is also the case that
two ratings that have never been rated by a common user
can have very similar memory vectors if the users who have
rated them have other ratings in common. Thus, given a
rating, the memory vector of the corresponding H-rating can
be used to located other H-ratings that are consistent with
the given rating (see Figure 3).

Therefore, to predict a new rating, the combined influ-
ence of all of the known ratings by the test user can be used
to converge on a set of probes that point to a location in the
state space where DSHM calculates the new rating ought to
exist. H-ratings occupying this location are then returned
by the system as its predictions.

It should be noted that, strictly speaking, in DSHM, only
the decoding method corresponds to traditional user-based
CF. A simple example illustrates the difference between the
decoding and clustering methods (see Figure 4). Consider
an object A that co-occurs with another object B in one in-
stance, and with a third object C in another instance. The
decoding method, when applied to B, will predict A. This
is because only A co-occurs with B. The clustering method,
when applied to B will predict C because only C has the
same neighbours (i.e., A) as B. We have included reference
to the clustering method in this paper because it makes use
of the exact same data as does user-based CF and produces
noteworthy results.
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Figure 4. Decoding vs. Clustering in DSHM

2 Experiments

Which methodology to choose for evaluating a recom-
mender’s performance depends a great deal on the kind of
user task for which the recommender is applied, the datasets
being used to perform the evaluation as well as what char-
acteristics (e.g., accuracy, usefulness, serendipity) of the
recommender are being evaluated [9]. For this study, our
objective was to compare DSHM with a conventional CF
recommender to understand both whether DSHM is an ap-
plicable technique and how it compares in accuracy with
CF on sparse bibliographic datasets. We first establish a
baseline for DSHM on the MovieLens dataset and then ex-
tend the comparison between these two approaches to two
different datasets obtained from a repository of biomedical
journal articles.

2.1 MovieLens

Our first experiment was to establish a baseline of pre-
dictive accuracy comparisons between DSHM and CF on
the MovieLens dataset. This test was done using the usual
10%-90% cross-validation methodology. Previous studies
of CF on this data show a Mean Absolute Error (MAE) of
approximately 0.73, depending on parameters for the neigh-
bourhood size [4].

The greatest challenge to predicting ratings using
DSHM, is the fact that the current implementation has no
innate ability to represent magnitude. Given that the goal
is to predict a numerical rating, some means of accommo-
dating magnitudes needed to be incorporated into the rep-
resentation of ratings in the system. We decided that for
every movie in the MovieLens dataset, five distinct H-items
would be created, one for each possible rating, e.g., “Toy
Story (1995)” with a rating value of 4 would be a single
atomic entity in the system, as would “Toy Story (1995)”
with a rating value of 5.

The cognitive interpretation of this is that the mental rep-
resentations that correspond to liking a given movie very

much, and liking it only somewhat, differ in many dimen-
sions, and not just on a single numerical scale. Hence, rep-
resenting each rating for each movie as entirely different H-
items presumes nothing about how the ratings for the same
movie ought to be related to one another. Thus, prior to the
learning phase, the various H-ratings representing the rat-
ings of a movie did not bear and a priori relationship to one
another. That is, the H-rating representing a movie X, with
a preference value of 4 was no more related to the H-rating
representing X with a value of 5 than the H-rating represent-
ing X with a value of 1. Given this method of representing
ratings, a rating prediction then becomes the task of deter-
mining which of the five H-ratings for a given movie is most
highly associated with the H-ratings corresponding to a test
user’s other ratings.

Of the 6040 MovieLens users, approximately 10% (614)
were randomly removed from the sample and used as test
users. The DSHM recommender was trained on the ratings
provided by the remaining 5426 users. For each of the test
users, the DSHM recommender made predictions for ten of
the test user’s ratings. These predictions were done one at a
time, and used all of the user’s other ratings as sources from
which to base the predictions.

