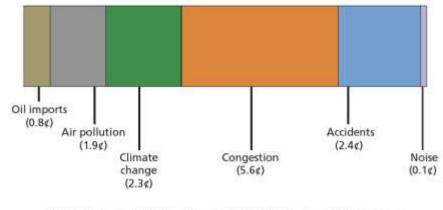
Behavior and the Diffusion of Innovations for Climate Goals: The Case of Electric Vehicle Adoption

Sustainable Energy Seminar Series Carleton University March 4, 2020 Margaret Taylor

Tonight's Talk


- Background on the case
 - Why decision-makers care about plug-in electric vehicles (PEVs = plug-in hybrids + electric vehicles)
 - PEV-related public problems and U.S. policy events, with deeper dive on California policy
 - Clean energy innovation decision science and frameworks re: the development and diffusion of PEVs
- Behavior and PEV diffusion
 - Insights from a diffusion framework based on the EKB model of the purchase decision process
 - A deeper dive into the gender divide on PEV interest and adoption
- Discussion of the broader applicability of this framework

Background on the Case

Why decision-makers care about lightduty vehicles

- Positive aspects of motor vehicles
 - Commerce, independence, convenience...
- Negative aspects of motor vehicles
 - Rand estimate of the per-mile externalities associated with driving a motor vehicle

NOTE: Estimates are in 2010\$ and based on NHTSA (2012a) values. GHG emissions use the central value from the U.S. Interagency Working Group on the Social Cost of Carbon (2013). Emissions factors are well-to-wheel for a 24.8-mpg vehicle using data from Argonne National Laboratory (2012).

A brief history of PEV-related public problems and U.S. policy events

- Local air quality
 - Los Angeles smog
 - Non-attainment areas under the 1970 Clean Air Act
- Petroleum demand
 - Gasoline shortages and price shocks in the 1970s
- Economic development
 - California aerospace and the end of the Cold War
- Greenhouse gas emissions from transportation
 - Transportation exceeded electricity as the biggest U.S.
 GHG emissions source for the first time in 2017

