
Building Energy Model Reduction using Principal Component Analysis and 
Affinity Propagation Clustering of Thermal Zones  

 
Zixiao Shi1, William O’Brien1 
 

1Department of Civil and Environmental Engineering, Carleton University, 
Ottawa, Ontario K2E 0A9, Canada 
 
 
ABSTRACT  
This paper introduces a building energy model reduction method by using one exemplar zone to 
represent a group of similar thermal zones. The procedure involves using principal component 
analysis to model and capture the thermal behaviors of the zones, and then use affinity propagation 
clustering technique to group similar zones together and identify exemplar zones for the clustered 
groups. A tool has been developed to allow the process to be performed automatically. A case 
study discussed in this paper demonstrates the proposed method has produced a reduced energy 
model that allows a magnitude faster simulation than the original model while still maintains the 
resulting energy consumption estimation within a reasonable range. 
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INTRODUCTION 
Building energy modeling has seen more extensive use and wider adoption by the industry to 
reduce the energy consumption and greenhouse gas emission during building design and operation 
periods. Considerable recent research has investigated the topic of using building information 
modeling (BIM) to automatically generate building energy models. However, BIM models that 
often contain complex geometries are may not be suitable to be directly used in building energy 
simulations due to different and sometimes conflicting application requirements. This situation 
could be further worsened by the growing need to perform building energy simulation iteratively 
to achieve design optimizations or building control strategy optimizations. Often times the 
similarities between the thermal zones inside a building and the periodic nature of the indoor and 
outdoor thermal environment gives the model potential to be simplified. 
 
Some work has been done previously by researchers in an effort to reduce the building energy 
model complexity using zone approximation and thermal response approximation. Georgescu et 
al. (2015) introduced a way of applying Koopman operator to capture the thermal behavior of 
zones at different time scales and using the response similarities to perform model reduction. Goyal 
et al. (2012) used time-constants to create zone approximations. Van Treeck et al. (2007) 
demonstrated a way of using graph theory to perform dimension reduction for 3D building models. 
Some authors (Kim & Braun, 2014, Deng et al., 2010) also focused on developing thermal 
abstractions or reduced order energy simulation algorithms in order to obtain reduced models. 
 
This paper exploits the possibility of using orthogonal decomposition to capture the first order 
thermal response of building zones from simulation results, and then use a clustering technique to 
group similar zones and discover archetypes (exemplary zones). The resulting group formations 



can be used for HVAC control zone definition during the building design stage, and the exemplary 
zones can be used to produce reduced model for faster energy simulations. The model reduction 
process is independent and can be used with the existing available building energy simulation tools 
such as EnergyPlus and TRNSYS. The proposed method is also validated in EnergyPlus with a 
detailed energy model of a mixed used academic building. Narayanswamy et al. (2014) 
demonstrated a similar method as proposed in this paper in the field of building fault detection and 
diagnostics using Model, Cluster and Compare algorithm. 
 
METHODOLOGY 
The proposed energy model reduction method is composed of those major steps as shown in Figure 
1: 1)apply principal component analysis (PCA) to capture the thermal characteristics of each 
thermal zone using simulation results over a training period; 2)pass the variables (loading factors) 
representing zone’s thermal behavior to affinity propagation, a clustering technique to 
automatically group similar zones together and obtain an exemplar zone representing each group; 
3)create the resulting reduced energy model only contains the exemplar zones and their multipliers, 
and is capable of representing thermal behaviors of the original building. 
 

 
Figure 1. Procedures of the proposed model reduction method 

 
Principal Component Analysis (PCA)  
Principal component analysis is a powerful statistical procedure which obtains a set of linearly 
uncorrelated values from a set of possibly correlated variables in a new coordinate system. The 
order of the new coordinate system is ranked by variance so that higher order coordinate systems 
represent stronger patterns inside the dataset. The first dimension of the new coordinate system 
has the greatest variance and is called first principal component, and so on. It is often used in 
predictive model generation, data dimension reduction and many other applications (Wold et al. 
1987).  
 
PCA has also seen some previous applications in building engineering research, mostly in fault 
detection and diagnostics research. Wang et al. used PCA to perform fault detection and 
diagnostics in air-handling system (Wang & Xiao, 2004) and its components (Wang & Cui, 2005). 
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In another study Du et al. used PCA to diagnosis faults in air dampers and VAV terminals (Du et 
al., 2008). 
 