2.1.1 Results

As mentioned above, there are two distinct, but related,
ways in which DSHM can predict a rating. In the case of
the decoding method, DSHM is being asked to find ratings
that are likely to have co-occurred with the known ratings.
Here, DSHM produced a MAE of 1.23. This poor result
was initially surprising. The decoding method had been
employed with a great deal of success in a DSHM model
of human memory data [15]. We hypothesised that the poor
performance of the model was due to our choice of how
to represent ratings. The drawback of not presuming any
relationship between the pair of ratings corresponding to a
given movie with values of 4 and 5, which CF can lever-
age, is obvious. By creating five H-ratings for each movie,
there are too many items relative to the number of users for
DSHM to discover reliable co-occurrence patterns of pref-
erences for the test users.

In contrast of the performance using the decoding
method, the clustering method produced a competitive
MAE of 0.71. In this latter case, DSHM is being asked to
find ratings that are similar to the known ratings. The reader
is reminded that the similarity discussed here is based only
on what is induced by the DSHM system, and not based on
any content explicitly provided about the movies. This task
is more resilient to noise because the value of an H-rating’s
memory vector is the accumulated influence of many asso-
ciations, which, on average, represents a reliable location in
the state-space occupied by relevantly similar ratings. Note



that this method of measuring H-rating similarity would al-
low for clusters to represent movie preference profiles. For
example, a romance movie rated 1 could cluster with an ac-
tion movie rated 5.

The authors are confident that if the provided with a
sufficiently large set of training data the decoding method
ought to produce better results. This is because the decod-
ing method is potentially more powerful than the cluster-
ing method, but requires either less noisy data or data with
more complete coverage of the data space. The potential of
the decoding method pertains to its ability to identify more
serendipitous patterns in data.

2.2 Journal Articles

Our second experiment is modeled after the off-line ex-
periments in TechLens+, which evaluated the effectiveness
of different strategies for recommending journal articles in a
digital library context [17]. As with TechLens+, we treated
articles as “users” and articles’ lists of references as lists of
boolean “ratings” for other articles (although we note that
while bibliographic references in an article are an indica-
tor of relevance they are not necessarily an indication of
favourable relevance in the mind of the author).

Our experiment compares DSHM and CF on Top-N re-
sults on two bibliographic datasets: one was extracted from
a collection of 31,000 articles from 39 Medicine journals
and the other from a collection of 114,000 articles from 107
Biology journals. The Medicine collection was reduced to
7495 articles by eliminating articles for which references
were unavailable. In addition, the references we used to
populate the preferences matrix were only the references
that were made to articles in that collection. Overall, the to-
tal number of references in the collection was over 273,000,
but only 4100 of them were references to articles in the col-
lection, for an average of only 0.55 references per article.
In other words, the collection was both very sparse and very
loosely connected. The Biology collection was reduced to
38,667 and also had a small average number of references
(1.15 per article) to articles in the collection. The connectiv-
ity of the article collections — measured as the number of
references in an article plus the number of articles that cite
it — was slightly above 1 for the Medicine collection and
slightly above 2.3 for the Biology collection, as compared
to 14 in the CiteSeer collection used in Techlens+ [17].

Our experimental method also differs from the Tech-
Lens+ study in some respects. One is that the cross-
validation was not 10-fold and not random. Instead, we
chose to perform leave-one-out evaluations exhaustively on
a sample of the articles biased towards those with the most
references to items in the bibliographic collections. One
reason for using this strategy rather than the random selec-
tion strategy was that the likelihood of picking a random
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Figure 5. Top-N results for CF and DSHM on
Medicine Collection.

article with only one or fewer references to articles in the
collection was quite high. Leaving one reference out for
each of the articles with the most references seemed more
likely to produce a recommendation that was correct. Thus
we chose a subset of 95 test articles in each collection which
had between 17 and 5 references per article in the Medicine
collection, for a total of 570 prediction attempts and be-
tween 32 and 13 references in the Biology collection, for a
total of 1491 prediction attempts.