California: Clean Air Vehicle decals, vehicle GHG standards

Fed: Supreme Court decision, EPA, NHTSA harmonize w/California

Resilience of the electricity sector

California LEV regulation with ZEV mandate, seeds a cluster

California California waiver

Pollution

Average

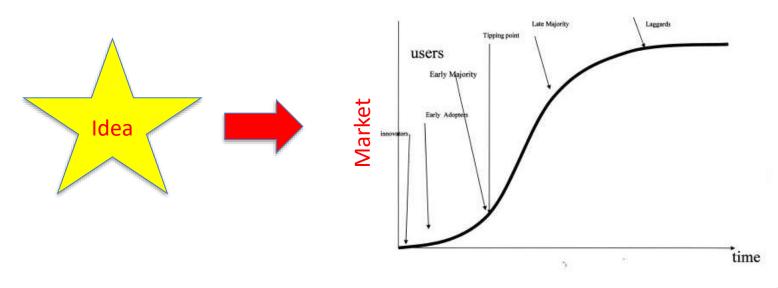
Economy

standards

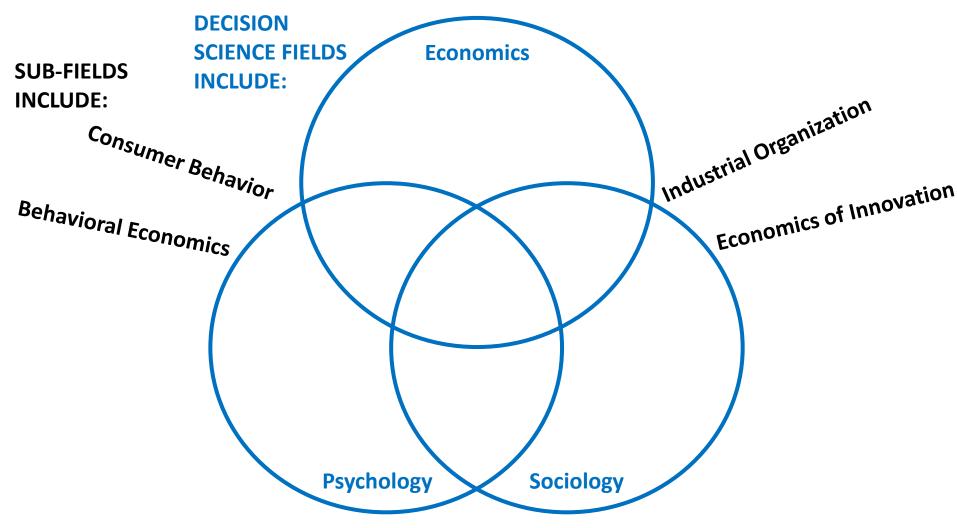
Fuel

LEV Regulation

- Requires mfrs of light-duty vehicles to produce any combination of LEV categories – with one exception – as long as they meet sales-weighted fleet averages for Non-Methane Organic Gases
 - In 1990 "LEV I," categories, which met different emission requirements, were transitional low-emission vehicles (TLEV), low-emission vehicles, ultra-low emission vehicles (ULEV), and zero-emission vehicles (ZEV).
 - ZEV is the exception large mfrs required to produce and deliver for sale ZEVs as a gradually increasing percentage of their fleets (up to 10%)
- Noteworthy policy attributes
 - A departure from the single, uniform standards applied to each vehicle under previous California and federal legislation
 - Provides long lead times to manufacturers
 - Incorporates a tradable credit system
 - Establishes a biennial review process re: regulation and tech developments
- Technical advances occurred which allowed CARB to ratchet down emissions standards in LEV II in 1999 (MY 2004-2014)
- LEV III adopted in 2012 (MY 2015 onward for both smog (superseding LEV II) and GHG (superseding Pavley) emissions


ZEV Regulation

- ZEV exists because of expectation that non-ICEs were required as a long-term solution to severe air pollution in CA
- Originally required mfrs of LDVs to produce and deliver for sale 2% in MY1998, 5% in MY2001, and 10% in MY2003
 - Manufacturers could purchase ZEV credits from other manufacturers or produce extra ZEVs and bank the credits for future use
- Noteworthy policy attributes
 - Officially technologically neutral
 - Performance-based standard, but with sales mandates
- Technical advances in BEVs, the technology expected to quality soonest for the ZEV program, were slower to develop than anticipated
 - Requirements reduced/changed several times, starting in 1996, when ARB dropped the 1998 and 2001MY targets (it retained the 2003 10% target, however)


Clean Energy Innovation Decision Science

"To accelerate ... clean energy technologies, RDD&D should address ... design, adoption, and use... [at] the intersection of technology, behavior, and decision science" 2015 DOE Quadrennial Technology Review

- Study of the dynamics by which energy technologies are invented, incorporated into commercial designs, and adopted and used by consumers and businesses
- Involves understanding the forces that shape the market for these technologies

Relevant Fields of Knowledge

Studied a lot of cases of Regulations and Technologies

Type of Regulation	SO2	NOx	Wind	PV	STE	SWH	Dom Apps	Com Prods	Cars
Performance-based standard	✓	✓							✓
Cap-and-trade program									
Rate guarantees			-	-	-	✓			
Renewable portfolio standard			-	•	~				
Minimum efficiency performance standards									
Procurement regulation									
Building regulation				✓					
CA ZEV									✓

About Frameworks

framework

noun

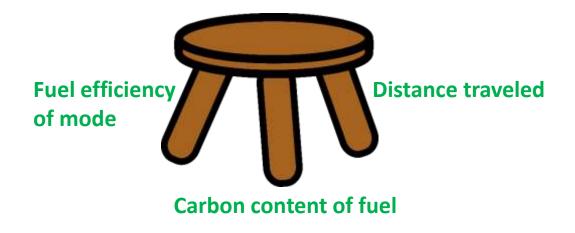
UK 4) /'freim.ws:k/ US 4) /'freim.ws:k/

[C]

a supporting structure around which something can be built

C2

a system of rules, ideas, or beliefs that is used to plan or decide something:

