Course Codes: ELEC 5705

Course Title: Fundamentals of Data Converters

Course Description:

This course focuses on the conversion process and techniques between the analog and digital worlds. The course covers system-level concepts such as Signal-to-Noise Ratio (SNR), distortion, quantization noise, Effective Number of Bits (ENOB), and also circuit-level concepts such as sample and hold, comparator reference generation, etc.

Pre-requisites or Co-requisite:

Electronics I & II or equivalent

Grading Scheme:

Item	Weight
Midterm (TBD)	40%
Project	30%
Class participation and assignments	30%
Total	100%

Textbook:

1. Principles of Data Conversion System Design by Behzad Razavi

ISBN: 978-0-780-31093-3 December 1994

2. Analog Integrated Circuit Design by Ken Martin and David Johns

Week-by-week Description:

Veek	Topics / Assignments	Reading / Assignment
1	Fundamental concepts of ADCs and DACs:	
	SNDR, SFDR, ENOB, Quantization noise	
	etc.	
2	Nyquist rate data converters:	
	Flash ADCSAR ADC	
3	Nyquist rate data converters (cont.):	
	Pipeline ADCSub-ranging ADC	
4	Oversampled data converters:	
	• 1 st order delta sigma ADC	
	Higher order delta sigma ADC	
5	Design Example of ADCs:	
	High resolution low speed ADC	
	High speed, moderate resolution ADC	
6	Components of ADCs: Sample and hold,	
	Comparator, reference generation and clock generation.	
7	Digital to Analog Converter (DAC):	Mid term
	Current mode DAC.	
	Voltage mode DAC.	
	Capacitive DAC.	
8	Design study of 50+ GS/s 7-bit DACs	
9	Recent trends in data converters: time/phase	
	domain data converter	

10	Characterization of ADCs and DACs	
11	Time interleaved ADCs	
12	Calibration of ADCs and DACs	
13		Project Presentation