For this experiment, the DSHM implementation was es-
sentially the same as for the MovieLens experiment, except
that there needed to be only one H-item representation for
each unique article. For each of the non-test articles, the
H-items representing the article’s references were associ-
ated together. To make a prediction, the memory vectors
of the H-items corresponding to the remaining references
were used to generate probes used to rank all of the other
articles in the collection according to how highly they were
associated with the probes. Again, the two distinct methods
of generating these probes, as described above, were used.
The DSHM recommender was asked either to recommend
articles that were most likely to have co-occurred with the
provided references, or to find references that were similar
to the provided references.

2.2.1 Results

The results of these experiments are summarized in Figures
5 and 6. In the case of the journal article recommendations,
the DSHM recommender produced very good results via the
decode method, presented here. Unlike for the MovieLens
data, the clustering method did not produce better results
for journal article recommendation.

In the case of the Medicine data set, DSHM correctly
predicted the first item (Top-1) 76 times out of 570; made a
Top-5 recommendation 145 times; Top-10 161 times; and,
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Figure 6. Top-N results for CF and DSHM on
Biology Collection.

top-30 178 times. In the case of the Biology data set, the
totals were: 127 Top-1; 296 Top-5; 371 Top-10; 443 Top-
30, out of 1491 total recommendations. In contrast, our
traditional CF system’s performance was somewhat poorer.
In the medicine case the totals were: 28 Top-1; 90 Top-5;
108 Top-10; and 131 Top-30. In the biology case the totals
were 51 Top-1; 144 Top-5; 210 Top-10 and 340 Top-30.
Comparing these results, it appears that DSHM does con-
siderably better than CF at making Top-1 and Top-5 rec-
ommendations, but that the performance of the two systems
converges at the tail end. DSHM also seems to be more
sensitive to the reference structure of the two article collec-
tions and performs proportionately better with the Medicine
collection.

In other words, DSHM correctly predicted the Top-1 ref-
erences in the Medicine collection almost 3 times as often
as CF (76 versus 28), and converged to a 36% improvement
over CF for the Top-30. For the Biology collection the accu-
racy of DSHM is a little less dramatic but exhibits the same
trends; e.g., 127 Top-1 predictions for DSHM versus 51 for
CF, and a 30% improvement for Top-30.

3 Conclusion

Predicting bibliographic citations from a holographically
reduced representation of bibliographic information shows
that recommending Top-N items offers better accuracy than
CF on very sparse datasets. We interpret this superiority of
DSHM as resulting from its ability to self-organise based
on the information extracted from the data.

In addition to being more accurate for sparse datasets,
the flexibility of holographic recommenders offers promis-
ing possibilities for recommending items that have ratings
in multiple dimensions as well as item correlations that are
content-based. DSHM provides a unified mechanism for

implementing what would otherwise be considered a “hy-
brid” recommender.

The benefits of using DSHM as a recommender for large
datasets are mitigated by the considerable computational
cost of producing them. In applications where recommen-
dations must be provided quickly, DSHM may not be able to
respond fast enough. In some respects, DSHM extracts too
much information from the available data, but at too great a
computational cost.

In cases where this information is largely composed of
noise, the computational resources required to process the
information produces too small a return to justify the ex-
pense, especially in on-line applications. This is due to
the cost in space and time of performing thousands of ma-
trix computations to produce each recommendation. Hence,
variants on collaborative filtering techniques are still more
practical for digital library recommender systems under
most foreseeable circumstances. Nevertheless, in situations
where significant pre-compiling of information is feasible,
e.g., for relatively static or very small datasets, or when few
unique queries are made to the system (see 3), DSHM may
be useful for maximally digesting the available data in ad-
vance.

4 Future Work

Our future work includes both a research and an applica-
tions development effort.

4.1 Research

Our future research on DSHM as a recommender sys-
tem will focus on examining exactly how information is
exploited differently in DSHM compared to CF. This will
include cluster analysis of the vector state-space of DHSM
recommenders, as well as a detailed examination of how
learning in DSHM differs from model building CF. We
would also like to compare the accuracy of a DSHM system
to which content information (e.g., movie genres or article
abstracts) has been added, against the accuracy of typical
hybrids of CF and content-based filtering.