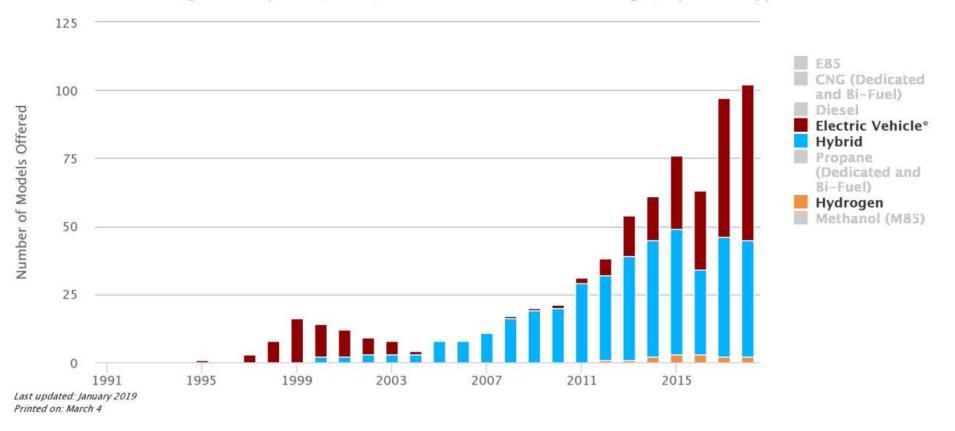

· a legal framework for resolving disputes

+ 🖽

+ :=

Frameworks re: the development and diffusion of PEVs

California's framework for sustainable transportation policy


On vehicles, California's LEV/ZEV policy framework was more inventionoriented, or focused on the supply-side of technology. This is in keeping with pollution standards and demonstrated technologies (e.g., the development of the catalytic converter for cars).

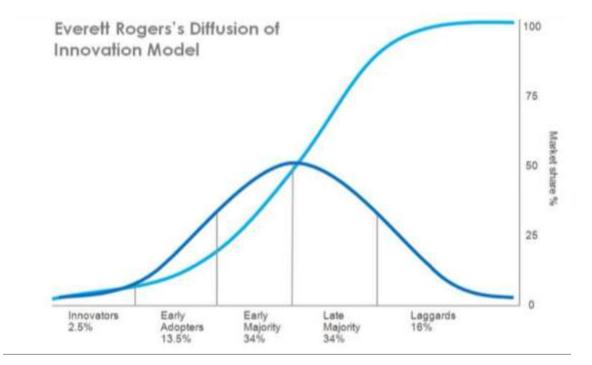
Today's PEVs have Consumer Value beyond "Green"

- Fun and safe to drive
 - Electric drivetrains provide full torque fast and the lower center of gravity brought on by battery weight improves handling
- Convenient to charge
 - Mostly fueled at home overnight
- Inexpensive to maintain
 - Many less parts to electric motors, and remaining "consumables" like brakes tend to last longer
- Costs are becoming more comparable, especially with leasing and rebates

Lots of EV models offered for sale

Light-Duty AFV, HEV, and Diesel Model Offerings, by Fuel Type

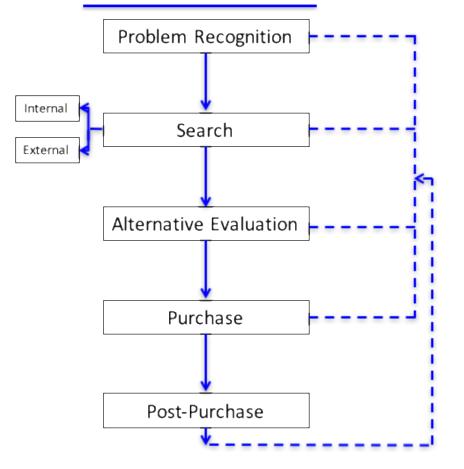
56 MY2018 EVs available in the U.S.