PCA in this paper, however, is used to model the response of the thermal zones and capture the 
thermal characteristics of those zones by using a training dataset. Each thermal zone’s hourly 
simulation results that represent its thermal response for a certain training period from the original 
model is used as dataset 𝑋𝑋 with 𝑝𝑝 variables (columns) and 𝑖𝑖 measurements (rows). In order to 
make the first principal component most reflective to the zone’s thermal behavior, variables chosen 
for the dataset should comprehensive while still be as independent with each other as possible. 
Since the chosen variables are likely to take very different magnitudes, min-max scaling is used to 
preprocess the data. Then the data undergoes the PCA transformation as follows: 
 
𝑡𝑡𝑘𝑘(𝑖𝑖) =  𝑥𝑥(𝑖𝑖) ∙ 𝑤𝑤(𝑘𝑘) (1) 
 
Where 𝑤𝑤(𝑘𝑘) = (𝑤𝑤1, … ,𝑤𝑤𝑝𝑝)(𝑘𝑘) is a set of 𝑝𝑝-dimensional vectors of loading factors that map each 
row 𝑥𝑥(𝑖𝑖) of 𝑋𝑋 to a new principal component vector 𝑡𝑡𝑘𝑘(𝑖𝑖) =  (𝑡𝑡1, … , 𝑡𝑡𝑘𝑘)(𝑖𝑖). 
To get the first loading vector 𝑤𝑤(1), a maximization procedure can be used by: 
 
𝑤𝑤(1) = arg max {𝑤𝑤

𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝑤𝑤
𝑤𝑤𝑇𝑇𝑤𝑤

} (2) 
 
After the first loading vector is obtained, 𝑤𝑤(1) is then stored for each zone to be passed to the 
clustering process. 
 
Affinity Propagation Clustering 
Clustering, a form of unsupervised classification in the modern statistical learning field, is to group 
similar objects together based on pattern proximities such as distance, densities or other criteria 
(Jain, Murty, & Flynn, 1999). It is most commonly used in exploratory data analysis, but in this 
application, it is intended to group similar building zones together without manually label them.  
 
Affinity propagation (Frey & Dueck, 2007) is used in the current process. It performs clustering 
by exchanging messages between data points recursively until a high-quality set of exemplars 
emerges. Instead of producing perfect “virtual” zones as the centers of clustered zone groups, 
distance-based clustering algorithms such as affinity propagation and k-centers can choose the so-
called "exemplars" from the existing zones to be the centers. This feature is preferred since instead 
of generating new zones from the “virtual” data points which would be too complex, exemplar 
zones can be directly used in the reduced model. Compared to k-centers algorithm, affinity 
propagation does not require predefinition of the number of clusters to be classified and is better 
at handling a large number of clusters and less prone to random initialization issues (Frey & Dueck, 
2007). Given the advantages mentioned above, affinity propagation was selected in this paper. 
 
Affinity propagation works by treating the first loading vectors (𝑤𝑤(1)) of each zone from the PCA 
analysis as node in a network, and then recursively finding the best set of exemplar zones so that 
the network similarity 𝑠𝑠(𝑖𝑖,𝑘𝑘) is minimized. In this paper Euclidean distance, or negative squared 
error, is used to calculate the similarity: 
 



𝑠𝑠(𝑖𝑖,𝑘𝑘) =  −�𝑤𝑤(1),𝑖𝑖 − 𝑤𝑤(1),𝑘𝑘�
2
 (3) 

where 𝑖𝑖 is the zone index and 𝑘𝑘 is the exemplar index. 
To determine the number of clusters, 𝑠𝑠(𝑘𝑘,𝑘𝑘), or so-called “preferences”, need to be defined for 
each zone. Zones with higher preference are more likely to be chosen as exemplars. In this 
application, since all zones are likely to be exemplars, the preferences are set automatically to be 
the median of input similarities 𝑠𝑠(𝑘𝑘,𝑘𝑘), which means the final cluster formation is better than 
each zone forming its own group. 
 