In addition, we intend to compare the serendipity char-
acteristics of DSHM recommendations. We believe DSHM
may distinguish itself my mimicking the serendipity of rec-
ommendations that human experts provide and differ signif-
icantly from the serendipity of collaborative filtering.

Finally we plan to investigate the explanatory capabil-
ities of a DSHM system and compare those explanations
with ones that are derived from a hybrid CF and Content-
Based Filtering algorithm. We believe that DSHM’s unified
representation of H-item associations provides an opportu-
nity to generate recommendation explanations that improve
upon ad-hoc hybrid explanations.



All these experiments will be developed on an open-
source, Java implementation of DSHM and their perfor-
mance evaluated on a Hadoop cluster [2].

4.2 Applications

DSHM is currently being used in the development of
an application that provides enhanced metadata to informa-
tion management systems (IMS). One of the features of this
IMS is a dynamic, faceted classification system that uses
metadata fields which are customized for each deployment.
Facets are distinct, mutually exclusive, and collectively ex-
haustive perspectives used to describe information. Faceted
classification systems are commonly used in the field of Li-
brary and Information Sciences as comprehensive set of cat-
egories that can be arranged in multiple ways rather than
only in a rigid hierarchy [16].

One objective of this application is to reduce the infor-
mation management burden placed on the end-user. Thus,
unlike standard faceted classification systems, the logical
relationships between the facets are built into the system.
These relationships constrain the possible combinations of
metadata values, thus making it easy to autocomplete the
metadata fields that follow as a logical consequence. For
example, once the end-user has selected his or her name in
the Name field and a project name in the Project field, the
system will determine that other fields, such as Function
and Country, have only one possible value and these fields
will be filled in automatically.

The DSHM recommender enables the application to also
predict the likely, though not logically necessary, meta-
data values. The backend server maintains a DSHM model
which takes collections of metadata field and value pairs
as input. Whenever a user saves a document, the meta-
data assigned to it is sent to the server and the model is
updated. When the user prompts the system for suggested
metadata values the DSHM model is presented with a query
that contains the metadata fields and values that the user has
provided so far, and the remaining empty fields are queried
for possible values. The DSHM model then produces rank
ordered lists of possible metadata values for each of the
empty fields. Each possible metadata value is associated
with a real number that represents how strongly it satisfies
the empty field’s relationship to the completed fields in the
DSHM model.

The current application-centric research focuses on de-
termining which metadata values for empty fields are ap-
propriate enough to recommend to the user. DSHM will
provide candidates for filling each empty field, even if they
are not strong candidates.The current approach is to pro-
vide a single metadata value as a recommendation for each
empty field only if the internal numerical value associated
with the metadata value exceeds a certain threshold. The

current best solution is to evaluate whether the value asso-
ciated with the highest rated metadata value is significantly
greater than the value associated with the second highest
rated metadata value. If this is the case, there is sufficient
certainty that the highest rated metadata value distinguishes
itself from the other possible values, and that the second
highest rated metadata value would not make a recommen-
dation that is as good as or better than the highest rated
metadata value.

Once the system has determined which metadata values
for the empty fields make appropriate recommendations, the
values are returned and the previously empty fields are filled
with recommended values. Recommendations are distin-
guished from user-selected values by annotating the recom-
mended values with a user interface marker such as a high-
light.

The general problem of the computational cost of
DSHM, mentioned in section 1.2 is not a problem provided
the server has adequate computational resources, and con-
current recommendation requests are infrequent. This is be-
cause individual metadata recommendations in this system
are less complex than the digital library and MovieLens rec-
ommendations presented in this paper, and thus take much
less time to compute. Additionally, recommendation is not
a necessary feature of metadata assignment. Thus, the num-
ber of recommendation requests per user per day is low.
Thus, the likelihood that the server will be able to respond
to all recommendation requests in a timely manner is good
for most anticipated deployments of the system.
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