Source: Alternative Fuels Data Center and the 14 Transportation Energy Data Book 38

Utility of a diffusion framework on the demand for innovation: Consider vehicle sales

						Plug-in	
	Hybrid	Plug-in				hybrid share	All-electric
	vehicle	hybrid	All-electric	All light	Hybrid share	of	share of
Calendar	sales	vehicle sales	vehicle sales*	vehicle sales*	of all light	all light	all light
year	(thousands)	(thousands)	(thousands)	(thousands)	vehicles	vehicles	vehicles
1999	0.0	0.0	0.0	16,711	0.0%	0.0%	0.0%
2000	9.4	0.0	0.0	17,164	0.1%	0.0%	0.0%
2001	20.3	0.0	0.0	16,950	0.1%	0.0%	0.0%
2002	36.0	0.0	0.0	16,675	0.2%	0.0%	0.0%
2003	47.6	0.0	0.0	16,494	0.3%	0.0%	0.0%
2004	84.2	0.0	0.0	16,737	0.5%	0.0%	0.0%
2005	205.9	0.0	0.0	16,774	1.2%	0.0%	0.0%
2006	251.9	0.0	0.0	16,336	1.5%	0.0%	0.0%
2007	351.1	0.0	0.0	15,867	2.2%	0.0%	0.0%
2008	315.8	0.0	0.0	13,015	2.4%	0.0%	0.0%
2009	290.3	0.0	0.0	10,236	2.8%	0.0%	0.0%
2010	274.6	0.3	0.0	11,394	2.4%	0.0%	0.0%
2011	266.5	7.7	10.1	12,542	2.1%	0.1%	0.1%
2012	434.6	38.6	14.6	14,220	3.1%	0.3%	0.1%
2013	495.5	49.0	48.1	15,279	3.2%	0.3%	0.3%
2014	452.2	55.4	63.5	16,192	2.8%	0.3%	0.4%
2015	384.4	43.0	71.1	17,095	2.2%	0.3%	0.4%
2016	346.9	72.9	86.7	17,169	2.0%	0.4%	0.5%
2017	362.9	01 1	104.4	16,818	2.2%	0.5%	0.6%
2018	343.2	122.8	238.8	16,913	2.0%	0.7%	1.4%
			Average	annual percenta	ge change		
2000-2018	22.2%	e	c	-0.1%			
2011-2018	3.7%	48.6%	57.1%	4.4%			

Table 6.2 Hybrid and Plug-In Vehicle Sales, 1999-2018


Most common framework for diffusion

Versions of this chart are shown a lot in Silicon Valley. This is a particularly useful framework for thinking about a new technology that doesn't one-to-one substitute for an existing technology with large market saturation.

A More Policy-Leverageable Framework? The EKB Model of the Purchase Decision Process

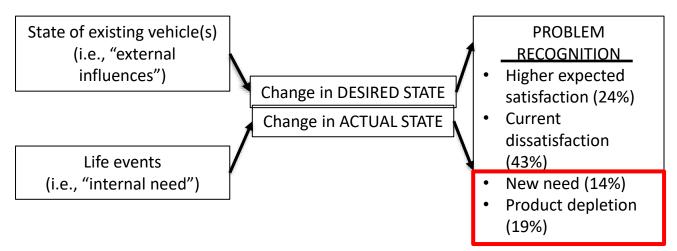
Decision Process Steps

Influences

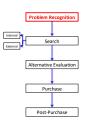
Internal factors

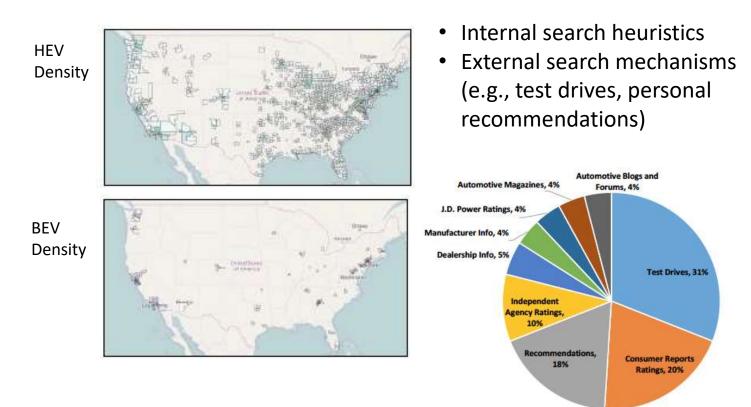
- Long-term
 - Demographic, psychological, and behavioral attributes
 - Consumer experience with product/brand
 - Switching costs
 - Brand attitude, loyalty
- Short-term
 - Affect throughout the process
 - Impulse triggers