Two kinds of messages are passed between zones recursively to compete and determine whether 
a data point should be an exemplar (responsibility) or belong to another exemplar (availability). 
The following equations define those two kinds of messages: 
 
𝑟𝑟𝑟𝑟𝑠𝑠𝑝𝑝𝑟𝑟𝑛𝑛𝑠𝑠𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟: 𝑟𝑟(𝑖𝑖,𝑘𝑘) ← 𝑠𝑠(𝑖𝑖,𝑘𝑘)  −  max

𝑘𝑘′𝑠𝑠.𝑡𝑡.𝑘𝑘′≠𝑘𝑘
{𝑎𝑎(𝑖𝑖,𝑘𝑘′) + 𝑠𝑠(𝑖𝑖,𝑘𝑘′)}    (4) 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑟𝑟:𝑎𝑎(𝑖𝑖, 𝑘𝑘) ← min {0, 𝑟𝑟(𝑘𝑘,𝑘𝑘) +  ∑ max {0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)}𝑖𝑖′𝑠𝑠.𝑡𝑡.𝑖𝑖′∉{i,k} }   (5) 
 
To better illustrate those two kinds of messages: responsibility 𝑟𝑟(𝑖𝑖,𝑘𝑘) indicates the accumulative 
evidence supporting how well-suited zone 𝑘𝑘 is the exemplar of zone 𝑖𝑖. Whereas availability 
𝑎𝑎(𝑖𝑖,𝑘𝑘)  reflects the accumulated evidence showing how well-suited zone 𝑖𝑖  belongs to the 
exemplar zone 𝑘𝑘.  
 
During the first iteration, the availabilities are set to zero. For 𝑘𝑘 = 𝑖𝑖, 𝑟𝑟(𝑘𝑘, 𝑘𝑘) is set to be the input 
preference  𝑠𝑠(𝑘𝑘,𝑘𝑘). Unlike availability 𝑎𝑎(𝑖𝑖,𝑘𝑘), self-availability 𝑎𝑎(𝑘𝑘,𝑘𝑘) is formulated as the 
following to avoid the influence of strong positive responsibilities, both self-responsibility 𝑟𝑟(𝑘𝑘,𝑘𝑘) 
and self-availability 𝑎𝑎(𝑖𝑖, 𝑘𝑘) reflect the accumulative evidence that zone 𝑘𝑘 is an exemplar.  
 
𝑎𝑎(𝑘𝑘,𝑘𝑘) ←  ∑ max {0, 𝑟𝑟(𝑖𝑖′,𝑘𝑘)}𝑖𝑖′𝑠𝑠.𝑡𝑡.𝑖𝑖′≠𝑘𝑘            (6) 
 
A damping factor, λ is used to avoid potential oscillations. Each message is λ times its previous 
value plus 1 − λ times the current value. In this application, the default damping factor of 0.5 is 
used. During each iteration, the exemplars are determined so that 𝑎𝑎(𝑖𝑖, 𝑘𝑘)  +  𝑟𝑟(𝑖𝑖, 𝑘𝑘)  are 
maximized. The algorithm is terminated and results produced when more than 15 iterations are 
achieved without changes in the cluster structure. After all thermal zones are clustered, only the 
exemplar zones are kept in the original building model, and zone multiplier is used to adjust for 
the total floor area of each group. 
 
EXPERIMENTAL SETUP 

Figure 2. left: detailed BIM model; right: building energy model 



 
An experiment was carried out to evaluate the effectiveness of the proposed methodology and 
demonstrate its usage as a proof of concept. A 7-story academic building was selected for this 
study. Canal building is located at Carleton University, Ottawa Ontario, Canada and has a mixture 
of private offices, open offices, conference rooms, classrooms, labs, retails, common areas and 
other utility rooms. This mixed usage nature challenges the proposed method’s ability to identify 
distinct thermal characteristics of different zone types and orientations. A complex and calibrated 
Building Information Modeling (BIM) model was created in a previous study (Figure 2) (Shi et 
al., 2015). The converted energy model contains 264 thermal zones and more than 3800 surfaces, 
making it too complex for fast retrofit parametric analysis and model predictive control 
applications. The building is conditioned by a VAV system in the original energy model. Based 
on past experience, the smallest number of variables that may best represent the thermal response 
are chosen as in Table 1.  
 
Table 1. Collected zone variables 

Included Variables Type 
Outdoor dry bulb temperature Environment 
Solar azimuth angle Environment 
Solar altitude angle Environment 
Direct solar insolation Environment 
Diffused horizontal solar insulation Environment 
Zone mean air temperature Zone 
Zone mean air temperature change Zone 
Zone heating/cooling rate Zone 

 
EnergyPlus was selected as the energy simulation tool. A simulation period of one month was used 
to generate the training data. In order to produce the reduced model in EnergyPlus, only exemplar 
zones with multiplies and their related entities are kept, and all interior surfaces of the exemplary 
zones are changed to adiabatic boundary conditions.  
 