External factors


- Perception of risk
 - Negative consequences of a poor purchase decision
 - Probability of negative consequences
 - Prospect theory
 - Search, experience, credence goods
- Risk management/consumer involvement in purchase
 - Constraints regarding purchase context
 - Too little time
 - Rapidly changing products
 - Role of third parties

Behavior and PEV Diffusion


Problem Recognition Insight: The Purchase Context Matters


• New need segment (18% today?):

Source: Punj & Srinivasan (1992)

- Shopped for the highest number of aggregate models across dealer visits
- **Product depletion** segment (30% today?):
 - Considered the smallest number of makes before visiting a dealership;
 - Made the smallest number of pre-decisions;
 - Shopped for the smallest number of aggregate models across dealership visits

Search Insight: Uneven PEV + Infrastructure Distribution Matters

Alternative Evaluation Insight: Reasons to Purchase vs. Reject Purchase

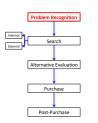
Top reasons for LDV Purchase:

- 1. Reliability
- 2. Durability
- 3. Quality of workmanship
- 4. Values for the money
- 5. Manufacturer's reputation

Top reasons for PEV purchase (CA)

- 1. Save money on fuel cost
- 2. Reduce environmental impact
- 3. HOV lane access
- 4. Increase energy independence
- 5. Want a vehicle with new/better technology

Top reasons to reject PEV purchase


- 1. Too expensive
- 2. Not available in desired vehicle class
- 3. Technology not dependable
- 4. Poor performance
- 5. Other

Purchase Insight: Dealerships Matter

- Shrinking number of dealerships
- Uneven distribution of product across dealerships
- Purchase complexity
 - Heterogeneous incentives
 - Lease terms
 - Technical information

Year	Number of				
	Franchised New				
	LDV Dealerships				
1970	30,800				
1975	29,600				
1980	27,900				
1985	24,725				
1990	24,825				
1995	22,800				
2000	22,250				
2005	21,640				
2010	18,460				
2015	16,545				

Post-Purchase Behavior Insights

- PEV buyers vs ICE buyers:
 - More: male, wealthy, married, professional, college-graduates...
- Distance between consumer expectations and actual satisfaction has a major effect on product evangelism not much research on this
- Role of charging behavior is important and understudied
 - Physical issues (e.g., out-of-order chargers...)
 - Behavioral issues (e.g., occupied parking spaces, etiquette...)
 - Home charging most important
- Availability and affordability are issues (Axsen and Kurani 2012), especially as PEVs come off lease and enter secondary market (2/3 of vehicle sales)
- Visible public charging adds to sales, but how much is not clear enough to inform tradeoffs re: over-capacity issue for utilities
 - Question if people (especially non-PEV owners) recognize a charger when they see one...
- Evidence that customers are generally very satisfied, more so than many expected. This makes them potentially helpful as product evangelists.

A deeper dive into the gender divide on PEV interest & adoption

- Women are:
 - Half of U.S. drivers
 - Involved in 85% of purchase decisions of all product types
 - Involved in the majority of vehicle purchase decisions
- Fewer women than men express interest in or adopt plug-in electric vehicles (PEV)

Consistent finding across regions, countries, and time

The PEV Gender Gap & the Whole Traveler Survey

- The Whole Traveler (WT) survey addresses transportation preferences and behaviors of 1,045 San Francisco Bay Area respondents. It covers:
 - Past, present, and future use of or interest in emerging transportation technologies and services, including PEVs, shared mobility, and AVs
 - Questions get at many internal and external factors from the EKB slide
 - From the make/model/year of respondents' cars, we added vehiclespecific data (e.g., seats, cargo space, safety rating, MSRP)
- WT gender gap for PEV interest/ownership is 14.7% (63.5% of men and 48.8% of women)
 - There are also significant gender differences across demographic, personality, and preference variables

Hypothesis Testing on the Gender Gap

Group	Hypothesis	Key Variable(s)	% mediated (+) or suppressed (-) By individual variable
	H1A: Monetary risk	Risk averse identifier	- 2.38**
	H1B: Certainty of timing	Predictable time index	- 1.36**
H1: Risk		Short travel time index	- 1.12**
	H1C: Safety	Safety importance index	3.23**
		Vehicle safety rating †	0.41**†
	H2A: Openness	Openness score	- 1.2**
	H2B: Agreeableness	Agreeableness score	- 4.71**
H2: Personality	H2C: Extraversion	Extraversion score	- 0.39**
	H2D: Neuroticism	Neuroticism score	0.81**
	H2E: Conscientiousness	Conscientiousness score	6.53**
		Income level	10.28**
		Low cost index	0.74**
H3: Willingness and	/or Ability to Pay	Discount factor	0.28**
		Predictable cost index	1.66**
		Vehicle purchase price +	0.12**†
		Child(ren) in household	0.28**
		Child transport index	1.57**
H4: Transportation Preferences	H4A: Moving people and	Vehicle seats (#) +	3.17**†
	things	Multiple stops index	7.28**
		Low hassle index	0.6**
		Vehicle cargo capacity +	3.05**†
	H4B: Commute habits	Primary commute distance‡	0.3**
H5: Environmental preferences		Environmental index	-1.17**

Key mediating and suppressing variables

Mediator Variables	% of WT Gender Gap Explained	Suppressor Variables	% of WT Gender Gap Explained	
ncome level	10.28	Agreeableness score	-4.71	
Nultiple stops index	7.28			
Conscientiousness score	6.53	Risk averse identifier	-2.38	
Safety importance index	3.23	Predictable time index	1 26	
/ehicle seats (#) †	3.17		-1.36	
Vehicle cargo capacity +	3.05		-1.20	
Predictable cost index	1.66	Openness score		
Child transport index	1.57	Environmental index	-1.17	
Neuroticism score	0.81		-1.1/	
ow cost index	0.74	Short travel time index	-1.12	
ow hassle index	0.6		1.12	
Vehicle safety rating +	0.41	Extraversion score	-0.39	
Primary commute distance 0.3		Total Explained: 11.7% (PEV gap from 14.7 to 16.4%)		
Discount factor 0.28				
Child(ren) in household	0.28			
Vehicle purchase price +	0.12			
Total Explained: 30.7% (PEV 10.2%)	gap from 14.7 to			


Suggestive of policies beyond rebates

	Mediator Variables	% of WT Gender Gap Explained	Suppressor Variables	% of WT Gender Gap Explained	
	Income level	10.28	Agreeableness score	-4.71	
	Multiple stops index	7.28			
	Conscientiousness score	6.53	Risk averse identifier	-2.38	
Implications	Safety importance index	3.23	Dradiatable times index		
for charger	Vehicle seats (#) +	3.17	Predictable time index	-1.36	
locations	Vehicle cargo capacity +	3.05		-1.20	Implications for carpool lane access
	Predictable cost index	1.66	Openness score		
	Child transport index	1.57	Environmental index	-1.17 -1.12	
	Neuroticism score	0.81			
	Low cost index	0.74	Short travel time index		
	Low hassle index	0.6			
	Vehicle safety rating +	0.41	Extraversion score	-0.39	
	Primary commute distance‡	0.3	Total Explained: 11.7%	(PFV gap from 14.7	
	Discount factor	0.28	to 16.4%)		
	Child(ren) in household	0.28		····	
	Vehicle purchase price +	0.12			
	Total Explained: 30.7% (PEV	gap from 14.7 to			
	10.2%)				

Broader Applicability of this Framework

Uncertain Energy Impacts: Automated Vehicles

Thinking about consumers...

- Transportation sector
 - Owners of vehicles (if multiple vehicles, purchase through procurement)
 - Users of transit systems
 - Customers of TNCs (e.g., Uber, Lyft)
 - Customers of oil companies (e.g., Shell, Exxon, etc.)
- Electricity sector
 - Rate-payers of utilities (traditionally natural monopoly)
- Building sector
 - Owners (deal with operating costs)
 - Renters

Thank you! Questions?

For more information: Advancing Clean Energy Innovation Decision Science: CEIDS.lbl.gov mtaylor@lbl.gov Cell: 510-847-1879