To automate the process, a tool was written in Python to read the .idf file (EnergyPlus input file), 
perform training simulation, read the .eso output file, then perform the model reduction procedure 
and generate the reduced .idf file accordingly. A Python machine learning package scikit-learn 
(Pedregosa et al., 2012) was used to perform principal component analysis and affinity propagation 
clustering. Another Python package, Eppy, was used to handle Energyplus interfacing, training 
.eso data parsing and .idf file manipulations. The simulations were performed on a 1st generation 
i-7 CPU with a clock speed of 2.67GHz. 
 
RESULTS AND DISCUSSION 
 
Table 2 shows the model and simulation comparison between the original model and the reduced 
model in EnergyPlus, and Figure 2 shows an example floor plan of the original thermal zones 
clustered into different groups coded by different color. The number of thermal zones and building 
surfaces has been reduced by 94.7% and 95.9%, respectively. The simulation time has also been 
reduced by 96.6%, allowing for significant computation reduction. The new reduced model 
enables a more realistic potential usage of the whole building simulation for model predictive 
control and fast parametric analysis. 



 
Table 2. Model and simulation time comparison 

 Original Model Reduced Model 
Thermal Zones 264 14 

Surfaces 3,878 158 
Simulation Time (1-year) 47’50” 2’12” 

Computation Time Reduction (1-
year) 

/ 95.6% 

 
 

 
Figure 3. Example floor plan of zone groups indicated by different colors, zones from multiple 

floors may belong to the same group due to similar thermal behaviors 
 

Table 3 compares the simulation results between the original model and reduced model. The 
differences in the energy consumption between the original model and the reduced model are 
relatively small considering the magnitude of model complexity reduction from the original model. 
There is a large discrepancy for the fan energy consumption, though and may be caused by the fact 
that only floor area is used to calculate the zone multiplier, not zone volume. The difference 
between the equipment loads is also quite larger, but this can be caused by the fact that another 
casual heat gain source, lighting load, is much higher than the equipment loads, so the 
characteristics of equipment usage are not well represented by the loading factors. 
 
Overall the results indicate that the proposed model reduction method has potential for wider 
adoptions, but further tests with more building models are required to test the method's robustness. 
However, volume is not considered in this model reduction and may lead to issues for specialized 
thermal zones which contains theatres and lecture halls. Furthermore, whether the method tends to 
overestimate energy consumption need to be analyzed as well. 
 
Parametric simulation results between the original model and reduced model need to be compared 
so that the capability of the proposed method as a way of performing reduced parametric analysis 
can be further validated. 
  

N 



 
Table 3. Simulation results 

    
  Original Model Reduced Model Difference 

Natural Gas (kWh) 
Heating 1,582,828 1,482,281 -6.78% 

Electricity (kWh) 
Cooling 108,333 117,904 8.83% 
Lighting 121,749 120,483 -1.04% 

Equipment 39,445 35,424 -10.19% 
Fans 95,621 109,448 14.46% 

Pumps 77,850 75,278 -3.30% 
Cooling Tower 2,833 3,083 8.82% 

Total Electricity 445,831 460,620 3.54% 
Water (m3) 

Cooling Tower 1,526 1,602 4.98% 
 
 
Principal component analysis used in this paper does not capture the nonlinearity of the zones’ 
thermal responses. The Koopman operator used by (Georgescu & Mezić, 2015) is able to capture 
all the nonlinearity of a dynamical system and is worth further investigation and comparison. 
 
As of now the proposed clustering process only captures the thermal behavior of the building 
zones. Even though thermal response gives an aggregation of the other energy loads such as 
equipment load and lighting load inside a room, theoretically it would be more robust for the 
method to include other zone behaviors such as equipment usage patterns and lighting usage 
patterns. 
 
CONCLUSIONS 
This paper presented a methodology to perform building energy model reduction by applying 
principal component analysis to capture thermal behavior of the zones and then use affinity 
propagation to group similar zones together. A case study was also performed to demonstrate the 
effectiveness of the proposed method. Overall this novel method produced relatively similar 
energy consumption results while reducing the computation time by more than 95% in Energyplus. 
A tool was developed during this research and can be readily used with existing building energy 
simulation tools as an add-on, and has potential implications in building design simulations, 
HVAC control zoning definitions and building model predictive controls. In addition to the content 



in this paper, further study is needed to further improve its performance and test the algorithm’s 
robustness. 
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